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FOREWORD

In cooperative game theory as well as in some domaine of economic regulation by
shortages (quenes or unempoyment), one is confronted to the problem of optimizing
coalitions of players or economic agents. Since coalitions are subsets and cannot
be represented by vectors — except if we embed subsets in the family of fuzzy sets,
which are functions — the need to adapt the theory of optimization under constraint
for coalitions or subsets instead of vectors did emeryge.

The “power spaces” in which coalitions, images, shapes, etc. have to be chosen
are metric spaces without a linear structure. However, one can ertend the differ-
ential calculus to a mutational calculus for maps from one metric space to another,
as we shall ezplain in this paper. The simple idea is to replace half-lines allowing
to define difference quotients of maps and their various limits in the case of vector
space by “transitions” with which we can also define differential quotients of a map.
Thesr various limits are called “mutations” of a map.

Many results of differential calculus and set-valued analysis, including the In-
verse Function Theorem, do not really rely on the linear structure and can be
adapted to the nonlinear case of meiric spaces and ezxploited. This is the purpose
of this paper.



Optimization of Coalitions

The Mutational Approach

Jean-Pierre Aubin

Introduction

The topic of this paper is to build a “differential calculus” in metric
spaces in order to study optimization under constraints in metric spaces.

This study was motivated by problems arising in cooperative game the-
ory and economics where coalitions of players or economic agents play an
important role which was neglected by lack of adequate mathematical tools.

It was also motivated by “visual servoing”, where one needs to find
feedback controls feeding back on subsets (shapes) instead of vectors (see [17,
21, Doyen] for further results, applications and references). Mathematical
morphology, introduced in [26, Matheron] is also another field of motivations
(see [30, Mattioli]).

But a differential calculus unabling to derive necessary conditions for
optimization did exist in “shape optimization”.

The suggestion we propose here is inspired by the concept of shape deriva-
tives of shape maps V, which are in some sense “set-defined maps”, map-
ping subsets K C E to vectors V(K) € Y in a finite dimensional vector
space Y. (See [12, Céa), [13,14,15,16, Delfour & Zolésio], [18, Doyen], [39,
Zolésio], etc.). Their idea was to replace the usual differential quotients
U(z + hv) - U(z)

h
z + hv by differential quotients

is a Lipschitz map, d,(h,z) := z(h) deno’tles the value at time A of the
solution to the differential equation z’ = ¢(z) starting at z at time 0 and
do(h, K) := {9,(h,z)}zek the reachable set from K at time h of ¢.

In other words, the “curve” h — 9,(h, K) plays the role of the half lines
h — z 4+ hv for defining differential quotients measuring the variations of
the function V along it. Since the set K(F) of nonempty compact subsets
of E is only a metric space, without linear structure, replacing half-lines by
curves to measure variations is indeed a very reasonable strategy. For this
special metric space, these “curves” 9, which are examples of “transitions”

measuring the variation of a function U on half-lines
V(9,(h, K)) - V(K)

where ¢ : £ — E



defined below, are in one to one correspondence with the space Lip(E, F)
of Lipschitz maps ¢. They play the role of directions when one defines
directional derivatives of usual functions. Hence, if the limit

7 1 V(9y(h,K))-V(K)
Vv (K)p = hlir& h

exists, it is called the directional shape derivative of V at K in the “direction”
¢. With such a concept, an inverse function theorem allowing to inverse
locally a shape map V whenever its shape derivative Lip(E, E) — Y is sur-
jective is proved in [18, Doyen] and many applications to shape optimization
under constraints are derived in Doyen’s paper.

Since this strategy works well for shape maps, it should work as well for
set-valued maps, and indeed, it does for solving certain classes of problems.

For instance, in the case of tubes t ~ P(t) with nonempty compact values,
we suggest to look for differential quotients of the form

d(9,(h, P(t)), P(t + h))
h
which compare the variation P(t+h) and the variation 9,(h, P(t)) produced
by a transition ¥, applied to P(t).
Let B(K,e) denote the closed ball of radius £ around K. If

lim 3(e(h, P@)), P(t+ k) _
h—gl+ h a

0 (0.1)
or, equivalently, if there exists S(h) — 0 with h such that, for all k €]0, 1],
Yo(h, P(t)) C B(P(t + h),B(h)h) & P(t + h) C B(d,(h, P(t)), B(h)h)

it is tempting to say that the transition ¥, or, equivalently, that the associ-
ated Lipschitz map ¢ € Lip(E, E), plays the role of the directional derivative
of the tube P at ¢ in the forward direction 1. .

This is what we shall do: we propose to call mutation P () of the tube
P at t the set of Lipschitz maps ¢ satisfying the property (0.1). We do have
to coin a new name, because many concepts of derivatives of a set-valued
map — graphical derivatives!, such as contingent derivatives?, circatangent

Yaccording to a term coined by R.T. Rockafellar. See [33,7, Rockafellar], [35, Rockafel-
lar & Wets), SET-VALUED ANALYSIS, [9, Aubin & Frankowska) and VIABILITY THEORY,
[6, Aubin], among other authors for an exposition of their properties.

%introduced in [2, Aubin].



derivatives® or adjacent derivatives!, as well as other pointwise concepts® —
have been used extensively.

The need to extend concepts of derivatives in metric spaces is not new.
As early as 1946, T. Wazewski introduced in [37,38, Wazewski] the concept of
allongements contingentiels supérieur et inférieur (upper and lower contingent
elongations) of a map X — Y to prove implicit function theorems in metric
spaces. More recently, H. Frankowska used first order and higher order
“variations” in [23,24, Frankowska)] to prove sophisticated inverse function
theorems in metric spaces and L. Doyen to shape maps in [18, Doyen]. But
we follow here another track motivated by the evolution of tubes, shape
analysis and mathematical morphology.

The main concepts of set-valued analysis shall then be transferred to
set-valued maps F : X ~ Y from a metric space X to a metric space Y,
by defining contingent mutations of a set-valued map at a point of its graph
and other concepts of tangent mutations.

The main concepts of nonsmooth analysis shall also be extended to func-
tions defined on metric spaces. By using epimutations, we will adapt to
optimization of functions on metric spaces the Fermat and Ekeland rules.

1 Transitions on Metric spaces

Transitions adapt to metric spaces the concept of half line z + hv starting
from z in the direction v by replacing it by “curved” half-lines 9(h,z).
Indeed, the “linear” structure of half lines in vector spaces is not really
needed to build a differential calculus.

3introduced in [5, Aubin].

*introduced in {?,?,?, Frankowska].

5See [10, Banks & Jakobs), [11, De Blasi], [25, Martelli & Vignoli] among many other
authors.

*Namely,

d(f(z"), f(z))

f(z) = limsop LLELLED allf(z) := liminf =750

sz d(z', z)



Definition 1.1 Let X be a metric space for a distanced. A map 9 : [0, 1] X
X — X satisfying

(i) 9(0,z) = z
) 9@ = sup "("("I’hzl"zl("’z)) < 400

1 ... _ d(3(h,z),9(h,y))
"’) "t,llA T hG[(:‘ll]?z¢y d(z7y) < oo
) i d(d(t + b, 2),9(h,9(t,2))) _ ,

\ i h—or(r)1+ h B

is called a transition. When ||9||a < 1 in the above inequality, we say that 9
is a nonexpansive transition.

We denote by ©(X) the vector space of all transitions on X.

We define an equivalence relation ~, between transitions by

d(91(h,z), 92(h, z)) _
h

We say that (X,0(X)) is a (complete) mutational space if X is a (com-
plete) metric space and ©(X) C O(X) is a nontrivial vector subspace of
transitions, closed in C([0,1] x X, X) supplied with the pointwise conver-
gence.

) ~; 9, if and only if hli%l+ 0

Remark — We could have introduced the factor space of equivalence
classes of transitions, by identifying at each point equivalent transitions.
But this may be too cumbersome. O

"One may sometimes need more regular transitions: A transition is strict if

lim sup sup d(9(h,y),9(k,y))

< 400
y—z hgk |h - k|

and
liming 200+ H,y),9(h,9(t,9))) _ o

h—04,y—z h
We shall say that ¢, and 9 are strictly equivalent if

09y ~; 92 ifand only if  lim d(9:(h, z),93(h,y)) =0
h—04,y—s h




One observes that the transitions ¥(h,-) are Lipschitz uniformly with
respect to h € [0, 1] and that for every z € X, the maps ¥(-, z) are Lipschitz.
The unit transition defined by 1(h,z) = z is denoted by 1.

Example: Transitions on Normed Spaces Let E be a finite di-
mensional vector space. We can associate with any v € FE the transition
9, € O(FE) defined by

9y(h,z) := z+ hov

for which we have ||9,(z)|| = ||v]| and ||v]|]a = 1 (it is nonexpansive).

Therefore, we shall identify a normed space E with the mutational space
(E, E) by taking for space of transitions the space O(E) = E of vectors
regarded as “directions”.

We can enlarge the space of transitions by using the Cauchy-Lipschitz
Theorem. We associate with any Lipschitz map ¢ : X — X the transition
9, € O(FE) defined by

d,(h,z) := z(h)

where z(h) is the unique solution to the differential equation z'(t) = ¢(z(t))
starting from z.
Indeed, we deduce from the Cauchy-Lipschitz Theorem that

ellella — 1
[9,(2)ll < e""""—";”—A—||<P(-’5)||

and that [[9,]|s < ell¥llr because
d("w(ha .’E), 0¢(ha y)) S e"‘P”Ad(z, y)
They satisfy 9,(h + ¢, z) = 9,(h, 9,(2,2)).
We also deduce that
ellella — 1
da(dy,9y) < W"‘P — Y]l

because
ellellanr _ ¢

WWP - Y]loo

Then the space of Lipschitz maps ¢ : E — E can be embedded in the
space O(E) of all transitions:

E c Lip(E,E) C ©(E)

d(ﬂtp(h’ z)7 0¢(ha z)) <

5



We observe that for any z € E, ¢ is equivalent to the vector ¢(z) at z:
P~z p(2).

Example: Transitions on a subset of a vector space

Let M C FE be a closed subset of a finite dimensional vector space E.
We denote by Tam(z) its contingent cone and by Npy(z) := (Tm(z))~ the
subnormal cone.

Nagumo’s Theorem for differential equations (see [31, Nagumo], VIABIL-
ITY THEORY, [6, Aubin)]) states that M is invariant under ¢ € Lip(E, E) if
and only if

VzeM, o(z) € -Ty(z) N Ti(z)

and, actually®, if and only if
VzeM, Vpe Ny(z), (p,e(z)) =0 (1.1)
We shall set
Lipo(M, E) := {¢ € Lip(E, E) | satisfying (1.1) }
When ¢ is Lipschitz, we denote by

lle(z) = ()l
lella := sup ————T2—
2y llz—yll

the Lipschitz semi-norm of ¢.
We supply it with the distance ||¢1 — @2llcc := sUpP.epr |lp1(2) — w2(Z)||
of uniform convergence.
We thus infer that
LipO(M, E) C §(M)

is a space of transitions of the metric subset M.

Example: Transitions on Power Sets This is our main example.
Let M C E be a closed subset of a finite dimensional vector space E and
X := K(M) be the family of nonempty compact subsets K C M.

We can also associate with any Lipschitz map ¢ : F + E a transition
9, € O(X) defined by

'9¢(h, K) = {0¢(h7 z)}zGK
#See VIABILITY THEORY, [6, Aubin], Theorem 3.2.4.

6



Indeed, we deduce that

I9,(K)Il < el 2 = 1 ” " (K

and that
194lla < ell¥lla

because

d(9,(h, K),9,(h,L)) < el¥lrd(K, L)
We also observe that

dA("w 010) >

elle
o ” e = e

Therefore, _
Lipo(M, E) C ©(K(M))

is a space of transitions of K(M) and (K(M),Lipy(M, E)) is a mutational
space, the one we presented in the introduction.
Actually, there are other transitions on the metric space K(M).

2 Mutations of Smooth Single-Valued Maps

2.1 Definitions

We adapt first some classical definitions of differential calculus and notations
to single-valued maps from a metric space to another.

Definition 2.1 Consider two mutational spaces (X, 0(X)), (Y,0(Y)) and
a single-valuedmap f: X — Y from X to Y.

We shall say that the mutation } (z) of f at z is the set-valued map from
O(X) to O(Y) defined by

ref (@) fandonly if tim SIEBDLTRSED) _ g

We shall say that f is mutable at z in the directions 9 € ©(X) if} (z)9
is nonempty for every 9 € ©(X) and that f is strictly mutable if

d(f(9(h,2"),7(h, f(=))) _ ,

0+ ::’ —z h

T Ef (z)¥ if and only 1f



Proposition 2.2 Consider two metric spaces X, Y and a single-valued map
f: X - Y from X toY. If f is mutable at z, then two transitions

5} Ef ()Y and 1, Gf (z)9 are equivalent at f(z) : 1y ~y(z) T2
If f is Lipschitz and if 9, ~, 92 are equivalent at z, then transitions

T G} (z)9, and 12 G; (z)92 are also equivalent at f(z).

Remark — When the context allows it, we may identify the transitions

T e} (z)9 since they are equivalent at f(z) and make the mutation ; (z)
single-valued by taking the factor space of ©(Y). O

For maps defined from a mutational space (X, 0(X)) to a vector space F,
we restrict naturally the transitions to be vectors u € F by taking O(F) = F

so that mutations } (z) induce maps from ©(X) to F defined by

J(I(h, z)) f(z)

h—>0+

f @) =

Let X and E be finite dimensional vector space s and Y := K(E). We
regard a set-valued map P : X ~» E with nonempty compact images as
a single valued map P : X — K(E). We associate the mutational spaces
(X,X) and (K(E),Lip(E, E)).

We thus restrict the transitions ¥ € ©(X) to be just vectors u € E and
the transitions 7 € ©(K(FE)) to be Lipschitz maps ¢ € Lip(E, E), so that

mutations P (z) are set-valued maps from X to Lip(E, E) defined by

d(P(z + hu), 9,(h, P())) _ o
3

¢ €P (z)u if and only if hl_xg)1+

In other words, the mutation P (z)(u) is a set of Lipschitz maps ¢ : E
E such that

Dy(h, P(2)) C B(P(z+hu), B(h)h) & P(z +hu) C B(3,(h, P()), A(h)h) O

Remark — The contingent derivative of a set-valued map P: X ~ E
at a point (z,y) of its graph has no relations with the concept of mutation
of this set-valued map regarded as a single-valued map from X to the power
space Y := K(E).



In the first instance, the contingent derivative is a set-valued map D P(z,y)
from X to E depending upon a point (z,y) € Graph(P) whereas in the

second point of view, the mutation P (z) is a set-valued map from X to
Lip(E, E) depending only upon z and not on the choice of y € P(z).

This is the reason why we had to coin the word mutation instead of
derivative to avoid this confusion. O

Let M C FE be a closed subset of a finite dimensional vector space,
X := K(M) be the metric space of nonempty compact subsets of M and
Y be a normed space. We associate with them the mutational spaces
(K(M),Lipy(M, E)) and (Y,Y).

A map f: K(M)+—Y is often called a shape map, since they have been
extensively used in shape design and shape optimization (see [12, Céa], [39,
Zolésio), [13,14,15,16, Delfour & Zolésio], [18, Doyen], etc.).

Then, by restricting transitions on K(M) to Lipg(M, E) and the tran-

]
sitions on Y to be directions v € Y, we see that a mutation f (K) is a
set-valued map from the vector space Lipy(M, E) to Y associating with a
Lipschitz map ¢ the direction v defined by

i FBu(h K) = £(K)
h

Assume that the interior 2 of M is not empty. Denote by D(2, E) the space
of indefinitely differentiable maps with compact support from 2 to Y. Let
f:K(M)— R be a shape function. If

¢ € D(Q,E)nLip(E,E) — } (K)e is linear and continuous

then } (K') is a vector distribution called the shape gradient of f at K C M.

2.2 Shape Derivatives

The main example of mutation of a map is the shape derivative of shape
maps associating with a subset K the average of a a given function.

Proposition 2.3 Let us consider a shape function W defined by
W(K) = / a(z)dz
K

9



where  is C1. It is shape differentiable:
W (K)e) = [ div(a@)p(2))dz

2.3 Contingent Transition Sets

Definition 2.4 (Contingent Transition Sets) Let (X,0(X)) be a mu-
tational space, K C X be a subset of X and £ € K belong to K. The
contingent® transition set Tx(z) is defined by

Tk(z) := {19 € 0(X)| I;E.(i)&fw = 0}

It is very convenient to have the following characterization of this tran-
sition set in terms of sequences:

9 € Tk(z) if and only if I h, — 0+, T ¢, — 0+
and 3z, € K — z such that Vn, d(J(h,, z),z,) <enhy

Naturally, if 9, ~, 9, are equivalent at z € K and if ¥, belongs to
Tk(z), then 9, is also a contingent transition to K at z.

Example: Normed Spaces Let E be a normed vector space. We
can associate with any v € E the transition 9, € ©(E) defined by

9y(h,z) := z+ hv

Then the vector v € E is contingent to K at z € K (in the usual sense of
contingent cones to subsets in normed spaces) if and only if the associated
transition 9, is contingent to K at z.

Let us associate with any Lipschitz map ¢ : X — X the transition
9, € O(E) defined by

By(h,z) = z(h)

where z(-) is the unique solution to the differential equation z'(t) = ¢(z(t))
starting from z.

®This termed has been coined by G. Bouligand in the 30’s. Since this is a concept
consistent with the concept of contingent direction as we shall see below, we adopted the
same terminology.

10



Then the associated transition is contingent to K at z if and only if the
vector ((z) is contingent to K at z.

Example: Contingent Transition Sets on Power Sets

Let M C E be a closed subset of a finite dimensional vector space and
consider the mutational space (K(M), Lipy(M, E)). Let M C K(M) be the
a family of nonempty compact subsets of M.

We shall say that a Lipschitz map ¢ € Lipy(M, E) is contingent to M
at K € M if and only if the associated transition 9, is contingent to M at

K,ie.,
tim inf IMZe(h, K)) _

h—04 h 0

or again, if and only if there exist sequences h, and €, converging to 0 and
a sequence of subsets K,, € M such that

9o(hn, K) C Kp + enhaB & K, C 9y(hn, K)+ enhnB

This contingent cone has been introduced and studied in [18, Doyen]
under the name of velocity cone.

Constrained Inverse Function Theorems, a calculus of contingent cones
and Lagrange multipliers for shape optimization under constraints, which
use such concepts of tangent cones, have been obtained in [18, Doyen].

3 Inverse Function Theorem

Let us consider now a complete mutational space (X, ©(X)), a normed space
Y, a closed subset K C X and a continuous (single-valued) map f : K — Y.

We shall say that a set-valued map F : X ~+» Y is said to be pseudo-
Lipschitz around (z,y) € Graph(F) if there exist a positive constant A and
neighborhoods &« C Dom(F) of z and V of y such that

Vzi, 20 €U, F(z1)NV C F(z3) + AMd(z; — 22)By

Inverse Function Theorems provide criteria for the inverse of a map to
be pseudo-Lipschitz around a point of its graph.

Sophisticated Inverse Function Theorems in metric spaces have already
been provided in [23,24, Frankowska|, using first order and higher order
“variations”. We extend here the Inverse Function Theorem proved in SET-
VALUED ANALYSIS, [9, Aubin & Frankowska] to the case of metric spaces.

11



Theorem 3.1 (Constrained Inverse Function Theorem) Let(X,0(X))
be a complete mutational space and Y be a normed space. We consider a
(single-valued) continuous map f : X — Y, a closed subset K C X and an
element zg of K.

We assume that f is strictly mutable at zo and we posit the following
transversality assumption:

there ezist constants ¢ > 0, a € [0,1] and n > 0 such that

Vz € Kn B(zo,n), By C ;(z)(TK(z) NcBx)+ aBy

Then f(zo) belongs to the interior of f(K) and the set-valued map y ~»
FY(y) N K is pseudo-Lipschitz around (f(zo), o).

This theorem is a consequence of the still more general Theorem 3.2
below:

Indeed, not only are we interested in knowing whether a solution to the
constrained problem does exist, but we wish to approximate it by solutions
to the approximate problems

find z, € L, and y, € M, such that f,(z,) = yn

where z,, converges to zg, y, converges to yo = f(zo) and f, converges to f
in some sense.

Theorem 3.2 Let (X,0(X)) be a complete mutational space and Y a Ba-
nach space. Consider a sequence of continuous single-valued maps f,, from
X toY, a sequence of closed subsets L, C X and M, C Y and elements
Zo, Yo in the lower limits of the subsets L, and M, respectively.

We assume that f, are strictly mutable on a neighborhood of zo and
verify the following stability assumption:

there ezist constants ¢ > 0, a € [0, 1] and n > 0 such that

By C fn(2)(Te.(z) N eBx)) - Th,(v) N ¢Bx) + aBy

Then there ezist I > 0 and v > 0 such that for any zo, € Br, (z0,7) and
any Yon € Bum,(vo,7) satisfying ||yon — fa(zon)ll < 7, we have

ma-x(d(in - z0ﬂ)7 ”gn - yOn”) S I"!/On - fn(zOrA)”

12



Proof of Theorem 3.2 — We choose p > 0, £ > 0 such that

3 -
L APYP ..
c

and consider elements z¢,, and yo, satisfying
d(zon,z0) < n/3 & |lzon — 2ol < n/3

and
| fa(Zon) — voull < p

By Ekeland’s Variational Principle applied to the function

V(z,¥) = |lyn - fu(@)||

on the complete metric space L, X My, we know that there exists a solution
(Zn ¥n) € Ly x M, to

i) ¥ = fa(Zn)ll + e max (d(Zn, Zon), ¥n — vonll) < llvon — ful(zon)ll

“) Vz, € Ly, Yn € M,,
|90 = fa(@a)ll < llym — fa(zn)ll + € max(d(zn,Z0), [lyn — i]n”)( )
3.2
We deduce from inequality (3.2) ¢) that

P

- ~ 1
m&x(d(zm 1'01;), "yn - yOn”) < '8'".'/011 - fn(zon)” < 3

™

so that
d(inv 30) S '7/3 + d(zOnv zO) S 217/3

In the same way, we show that ||y, — wo|| < 29/3.
Stability assumption (5.1) implies that there exist ¥, € T, (Z,), tn €
T}, (%) and wy, € Y satisfying

i) ¥n— fa(Zn) = fu (Za)9n + un + wn
i) [[9a(Zn)ll < ellfn = fa(Zn)ll & llunll < ellfn — fal(Za)l
lwall < all¥n = fu(Zn)ll

13



By definition of the contingent transition set, there exist elements h, > 0
converging to 0+ and z, € L, such that,

d(9n(hp,Zn),zp) < hpep

where ¢, converges to 0 with h,, and by definition of the adjacent transition
set, there exist elements y, € M,, such that,

19n — hptin — ypll < hpeyp
To say that f, is strictly mutable at Z, means that
1 fa(Zn) + hp(yn — fu(Zn) = tn = wa) = fu(Zp)ll < Bphy
Hence
% = falzp)l £ (1= hp)liTn — falZa)ll + hpllwnll + Bohy

By taking in inequality (3.2) i) such an (zp,yp) € Ln X My, we deduce
that

hollgn = fa(Za)ll < hpllwall + Bphy + € max (d(zp, Zn)s ||¥p — ¥anll)
We note that

+d(:c,,’,\53,.) < hpep + d(”n(hp’fn)’ zp) < hp(ep + 19a(Z0)I])
lyp = Fnll < hp(ep + lluall)

Dividing by A, > 0 and letting p — +00, we get:
lyn = (@l < llwall + € max([[9n(Zn)ll; |lunl) < (a+ec)l|#n — fu(Za)]

Since we have chosen ¢ such that a + ec < 1, we infer that (§,,Z.) is a

solution to
Z, € L, gn € M, & fn(fn) = gn

satisfying
~ ~ 1
max (d(Z, = Zon), [ = vonll) < Zllvon - fa(zon)||
from which the error estimate follows.
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Observe also that setting K, := L, N f~!(M,), the above estimate im-
plies that

1
d(Zon, Kn) < E"yON - fn(zOn)”
since Z, = f~1(#,) belongs to K,. By letting ¢ converge to c/(1 — a), we
obtain the estimate

c

d(zon, Kn) < lvon — fa(zon)ll O

l—-a

4 Tangent transition sets to subsets defined by
equality and inequality constraints

Consider a metric space X and two strictly mutable maps
g :=(91,.-,9p): X —» R? & h := (hy,...,hg): X — RY

defined on an open neighborhood of L.
Let K be the subset of L defined by the constraints

K :={z€eL|gz)20,i=1,...,p &hj(z)=0,j=1,...,q}

We denote by I(z) := { = 1,...,p | gi(z) = 0} the subset of active con-
straints.

Proposition 4.1 Let us posit the following transversality condition at a
givenz € K:

399 € O(X) such that h ()9 =0 and
Vie I(z), 9 (z)d > 0

Then a transition ¥ € O(X) belongs to the contingent transition set to
K at z if and only if 9 satisfies the constraints

Viel(z), 6 (z)9 > 0 & Vji=1,...,q, hj (z)9 = 0

15



Proof — We observe that Tx(z) = X whenever I(z) = 0 and that,
otherwise, inclusion

Tk(z) C {9€O(X)| Vie I(z), 9; (z)9 > 0}

holds true when g is mutable at z.
Assume now that the constraint qualification assumption holds true and
prove the other inclusion.

Let 9 satisfy 9% (z)9 > 0 for any i € I(z). For i ¢ I(z), strict inequalities
gi(z) > 0 imply that for some a > 0, we have

Vhel0,a],VidgI(z), gi(z+hu) >0
Consider first the case when 9 (z)9 > 0 for any i € I(z). Then

VieI(z), gi(z+hu) = gi(z +hu) - gi(z) =G (2)9 + hei(h)

where ¢;(h) converges to 0 with h. This implies that g;(z + hu) > 0 for h
small enough and all i € I(z), and thus, for all i = 1,...,p. Then such an
element u belongs to the contingent transition set Tk (z).

Consider now the general case. By assumption, we deduce that for any

B €]0, 1], the transition ¥ defined by Jg(k,z) := J(1 — B)h, 9o(Bh, z) sat-
isfies strict inequalities g ()93 > 0 for any ¢ € I(z) since

(] [ (-]

9: (2)95 = (1-5) 9: ()9 + B 9i (z)Yo

Therefore, by what precedes, it belongs also to the contingent transition
set Tk(z). Letting 8 converge to 0, we infer that the limit ¥ of the ¥5’s
belongs also to the contingent transition set Tx(z). O

5 Calculus of Tangent Transition Sets

5.1 Adjacent and Circatangent Transition Sets

Let K C X be a subset of a metric space X and z € K belong to K.
We observe that the contingent transition set Tk (z) is defined by

Tk(z) := {9 € 6(X) | liminfd ((h,z))/h = 0}
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We introduce the following concepts of directional lim inf and lim sup:
Let ¢ : [0,1] x X — R and ¥ : [0,h] = X be two single valued- maps and
z := Y(0) = limp o4 ¥(h). We set

lim inf h,y) = inf h,
o2l P V) = D o mwihyemy P Y)
and
limsup ¢(h,z) := inf sup e(h,y)
hes0+, z=9(h) €>0 h¢]0,e], yEB(¥(h),eh)

As in the case of tangent cones to subsets of normed spaces, we introduce
other concepts of transition sets:

Definition 8.1 Let K C X be a subset of a metric space X and z € K

belong to K.
1. — the adjacent transition set T{(z) is defined by
. dk(9(h,2))
by . K _
Th(z) = eox) | lim FE2D )
2. — the circatangent transition set Ck(z) is defined by
3  dg((he)) _
Ck(@) = (e, lim TN q)

where — g denotes the convergence in K.
We shall say that a subset K C X is derivable at z € K if and only if
T (z) = Tk (z) and tangentially regular at z if Tx(z) = Cx(z).

We see at once that
Ck(z) C Tk(z) C Tk(z)

If X is a metric space, these tangent transition sets to K and the closure K
of K do coincide and

if z € Int(K), then Ck(z) = O(X)

It is very convenient to use the following characterization of these transition
sets in terms of sequences.

9 € Tk (z) if and only if V h, — 0+, I, — 0+
Jz, € K — z such that d(J(hyn,z),2n) < €nhn
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and

9 € Ck(z) ifand only if V h,, —» 0+, Vy, =k z,
3e, — 04+, 3z, € K = z such that d(I(hp,¥n),zn) < Enhn

Proposition 5.2 The circatangent transition set Ck(z) satisfies the fol-
lowing properties
Ck(z)o Ck(z) C Ck(z)

and
Ck(z)oTk(z) C Tk(z) & Ck(z)o Tk(z) C Tk(z)

Proof — Let ¥, and ¥, belong to Cx(z). To prove that ¥, o ¥,
belongs to this transition set, let us choose any sequence h,, > 0 converging
to 0 and any sequence of elements y, € K converging to z. There exists
a sequence of elements y2,, € K converging to z such that the elements
d(92(hny,¥n), Y2 n)/ ks converges to 0. But since the sequence y; , does also
converge to z in K, there exists a sequence of elements y; , converging to z
such that d(91(hn,¥2n), ¥1n)/hn converges to 0. Therefore, we deduce that
h small enough,

d(V1 0 92(hny¥n)y ¥1n) = d(V1(hn,92(hny¥14)))

S d("’l(hn’ 192(hnv yn))’ 7’1(hn, Y2 n)) + d('ol(hn’ Y2 n)v n n)

IA

ld("’Z(hm yn)’ Yy2 n) + d("’l(hm Y2 n), " n)

This implies that ¥J; o ¥, belongs to Ck(z).
The proof of the two other inclusions is analogous and left as an exercise.
O

Unfortunately, the price to pay for enjoying this property of the cir-
catangent transition sets is that they may often be reduced to the trivial
transition set {1}.

But we shall show in just a moment that the circatangent transition set
and the contingent transition set do coincide at those points £ where K is
sleek, i.e., where the set-valued map z ~» Tk(z) is lower semicontinuous.
Hence the transition set Cx(z) can be seen as a “regularization” of the
contingent transition set Tk (z).
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5.2 External Contingent Transition Sets

We recall that we have set

dx(3(h,2)) - dx(z)
h

Didk(z)(9) := I}llil.(l){'l-f

We observe that when z € K, a transition ¥ is contingent to K at z if
and only if Didk(z)(9) < 0.

Definition 5.3 Let K be a subset of a metric space X and z belong to
X. We extend the notion of contingent transition set to the one of external
contingent transition set to K at points outside of K in the following way:

Tx(z) := {9 € O(X) | Dydk(z)(9) < 0}

We point out an easy but important relation between the external con-
tingent transition set at a point and the contingent transition set at its
projection:

Lemma 5.4 Let K be a closed subset of a metric space and Il (y) be the
set of projections of y onto K, i.e., the subset of z € K such that d(z,y) =
di(y). Then, for any mutation 9, the following inequalities

Did(y)(9) < _inf  duol9,Tx() + (I9lln — Dk (5)

hold true.

Proof — Choose z € llx(y) and 7 € Tk(z). Then, for h small enough,
using estimate (??) on primitives,

( dK("(hv y)) - dK(y) < d(!’(h’ y)’ T(h7 Z)) - d(y’ Z) + dK(T(h’ Z))
h - h h

< fo" ellFla-V)(a=a)g_ (9, 7)ds + d(y, z)(ell¥llA-1)A _ 1)
- h
dk(r(h,2))
( + R
Since z belongs to K and T € Tk(z), the above inequality implies that

Dydg(y)(9) < doo(¥9,7)+ ([I19]la — 1)dk(y) O
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5.3 Sleek Subsets

Definition 5.5 (Sleek Subsets) We shall say that a subset K of X is
sleek at z € K if the set-valued map

K>z ~ Tk(z') Cc ©(X) is lower semicontinuous at z
and that it is sleek if and only if it is sleek at every point of K.

Theorem 5.8 Let K be a closed subset of a finite dimensional vector-space
X. Consider a set-valued map F from K to ©(X) satisfying

1) F is lower semicontinuous at z and bounded
#) 36>0 suchthat VY2 € Bg(z,6), F(z) C Tk(z)

Then F(z) C Ck(z).
In particular, if K is sleek at z € K, then the contingent and circatangent
transition sets coincide: Tk (z) = Ck(z).

Proof — Let us take z € K and J € F(z), assumed to be different
from 0. Since F is lower semicontinuous at z, we can associate withanye > 0
a number 7 €]0, 4] such that d(¥, F(z)) < doo(V, F(z)) + € = € for any
2 € Bk (z,n) (because doo (9, F(z)) = 0). Therefore, for any y € B(z,n/4)
and 7 < n/4||9(z)||, the inequality: V z € Il (J(7,y)),

{ d(z,2) < d(2,9(r,y)) + d(9(7,y), ) < 2d((7,y),2)
<2d(9(r,z),z) + 2ld(z,y) < n

implies that
{dm(ﬂ,TK(z)) < do(9, F(2))

doo(ﬂ,F(z))-{-e = €

IA

We set g(7) := dg(9(7,y)) and ¢ := ||¥||s — 1. By Lemma 5.4, we obtain
lim infa—o4 (9(7 + ) — 9(7)) /b = Didk(9(r,y))(v) + cg(7)
< do(9,Tk(2)) < €

The function g being Lipschitz, it is almost everywhere differentiable, so
that ¢'(t) < € + cg(t) for almost all ¢ small enough. Gronwall’s Lemma
implies that
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Table 1: Properties of Contingent Transition Sets.

(1)
(2)

v

If K C LandzeK, then Tk(z) C Ti(2)
K;CX, (i=1,...,n)and z € J; K;, then
Tur k() = Uierz)Tki(z)
where I(z) := {i| z € K;}
3 » HK;CX; (i=1,...,n)and z; € K;, then
Tl'[:'-l K.-(zl’ .. -’zn) - H?:] TK..(I,')
(4) » H g is mutable,

v

ifKCX,z€eKand M CY, then

§ (2)(Tx(=)) C Tyuex(9(2))
T, m)(2) CI(2) ' Tm(9(z))

(5) » HK;CX, (i=1,...,n)and z € [); K;, then
Tre x,(2) C i Ti(2)

eh —1
¢

for any y € B(z,n/4) and 7 < 7/4||9(z)|l. This shows that v belongs to
Ck(z).

By taking F(z) = Tk(z), we deduce that Tx(z) C Ck(z) whenever K
is sleek at z € K, and thus, that they coincide. O

dx(9(r,y)) = g(h) = g(h)-9(0) < ¢

We derive from the Inverse Function Theorem the basic results of the
calculus of tangent transition sets.

Theorem 5.7 Let X be a complete metric space and Y a Banach space.
Consider a single-valued maps f from X to Y, closed subsets L C X and
M CY and elements 7o € K := LN f~}(M).

We assume that f is strictly mutable on a neighborhood of z¢ and verify
the following stability assumption:
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there ezist constants ¢ > 0, a € [0,1] and n > 0 such that

Vz € LN B(zo,m), Yy € M N B(y,n)
{ By C (j (2)Tu(z) — T}(,(y)) N ¢Bx) + aBy (5.1)
Then o
Ty (zo)N f (z0) ' Tm(f(20) € Trag-1(an)(Zo)
T4 (0)N f (20) " Th(f(20)) = Thns-1(aa(0)
and

Ci(zo) f (20) ' Cr(f(20)) C Crag-1(a)(2o)

Proof — Let us prove for instance the inclusion for the circatangent
transition sets. Consider the closed subset

K := Ln fY(M)

and take any sequence of elements z,, € K which converges to z. Let us

pick any transition ¥ € Cr(z¢) such that } (z0)Y € Cm(f(20)). Hence for
any sequences h, > 0 and z,, € K converging to 0 and z¢ respectively, there
exist sequences Z, € L and §, € M converging to z and f(zo) respectively
such that

°
d(”(hmzn)’sﬂ) < anh, & Ilyn+hnf(30)0_gnll < Bnhn

We now apply Theorem 3.2.
The pair (Z,,¥,) belongs to L x M and

(f©1)(Zp,Yn) converges to 0

because f is continuous at z.
Therefore, by Theorem 3.2, there exist { > 0 and a solution (Z,,9n) €
L x M to the equation y, = f(Z,) such that

{ max (d(t’(h’zn)a 513)’ ”f(zn) + hn } (30)0 - gn”)
S Ihn"(f(in) - gn"

Hence
d(¥(hn,zn), K) < d(9(hp,24),Z,) < lephy,

which means that the transition ¥ belongs to the circatangent transition set
toK at zo. O
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6 Contingent Mutations of Set-Valued Maps

6.1 Definition

We have already introduced the concept of contingent mutation of the so-
lutions to the invariant manifold problem, to define them as solutions of
partial mutational equations.

We adapt the concepts of contingent derivatives of set-valued map from
a normed space to another one to set-valued maps from a metric space to
another one by following the same strategy, defining geometrically mutations
of set-valued maps from the choice of tangent transition sets to the graphs.

First, we observe that

O(X)x O(Y) C O(X xY)

Definition 6.1 Let X, Y be metric spaces and F : X ~ Y be a set-valued
map.

The contingent mutation D F(z,y) of F at (z,y) € Graph(F) is the set-
valued map from ©(X) to ©(Y) defined by

r € D F(z,y)(9) if and only if (9,7) € TGraph(r)(2:¥)

When F := f i3 single-valued, we set b f(z) =D f(z, f(z)).
We shall say that F is sleek at (z,y) € Graph(F) if the map

Graph(F) 5 (z',y') ~ Graph(D F(z',y))

is lower semicontinuous at (z,y) (i.e., if the graph of F is sleek at (z,y)).
It is said to be derivable at (z,y) if Graph(F) is derivable at that point.
The set-valued map F is sleek (respectively derivable) if it is sleek (respectively
derivable) at every point of its graph.

Therefore, a transition 7 € ©(Y) belongs to the contingent mutation

D F(z,y)(9) if and only if there exist sequences h, > 0 converging to 0+,
z, and y, € F(z,) converging to z and y respectively such that

dX("(hna z)a zn) S anhn
dY(T(hna z)a yn) S ﬂnhn
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One can restate this in the following form:

liminf dY(T(hvy)vF(zh)) =0
h~04,op=0(h,x) h

in the sense that for any £ > 0, for every n > 0, there exist h €]0, 5[ and z,
satisfying d(9(h,z), zn) < nh such that

dY(T(hv y)7 F(zh))
h

<e

Naturally, if we can embed subspaces (X ) and O¢(Y) of transitions into
the spaces ©(X ) and ©(Y') respectively, then we can restrict the contingent
mutation to a set-valued map D F(z,y) : ©9(X) ~ ©¢(Y) in the obvious
way.

In particular, if X and Y are normed spaces, we find again the con-
cept of contingent mutations, by embedding X and Y in ©(X) and O(Y)
respectively.

We shall meet often the case when X is a metric space and Y is a normed

space. In this case, v € Y belongs to the contingent mutation D F(z,y)(9)if
and only if there exist sequences h,, > 0 converging to 0+, z,, and y,, € F(z,)
converging to z and y respectively such that

dX(',(hnv z)y zn) < anhn

"y + hpv — yn" < ﬂnhn

Consider now the case when X is a normed space and Y is a metric
space. Then a transition 7 € ©O(Y) belongs to the contingent mutation

D F(z,y)(u) if and only if there exist sequences h, > 0 converging to 0+,
z, and y, € F(z,) converging to z and y respectively such that

[z 4 Aot — z4|| € anhq
dY(T(hm z), yn) < ,Bnhn

One can restate this in the following form:

dy(r(h,y), F(z1) _
h—0+,z,=z+hu h
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Example Let X be a finite dimensional vector-space, E be a finite
dimensional vector-space and Y := K(FE).

Then the contingent mutation D P(z)(u) is a set of Lipschitz maps
f : E — FE such that there exist h, — 0+, z,, satisfying z"h_ d
n
that

9¢(hn, P(z)) C B(P(z4),Bnhn) & P(z4)C B("I(hmP(z))vﬂnhn)
If P(-) is locally Lipschitz, this boils down to

— u such

9¢(hn, P(z)) C B(P(z+hnt),Bnhn) & P(z+hau) C B(9;(hn, P(z)),B8:hs) O

We can easily compute the mutation of the inverse of a set-valued map
F (or even of a non injective single-valued map): The contingent mutation
of the inverse of a set-valued map F is the inverse of the contingent mutation:

D (FY)(y,2) = D F(z,9)™"

The restriction F := f|x of a single-valued map f to a subset K C X
provides an example of a set-valued map defined by

e = {9 5 X

for which we obtain the following formula:

If f is strictly mutable around a point z € K, then the contingent mu-
tation of the restriction of f to K is the restriction of the mutation to the
contingent transition set:

D (flx)z) = D (flK)(z, £(2)) = f (@)l1pie
Actually, this follows from the useful

Proposition 8.2 Let X be a metric space, Y be a normed space, f be a
single-valued map from an open subset Q C X toY, M : X ~ Y be a
set-valued map and L C X. Define the set-valued map F : X ~ 'Y by:

) f(z)- M(z) when z € L
Fla) == {0 :hen z¢ L
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If f is strictly mutable at z € Q N Dom(F), then for every y € F(z),

0 z u f(z)u—DMa:fa:— u hen ue€ T(z
b ,y)()c{ (I =) e )

Equality holds true when we assume that either L or M is derivable at z
and M is Lipschitz at z.
In particular if M is constant, then

Vu € Ti(z), D F(z,y)(u) = f (2)u—Tu(f(z) - y)

Proof — Let v belong to D F(z,y)(¥9). Then there exist h, > 0
converging to 0 and sequences z,, and y, converging to z and y respectively
such that for every n

dx("(hmz)vzn) <aph, & "y + hpv —~ yn" < ﬂnhn

and
Ty € Ly & yo € f(zn) — M(z4)

Since
f(zn) = f(z)+ ha(f (z)9 + e(hn))

where e(hy) converges to 0 with h, we get
1(2) = 3+ ha(F (2)9 = 0) = ((2a) = 9a)l| < Enhn
s0 that f (z)9 — v €D M(z, f(z) - y)(¥).

Conversely, assume for instance that M is derivable, that the transition
]
u belongs to Tr(z) and that f (z)u — v belongs to D M(z, f(z) — y)(u).
Hence, there exist a sequence h, > 0 converging to 0 and sequences Z, € L,,
Z, € L and y, € M(z,) converging to z, z and f(z) — y respectively, such -
that
dX("(hnyz)a z'n) < ash,
o
dx(9(hn,z),20) < anhy & [|f(z) =y + ha(f (2)9 = v) = 2n|| < Bnbn
Set yn := f(zn) — 2n € f(2zn) — M(2z,). Since M is Lipschitz,

M(z,) C M(Z,)+ Ad(zn,T7)
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Hence, there exists e, such that ||e,|| < £, converges to 0 such that d(z,,Z;) <
Enhyn. Hence y, + e, € f(z,) — M(T,) where T, € L. and

|y + hnv — yn — enll = [1£(2) = f(zn) + hn f (2)9 + hnba|| < ha(Bn + £0)
we infer that v belongs to D F(z,y)(9).

6.2 Adjacent and Circatangent Mutations

Naturally, we can also associate with any other concept of tangent transition
set a concept of mutation.

Definition 6.8 Let X, Y be metric spaces and F : X ~» Y be a set-valued
map.

b
1. — the adjacent mutation D F(z,y) is the set-valued map from
O(X) to O(Y) defined by

r € D F(z,y)(¥) if and only if (9,7) € TGraph(r)(:Y)

2. — the circatangent mutation 6‘ F(z,y) is the set-valued map from
O(X) to (Y) defined by

7 €C F(z,y)(9) if and only if (9,7) € CGraphr)(2+¥)

When F := f is single-valued, we set

B 1) =B (=), & f(z) = & (=, (=)

We see at once that
o ob ° .
Vu, C F(z,y)(9) C D F(z,y)(¥) C D F(z,y)(¥)

6.3 Chain Rules

We derive from the calculus of tangent transition sets the associated calculus
of mutations of set-valued maps. We begin naturally by the chain rule
for computing mutations of the composition product of a set-valued map
G:X ~ Y and a set-valued map H:Y ~ Z.

We shall need the following result:
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Proposition 6.4 Let X, Y be metric spaces, F : X ~ Y be a set-valued
map and K be a subset of X. Assume that F is Lipschitz around some
z € K. Then, for any y € F(z), we have

ob
D F(z,y)(Tk(z)) C Tr)(v)
As a consequence, we deduce that when M is a subset of Y andy € M, then

Trogn() C D F(z,9)° (Tu(y)) (6.1)

b
Proof — Take the transition ¥ in Tk (z) and 1 eD F(z,y)(¥). Then
there exist sequences h, > 0 converging to 0, z1, € K and z2, converging
to z and y, € F(z2n) converging to y such that

d("(h’z)’ zln) S alnhn
d("(h, .’L'), z?n) S a2nhn
d('r(h, y), yn) < Bnha

Since F is Lipschitz around z with a Lipschitz constant !, we deduce that
Yn € B(F(21n),lhnd(t1n,%20)
so that there exists another sequence y converging to y such that
v € F(z1,) C F(K)

and
d(7(h,y),¥7) < Bahn
This implies that the transition 7 belongs to the contingent transition set
to F(K) at y.
Consider now K := FO(M). Since F(FO(M)) is contained in M, we
deduce that

ob
D F(z,y) (Tpe(M)(z)) C Trropmy)(y) C Tm(y)
from which formula (6.1) ensues. O

Remark — Naturally, we can show in the same way that for a Lips-
chitz map F the formula

o
D F(z,y)Tk(z) C Tru)(y)
is also true whenever y € F(z). O

We begin by the following simple result:
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Theorem 6.5 Let us consider metric spaces X, Y, Z, a set-valued map
G:X ~Y and a set-valued map H :Y ~ Z.

1. — Let us assume that H is Lipschitz around y, where y € G(z).
Then, for any z € H(y), we have

D H(y,2)0 D G(z,y) C D (HoG)z,2)

b H@. 20D Glz,y) €D (HoGYz,2)
2. — IfG := g is single-valued and strictly mutable at z, we obtain
VzeH(g(2)), D(Hg)z,2)(u) C D H(g(2),2)d ()u)
and the equality holds true when H is Lipschitz around g(z).
Proof — We apply Proposition 6.4 to equality
Graph(H o G) = (1 x H)(Graph(G))
for proving the first statement. The second one follows from

{ Graph(H og) = (g x 1)~ (Graph(H))

Tf—l(K)(.’t) C ; (-’f:)—1 (TK(f(-’C))) o

6.4 The Inverse Set-Valued Map Theorem

Theorem 6.8 (Inverse Set-Valued Map Theorem) Let X be a com-
plete metric space and Y be a normed space. Consider a closed set-valued
map F : X ~ Y, an element (zo,y0) of its graph and let us assume that
there erist constants ¢ > 0, a € [0,1] and > 0 such that

V(z,y) € Graph(F)N B((zo,%0),7), Vv € Y,
39 € ©(X), 3w € Ysuch that v € bF(z,y)(t’)+w
and [[9(z)|| < cf|vl] & [jw]| < aflv|

Then yo belongs to the interior of the image of F and F~! is pseudo-Lipschitz
around (yo, Zo)-
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Proof — We apply Theorem 3.1 with X replaced by X x Y, K by
Graph(F), f by the projection Ily from X x Y onto Y. We have to prove
that the stability assumption implies transversality assumption (5.1) of The-
orem 3.2, i.e., that for all v € Y, there exist (u,v) in the contingent transition
set TGraph( F)(z,y) and w € Y satisfying

v = v+w, max(|lufl,[]oll) < elvll, llw|l < aflvl

This information is provided by our stability assumption since the contingent
transition set to the graph is the graph of the contingent mutation and the
norm of v = v — w is smaller than or equal to (1 +a)||v]: O

7 Contingent Epimutations of Extended Func-
tions

Contingent epimutations of extended functions had already been used for
characterizing Lyapunov functions. They are also useful in optimization, for
deriving necessary conditions such as the Fermat rule.

7.1 Contingent Epimutations

Definition 7.1 Let X be a metric space, V : X —» RU{xo0} be a nontrivial
extended function and z belong to its domain. Then, for any transition

¥ € 6(X),

o . V(zn) - V(=)
V(z)(¥) := I Sl (7
Dy V(2)(9) hqol:gl..lznof(h,z) h
is the contingent epimutation of V at z in the direction 9.
The function V is said to be contingently epimutable at z if its contingent
epimutation never takes the value —oo.

We define in a symmetric way the contingent hypomutation 10) 1 V(z) from 6(X)
to RU {xo0} of V : X — R U {00} at a point z of its domain by

Dy V(z)(¥9) = = Dy (=V)(z)(u) = Ny ,)V—(zw

We could also have defined the contingent epimutation of a function by
taking the contingent transition set to its epigraph, since we have proved
that

A > Dy V(2)(9) if and only if (9,A) € Tepqv)(z,V(2))
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7.2 Epimutation of a Marginal Function

Let us consider a marginal function of the form
V(K) := ;lglf( U(z)
and we set
Ky := {z € K such that U(z) = V(K)}

Proposition 7.2 Assume that U is lower semicontinuous and that K is
compact. Then, for any Lipschitz-Marchaud map ®, we have

-]
< . b
Dy V(K)(®) < inf ég(f,) D1U(z)(v)

If we assume furthermore that U is uniformly Fréchet differentiable, then

lim Y(0eBK)=VE) _ 0 inf (0'(2), v)
h—0+ h €Ky ved(=)

Proof
a) Let z be chosen in Ky. Then

V(de(h,K)) - V(K) _ V(da(h,K))— U(z)
h = h

Let us fix v € ®(z). By the existence Theorem ??, there exists a solution
z(+) to the differential inclusion z' € &(z) satisfying

lz(t) — = — to]l < te(t)
where £(t) converges to 0 with ¢t. Therefore, inequality

V(9s(h,K))-U(z) _ U(z(h)) - U(=)
h = h

implies that

hggl-:p V("O(hv K’;)) — V(K) < hﬁgllp U(Z(h)l— U(:L‘) = D%U(z)(v)

b) In order to prove the opposite inequality, let us consider an ele-
ment y, € 9Yg(h, K) which minimizes the function U over this subset:
V(ds(h,K)) = U(yn). Let z, € K and z,(-) € S(zx) be a solution to
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the differential inclusion such that z5(h) = y». By Theorem ??, there exists
a subsequence (again denoted by) which converges uniformly on compact
intervals to a solution z(-) € S(zo) where z¢ € K. Since the function U is
assumed to be uniformly Fréchet differentiable, there exists £(h) converging
to 0 such that Therefore,

V(da(h, K)) - V(K)  Ulyn) — U(zs)
h = h

h2'(s)ds) — U(z
= Dot fy oMo) - lmn) <U’(zh),% /o"z'(s)ds>—e(h)

Since

h
o, 1= % /o z'(s)ds € % /OhF(z,.(s))ds C @(F(K)+ aB)

for h small enough, we infer that v, remains in a compact subset, so that it
converges to some v € F(zg). Consequently, we have proved that

lim inf V(Js(h,K)) - V(K)
h—0+ h

> (U’ > i i d
= (U (30)"’) = 32}3‘”"61%{2)(11 (z),v)

The proof is completed. O

7.3 Fermat and Ekeland Rules

Since we can define the contingent epimutation of any extended function
V:X - RU {400}, we can extend the “Fermat rule” to any minimization
problem.

Theorem 7.3 (Fermat Rule) Let X be a metric space, V : X — R U
{400} be a nontrivial extended function and z € Dom(V') a local minimizer
of VonX.

Then z i3 a solution to the variational inequalities:

Vo € 6(X), 0 < D; V(z)(¥)

Proof — The proof is naturally obvious: We write that for all J €
O(X), there exists z,, such that

dX(ﬂ(hn’ .’l:), .’l:,.) < anh,

32



and
V(za) - V(z)

hn
and we take the lim inf when h converges to 0 and z, = 9(h,z). O

In the same way, it is easy to derive an epimutational version of Ekeland’s
Variational Principle:

0 <

Theorem 7.4 Let X be a complete metric space, V : X — Ry U {400}
be a nontrivial lower semicontinuous bounded from below function and z¢ €
Dom(V) be a given point of its domain. Then, for any € > 0, there ezists a
solution z, € Dom(V) to:

i) V(z.)+ed(z.,%0) < V(z0)
. (7.1)
i) V9 € O(X), 0 < DqV(ze)(9)+elld(ze)ll

What is not obvious is the use of this Fermat rule for more and more
general problems, when the function V is built from other simpler functions
and involves constraints.

The search for necessary conditions for a minimum requires quite a rich

calculus of contingent epimutations which provides estimates of b; V(z)(u).
In particular, when constraints (of the type z € K') are involved, the fact
that the epimutation of the restriction to K is the restriction of the epimu-
tation to the contingent transition set Tx(z), allows one to write necessary
conditions using also contingent transition sets to constraint sets (or in the
dual form, using gradients and polars of the contingent transition sets.)

Corollary 7.5 Let K C X be a metric space, V : X —» R U {+o0} be a
nontrivial eztended function and z € K a local minimizer of V on K.
If V is strictly mutable at z € K, then z 18 a solution:

V9 € Tk(z), 0 < D; V(z)(¥)

Indeed, we have seen that the contingent mutation of the restriction of V
to K is the restriction of the mutation to the contingent transition set.

Consider a closed subset L of a complete metric space X and two strictly
mutable maps

g := (91,.-,9p): X » R? & h := (hy,...,hy): X — R?
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defined on an open neighborhood of L.
Let K be the subset of L defined by the constraints

K:={z€el]g(z)>0,i=1,...,p & hj(z)=0,j=1,...,q}

We denote by I(z) := {i = 1,...,p | gi(z) = 0} the subset of active con-
straints.

Theorem 7.6 Let us posit the following transversality condition at a given
z€eK:
-]
399 € O(X) such that A (z)dp =0 and

VieI(z), 9 (z)d > O

LetV : X —» RU{400} be a nontrivial extended function and z € K a local
minimizer of V on K.
If V is strictly mutable at z € K, then z is a solution to:

VI € O(X) such that
VieI(z), 9:(z)9 > 0 & Vj=1,...,q, hj (z)d = 0
then 0 < Dj V(z)(¥)

The proof follows from the above proposition and Proposition 4.1.
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