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Andrzej Ruszczyriski 

1 Introduction 

Among the many challenges facing Central and Eastern Europe is the problem of improv- 
ing the quality of the regions rivers, reservoirs and lakes (see [4] for an extensive discussion 
of the background). One of the key problems is the choice from among alternative treat- 
ment technologies to meet ambient quality standards cost-effectively. The main purpose 
of this note is to discuss the resulting optimization problems and to develop specialized 
solution procedures for them. 

The model introduced in [4] considers emission sources i = 1,2,. . . , m, pollutants 
1 = 1,2. .  . , L and monitoring points j = 1,2,. . . ,n .  The pollutants are transferred from 
the sources to the monitoring points. In the simplest approach, one can use linear transfer 
functions which express the ambient water quality Q: for pollutant 1 at the monitoring 
point j as 

where: 

Ef - emission of pollutant 1 at source i; 

b: - ambient quality background level. 

Transfer coefficients describe the effect of reactions that take place in the water on the 
way from the source to the monitoring point. In the Streeter-Phelps model 

T !  81 = exp ( - ~ ~ t ; ~ ) ,  (2) 

where ~1 is the decay rate and tij is the travel time from i to j (see [4] for a discussion of 
other models). 

For every source i there is a set K( i )  of available treatment technologies. Each tech- 
nology k E K( i )  is characterized by the following data: 

Eilk - emission of pollutant 1, 1 = 1,2,. . . , L. 

A control policy is defined as a selection of technologies kl, kz, . . . , km such that ki E 
K(i) ,  i = 1,2,.  . . , m. Every control policy is characterized by the following outcomes: 
the ambient quality levels (1) at monitoring points, 



and the cost 

i= 1 

Clearly, we would like to have low Qi for all 1 and j at low cost c, but these goals are 
contradictory. 

In the next section we discuss a number of mathematical programming problems that 
arise from the above setting: cost minimization, quality optimization and multiobjec- 
tive formulations. The combinatorial nature of our problem makes the proper problem 
statement crucial for the efficiency of solution methods. In section 3 we present linear 
programming formulations of our problems as 0 - 1 mixed-integer programs and we briefly 
discuss available solution methods. In section 4 we further exploit the structure of the 
problem and we develop dynamic programming statements of our optimization problems. 
We also discuss specialized algorithms for solving the problems. 

2 Basic problems 

Before proceeding to detailed problem formulations let us make a simple observation. The 
physical nature of the problem implies that the transfer coefficients Tjj can be different 
from zero only for sources i located above the monitoring point j .  We shall denote the 
set of such sources by M( j ) ,  

M ( j )  = { i  : Tij > 0). 

With no loss of generality we can then restrict the summation in (1) and (3) to i E M(j ) .  
To simplify the notation, we shall also use vector-valued quality levels 

transfer coefficients 
T,, = (T;;, T;, . . . , T;) 

emissions 
E i k  = (E;~, E;~, . . . , Ek) 

and background levels 
b, = (bj, b;, . . . , bf). 

2.1 Cost minimization 

The fundamental formulation discussed in [4] assumes that there are quality standards S: 
for pollutants 1 at monitoring points j. Then the problem can be stated as follows: find 
technologies k, E I<(i),i = 1,. . . ,m,  so as to 

subject to 
C TijEjki 5 Sj - bj, j = 1, ..., n; 

i€M( j )  

where S, = (Sj ,  S:, . . . ,S f ) .  



2.2 Quality optimization 

When the available budget is limited, it may be impossible to fulfill the quality standards 
(6) at  an acceptable cost. Then we have to reformulate the problem and state it in a 
more realistic way: allocate the resources in such a way that the water quality will be as 
good as possible. The water quality, however, is given by a collection of outcomes (3) at  
different monitoring points and for different pollutants. There are many ways to bring 
them to one integrated quality measure; one possibility is the (scaled) "max" measure 

where S: denote quality standards at  points j. In other words, Q is the maximum relative 
violation of the standards. The problem would be then to minimize this violation subject 
to  the budget constraint E :  

Q(kl,  k2, . . . , k,) = max [( x T(, E:,, + b: - s~)/s:] 
J Z I ,  ..., n 
I = ] ,  ..., L i c M ( j )  

This is a typical worst-case optimization problem. It may turn out that in some regions 
where the worst case does not occur the technologies will not be uniquely defined and 
there will be still a possibility of improving the local quality levels. One way to overcome 
this drawback is to re-define the quality standards for different regions - we shall discuss 
this issue toget her with the multi-objective statement of the problem. 

A simple way of forcing all levels downwards (but with the largest weight put on the 
worst case) is to  replace the worst-case function (7) by a quadratic (say) penalty function 

Here, the use of the term max(0, (Q: - S:)/S:) instead of just (Qi - Sj ) /S j  (as in (7)) 
is motivated by the necessity to penalize only the violations of the standards, not the 
improvements. The resulting problem has the form: 

With this formulation we may still have some freedom to choose technologies in the re- 
gions where the quality standards can be easily met, but this is not a serious obstacle 
(see the next subsection). The main difficulty is the nonlinear form of the objective (11) 
whereas the problem (8)-(9) can be re-formulated as a mixed-integer linear programming 
problem (see section 3), which allows for the use of powerful large-scale linear program- 
ming techniques. On the other hand (11) is additive with respect to the measurement 
points j = 1, .  . . , n, while (8) is not, which is important for the dynamic programming 
approach discussed in section 4. 



2.3 Multiobjective formulations 

The formulations discussed so far assume either stiff quality constraints (6) or budget 
constraints (9), (12). Since the quality requirements and budget restrictions are in conflict, 
some compromise is necessary. In our case, one can scan the set of possible compromise 
solutions by changing the quality requirements Sj in (6) or the budget limitations E in 
(9) or (12). There is, however, a more general way of generating attractive compromise 
solutions. Instead of putting one set of requirements into the objective function and 
another into the constraints, we can formulate an integrated achievement function, which 
measures the fulfillment of our quality and budget requirements (see [6]). Similarly to (7) 
the achievement function for our problem can be defined as 

where, as before, Sj are desired quality standards and E is the projected budget. The prob- 
lem would be then to minimize the achievement function (13) over all policies kl, k2,.  . . , k,. 
Let us note that, contrary to earlier formulations, both the quality requirements and the 
budget are flexible now: we minimize the relative violation of the reference levels Sj and 
E .  An acceptable compromise can be achieved by (interactive) setting the reference levels 
and minimizing (13). Again, we shall see in section 3 that the problem of minimizing (13) 
can be re-stated as a mixed-integer linear programming problem. 

We can also use an additive nonlinear achievement function, similar to (10): 

It may be useful for dynamic programming formulations discussed in section 4. 

3 Mixed-integer linear programming formulations 

Some of the optimization problems stated in section 2 can be re-formulated as binary 
mixed-integer linear programs. These reformulations have two advantages: they allow 
for fast and efficient generation of approximate solutions and also for implementation of 
advanced techniques for finding optimal solution. The basic concept that leads to mixed- 
integer programs is the introduction of 0 - 1 variables x;k, i = 1, .  . . , m; k € K(i) ,  defined 
as follows: 

1 if technology k is used at source i; 
x;k = 

0 otherwise. (15) 

Introducing the constraints 
xik = 1, 

we guarantee that at every source i one and only one variable x;k will be equal to 1, i.e., 
one technology will be selected. 



3.1 Cost minimization 
The cost minimization problem (5)-(6) can now be stated as follows 

By replacing the integrality constraint (21) with the box constraints 

we obtain a linear programming relaxation of the original problem: an approximate prob- 
lem whose optimal cost function is not larger than the optimal cost function of (18) - 
(21). Indeed, (22) includes all points defined by (21) so the feasible set of the relaxation 
is not smaller than the original one. Therefore, the optimal objective function cannot be 
worse. 

It is interesting to interpret the set given by (20), (22) as the set of mixed technologies 
- imaginary weighted combinations of available technologies (with weights xjk, k E I ( ( i ) ) .  

3.2 Quality optimization 
In order to transform problem (8)-(9) into a linear program let us introduce an additional 
variable v, which will represent the maximum relative quality violation: 

We can then state the problem as follows: 

minimize v (24) 

subject to 

Again, by replacing the integrality constraint (28) by (22) we get a continuous relaxation 
of the quality optimization problem. 

The problem with the nonlinear penalty (11)-(12) cannot be transformed to a mixed- 
integer linear program. By using the transformation (15)-(17) we would then obtain a 
mixed-integer linear-quadratic problem similar to  (24)-(28), but with the objective v2 
and an additional constraint v > 0. Such problems are very difficult to  solve as general 
mixed-integer programs. Instead of using the transformation (15)-(17) there, it seems 
better to  apply special techniques exploiting the combinational structure of the problem 
in the dynamic programming setting (see section 4). 



3.3 Multiobjective formulation 
The mixed-integer linear programming formulation of the scalarized multiobjective prob- 
lem is similar to (24)-(28): 

minimize v (29) 

subject to 

C C T i j E j k ~ i k - S j ~  5 S,- b,, j = I ,..., n, 
i ~ M ( j )  k€K(i) 

All the remarks following (24)-(28) apply here as well. 

3.4 Solution procedures 
A general approach to  0 - 1 mixed integer linear programming problems is the branch- 
and-bound method (see, e.g. [3]). Its main idea is to search a tree of linear programming 
relaxations of the original problem. Each node of the tree corresponds to an LP problem 
which has some of the variables x;k fixed at 0 or 1; other variables are regarded as contin- 
uous variables in [0, 11. The successor nodes result from fixing a new continuous variable 
on its bound (0 or I) ,  etc. The overall number of nodes in the tree can be very large, 
but special strategies for choosing the node to develop and for cutting the branches can 
substantially reduce the computational effort. Such strategies are necessary, because the 
number of nodes in the search tree grows exponentially with the number of sources. 

The main idea of directing the search is to bound the optimal values of the nodes in 
the tree. First, let us observe that if a given node has an integer solution, it provides an 
upper bound of the optimal value of the whole problem. The best upper bound found so 
far allows us to cut-off many branches of the tree. Indeed, the minimum value of an LP 
relaxation at  a given node is always a lower bound of the values at  all its successors. So, 
if this value is above the current upper bound, the whole branch can be safely removed 
from the search tree. It turns out that by a proper choice of the nodes to be processed 
we can quicldy reduce the number of variations to a manageable size (see, e.g. [3] and 
references therein for an extensive discussion of this issue). 

Another important issue of the branch-and-bound methods is the improvement of the 
lower bound at  a given node. It turns out that we can exploit the integrality of the 
variables to generate new inequalities in the problem which cut-off some parts of the 
feasible region of the LP relaxation that do not contain integer solutions. Owing to that, 
the optimum values of the LP relaxations become larger. Consequently, some nodes can 
be removed earlier from the list of candidates to be processed (see [2, 51, etc.). Finally, 
there are highly specialized linear programming techniques that can be used to quickly 
solve the node subproblems. They differ one from another only slightly (some variable is 
fixed or some cuts added), so their solutions can be updated instead of solving the next 
problem from the beginning. This, of course, involves complicated updating procedures 
for sparse matrix factorizations used in the LP solvers at the nodes. 

Summing up, the modern branch-and-bound approaches to 0-1 mixed integer linear 
programming problems are based on a number of advanced techniques of bounding, node 



selection, cut generation and LP updating. The resulting highly complicated systems are 
capable of solving very large problems. Still, to a larger extent than in continuous lin- 
ear programming, problem re-formulation and problem-oriented modifications of general 
methods play a crucial role in 0-1 integer programming. It is therefore necessary to work 
on special methods for our problem, either in the framework of the branch-and-bound 
method or in other general approaches. 

4 Dynamic programming formulations 

We already mentioned many times that the key to efficient solution of combinatorial 
and mixed-integer optimization problems is the proper problem formulation that takes 
advantage of problem's structure. 

In our case, the structure that has not been exploited so far is the sequential nature 
of the propagat ion of pollutants. 0 bviously, they move down the rivers. Consequently, 
the water quality at a monitoring point j is fully determined by the quality at monitoring 
points that are immediate predecessors of j and by the emission of sources that are 
between j and its predecessors. 

4.1 The water quality equation 

Let us introduce the following notation. For every monitoring point j let ~ ( j )  denote the 
set of monitoring points that are immediate predecessors of j in the system, i.e., such 
points r that r is above j and there are no other monitoring points between r and j. 
Next, let us define the set I ( j )  as the set of all sources that are located between j and 
at least one of its predecessors r E ~ ( j ) .  In other words, I(j) is the set of sources for 
which j is the first monitoring point (Tij > 0 and Ti, = 0 for r E ~ ( j ) ) .  Finally, for every 
r E n( j )  we define the transfer coefficients D:j (indexed by the pollutant type I) from r 
to j. Such transfer coefficients for the Streeter-Phelps model (2) have the form 

where trj is the travel time from r to j. For us, however, it is only important that by 
the physical nature of the problem such transfer coefficients must exist; their form is a 
secondary issue. 

We can now write the fundamental equation for the evolution of water quality levels: 

Here Abj is the incremental background level at j defined as 

Let us note the major difference between (34) and (1). In (34) quality levels are defined 
recursively, going from the sources to the sinks of the rivers. We shall exploit this feature 
by the solution procedure. We shall call (34) the water quality equation. One can, of 
course, use it in our earlier models to get alternative problem statements. 



4.2 Linear programming formulations with the water quality 
equation 

As an example of the use of the equation (34) in the linear programs of section 3 let us 
re-formulate the cost minimization problem (5)-(6): 

Replacing (19) by (37) increased the sparsity of the constraints, which may be of impor- 
tance for very large sizes of the problem. But the most important feature of the new 
formulation is that it may provide new hints for strategies within the branch-and-bound 
method, such as selection of nodes to develop, generation of cutting planes, etc. All these 
issues need to be investigated in detail. 

4.3 Dynamic programming equation for the cost minimization 
problem 

Owing to the recursive dependence of water quality levels by (34), we can use the principle 
of optimality of [I] to develop special dynamic programming equations for some of our 
problem formulation. The equations can be derived for problems that have additive 
objectives (such as (5), (1 1) or (14)). We shall do it for the cost minimization problem 
(5)-(6). Let us introduce for every monitoring point the set I I ( j )  of all monitoring points 
that lie above j: 

n(j) = {j) u ~ ( j )  u .rr(n(j)) u . . . (41) 
Now, we can define the cumulative cost function cj(Qj) as the optimal value in the 

following problem 
minimize{k,),iE ~ ( j )  C Ck, 

iE  M(j) 
(42) 

Problem (42)-(44) has Q j  as a parameter, the optimal value cj(Qj) is therefore a function 
of this parameter. We can interpret cj(Qj) as the lowest cost of getting water quality Q j  
at  point j without violating earlier constraints (for r E n(j)). 

It follows from the principle of o~t imal i ty  [l] that the functions cj(Qj) are related by 
the following dynamic programming equation: 



In other words, the lowest cost of getting quality Qj  is the minimum sum of costs at 
getting qualities Q, at the preceding points r E ~ ( j )  and the costs of technologies used 
in the last section (i E I ( j ) ) .  

4.4 Dynamic programming equation for the quality opt imiza- 
tion problem 

In a similar way to the previous section we can develop a dynamic programming equation 
for the problem (11)-(12) (we choose the quadratic penalty form because it is additive, 
whilst (8) is not). We define the cumulative penalty function Pj(Qj, cj) as the optimal 
value of the following problem: 

This problem has as its parameters the water quality Qj  that has to be reached at the 
monitoring point j and the sum cj of costs of technologies used at earlier sources i E M(j) .  
Therefore its optimal value Pj(Qj, cj) is a function of these parameters. 

The dynamic programming equation has the form: 

Let us observe that we had to increase the "state space" by including to it the cumulative 
costs &. 

The dynamic programming equation for the multiobjective formulation (14) is similar 
to (51), we only add to the last function P,(Q,, c,) the term [max(O, (c, - E)/E3I2. 

The advantage of the dynamic formulation (51) over (24)-(28) and (14) is that it does 
not contain the budget constraint E explicitly. In fact, P,(Q,, c,) provides results for any 
cumulative budget c,, thus allowing for a selection of a suitable compromise solution. 

4.5 Solution procedures 

The idea of the solution procedure is already present in the dynamic programming equa- 
tion: we just have to recursively calculate the cumulative cost functions cj(Qj) by (45) 
starting from the first points j (such that ~ ( j )  = 4) and moving down the rivers. A stan- 
dard approach is to introduce a grid in the state space and to round-off Q j  to the nearest 
grid point. With such an assumption, each Q, in (453 has only a finite number of differ- 
ent values and the whole problem (45) can be solved by a straightforward enumeration. 



Clearly, the number of grid points N has a decisive influence on the number of variations 
to consider - it will be proportional to NIT(j)l+l, where J r ( j )  1 is the number of immediately 
preceding monitoring points. Generally, the necessity to deal with all possible values of 
the state vector is the main drawback of dynamic programming: it is called the "curse 
of dimensionalityn. In our case, however, the dimension of the state space is equal to the 
number of pollutants L (or L + 1 for (51)) which is usually small (in [4] L = 3). We can, 
additionally, exploit the nature of the constraints in (45) to quickly eliminate most of the 
possibilities. 

Together with storing cj(Qj) at the grid points we can store also the corresponding 
solutions of (45): ki(Qj), i E I ( j )  and Qr(Qj),r E r ( j ) .  After reaching the last monitoring 
point n we can choose the lowest value $(Qn) for Q. 5 Sn - this is the optimal value 
of the original problem. The solution can be now recovered by the recursive application 
(moving up the rivers) of the mappings: 

Solution of (51) is similar - the only difference is that the dimension of the state is 
larger (the cumulative cost is a state variable here), so the number of grid points will 
be larger. As a reward, however, we shall obtain the family of solutions for all budget 
constraints E in (12). 

To recover the solution for a particular budget constraint E we just need to get & = E 
and find Q, such that 

pn(Q.9 4 )  = min Pn(Qn, 4 ) ;  
Qn 

this will be our terminal water quality. We move then backwards by applying the map- 
pings: 

b = k, (~ j ,F , ) ,  i E I(j), (54) 

G = G(Q,,F,), r E ~ ( j ) ,  (56) 

where, as before, k;(Qj, cj), Qr(Qj, cj) and &(Qj, cj) are the solution of (51). 
Summing up, the dynamic programming algorithm discussed here is relatively easy 

to implement. Owing to the low dimensionality of the state space (water quality and 
cost) its costs are moderate. An important feature is that the computation costs grow 
lineally with the number of monitoring points n, which makes the approach attractive for 
large-scale problems. 

It should be stressed that an identical procedure can be used when the linear water 
quality equation is replaced by a more accurate nonlinear relation. 

5 Conclusions 

We have discussed various formulations of the problem of cost-effective water quality 
management strategies: linear programming and dynamic programming formulations. 
We have also briefly characterized possible solution methods. 

The advantage of the mixed-integer linear programming formulations is the availability 
of efficient general-purpose packages for such problems. They have a number of advanced 
acceleration techniques implemented, which allows for solving large problems. However, 



attempts to solve such problems by some "ad hoc" techniques may fail on larger problems, 
because of an exponential growth of the computation time when the number of sources 
and monitoring points increases. Additionally, the mixed-integer approach is practically 
restricted to linear problems. It may be useful, however, for long term multi-stage plan- 
ning. 

The dynamic programming formulations exploit the physical nature of the problem 
to a much larger extent than linear programming formulations. They lead to reliable 
and easy to implement solution methods that can solve linear and nonlinear problems, 
provided that the objectives are separable. The solution methods can be slower on smaller 
problems but will prevail on sufficiently large problems, because their cost grows linearly 
with the number of monitoring points and sources. Another advantage of the dynamic 
programming approach over linear programming is that it provides in a natural way a 
family of solutions for varying budget constraints. It is, therefore, easier to use in more 
complex decision support systems. 

Finally, dynamic programming provides a convenient framework for addressing uncer- 
tainty of emissions and transfers. We plan to analyze these issues in our further research. 
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