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Abstract 

This paper discusses an economic model for hyperinflation considered by Marcet and Sargent in 
[ll]. The model describes the relation between the current price level, the money supply, and 
the agents' forecasting of the future price. The agents' learning is described by an ARMA-model 
which is fitted to the available series of old prices. It is shown that the agents' learning rate 
depends upon the inertia of the market, and an implicit formula is given for this dependence. A 
generalization of the hyperinflation model is also discussed. 
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On Market Dependencies of 
Agents' Learning for a 
Hyperinflat ion Model 

Karl Henrik Johansson* 

1 Introduction 

This paper deals with a model that shows the relation between changes in the money supply 
and the price level during hyperinflation. The model states back to Cagan [4], but has been 
further analyzed and extended e. g. by Fourgeaud et al. [5] and Marcet and Sargent [ll]. Cagan's 
definition states that hyperinflation begins if prices rise more than 50 percent in a month. His 
model is developed from a study of seven hyperinflations occurring in different european countries 
during the period 1920-1946. He advances the hypothesis that during hyperinflations, the price 
level P(k) at  time k depends only on the expected price and the money supply M(k). 

The hypothesis of rational expectations is defined by Muth [12] to be that economic agents 
do not make systematic forecasting errors. In our case this would mean that agents' expectations 
of an economic variable coincide with its mathematical conditional expectation. However, in the 
model of this paper the convergence to rationality is studied as well. This requires the theory of 
stochastic approximation for the analysis, see e. g. [3]. 

We now briefly introduce the model set up of Marcet and Sargent [ll]. Let us define y(k) := 
log P(k) and x(k) := log M(k). Further denote the agents' conditional expectation of y(k + 1) 
given information about the price level up to time k by ij(k + I ) ,  i. e. 

The model of the market is now given by 

X is a real constant parameter between zero and one (see [4] and [ I l l ) ,  and {v(k)} is a white 
Gaussian stationary process with zero-mean and variance a:. v models the uncertainty in the 
relation between the quantities. The agents prediction of y(k+ 1) is based upon an autoregressive 
model with external inputs (ARX-model). We assume that their learning about this model can 
be described by a recursive algorithm. 

The parameter X in (1) can be interpreted as the inertia of the market. This follows from 
the fact that both {x(k)} and {v(k)} are zero-mean stationary processes, so in average y(k) will 
be equal to X - ij(k + 1). 

Our main contribution in this paper will be to show that the agents' learning rate depends 
upon the inertia of the market. We show this by examining how X influences the asymptotic 
variance of the agents' estimate. An implicit expression for this relation will be given. There will 
also be an attempt to generalize the model. 

In Section 2 in this paper we will introduce a complete hyperinflation model including the 
corresponding learning algorithm. Section 3 treats a method for analyzing the type of economic 
models that we are studying. This method is used for deriving the agents' convergence point. The 
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convergence rate of the learning algorithm is dealt with in Section 4, where also the connection 
between the market and the learning process is given. In Section 5 an introduction to  a more 
general model is given, followed by the conclusions and some ideas for future work in Section 6. 
Appendix A gives the assumptions for the learning algorithm t o  have almost sure convergence, 
and in Appendix B is a new result about the convergence rate included. 

2 The Hyperinflation Model 

In this section we complete the hyperinflation model by describing how the money supply is 
modeled and how the agents' prediction is constructed. Thus, the equations for fj and x in (1) 
are given. We will follow the structure of the model given in [ l l ] .  

Let the money supply be modeled such that x(k) satisfies the following autoregressive-moving 
average-equation (ARMA-equation) 

where {u(k)) is a white Gaussian stationary process with zero-mean and variance a:. (Note that  
it is possible t o  include the noise term v from (1) in (2) without any lack of generality. We do 
not do that here, simply in order t o  compare our results with those in [ l l ] . )  

The agents do not know the market model (1). They can only observe the price level or 
equivalently {y(k)), and they think y(k) is the output from a first order ARX-model 

where {w(k)) is believed by the agents to  be an independent white Gaussian stationary process. 
The agents' prediction of y(k + 1) is now constructed by 

where & and b are the agents' estimate of a and b in (3). w(k) is given by filtering { ~ ( k ) ,  y(k - 
I ) ,  . . .) through the filter given by (3). If we introduce the forward-shift operator q, which has 
the property q f (k) = f ( k  + I ) ,  the filtering can be written as 

where 
4 9 )  9 + & - .- 
B(9) -- q + b 

is called the pulse transfer function, see e .  g. [2]. 
The agents' learning of the unknown parameters a and b in (3) are approximated by a 

recursive learning algorithm. In our case we use a recursive pseudolinear regression (RPLR) 
algorithm (or extended least square algorithm), see [7]. For our convenience we collect the 
parameters and the regressors in the vectors 

In the linear regression form, (3) will be 



Figure 1: A block diagram that shows the relationship between the market and the agents. 
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If the estimate of 0 is denoted by 9, the RPLR algorithm is given by the following three equations 

~ ( k )  = y(k) - cpT(k)8(k - 1) 
1 

9(k) = e(k - 1) + -R-l(k)cp(k)&(k) 
k (8) 

Market 

where R asymptotically can be interpreted as the covariance matrix of 9. 
To show almost sure convergence of the hyperinflation model, we need an  algorithm that is 

slightly modified. (8) is changed so that if (9(k), R(k)) happen t o  be outside a certain set when 
updated, they will instead be given values in the set. This new algorithm and the necessary 
assumptions for almost sure convergence are discussed in Appendix A. 

In Figure 1 a block diagram shows how the market and the agents are connected. The block 
named "Market" represents the equations (1) and (2). Thus, the market is described by a linear 
time invariant system with three inputs ( ~ ( k ) ,  ~ ( k ) ,  and y(k + I )) ,  and one output (y(k)). 
Because of the recursive learning algorithm running in the "Agents" block, the overall system 
is nonlinear and time variant. Notice that even if we are just considering the case when the 
agents have reached steady state (the parameters in the agents' model have converged), it is 
possible that the overall system for certain parameter values becomes unstable. This is due t o  
the feedback of y(k) through the agents' block, and is further discussed in Section 5. 

3 The Limit State Convergence Point 

1) 

We will now introduce a tool for analyzing economic models including learning algorithms. This 
will lead us to  the limit state convergence point of the model. The formalism is developed by 
Sargent and Marcet, and is used in several of their papers (see e. g. [lo], [ l l ] ,  [13], and [14]). 

Define the state vector and the innovation vector 

Agents 

Then we can collect ( I) ,  (2), and (3) in the state space equation 

z(k + 1) = T(o(k))z(k) + V(O(k))e(k) (9) 

Expressions for T(0) and V(8) are easily calculated and are given in [ l l ] .  We split T(0): 

- 



where T; j ( . )  are square matrices of dimension two, and O z x 2  is the zero matrix of dimension two. 
Further. let us for fixed 9  introduce the covariance matrices 

where Mij are 2 x 2-matrices. M  and 52 are symmetric by definition and M  satisfies the Lyapunov 
equation 

~ ( e )  = T ( B ) M ( B ) T ~ ( O )  + v(e)52vT(e) 
(see PI 1. 

The agents assume that  the true market model is given by the ARX-model (3). We will 
now compare the asymptotic estimates given this assumption, with the one given the true 
model (9). This is possible since we know that the learning algorithm asymptotically gives 
the orthogonal projection of y(k + 1) on y (k )  and w ( k ) .  Denote the orthogonal projection of 

where S ( . )  is a 2 x 2-matrix with elements S i j ( - ) .  S ( . )  is then the matrix that minimizes 

where 1 1  . 1 1  is the ordinary Euclidean norm. The minimum is given by (see [8]) 

where we have assumed that 

has full rank. Since 

we finally get 

Hence, asymptotically the agents' perceived projection of y(k + 1) on y(k)  and w ( k )  will be given 
by 8, while the actual projection is given by [S11(9), S12(8)IT. The fixed point O f  of S ( - )  will 
under certain assumptions give the limit state convergence point of the hyperinflation model. 
These assumptions are given in Appendix A. Thus, it is possible t o  derive the convergence point 
simply by solving the equation 

e = s(e) 
In [l:I.] it is shown that O f  is unique. 



4 The Convergence of the Learning Process 

In this section we will concentrate on the the agents' learning process. The convergence of 
the RPLR algorithm is discussed. The differential equation associated with the algorithm is 
introduced and a theorem concerning the asymptotic distribution of the estimates is given. It 
is shown that this distribution depends upon the inertia of the market, the parameter X in (1). 
Further, we will illustrate our result in two examples. 

To analyze the behavior of a recursive learning algorithm, it is convenient t o  introduce the 
associated differential equation. This approach was suggested by Ljung in [6], see also [7] and 
[I]. For sufficiently large k, the step size y (k) := l / k  in (8) will be small. Thus the correction 
in e(k) will be small. By assuming e(.) vary slowly, we can approximate it over a small time 
interval by its averaged value 8. Then we have the approximated version of (7): 

We substitute R in (8) by its average R.  The updating rules are now 

where 

(10) and (11) will act almost like the algorithm (8) in a neighborhood t o  8 and R when k is large. 
With a change of time scale this new algorithm can be interpreted as a difference approximation 
of the differential equations 

The true estimates e and R will asymptotically follow the trajectories OD and RD of these 
associated differential equations. 

For a matrix A we introduce the notation A as the top row of A.  Then, for our hyperinflation 
model we have 

and by using the symmetry of the covariance matrix M(.) and that Mll(.) is assumed to have 
full rank 

Further, 



Hence, the associated differential equations for the learning algorithm of the hyperinflation model 
are 

To study the behavior of these nonlinear differential equations, it is possible to linearize them 
around a stationary point. For the differential equations (14) and (15) the linearized system is 
(see [I] p. 270) 

where ( O f ,  Rf )  is a stationary point, and * denotes elements we are not interested in. The system 
matrix above has q = dim 0 eigenvalues of -1, and the rest determined by 

Thus, for the hyperinflation model we have two eigenvalues -1 and the other two are equal to 
the eigenvalues of the matrix 

We will now show that the latter two eigenvalues are important for the convergence and the 
convergence rate of the hyperinflation model. 

Consider the parameter estimation part of the learning algorithm (8). Introduce the function 
H(., .) as the updating of the estimate excluding the gain sequence {y(k)), i. e. 

Define 
h(0) := E{H(B(k - I) ,  z(k))) = R-'f(e) 

Then for the hyperinflation model 

where the last equality follows from (17), since R = Mll(B) in steady state. In (19) we have 
emphasized the dependencies of h(., -) upon the parameter A in (1). Let us denote the covariance 
of H (-, .) at the equilibrium point B j  by D(.), i. e. 

Since v(k) in 
~ { v ( k ) v ~ ( k ) w ~ ( k ) }  

by definition just depends on k - 1, k - 2,. . ., we can take the conditional expectation and split 
(20): 

E{v(k)vT(k)w2(k)} = M11(ej)E{w2(k)} = Mll(ej)Mllzz(ef) 

where Mll,, ( - )  is the (2,2)-element in the matrix Mll (.). Hence 

Introduce the notation A;(A) for the ith eigenvalue of a matrix A and define (the matrix) 

(Note the different meaning of A and A;(.).) We now have the following theorem from [3]. 



- 1 . a " ' " ' ' " ~  
0 0.1 0 2  0 3  0.4 Ob 0.8 0.1 0.8 OD 1 

X 
Figure 2: a(- ) ,  the maximal real part eigenvalue of he(Bj, .), as a function of X for Example 1. 
The cusps come from the eigenvalues shifting between being real and complex valued. 

Theorem 1 Assume the assumptions in  Appendix A hold. If 

then 

A ( e ( k )  - Bj) - N(O, P(X)), k - oo 

where P(.)  satisfies the Lyapunov equation 

Thus the eigenvalues of he(., -) are crucial for the behavior of the RPLR algorithm. In particular, 
it is enough to study the eigenvalue with the largest real part. Further, from (18) and (19) we 
notice that a necessary condition for the learning algorithm to be stable is that a(X) < 0. 
Hence, the assumption in Theorem 1 can be interpreted as that the learning algorithm has to 
be "sufficiently stable". 

When a(X) E (-112, O), Theorem 1 does not hold. A simulation method is then suggested in 
[ll]. An assumption is made about what the convergence will look like. We show in Appendix B 
that it is possible in an analytical way to derive the convergence rate. 

Theorem 1 gives an implicit formula for how the parameter X in (1) influences the asymptotic 
convergence rate. We now use this formula in two example. This is an extension of [ll]. We 
will consider two sets of parameters in the examples below, and show in some plots what the 
covariance matrix P ( - )  in Theorem 1 might look like. The notation Tr P ( - )  will be used for 
the trace of the matrix P(.), and Tr P(.) captures the essential feature of the corresponding 
Gaussian distribution. 

Example 1 Consider the hyperinflation model with pammeters 

These are the same pammeters as in  the example discussed o n  p. 27 i n  [Ill .  In Figure 2 it is 
shown how a ( - )  (defined in  Theorem 1) depends on A. The two cusps are due to the eigenvalues 
shifting from real to complex and vice versa. If we further calculate P(.) through the formula i n  
Theorem 1 for diflerent values of X and plot its tmce as a function of A, we get the result i n  Fig- 
ure 3. Hence the asymptotic variance is a decreasing function of A. A n  economic interpretation 
of this is that it is easier for the agents to learn if the inertia of the market is high. 

Let us treat another parameter set. 



0 . 6 ~ " " ' " " ~  
0 0.1 0 1  0.3 0.1 0.6 0.1 0.7 0.1 0.0 1 

X 
Figure 3: The trace of the asymptotic variance matrix P(.)  shown as a function of X for Exam- 
ple 1. 

- 1 2 ~ " " " ' " 1  0.1 0.2 0.3 0.1 0.5 0.8 0.7 0.8 0.0 1 

X 
Figure 4: In Example 2, the maximal real part eigenvalue a(.)  exceeds -112 (the dashed line). 
Thus, for X > 0.7 Theorem 1 is not useful. 

Example 2 On p. 21 i n  [I I ]  simulations are given for the hyperinflation model with parameters 

W e  treat this system in the same way as in  previous example. The largest eigenvalue of he(Bj, .) 
is given in  Figure 4. For X > 0.7, we see that a(X) > 112 (the dashed line). Thus, Theorem 1 
will not hold for X > 0.7. (The cusp comes from the fact that the eigenvalues go from real to 
complex.) Tr P(.) is given in Figure 5 for X E (0,0.7). The variance is increasing tremendously 
when X approaches 0.7. This example oppose the previous one, since it is now harder for the 
agents to learn if the market inertia is high. 

For most parameter choices above the estimate error decreases in time as I/&. However, the 
limit Gaussian distribution has different covariance matrices which depend upon A. In the second 
example the variance gets equal to  infinity for X > 0.7; the normalizing sequence & does not 
fit. Then we need the "slower" sequence k', where y E (0, -a(-))  is arbitrary (see Appendix B). 

Consequently, we have demonstrated that the inertia can have both positive and negative 
influence on the agents' learning rate. Note that the second example above contradicts the 
conjecture in [ l l ]  that a(-) is always less than -112 for the hyperinflation model. 

5 The Hyperinflation Model in Steady State 

In this section we will discuss steady state behavior of the hyperinflation model given by (1). 
By this we mean that the parameters that the agents are learning have reached their stationary 
values. Further, it is assumed that these parameters are a fixed point of the corresponding 
function S( . )  defined in Section 3. We will restate some of the results in the first part of [ll] 



X 
Figure 5: When X approaches 0.7, Tr P ( - )  increases tremendously in Example 2. For X > 0.7 the 
formula for calculating P(.) is not valid. 

for a more general system. The generalization is that we allow the agents to use an ARX- 
model of arbitrary order, as well as we allow us to  model the money supply x by an arbitrary 
ARMA(m,m)-model. This might let the hyperinflation model fit better to  real data. 

Consider (1) again. The money supply is modeled by the ARMA(m,m)-model 

where 

C and D are assumed to  be stable, i. e.  all their zeros lie within the unit circle. Further, we 
assume that they have no common factors. 

Assume that the agents use an ARX(n,n)-model to  construct their prediction ij(k + 1). Thus 
they fit the difference equation 

t o  the data  {y(k), y(k - I ) ,  . . .), or 

where 

Both A and B are assumed to  be stable, and that they have no common factors. Now the agents' 
prediction is given as 

{w(k)) is by the agents believed to  be the innovation in y(k) relative t o  the information set 
{y(k - I ) ,  y(k - 2), . . .). In (26) and (27) 6 (k )  is the output of the filter given by (25) when 
{y(k), y(k - I ) ,  . . .) is the input, or if we write it in the same way as in (6), 

Recall the function S(.) from Section 3. We use it in a definition from [ll]: 



Definition 1 A stationary limited information rational expectations equilibrium (LIREE) is a 
fixed point of S ( . )  that generates invertible stable pulse transfer functions from ( { x ( k ) ,  v ( k ) } )  to 

( { y ( k ) I ,  { w ( k ) I )  and f m m  {y (k ) I  to { w ( k ) I -  

By inserting (26)  and (21) in ( I ) ,  we get 

and thus the following generalization of Proposition 2 in [l l]:  

Lemma 1 Assume that 

is a fixed point of S ( . )  and that there are no common factors between (30) and B or D.  O will 
be a LIREE if and only if 

B (q )  - XqB(q) + XqA(q) (30)  

is stable. 

We illustrate the lemma by considering the model in the earlier sections. 

Example 3 Let the money supply being modeled by an ARMA(1,l)-model and let the agents 
use an ARX(1,l)-model for the prediction. Thus 

Now Lemma 1 gives that 
( 1  - Xb + Xa)q + b 

must be stable or, equivalent with [ I l l ,  it must hold that 

Note that the analysis here is built upon the fact that the recursive algorithm of the agents 
converges to the correct values. This will happen in some cases, for example for the system in 
the example above. It is an interesting question to find out for which polynomials A,  B ,  C ,  and 
D we have convergence. 

6 Conclusions and Ideas for Future Research 

We have been studying a model for hyperinflation. This model describes the interaction between 
the market and the agents. In particular, we have discussed how the learning of the agents 
depends upon the market. In a theorem it was shown how, in an implicit way, the convergence 
rate of the agents learning algorithm is related to the inertia of the market. Further, two examples 
illustrated that it can be hard for the agents to learn about the market both if the market inertia 
is high as well as if it is low. 

An attempt to generalize the model has also been done. In particular, we considered ARMA- 
models for the money supply description of an arbitrary order. The agents were allowed to assume 
a market model of any ARX(n,n)-type. 

Finally, we will mention some ideas for future work. It is desirable to get a better under- 
standing of the observed relations between the agents' learning rate and the market inertia; in 
economic terms as well as in mathematical. Another interesting topic is to try to fit or compare 
the model to real data. We also believe that it is possible to proof many of the convergence 
results in [ l l ]  for the more general model in Section 5. 
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A Assumptions 

In this appendix we will give the assumptions for having almost sure convergence of the learning 
algorithm in Section 2. These are also the assumptions for Theorem 1 in Section 4 .  We just 
repeat the assumptions given in [ l  I.]. 

Define the sets 
Ds := ( 8  I IAi(T(8)) 1 < 1 V i )  

and D A  as the domain of attraction of a fixed point of the differential equations (16)  and (17) .  
Also, define the open and bounded set Dl and the closed set D2 by the relations 

and 
( 8 , R )  E Dl * 8  E D s  

We consider the following modification of the RPLR-algorithm (8) 

which assures us that  the estimates always stay in the set D l .  The following assumptions will 
give almost sure convergence for { 8 ( k ) ) .  

1 .  S(.)  has a unique fixed point in Ds.  

2.  Each element in T ( 8 )  is two times differentiable and each element in V ( 8 )  is one time 
differentiable for all 8  E D s .  * 

3. M l l ( . )  defined in Section 3 has full rank. 

4. For { e ( k ) )  in ( 9 )  it is true that E{le(k)lp) for all p > 1 .  

5. There exists a subset O0 of the sample space such that Pr{Oo) = 1 .  There also exists two 
random variables C l ( w )  and C 2 ( w )  and a subsequence { k h )  such that 

for all w  E O0 and h = 1 , 2 , .  . .. 

6 .  The trajectories of the associated differential equations (16)  and (17)  with initial conditions 
( 8 ( 0 ) ,  R ( 0 ) )  E D2 do not leave D l .  



B An Analytical Result for the Convergence Rate 

We will now give an an estimate for the convergence rate of the recursive learning algorithm 
when the algorithm is not "stable enough", i. e .  that the eigenvalues assumption in Theorem 1 
does not hold. Sargent and Marcet assume what the convergence rate is in the case Theorem 1 
does not hold. We will in this appendix derive analytical results, and show that their conjecture 
is right. To some extension, we will refer to  the assumptions and proof of Theorem 24 (p. 246) 
in [3]. 

Introduction 

Consider the recursive algorithm (8) again 

where z ( - )  is the state in the state space description (9), and the expression for ~ ( k )  is given in 

[31. 
Given the assumptions and the modification of the algorithm in Appendix A, we know that 

{B(k)) converges t o  B j  almost surely. Further, if the assumption of Theorem 1 in Section 4 holds, 
we know that 

,h(B(k) - Bj) - N(0,  P), k + rn 

We will show in this appendix that it is possible t o  determine an estimate of the convergence 
rate even if the eigenvalues assumption in Theorem 1 does not hold. Denote (as in Section 4) 

If a E (-1/2,0), we will show that 

where y is arbitrary such that y < IaI. V is the distribution which puts unit mass a t  zero. 

Analysis 

We will need the definitions for almost sure convergence, convergence in probability, and con- 
vergence in quadratic mean. Thus, recall: 

Definition 2 {B(k)) converges almost suwly to Of if VE > 0 and V6 > 0, 3N(&,6): 

where 1 1  - 11 is the Euclidean norm. We denote this 

Definition 3 {B(k)) converges in probability to Bj  if VE > 0 and V6 > 0, 3 N ( ~ , 6 )  such that if 
k 2 N(E,  6) 

Pr{llB(k) - efll > 4 < 6 

which is denoted 
B(k) 5 B j  



Definition 4 { 8 ( k ) )  converges in quadratic mean to 81 if 

We denote this 
8 ( k )  2 e1 

Introduce the function 

and the new algorithm 

d ( k )  = B(k - 1 )  + 1 H( 8( k  - 1 ) ,  z ( k ) )  
k  

where H ( . ,  .) and i can be calculated from ( 3 2 ) .  It is easily checked that { e ( k ) }  converges almost 
surely to { O f } .  It follows that if B ( N ( E , ~ ) )  = 8 ( N ( ~ , 6 ) ) ,  then for k  2 N ( E , ~ )  the algorithm ( 3 4 )  
will act like ( 3 2 )  with probability at  least 1 - 6 .  Convergence in quadratic mean will be shown 
for the algorithm ( 3 4 ) ,  and that this implies convergence in probability for the original learning 
algorithm ( 3 2 )  modified as in Appendix A. 

By showing how the conditional variance of the estimates in the algorithm ( 3 4 )  progress, 
we are able t o  tell the behavior of the algorithm. Let us introduce the a-field generated by 
z ( l ) ,  z ( 2 ) ,  . . . , z ( k )  and denote it Fk. Define 

We call a matrix A stable if i t  has all real parts of its eigenvalues less than zero. Recall the 
well-known Lyapunov theorem 

Lemma 2 Assume A is a stable matrix. Then, for every positive definite matrix Q ,  there exist 
a symmetric positive definite matrix P  such that 

Given two vectors x  and y  introduce the inner product 

( x ,  y )  := xTy  

Define a second inner product out of the first and the matrix P in Lemma 2:  

[ x ,  YI := ( P x ,  Y )  

Then we have the following lemma: 

Lemma 3 Assume the matrices in Lemma 2 exists. Then for all x  

[ A x ,  x]  < 0 



Proof: From Lemma 2 we have 

Since 
(ATpx,x) = (Px,Ax) = [x,Ax] =   AX,^] 

we conclude that 
 AX, x] = -(Qx, x) < 0 

We know that 6s(oj) is a stable matrix. Thus, iLe(9j) +?I is also stable for all -, < -a. Lemma 3 
gives the following upper limit 

[ ~ s ( ~ , ) x ,  XI < -dx7 XI 
Let us repeat the introductory part of the proof of Theorem 24 (p. 256) in [3] for our learning 
algorithm. The norm used is the one defined by the inner product [., -1. We can state an inequality 
similar to (1.10.16) in [3]: 

Throughout this appendix C; denotes constants. For the stochastic process { f (k)), it is possible 
to show that 

E{lf(k)l) L Cz (37) 

(see [3]). By iterating (36), we get 

Above as well as below, we follow the convention that 

when i > k. We treat the three terms TI, T2, and T3 separately. Before we show the convergence 
of these terms, we recall some inequalities. For large k we have 

which gives 

1 k k- i  

and for p < 0 



Using (38), an estimation for TI is obtained: 

Since 7 E (0,1/2), we have P := 27 - 2 < 0. Thus, (39) and (40) gives 

T3 needs more detailed investigation. Firstly, note that 

S1 can be treated like TI: 

We have by using (37) 

Further 

Thus 

S4 is treated in the same way as S2: 

This ends the investigation of T3. 



To conclude, we have shown that 

For large k, the first term in the right hand side above dominates. Thus 

lim sup k27a(k)  5 CI2 
k + m  

We will now finally show that the convergence in quadratic mean of {8(k)) above implies 
convergence in probability of {9(k)), i. e. convergence in probability for the original algorithm. 
We have shown that 

k7(e(k) - 9,) 2 0, k -* oo 

This implies that 
k'(8(k) - 9,) 5 0, k -* oo 

or equivalently that V a  > 0 and Vp > 0, 3M(a,p)  such that 

For k > max{N(&, 6), M(a ,  p) )  we have 

where the last inequality is given if we in Equation (33) choose 6 5 p/2. Hence, we have shown 
that 

k7(9(k) - 9,) 5 0, k -* oo 

where y < -a. 
It should be noted that the estimate given here is not the best possible, not even with respect 

to the order (in k) with which {B(k)) converges to 9,. For a discussion of this in the simplest 
Markov stochastic approximation case see [9]. Further, note that the inner product introduced 
in (35) is a function of X and that we have not analyzed here how this new topology depends 
upon A.  
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