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Abstract 

The problem of reducing SOz emissions in Europe is considered. The costs of reduction 
are assumed to be uncertain and are modeled by a set of possible scenarios. A mean- 
variance model of the problem is formulated and a specialized computational procedure 
is developed. The approach is applied to the transboundary air pollution model with 
real-world data. 

Keywords: Environment, Probabilistic programming, Interior point methods. 
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1 Introduction 
Reducing the pollution in the environment has become one of the challenges of the present 
time in industrial countries, and especially in Europe. It is commonly agreed that action 
should be undertaken to stop the growth of emissions and eventually achieve a substantial 
reduction of depositions. 

One of the issues that attracts the attention of researchers and decision-makers is 
the emission of sulphur dioxide to the atmosphere, which has a damaging effect on the 
environment through acid rains. Clearly, this is an international problem because air 
pollution can move across the borders and damage the environment in other countries. 
Therefore it is necessary to look for a common European solution for this problem. 

There are many ways to approach such problems. One would be to reduce the emis- 
sions uniformly over the continent (for example, by 30%). This, however, may prove 
prohibitively expensive. On the other hand, it might be possible to achieve the same 
reduction of depositions by a non-uniform reduction of emissions in a more cost-effective 
way. 

To investigate this possibility, the Regional Acidification Information and Simulation 
(RAINS) model has been developed at the International Institute for Applied Systems 
Analysis (see [I]). This model simulates the flow of acidifying pollutants (sulphur and 
nitrogen species) from source regions in Europe to environmental receptors. Comparable 
models exist for the USA and other regions [9, 11, 12, 201. The current RAINS model 
(version 6.1) used in this context covers 38 source regions in Europe: 26 countries, 7 
regions in the former USSR, and 5 sea regions (ship emissions). Analysis of deposition 
is performed for 547 land-based receptor sites with a regular grid size of 150 x 150 km. 
The United Nations' Economic Commission for Europe has used the model as its major 
tool to negotiate on a new second sulphur protocol which was signed in June 1994 (see 
[5]). Whereas the first protocol stipulates a 30% uniform cut back in emissions, the new 
protocol requires country specific reductions. In addition to RAINS, two other Europe- 
wide models were used in the ~legotiations: CASM (Coordinated Abatement Strategy 
Model), developed by the Stockholm Environment Institute in York, and ASAM (Abate- 
ment Strategies Model), developed by Derwent of the UK Department of the Environment 
(this is now being run by Imperial College in London). The CASM model has a nmd, 
detailed assessment of pollution control costs than the RAINS model since it uses data on 



individual point sources rather than sectoral data only. The ASAM model uses RAINS 
cost data. The ASAM model has a more detailed, grid-to-grid, atmospheric transport 
matrix whereas both RAINS and CASM employ country-to-grid matrices. In contrast to 
CASM and RAINS, the ASAM model does not use or possess an optimization routine, 
but instead uses a ranking procedure [8]. The extent of the emission reductions in the new 
protocol, however, was based on RAINS model runs that searched for the cost minimum 
solution to meet the targets for the deposition of sulphur at each grid area in Europe. 
These targets were based on the notion that the difference between the deposition in 1990 
and the so-called critical sulphur loads, which damage the environment, should be reduced 
by at least 60%. 

The optimization module of RAINS formulates possible strategies to minimize the 
costs of achieving deposition targets at certain receptors as a deterministic linear optimiza- 
tion problem that can be solved by linear programming techniques [4]. The cost-effective 
solution requires that the total costs of emission reductions be minimized, subject to the 
constraint that the desired depositions are met at every receptor. 

However, there are many uncertainties in the problem due to inaccurate or missing 
data, unknown future energy policies for the countries, etc. The purpose of this paper is 
to formalize the problem of reducing emissions in the presence of uncertainty, to develop 
a specialized solution procedure and to apply it to the real-world data available so far. 

In Section 2, we recall the deterministic formulation of the problem following [5]. In 
Section 3, we develop a mean-variance model for the problem under uncertainty. The 
uncertainty is modeled by a number of scenarios of future costs of emission reduction. 

Section 4 is devoted to the development of a specialized computational procedure for 
solving the problem under consideration. The algorithm is a version of a primal-dual 
logarithmic barrier method. 

In section 5, we report computational results obtained for six different scenarios pro- 
posed by the modelers. In the last section, we present our conclusions and give proposi- 
tions for the future work. 

2 The deterministic problem 

The RAINS model contains a sub-module to assess the potential and the costs for al- 
ternative emission abatement technologies. The evaluation is based on internationally 
reported performances and cost data of control devices [4]. Cost estimates for specific 
technologies are extrapolated by the model to reflect country-specific conditions such as 
operating hours, boiler size, and file1 price. In the current version of the model 'lie cost 
evaluation of the emission reduction techniques is limited to the most relevant measures 
that have no impact on the underlying pattern of energy use. For the time being, energy 
conservation and fuel substitution are excluded from the analysis. The following technical 
options are implemented: 

use of low sulphur fuels and fuel desulphurization; 

desulphurization of flue gases during or after combustion. 



For the optimization mode, RAINS creates 'national cost functions' for controlling 
emissions. National circumstances (such as sulphur content and operating hours) result 
in variations in the costs for applying the same technology in different countries in Europe. 
Another difference is the structural variations of energy systems, especially in the amount 
and structure of energy use, which determines the potential for application of individual 
control options. The national cost functions describe the lowest costs for achieving various 
emission levels by applying the cost optimal combination of abatement options. These 
national cost functions depend on future energy use. The RAINS model makes forecasts 
for energy use and national cost functions for the year 1995, 2000, 2005 and 2010. The 
costs are expressed in constant prices of 1990 for that specific year. In this paper, we 
will make use of the (static) cost functions for the year 2010. The cost functions are 
convex and piece-wise linear, reflecting the fact that for additional reductions, a new, 
more expensive technology will have to be applied. 

Let us formalize the problem. There are I( countries (regions) in our model. For 
each country (region) k we denote by xk the level of emissions, which will be our decision 
variable. The cost of reducing emissions to levels xk, k = 1, . . . , I(, is expressed by the 
functions fk(xk).  They are assumed to be convex and piece-wise linear. Our objective 
is to minimize the total cost ~ f = ~  fk(xk) subject to some environmental constraints and 
additional policy restrictions. 

The environmental constraints are described by a vector b E Rm of maximal grid de- 
positions, as illustrated in Figure 1. The dependence between emissions x = ( x l , .  . . , xK) 
and depositions y = ( y l , .  . . , y,) is assumed to be linear: y = Tx, where T is an m x Ii' 
matrix. 

These source-receptor transfer coefficients, which relate (country) emissions in the 
diffusion model to deposition at receptor points (for each grid), are based on the acid 
deposition model developed within the European Monitoring and Evaluation Program 
(EMEP) [18]. The model includes ten different chemical components in the air, three of 
which are man-made: SO,, NO, and NH3. Input data for the model consist of emissions 
for the three pollutants and meteorological data such as precipitation, wind speed and 
temperature. Meteorological data are taken from a weather prediction model and direct 
observations. As far as possible, emission data employed are official data submitted by 
the different countries. The model calculates transboundary fluxes of oxidized sulphur 
and nitrogen as well as reduced nitrogen (ammonia and its product ammonium). For this 
paper, EMEP model results that have been applied, reflect the meteorological average of 
the years 1985, 1987 to 1990. 

The whole optimization problem can be formulated as 
K 

k=1 

subject to Tx  5 b, 

Vectors I, u E Rm are policy constraints given by policy-makers. 
Every function fk(xk)  is defined on an interval [ X $ ( ~ ) , X ~ ]  which can be divided into 

subintervals [I:, x:-~], j = 1, . . . , J ( k ) ,  such that fk(xk)  is linear in each of them (note 
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Figure 2: The cost curve for Russia; the annual cost of reducing emissions as the function 
of the emission rate. 

that the break points if, j = 0,. . . , J ( k )  are numbered from the largest to the smallest 
one). The unit cost of emission reduction in the j-th interval will be denoted by cj,k. 
Formally 

f k ( ~ f )  - fk(x;-l) 
cj,k = k k 

xj-1 - xj 

By the convexity of f k ,  

Cl ,k  < c2,k I . . . I C~(k),k. 

This is illustrated in Figure 2. - 

It is convenient to rewrite (1) as a linear problem by introducing (for each k) new 
variables dk( j ) ,  j = 1, . . . , J ( k )  in such a way that 

k where &(j) = sfdl - X j ,  and 

Then we can express emissions as 



We can interpret variables dk(j) as successive reductions of the emission xk starting from 
the maximum level xh and moving down through the break points of the function fk(xk). 
Under (3), the total cost can be expressed as a linear function 

Owing to that, problem (1) can be reformulated as a linear programming problem 

subject to 

It is interesting to observe that we need not include condition (3) explicitly to  problem 
statement (5). Condition (2) with strict inequalities immediately implies that the solution 
of (5) must satisfy (3). 

We can solve (5) by standard linear programming techniques. 

3 The mean-variance model 

Unfortunately, the costs of controlling the emission are not deterministic quantities. There 
are many possible scenarios of energy production, consumption, fuel characteristics and 
installed emission control measures. Therefore our problem is a decision problem with 
uncertainty. 

There are many ways to  formalize such decision problems. We can, for example, use 
the worst-case approach and require the decision to be the best for the worst possible 
conditions. This usually leads to very conservative and expensive solutions. 

An approach that found many successful applications is to model uncertain quantities 
by random variables. Then we can use various concepts of the theory of probability to  
express our objectives alid ionstraints. '. his leads to ~tochastic programming models. 

In our case, only the costs are uncertain; they can be modeled by assuming that the 
unit costs c,,k are random (but still satisfy (2)). To be even more specific, we shall restrict 
our considerations to the case of finitely many scenarios s = 1, .  . . , 5. Each scenario s 
has some probability p(s), such that c:=, p(s) = 1, and is characterized by a collection 
of unit costs in subintervals 



Nevertheless, we still have many possibilities of expressing our objective. The simplest 
solution would be to minimize the expected cost 

This is equivalent to solving the problem with one average scenario having unit costs 

A significant drawback associated with the expected value approach is that it essentially 
ignores uncertainty of the cost. 

Another possibility would be to define a nonlinear utility function and to optimize its 
expected value. However, it is not clear how such a function should be defined in our 
case. 

Therefore, we decide to use the mean-variance approach to our decision problem. With 
such an approach, the quality is measured by two outcomes: the mean value (6) and the 
(weighted) variance 

where 

denotes the expected value of the cost for the k-th country (region) and wk7s are some 
weighting coefficients. 

The variance will be used to measure the risk associated with a decision. The weighting 
coefficients wk can be used to bring the variance components associated with different 
countries (regions) to some common measure. In particular, we could make wk inversely 
proportional to  the GDP of the k-th country (region), which would measure the risk 
relative to the economic strength of the region rather than in absolute terms. 

Both outcomes are used to form a composite objective 

where a > 0 is a user-defined parameter. &'Re main idea of the hiean-variance mot!i.l is 
to replace the objective of (5) by the composite objective (9). The constraints remain 
unchanged. 

By varying a one can generate a family of solutions with different trade-offs between 
the expected cost and the variance of the cost. This is so-called efficient frontier in a 
multiobjec~ive interpretation of our problem, with objectives E and V. 

Clearly, the mean-variance approach is only one of many possibilities to incorporate 
the risk component into the objective of the decision model. However, its simplicity and 



clarity made it a successful tool to  approach uncertainties of costs/profits, especially in 
financial planning problems. 

We shall adapt the mean-variance approach to our case. We denote by 

the cost of reduction at  source k under scenario s. Then we can rewrite (6) and (7) as 

The mean-variance problem can be now formulated as follows 

subject to 

Let us observe that the definition (8) of ek need not be repeated in the problem formula- 
tion, because the quadratic term in (11) is minimized by expected values: 

To allow application of efficient computational techniques for solving quadratic problems, 
we shall transform (11) to a problem with non-negative variables and with a convex 
separable quadratic part of the objective (i.e. a weighted sum of squares of decision 
variables). First, we split q k , ,  - ek into the positive and the negal,;, parts, defining new 
variables qLs and q i s  by 

The expected value and the variance now have the forms 



Unfortunately, the quadratic part of the objective is not separable now. However, it can 
be proved (cf. [ 6 ] )  that the solution of our problem does not change if we replace ( V )  by 
a separable function: 

because at the solution at most one variable from each pair q l l ,  qCl will be different from 
0. Finally, we obtain the following problem: 

+ 2 min C p ( s )  C ( q l S  - 9Cs + ek) + a C P ( S )  C d [ ( q k , s )  + ( q & s ) 2 ~ ]  ( I 3 )  
L=l k=l s=l k=l 

subject to 

It is worth noting that the definitions of the variance and of the expected value are implicit 
in this formulation. Indeed, assuming that the variables d k ( j )  are fixed, minimization with 
respect to ek, q l S  and qLs yields 

and qj!sq&s = 0 for all k and s. Therefore, we need not incorporate equation (8) into 
problem's formulation. We shall call ( 1 3 )  the model with two-sided risk penalty. 

Clearly, (13)  is not the only possible way to incorporate the risk term into the objective. 
For example, instead of quadratic costs for qi,3 ant1 qLs one can use linear costs as in 
[ 7 ] .  We decided to use quadratic penalties, because individual magnitudes of deviations 
from the expectation, not their sum alone, matter in our case. The disadvantage of the 
linear penalty is that it does not distinguish between t v ; ~  ~olutions having equal sums of 
deviations, but non-equal distributions of them. 

Alternatively, one might penalize only positive deviations q l s  in ( 1 3 ) .  Then, we have 
to explicitly incorporate a constraint defining expectations, such as (8) or ( 1 4 )  into the 
problem: 



subject to Tx  < b, 

It is a matter of elementary calculation to show that (14) guarantees that ek is the expected 
cost. We shall call (15) the model with one-sided risk penalty. The coefficient two before 
the penalty term has been added to make both models (13) and (15) equivalent in the 
case of symmetric distributions of the costs around their expectations. 

It is also possible to consider (formally) a model without condition (14), but then 
the interpretation of the linear and the quadratic term of the objective becomes rather 
obscure. 

4 Solution method 

The problem (13), as mentioned before, is a quadratic programming (QP) problem. Let 
us rewrite it in the standard form. First, we define some constants and variables. The 
box constraints 

l < x < u  

for the problem (1) will be shifted to obtain lower bounds equal to zero. We define new 
variables x' = x - 1, for which we have 

Next, we introduce to the constraints Tx  < b a vector of slacks t E R" to get 

Tx' + t = b', 

with b' = b - TI. 
For simplifying formulas, we define the constant SJ = ~ r = ~  J(k) .  A vector d is con- 

structed from variables dk( j )  defined in (3), 



Next, vectors q+ and q- are constructed from variables qCs qKs defined in (12), 

- - 
9- = (qC1, .. , B",l,. . . ,q1,s,. . . ,qX,s) E 

The vector of expected costs is defined as 

The entire vector of unknowns [ is built from subvectors previously used, i.e. 

Its dimension will be denoted by n, where n = 2 * Ii' + m + SJ + 2 * Ii' * S. The entire 
vector of the linear part of the objective is defined as follows: 

We use 0 to denote the vector of zeros with the subscript denoting its dimension. Similarly, 
we denote by 1 the vector of ones. 

The quadratic part of the objective is non-zero only for terms including q+ and q-. 
Formally, we define the quadratic matrix Q of dimension n in the following way: 

2a  * p(s)w; if i = j and the i-th component of [ is a q+ or q- 

l o  

variable and s and k denote the adequate number 
Qi,j = of scenario and country; 

otherwise. 

Let us now define the constraint matrix of the problem. We can combine equations 
(10) and (12) and write dependencies between q+, q-, E and d in a matrix form, i.e. 

where C is a matrix of dimension (I( * S) x SJ defined as follows: 

Equations (4) can be written in a matrix form 

X I +  Ed = xb, 



with xb = xo - 1 and 

Now we can write the full constraint matrix A, 

The submatrix T is the constraint matrix of the problem (1). The symbol I denotes the 
identity matrix of dimension determined by the subscript. The matrix J is defined as 

where the submatrix IK is repeated S times. When problem (15) is solved, A is addition- 
ally augmented with the block row 

with 
p = [ p ( l ) I ~  p(2)IK . - ' p(S)Ih- ] - 

It is worth stressing that in both cases, A is a very sparse matrix, which matters a lot for 
the solution procedure. 

The right hand side vector r is defined as follows 

Again, when (15) is solved, b is augmented with zeros, corresponding to the new rows of 
A. The vector p of upper bounds (all lower bounds are equal to zero) is given by 

u; - li if the i-th component of J is an x' variable, 
dk( j )  if the i-th component of J is a d variable, 
+co otherwise, 

where, given i ,  the values of j and k are found as follows: let 

then k is such that 



and 

We have not yet defined the number J(O), it will be equal to zero. 

Finally, we can formulate the complete QP problem in the standard form: 

min [gTJ + ;JTQJ] , 
subject to AJ = r ,  

The dual of (16) is given by 

T subject to A X + z - w - QJ = g, 

2, w 2 0, 

where X E RM and J ,  z, w E Rn; by M we denote the number of constraints equal to 
2 * I i ' + m + S J + 2 * S * K .  

For solving (16) and (17) we shall use the logarithmic barrier method (see, e.g., [13, 
151). In such a method, the objective is augmented by adding to it a logarithmic barrier 
term (with some coefficient p > 0), which yields the problem 

subject to AJ = r, 

and an analogue of (17): 

subject to A ~ X + ~ - W - Q J = ~ ,  

z ,  w > 0. 



The first order optimality conditions for (18) and (19) have the form 

where Z, C, Z and W are diagonal matrices with the diagonal elements tj, uj, zj and wj, 
respectively, and 1 E Rn is the vector of ones. 

The system (20) has a solution dependent on the parameter p. When p 0, this 
trajectory (so called central path) approaches the solution of the primal-dual pair (16)- 
(17). To approximate the central path, we shall use a quadratic analogue of Mehrotra's 
higher order method [14]. This method computes a Taylor approximation of the optimal 
trajectory that starts at a given point and leads to the optimum of (16) and (17). 

Mehrotra's method belongs to the class of continuation methods (cf. [16]) for solving 
systems of nonlinear equations. In these methods, a family of parametrized problems is 
considered. One element of the family is our original problem (e.g. for the parameter 
equal to 0), while other problems have a perturbed right hand side vector. For at least 
one value of the parameter we know the solution of the problem (e.g. for the parameter 
equal to 1). Moving iteratively from the problem with known solution to the original 
one (i.e. changing the right hand side vector), we can find a better approximation of the 
solution. 

Let to, uO, zO, wO > 0 and X0 be the current estimate of the solution of (16) and (17). 
Then 

nr = At0 - r, 

np = to + u0 - p, 

and n, = A ~ X O  + zO - w0 - QS0 - g, 

are the resulting residuals in the primal and dual constraints. Next, we consider the 
parametric system of equations 

where $1 and $2 are non-negative continuously differentiable functions determined on the 
interval [O,:l] such that &(0) = 0, & ( I )  = 1, $2(0) = 1, d2(1) = 0, and &(y)  E (0 , l )  for 



y E (0 , l ) .  The system (21) for y = 1 differs from the system (20) by the right hand side. 
For y = 0 both system are identical. 

Let r ( y )  = ([(y), a (y ) ,  A(?), z(y), w(y)) be the solution of (21) for given parameter 
y. We let S(1) = ([(l), a(l), X ( 1 ) ,  z( l ) ,  w(1)) = (to, a', XO, zO, wO), so (21.) is satisfied for 
y = 1. Thus r (0 )  represents the solution of (21) for y = 0, which is equal to the solution 
of (20), and, consequently, an approximate solution of (16) and (17). The key point of 
Mehrotra's approach is to use local higher order information available at point S(1) to 
construct a direction towards I'(0). In our implementation $l (y) = y and d2(y) = (1 -Y)2, 

which refers to Mehrotra's Algorithm 11. 
Since r ( y )  is a solution of (21) for a given y, the appropriate higher order terms 

of Taylor polynomial approximation of correction (A t ,  ACT, AX, Az, Aw) to the current 
estimate ([, a, A,  z, w) result from the recursive differentiation of (21.). The i-th order 
term of the correction vector can be obtained from 

where 

and 



Let us observe that for every i the matrix involved in all these linear systems is the same. 
Owing to that, the factorization of (22) need be computed only once. For the linear case 
(cf. [2], [3]) we can compute the search directions in the primal and dual spaces as 

where 1, and ld are orders of Taylor polynomials in the primal and dual spaces, respec- 
tively. The parameters y, and yd in (24) are the largest numbers in [ O , 1 ]  for which 

J - d (  2 0, 
a - d ,  2 0, 

2-d, 2 0, 

W-d,  2 0 .  

Unfortunately, for quadratic problems the use of (24) can cause the loss of feasibility 
in the dual equality constraints. If we have a feasible solution (J, a, A,  z, w) then the new 
point (J - d(, a-  d,, X - dx, z - d,, w - d,) need not be dual feasible as in the linear case. 
In a quadratic problem, the primal variable J appears also in the dual constraints, and 
then 

A ~ ( X  - dx) + (Z - d,) - (W - d,) - Q(J - d o  = c + QdE. 

To overcome this disadvantage we can follow [19] and use y, = yd and 1, = ld for primal 
and dual space. But it implies that y = min(y,, yd) and 1 = min(l,, Id), which slows down 
the method. 

In our computations we decided to use different y and 1 for the primal and the dual 
space, similarly to the linear case. Our exper;;,,;:nts show thsl  with formulas (24) the 
algorithm works much faster. 

After computing the search directions we define step factors f, and fd  as in [14]; new 
approximations to the optimal point are given by 



In this way, we generate a new 'starting point' for which p is reduced and the whole 
procedure is repeated. 

Let us briefly discuss how the whole idea can be implemented. Elimination of A&), A Z ( ~ )  

and Aw(i) reduces (22) to 

with 
-0 -1 (i) 0 -1 0 (4 h(" = q?' - (; ) qa + (C ) ( q p  - w q3 ) 

and 
0 = (Q + (ZO)-'zO + (CO)- '~0) -1 ,  

where qli), q t ) ,  q:), qr) ,  q!) are defined by (23). Further, we reduce (25) to the equation 

and we compute sparse Cholesky factorization of the positive definite matrix AOAT. 
It is now clear why separability of the quadratic part was so important. With a 

diagonal Q all terms in (26) are diagonal and computation of O is very easy. Furthermore, 
the sparsity pattern for AOATis the same for every O and we can use the same techniques 
of symbolic factorization as in the the linear case [lo]. Hence, the method used for solving 
(27) is the same as in the linear case. We can also use the same techniques for finding 
starting points. 

5 Numerical results 

Before the Second Sulphur Protocol was signed in June 1994 in Oslo, the latest model 
calculations of the RAINS model, that were used as input to the negotiations, were 
performed in June 1993. These calculations minimized the total European costs subject 
to two conditions: 

the deposition at each grid area had to be lower or equal to the depositions that 
would result if the difference between the deposition in 1990 and the critical sulphur 
deposition values for 5,  ,sitive ecr , em '7 'r reel.,, ed by 60% at each area (see 
Figure 2); 

countries would ,li, least carry out r~rluctions that they were currently planning to 
undertake anyway. 

Of the 38 regions in the model, two cannot control emissions (the Mediteranean Sea and 
the Black Sea). Hence, 36 countries remained, in which the emissions could be controlled 
(1<=36). For each country, 6 different scenarios of cost curves for the year 2010 were 



available. These different cost curves were developed at the International Institute for 
Applied Systems Analysis and the University of Karlsruhe (see [17]). The cost functions 
were based on the following scenarios: 

1. Reference scenario. This is based on fuel prices and energy demand projections of 
the "Energy 2000" and "Energy 2010" studies by the Commission of the European 
Communities. 

2. Alternative fuel prices, assuming a doubling of oil and gas prices and a 50% increase 
in coal prices. 

3. C 0 2  emission reduction scenario, which ensures a severe, country specific limitation 
in these emissions by the year 2010. 

4. Lower demand for final energy by ca. 20% (country specific). 

5. Higher demand for final energy by ca. 20%. 

6. Country specific scenario accounting, for example, for constant nuclear power contri- 
bution in Finland, a 25% decline in nuclear in France and increases in Italy and the 
Netherlands. Moreover, a faster penetration of natural gas in the United Kingdom 
and renewable energy in Spain was assumed together with an increase in domestic 
coal use in Hungary and ignoring current domestic coal contracts in Germany. 

The environmental constraints imposed at the reception areas (as in Figure 2) were 
at first filtered to eliminate those that could not be active at the solution. Those were 
the constraints that were satisfied by the present emissions and the constraints which 
were dominated by other constraints (had identical transfer coefficients, but a larger right 
hand side). In this way, the number of environmental constraints has been reduced to 
169 reception areas (m = 169). As a whole, the problem (13) had 36 x' variables, 169 
t variables, 236 d variables, 216 both q+ and q- variables, and 36 E variables; the total 
number of variables was 909. There are 169 constraints connected with the vector b', 36 
with vector xb and 216 others; together we had 421 equality constraints. 

The solution of the model with two-sided risk penalty (13) for various values of the 
parameter a is presented in Tables 1 and 2. We used rather large values of a to account 
for the difference of orders of magnitude between the unscaled expected cost and the 
normalized variance. The solution of the model with one-sided risk penalty (15) for 
various values of the parameter a is presented in Tables 3 and 4 (clearly, the results for 
a = 0 are for both models the same). 

We can sec from the results that both models lead to similar qualitative changes ill 
the solution when more stress is put on the quadratic risk term (a increases), although 
numerical values of the solutions are slightly different. Generally, the 'safe' solutions 
require smaller reductions from the colintries with the relatively high ratio of emissions 
to the GDP, thus reducing the relative risk associated with the cost uncertainty. Still, 
one has to stress that the currently available scenarios (cost curves) have substantial 
similarities in their qualitative behaviour and differ mainly in the scale of costs rather 
than in the shape of the function. 



Table 1: Emissions of SOz (in kilotons of sulphur) in the model with two-sided risk penalty. 

Albania 
Austria 
Belgium 
Bulgaria 
Czech and Slovak Rep. 
Denmark 
Finland 
France 
Germany- W. 
Germany- 3 .  
Greece 
Hungary 
Ireland 
Italy 
Luxembourg 
Netherlands 
Norway 
Poland 
Portugal 
Romania 
Spain 
Sweden 
Switzerland 
Turkey 
United Kingdom 
f. Yugoslavia 
Baltic Sea 
North Sea 
Atlantic Ocean 
Baltic States 
Byelorussia 
Ukraine 
Moldavia 
Kola-Karelia 
S. Petersburg 
Russia 

Table 2: The values of the objectives in the model with two-sided risk penalty. 

19 

a = o  
0.637043+02 
0.388883+02 
0.572763+02 
0.259813+03 
0.381333+03 
0.240883+02 
0.581533+02 
0.428003+03 
0.259633+03 
0.17000ES03 
0.235453+03 
0.480453+03 
0.272683+02 
0.529733+03 
0.340233+01 
0.531303+02 
0.158233+02 
0.416343+03 
0.929943+02 
0.546393+03 
0.749773+03 
0.390993+02 
0.238923+02 
0.833483+03 
0.733343+03 
0.272313+03 
0.146523+02 
0.346523+02 
0.633203+02 
0.140823+03 
0.135003+03 
0.847783+03 
0.115633+03 
0.126643+03 
0.153343+03 
0.156423+04 

Expected Cost 
Risk Penalty -- 

a = lo4 
0.636083+02 
0.388883+02 
0.439023+02 
0.259813+03 
0.416953+03 
0.240883+02 
0.581533+02 
0.369863+03 
0.259633+03 
0.170003+03 
0.164823+03 
0.465553+03 
0.479923+02 
0.523393+03 
0.481743+01 
0.531303+02 
0.158233+02 
0.573923+03 
0.806593+02 
0.526213+03 
0.750603+03 
0.390993+02 
0.212373+02 
0.833483+03 
0.733103+03 
0.420903+03 
0.146523+02 
0.346523+02 
0.633203+02 
0.140823+03 
0.108003+03 
0.755833+03 
0.115633+03 
0.126643+03 
0.974853+02 
0.128123+04 

a = o  
0.38703+04 

5.4678 

- - 
a + 

0.46373+04 
5.2033 

- . - - - . - 
a = 10: 

0.43343+04 
5.2158 

a = lo5 
0.635873+02 
0.388883+02 
0.415833+02 
0.25981 3+03 
0.419573+03 
0.240883+02 
0.581533+02 
0.304133+03 
0.259633+03 
0.170003+03 
0.151233+03 
0.464453+03 
0.477573+02 
0.525703+03 
0.494303+01 
0.531303+02 
0.158233+02 
0.606543+03 
0.678323+02 
0.525103+03 
0.751563+03 
0.390993+02 
0.212373+02 
0.833483+03 
0.746343+03 
0.427143+03 
0.146523+02 
0.346523+02 
0.633203+02 
0.140823+03 
0.1 10283+03 
0.755833+03 
0.115633+03 
0.126643+03 
0.102363+03 
0.'%_ olE+09 - -L 

(I = 10 6 

0.635853+02 
0.388883+02 
0.410853+02 
0.259813+03 
0.419953+03 
0.240883+02 
0.581533+02 
0.301773+03 
0.259633+03 
0.17000ES03 
0.148953+03 
0.464333+03 
0.479583+02 
0.525763+03 
0.494833+01 
0.531303+02 
0.158233+02 
0.609513+03 
0.666363+02 
0.525013+03 
0.751633+03 
0.390993+02 
0.212373+02 
0.830323+03 
0.746783+03 
0.427633+03 
0.146523+02 
0.346523+02 
0.633203+02 
0.140823+03 
0.1 11323+03 
0.755833+03 
0.115633+03 
0.126643+03 
0.102693+03 
. .d74833+03 

a = lo5 
0.45963+04 

5.2044 

- 
a. = 10" 

0.46283+04 
5.2033 



Albania 
Austria 
Belgium 
Bulgaria 
Czech and Slovak Rep. 
Denmark 
Finland 
France 
Germany- W. 
Germany-3. 
Greece 
Hungary 
Ireland 
Italy 
Luxembourg 
Netherlands 
Norway 
Poland 
Portugal 
Romania 
Spain 
Sweden 
Switzerland 
Turkey 
United Kingdom 
f. Yugoslavia 
Baltic Sea 
North Sea 
Atlantic Ocean 
Baltic States 
Byelorussia 
Ukraine 
Moldavia 
Kola Karelia 
S. Petersburg 
Russia 

Table 3: Emissions of SOz (in kilotons of sulphur) in the model with one-sided risk penalty. 

Table 4: The values of the objectives in the model with one-sided risk penalty. 

2 0 

-. -- -- 

Expected Cost 
Risk Penalty 

a = lo4 
0.45743+04 

3.7802 

. . - - - .- - - 
a = 10" 

0.45743+04 
3.7802 

- -  - 
n6 a =- 1U 

0.48978+04 
3.8265 



Table 5: Performance of the interior point method 

It is also worth noting that the numerical method suggested in the paper proved to 
be quite efficient for this class of problems. In Table 5, we summarize its performance 
for different values of the parameter cr in the model with two-sided risk penalty. The 
method never failed, although the required precision was high (lod6). Both the number 
of iterations and the execution time are rather low. All computations were done on a 
SUN Sparc 2 workstation. 

Conclusions 

= lo2 
18 

32.66 

= lo4 
21 

36.58 
Iterations 
Time(s) 

The methodology used in this paper can be used not only for this specific transboundary 
air pollution problem, but also for a wide class of problems with uncertainty in the costs. 
By using a mean-variance model, we can properly treat a non-deterministic problem with 
small data collections, when more sophisticated stochastic methods are not useful. The 
mean-variance model has a nice interpretation in terms of risk. Furthermore, this method 
leads to quadratic programming problems that are well described in the literature. 

= o 
20 

35.09 

The numerical method used here, the quadratic version of an interior point method 
of [2], proved to be efficient and robust. In this method the most recent computational 
techniques are implemented, such as symbolic Cholesky factorization of sparse matrices, 
splitting dense columns, minimum degree ordering and many others. The application 
problem described in the paper motivated the development of the general quadratic pro- 
gramming solver for sparse and large scale problems. 

= lo5 
24 

41.66 

Unfortunately, not all scenarios availnllle s .  far are complete ; ~ n d  their set does not 
seem to be variable enough. Having a richer collection of data, we might obtain more 
interesting results with greater role played by risk. Still, it is also possible that very tight 
depo~it~ior~ constraints do not leave much room for stochastic optimization in this case. 

In the current model only costs are uncertain. However, depositions depend on many 
uncertain factors, especially on weather. In a more sophisticated approach, one might 
incorporate uncertainty into the constraints, which requires further research and cooper- 
ation of experts in both environmental modeling and optimization. 

= lo6 
30 

48.37 

= lo9 
32 

51.53 
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