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Foreword 

This initial research for this paper was performed in the Institute of Automatic Con- 
trol, Warsaw University of Technology, supported by the grant No. 3 0218 91 01 of the 
Committee for Scientific Research of the Republic of Poland. The Institute of Automatic 
Control has a cooperative research agreement with IIASA and the final version of this 
paper has been completed during the stay of the author at the Methodology of Decision 
Analysis Project. While based on the multiple criteria approach that has been inten- 
sively studied in MDA project, the paper addresses new issues of coarse-grained parallel 
computations. 

In the perspective of parallel computations, new versions of basic optimization algo- 
rithms are needed. The paper presents a concept of such coarse-grained parallelization, 
based on a parametric imbedding into a family of problems or parametrically diversified 
algorithms. This general idea is exemplified for the case of the simplex algorithm of linear 
programming, where a linear optimization problem can be imbedded into a multiple- 
objective family which introduces diversified directions of search cutting through the in- 
terior of original admissible set. To improve the effectiveness of such algorithms, an initial 
phase of directional feasibility search by subdifferential optimization is added. The result- 
ing augmented simplex algorithm, even without parallelization, might be competitive wit#h 
interior point methods for a certain, broad class of linear programming problems. Neces- 
sary theoretical foundations, some algorithmic details and results of preliminary tests are 
presented. 
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Augmented Simplex: 
a Modified and Parallel Version 

of Simplex Met hod 
Based on Multiple Objective and 

Subdifferent ial Optimization 
Approach 

Andrzej P. Wierzbicki* 

1 Introduction. 
It is well known that the simplex method of linear programming might perform slowly 

for problems with a large number of constraints, because it must go around the set of 
admissible solutions and cannot cut through the interior of this set. This is one of the 
reasons of the superiority of interior point algorithms using nonlinear penalty barrier 
functions (that have been also adapted for multi-objective linear programming, see e.g. 
Karmarkar, 1984, Arbel, 1992, Gondzio and Makowski, 1993). However, the property of 
searching in the interior of the admissible set is related not exclusively to the internal point 
methods. Some quasi-simplex or multiplier-type algorithms (see Gabasov and Kirillova, 
1977, Makowski and Sosnowski, 1989) can also search through the interior. Moreover, 
as shown later in this paper, some formulations of multiple-objective linear programming 
introduce cuts through the interior even if the traditional simplex method is used. Thus, 
when treating an original single-objective problem a.s an example of a multi-objective one, 
we can improve the performance of the simplex method. 

The resulting augmented simplex algorithm could be, for a certain class of problems, 
competitive with the internal point methods. The main advantage of the augmented 
simplex algorithm, however, is that it admits a natural coarse-grain parallelization which 
might result in a shortening of computing time as well as in an increased robustness of 
the algorithm for badly conditioned problems. 

The perspective of parallel computing on many processors with large computing power 
- each well capable of solving problems of considerable size - has motivated recently 
many studies of parallel computations (see e.g. Nogi, 1986, Bertsekas and Tsitsiklis, 
1989), in particular for linear programming (see e.g. Ruszczyfiski, 1992). Most of these 
studies concentrate on a decomposition of a large-scale problem in such a way that the - 
decomposed parts can be processed parallel - that is, on using the increased computing 
power for solving larger problems. 

'Institute of Automatic Control, Warsaw University of Technology, Nowowiejska 15/19, 00-665 War- 
saw, Poland; the research reported in this paper was supported by the grant No. 3 0218 91 01 of the 
Committee of Scientific Research of Poland. 



There might be, however, also another direction of using additional computing power in 
order to increase the speed and accuracy of analyzing problems of moderate scale. Since 
optimization is one of basic instruments in such analysis, we can expect requirements 
of fast and reliable execution of many repeated optimization runs, as e.g. in multi- 
objective decision support systems. Thus, we shall address here the question how to use 
future parallel computing power under the assumption that the analyzed models are not 
too complicated to be run in reasonable time on a single processor. 

In such a case, we might use coarse grain parallelization based on a parametric imbed- 
ding of the original problem or algorithm into a larger family - e.g. a single-objective 
linear programming problem can be naturally imbedded into a related multiple-objective 
family - and then by coordinating the process of solving problems of this family parallel 
in order to obtain the solution of the original problem more quickly and robustly. This 
general idea of coarse-grain parallelization via parametric imbedding scheme differs in its 
essence from the general decomposition and coordination scheme. Moreover, this general 
idea applies not only for linear, but also for nonlinear or even discrete programming. 
However, in this paper we address only linear programming problems. 

2 Preliminaries. 

2.1 Standard formats for linear simulation models. 

A standard form of a linear programming problem is usually written as: 

where the vector x contains, beside original decision variables, also many artificial 
(slack) variables and thus n > m is assumed. 

However, a modeler that constructs, modifies and analyses (often multi-objectively, 
see e.g. Wierzbicki 1992b) a linear model might find it more convenient to develop his 
intuitive understanding in relation to a different format that is similar to one used in 
(Murtagh and Saunders, 1977): 

In this format, the vector x denotes only some essential or structural decision vari- 
ables while the vector y includes all outcome and intermediate variables used e.g. to 
express additional constraints. If the model is complicated, then n << m. The matrix 
W reflects the fact that the modeler might introduce various intermediate outcome vari- 
ables. Usually, (I - W)-l exists and y can be determined as a direct function of x, by 
substituting y = (I - W)- 'Ax  and A := (I - W)- 'A;  but this should be done by a 
preprocessing software, not by the modeler. Such a preprocessor can also perform many 
other transformations resulting in a simplified format similar to ( I . ) :  

T maximize (z = c x), X, = {x E Rn : 1 < x < U, b < y = A x  < b + T E R ~ }  (3) 

where Int X ,  # 0 and lj < uj, cj > 0 V j  = 1,. . . n ,  r; > 0 V i  = 1 , .  . . m might be 
assumed as the result of the preprocessing. 



We stress that x denotes here only essential decision variables. For example, the iter- 
ates of an internal point method that are in the interior of the bounds on x in formulation 
(1) correspond rather to internal points of X, in formulation (3). The assumption that 
cj > 0 is made for exposition purposes only, without loss of generality. 

The class of linear problems considered in this paper is such that the number n of 
essential decision variables is relatively small - say, comparable to the number of available 
processors in a parallel computer - while the number m of inequality constraints might 
be very large. Many practical examples and many subclasses of linear and discrete pro- 
gramming - e.g. semi-infinite LP - belong to this class. The selection of essential decision 
variables might be not unique for a given problem; although it is usually implied by the 
original problem formulation, we can also aggregate parts of cost function with original 
decision variables into new variables that can be interpreted as essential ones. 

2.2 Mult iple-object ive aspects of linear programming. 

Consider the following formulation of a multiple-objective linear programming problem: 

where, usually, the matrix C is defined by selecting q; = y; for some 1 E j ;  however, 
there might be several interpretations of "maximization". Generally, we can define any 
positive (closed, convex, pointed) cone D c R P  , a corresponding strictly positive cone D 
and define the set of eficient solutions to (4) w.r.t. (with respect to) this cone: 

xo = {x E XO : (9 + B )  U Q, = 0 where 9 = Ck, Q, = CX,), with Q, = ~ 2 ,  ( 5 )  

If D = R:, all criteria or objectives q; are to be maximized, then by choosing D = 

D \ 10) we obtain the set & of Pareto-optimal solutions, while Q, is called the Pareto 
frontier of the attainable objective set Q, . If we choose D = Int RP+ , then we obtain 
larger sets of weakly Pareto-optimal solutions and attainable objectives. The problem 
of finding Pareto-optimal solutions to linear programming models has been investigated 
extensively - see e.g. (Yu and Zeleny (1975), Gal (1977), Steuer (1986)). Most of such 
approaches are related to a parameterization of X, or Q, as a set of maxima of scalarizing 
functions, e.g. in the form of a weighted sum: 

s1 (q, a) = C 0;q; 

It is well known that, if a E Int R: , then all maxima of sl (Cx, a) w.r.t. x E X, 
are Pareto-optimal. Conversely, since X, and Q, are convex, polyhedral sets, for any 
Pareto-optimal q = Cx there exists an & E Int RP+ such that x maximizes s l ( C x , & )  
w.r.t. x E X, . 

However, there are also other cones D and D that might express various requirements 
of mixed maximization and minimization or even stabilization of objectives q;, and other 
forms of scalarizing functions that are applicable also for non-convex and discrete cases and 
express then the additional requirement of proper Pareto-optimality or proper eficiency 



(with either bounded or even a priori bounded trade-off coefficients, see e.g. Wierzbicki, 
1986, Seo and Sakawa, 1988, Lewandowski and Wierzbicki, 1989). It might seem that 
these other forms are not needed in the case of linear models (where all Pareto-optimal 
points are proper); but these alternative approaches have some desirable properties even 
in this case. 

A general approach to the parameterization of efficient solutions is related to the 
following lemma (Wierzbicki, 1986, 1992a). To simplify notation, we substitute r (q)  := 

s(q, a) in this lemma. 

Lemma 1 Suppose X, is compact and consider a continuous vector objective function 
f : Xo -+ R P ,  q = f (x). Given a strictly positive cone D, if a continuous function 

r : R P  --+ R1 is strictly monotone w.r.t. this cone (q' E q" + D + r(qt)  > r(q")), then 
each maximum of r(f (x)) w.r.t. x E X, is eficient w.r.t. D. Conversely, if a continuous 
function r : R P  + R1 strictly separates the sets Q, = f (X,) and 6 + D for any ij E Q, 
(if '(9') > 0 Vq' E 4 + D and r(qn) 5 0 Vq" E Qo ), then this property is equivalent to 
the three following statements: 

a)  q = f (&) maximizes r (q)  w.r.t. q E Q, (& maximizes r(f (z)) w.r.t. x E Xo ); 

b) 4 E Q, and & E X, , they are eficient w.r.t. D; 

C) r (qt )  > r(q) Vq' E 4 + D, the function r is at least locally strictly monotone. 

Thus, a parameterization of Q, and X,  in the sense of both sufficient and necessary 
conditions of efficiency might be obtained by choosing a suitably parameterized, strictly 
monotone scalarizing function that separates Q, and q + D. For linear models, where Q, 
and X, are convex polyhedral sets, the choice of the weighted sum s l (q ,  a) = r (q )  might 
seem the most natural. 

But a piece-wise linear separating function might approximate the positive cone better. 
A piece-wise linear function that has all the properties needed by Lemma 1 - while, not 
knowing in advance what is q, we use initially any q as a reference point in objective 
space - might be written as follows: 

By maximizing this function, a Pareto-optimal point q is obtained; then the reference 
point q might be shifted to q. The parameter E > 0 is used in this function in order that 
it separates the set Q, from the cone q + Int D, , where D, is a slightly broader cone than 
RP+ that characterizes properly Pareto-optimal outcomes with a prior bound 1 + 1 / ~  on 
trade-o$ coeficients (see e.g. Wierzbicki 1986, 1992a). However, in this paper we do not 
need such property and thus a simpler form with E = 0 will be used: 

When this function is used to characterize the set of (weakly) Pareto- optimal decisions 
and outcomes, then the controlling parameter of such characterization is the reference 
point vector q and the weighting coefficients a; > 0 play an auxiliary role. Here, however, 
we shall reverse the roles of these parameters; note that the weighting coefficients can 



be also expressed as scaling factors or directional coefficients d; = llcr;, with d E RP 
interpreted as a direction of search. 

If Q, and X, are convex, polyhedral sets as in (4),  (5)) then the maximization of 
s2(Cx, q, a) over x E X, can be equivalently written as a modified linear programming 
problem: 

max r ;  XT, = {(x,r)  E R"+' : x E X,, a;$ + r 5 ~ ; c ( ' ) ~ x ,  all i = 1 , .  . . p) (7) 
(X,T)EX T, 

where are the rows of the matrix C, q; = c( ' )~x .  This modified formulation has 
been used, for example, in the programming package for multiple-objective analysis and 
decision support DIDAS-L for linear models (see Rogowski et al., 1989; similar forms have 
been used earlier by many authors, see e.g. Wierzbicki, 1980, Nakayama and Sawaragi, 
1983, Steuer and Choo, 1983). 

The modified problem has several specific properties. Its admissible basic solutions 
include but are not necessarily vertices of the set X, ; its optimal solution might be 
any (weakly) Pareto optimal point i E % , also located on a facet or edge of the 
boundary of X, . This property was sometimes considered a disadvantage - see comments 
to a similar approach of Ecker and Kuada in Steuer, 1986 - but it is possible to use 
it to advantage. The modified problem might be better conditioned than the original 
one, since the additional constraints are orthogonal to each other. Another valuable 
property, observed in applications of the package DIDAS-L mentioned above, is that in 
certain cases the modified problem requires less simplex iterations than a comparable 
scalar optimization problem; this occurs because the modified formulation introduces an 
additional edge of the simplex that cuts through the interior of the original one. 

3 An augmented simplex method. 

3.1 An augmented linear programming problem. 

Suppose we solve problem (3): maximize a scalar function q = cTx with respect to 
x E X, , and let cj > 0 for all j = 1, .  . . n. Then an augmented linear programming 
problem can be written as: 

max s , (x ,d ,x ) ;  s,(x,d,x) = p T x  + (1 - p )  m i n  (x j  - ?ij)/dj 
XEXo j = l ,  ... n 

where d can be interpreted as a direction in the solution space, while dj = l/oj > 0 
can be also interpreted as inverse weighting coefficients for the problem of maximizing 
multi-objectively all components x j  as in (6b) with p = n and x j  = qj ; x = q is then a 
reference point in the solution space. 

Since cj > 0 for all j ,  we know (e.g. from Lemma 1) that the solution x to the 
original problem of maximizing cTx w.r.t. x E X, belongs to the Pareto boundary X, 
for the problem of maximizing all components x j  multi- objectively. Thus, the augmented 
problem can be solved in several phases with changing coefficient p E {0,1): 

an initial feasibility phase might be needed; 

in the middle multi-objective phase, p = 0 until a point x E X,  is found; 



in the final single-objective phase, p = 1 until the solution 3i: to the original problem 
is found. 

Note that the switch between phases corresponds only to a change of maximized 
function in the equivalent linear programming problem stated similarly as (7): 

max (T or cTx) ;  XT, = { (a,  T)  E R~+' : x E X,, f j  5 xi-djr, j = 1 , .  . . n )  (8b) 
(2 ,7)€XTO 

thus the second phase can be started from the optimal basic solution of the first phase. 

The properties of the augmented linear programming problem are summarized in the 
following Lemma. 

Lemma 2 For the problem (8b) with X, defined as in (3), let c, d E Int Rn+ and denote: 

IfT(x, d) n X, # 0, then for any x E T(k ,  d) n X, an admissible basic solution to (8a) 
can be determined; in one simplex iteration, this solution can be transformed to such that 
maximizes T and cTx w.r.t. x E T(x,d) n X, . 

Proof. Consider the way of transforming problem (8b) into the standard form (1). 
We add two vectors of slack variables: one for all original constraints b; 5 a iTx  5 bi + r;, 
s  E Rm with 0 5 s  5 r, and another for additional constraints f j  + d j r  < f j  , v E Rn 
with 0 5 v. Thus we obtain the set of n + m equations for 2n + m + 1 variables x, v ,  s ,  T: 

Substitute x computed from the first n equations into the remaining m equations to 
obtain: 

If x E X, , then x = x and s  = s = b - A x  can be selected as starting values of 
basic variables, with a corresponding unit basic matrix, while v = 0 and T = 0 are not 
in the basis. Note that T(x, d) = T(x ,  d) for any x E T ( x ,  d); therefore, if x $ X, but 
T(x, d) n X ,  # 0, we can select any x E T ( x ,  d) n X, and reset x := x thus obtaining an 
admissible starting point. 

Because the method changes objective functions between phases, consider two reduced 
cost vectors - corresponding to these phases - at this starting point. The reduced cost 
vector for the multi-objective phase with maximized function T has clearly only one non- 
zero coordinate 1 corresponding to T. The reduced cost vector for the single-objective 
phase with maximized function cTx results from: 

Since x and s  are in the basis, the corresponding reduced cost vector is (0 0 cT ~ ~ d ) ~ .  
In the first iteration of the multi-objective phase, T will be selected as the variable that 



enters new basis (since r is actually unbounded, it must stay in the basis in further 
iterations, i.e. be omitted when selecting the variables that leave the basis). The variable 
that leaves the basis in the first iteration is either a slack variable s; or a variable xj that 
first attains its bounds when x is changing along the direction d, x = x + rd - since 
v = 0 at the starting point. 

Thus, the boundary of X, is attained in the first iteration at a point x E T(x ,  d) n X, 
that maximizes 7; this point maximizes also cTx in T ( x ,  d) n X, , since cTd > 0. This 
concludes the proof. 

Although an efficient implementation should be naturally based on an appropriate 
product form with good numerical stability and sparsity preservation features, the classical 
simplex tableau for this problem might be used to illustrate some aspects of the method. 
In the following tableau, two last rows represent the alternative reduced cost vectors: 

Note that it is advantageous to choose x E Int X, - if x $! Int X, and x is in such 
boundary of X, that a further increase of r along the direction x = x + rd is impossible, 
then the initial basis is degenerate. Such a point is always attained after the first iteration, 
but with a nondegenerate basis if x E Int X, . 

Such a point might not yet belong to the Pareto boundary x , since directional 
maximization does not necessarily imply Pareto-optimality (see e.g. Wierzbicki 1986). 
However, after a finite number of iterations the maximum of r in XT, will be found at  
some point x, and the maximization of cTx might start from the basis corresponding to 
this point. The number of simplex iterations in the multi-objective phase might be very 
small - one, if T ( x ,  d) intersects X, - or large - when T(x ,  d) intersects the boundary 
of X, far away from x,. Usually, such a point 2 is not a vertex of X, , it might belong to a 
facet of X, . Vertices of X, are attained after some iterations in the final single-objective 
phase, when continuing to maximize cTx.  

Thus, the augmented simplex formulation has some similarities with interior point 
methods: it might start from an interior point and cut through the interior of X, in 
the first iteration. Additionally, since any d E Int R-might be selected, the original 
problem of maximizing cTx w.r.t. x E X, is em parametrically imbedded into a family 
of problems - or rather algorithms with parameters x, d.  

3.2 An example of a discretized circle. 
As a way of illustrating theoretical considerations and preliminary testing more detailed 
algorithmic suggestions, a widely used example was selected: maximize a linear function 
w.r.t. x E C, , where C, is a circle approximated by many linear constraints. For example, 
the circle (xl -2)2 $5; 5 4 through a substitution xl = 2(1 +cosp), x2 = 2sin,B, P E [O; T ]  

can be approximated by: 



where: 

while the step of changing ,B is actually 2 A p  = rim. 
Testing results for this rather special example should be treated with care: the ad- 

vantages of the augmented simplex method would be exaggerated if a very large m were 
chosen, hence a moderate m = 90 was selected. Additional constraints were selected as 
x E Bo = {x E R2 : 1 5  x 5 u), Xo = ConBo,  where1 and u might be changed during 
various experiments with this example. In the maximized function z = cTx, c = (3 2)T 
was typically assumed. Thus, the problem to be solved in this example is: 

maximize(qo = clxl + ~2x2);  Xo = {x E R~ : x E C,, 1 5 z 5 u) 
XEXO 

(11) 

This problem was imbedded into a multi-objective family with the help of multiple- 
criteria decision support system DIDAS-L. This public domain software ' was slightly 
modified for such experiments. DIDAS-L determines automatically so called utopia points; 
in order to increase the freedom of experimentation, user-supplied utopia points were 
admitted. The simplex solver in DIDAS-L does not exploit the transformation (9b); 
therefore, n + 1 = 3 iterations instead of 1 iteration are needed to cut through the interior 
of X, . Even with this drawback, the results of preliminary experiments with this example 
presented in Table 1 are quite promising. 

In Table 1, separate optimization means single-objective maximization of q, = cTx or 
of xl or x2 , and the corresponding number of simplex iterations and the optimal values 

T -  of xl = il , 2 2  = $2 , q, = c x are given. For the case of infeasible 1 = (0 - 2)T , the 
numbers of simplex iterations include the initial feasibility phase, which takes between 26 
and 45 iterations; for the case of feasible 1 = (1 - l)T , no feasibility phase iterations are 

Table 1. Results of experiments with augrnentedproblem, c = (3 2)x' ,  u = (5 3)" 

'Described shortly e.g. in Rogowski et al., 1989; full information and software can be obtained from 
Dr Marek Makowski a t  the International Institute for Applied Systems Analysis in Laxenburg, Austria 

Augmented Optim. 
type 

Separate 
d l  d2  
9 1  

Bounds 
max 

qo 11 12 
max 
11 

d l  d z  
8 2  

max 
2 2  

d l  d z  
4 6  

d l  d 2  
7 3  

d l  d 2  
3 7  

d l  d 2  
6 4  

d l  d 2  
5 5  

d l  d n  
2 8  

d l  d z  
1 9  



needed. The iterations started always from x = 1 (if they started from x = u, then 33 
iterations would be needed for the maximization of go , even with feasible 1 = (1 - ). 
For the augmented formulation, instead of the optimal values, the values xl  = Z1, x2 = 
22, go = cTx after the multiple-objective phase are given in Table 1. The needed numbers 
of iterations are split into two parts: the iterations in the initial phase (including a possible 
feasibility phase) plus the iterations in the final single-ob jective phase. 

Clearly, we cannot assume that we know what direction d = (dl d2)T would result in 
going directly from x to  the optimal solution (x = (3.66 1 .12 )~  in this case). However, 
some reasonable directions - such as choosing d = u - 1 (which after rescaling corresponds 
to d = (5 5)T in Table 1) or d = c (which corresponds to d = (6 4)T in Table I )  - 

result in shortening the computations more than twice. For most cases in Table 1, the 
total number of iterations in the augmented formulation does not exceed the number of 
iterations needed to maximize go separately - except in some cases, where the maximum of 
the scalarizing function in multi-objective phase is located on a flat part of this function, 
see Fig. 1. These results suggest a concept of parallelization of computations using the 

Figure 1: Illustration of experiment results from Table 1. 
a)  Infeasible x = 1, 
b) Feasible x = 1. 

augmented formulation. Suppose we employ a number P of processors, where P > n 
in this simple example. One of the processors starts to solve the original problem of 
maximizing go ; others solve the multiple-objective augmented problems for various d and 
then start the single-objective phase. The iterations in all processors are stopped if in 
a number of them - say, n - either the optimal solution is found or a given number 
tc0 of iterations of the single-objective phase is performed. This stops a large iteration; 
from the results obtained, estimates x and x of a relative lower bound and upper bound 
of the solution x of the original problem are determined. Such estimates do not serve as 



modified I, u which remain unchanged, but as data used to determine the initial point 
in the next large iteration which starts e.g. from the new x (a  relative lower bound 
strategy) or from the new x (a relative upper bound strategy) and possibly the directions 
d. This parallelization concept is rather strongly coarse-grained and thus intended either 
for distributed computing or for future computers with many powerful processors in a 
scalably parallel structure '. 

For the simple example with n = 2 considered here, the way of determining a new 
relative lower bound estimate x is natural: just take the highest values of x j  obtained 
from various processors which would further increase if the single-objective phase would 
be continued. This concept of parallelization was simulated in the DIDAS-L system 
(using only one processor repetitively) for the simple example of discretized circle. In the 
following tables, large iterations are numbered by k = 1,.  . . and K denotes the number of 
simplex iterations (including K, = 1 additional) inside a large one. Other conditions of 
these experiments are as in Table 1: c = (3 2)T, u = (5 3)T, starting with (lower bound 
strategy) x = 1 which was either infeasible, 1 = (0 - 2)T, or feasible, 1 = (1 - I ) ~ .  

The note "fail" in Table 2a means that a "processor" failed either to find optimal 
solution or to finish the multiple-criteria phase, thus its results were disregarded. As in 
Table 1, the numbers of simplex iterations needed to finish the multiple-objective phase 
and the values xl = Z1, x2 = Z2, q, = cTx after this phase are indicated. The first 
"processor" failed to find the optimal solution also in the second large iteration, but it was 
found by one simplex iteration of the single-objective phase in the last two "processors". 

Similar experiments were performed also for P = 5, resulting in the total length of 42 
iterations compared to 86 without parallelization. Note that the computational effort for 
coordination and communications between "processors" can be practically disregarded, 
since the parallelization is coarse-grained; the additional effort for coordination would be 
smaller than for one simplex iteration. 

Table 2a. Results of simulated parallelization experiments, 
P=10 "processors", starting 2 = 1 = (0 - 2)T 

Similar results are obtained when the experiment starts with a feasible x = 1 = 
(1 - I ) ~ ,  see Table 2b. 

'The author is indebted to Dr Tatsuo Nogi from Kyoto University for stimulating discussions on future 
architectures of parallel computers. 
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Similar experiments with P = 5 gave total length of 12 iterations compared to 21. 
The speedup of decreasing the total length of computations to approximately one-half or 
one-third when using 5 to 10 processors is not very high. On the other hand, note that 
this parallelization principle produces many results that are rather close to the solution x 
of the original problem; this property is advantageous for badly conditioned problems (to 
which belongs also the example of a discretized circle), since it increases the robustness 
of the algorithm. We must be prepared to pay in computational effort for this property; 
if we apply a rule of thumb that we consider this property equally desirable as shortening 
the total length of computations, we should be satisfied with a speedup close to fi. 

Note that the results could be improved because n + 1 = 3 (instead of 1) iterations are 
used in DIDAS-L to cut through the interior of X, and the initial feasibility phase might 
be shortened when using the properties of the augmented formulation. However, such a 
simple example with n = 2 might be misleading: it is more difficult to  develop a concept 
for parallelization if n > 2. 

Table 2b. Results of simulated parallelization experiments, 
P=10 "processors", starting f = 1 = (1 - l )T  

On the other hand, the results of this simple example justify several conclusions con- 
cerning possible details of an augmented simplex algorithm for larger n: 

An initial phase of finding a feasible Z should be added; since Z might be any 
internal point of X, , methods different than in typical simplex feasibility phases 
should be exploited; 

Large 
iterat. 

A long final single-criteria phase might be shortened by restarting the algorithm, 
e.g. (when using the lower bound strategy) from a new internal x and cutting again 
through the interior of X,; 

Total length 8 iterations, compared 
to 21 iterations without parallelization 
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rules for adjusting starting points, e.g. Z, and for choosing d in such repetitive 
augmented simplex algorithm and in its various possible parallel versions should be 
devised. 
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4 Algorithmic aspects. 

4.1 Initial feasibility phase based on subdifferentiable opti- 
mization. 

It is well known that, instead of solving problems (3) or (8a,b), an external exact 
penalty function (piece-wise linear penalty terms added to the original objective function; 
the latter should have reverse sign to keep with the tradition of minimizing penalties) could 
be minimized within simple bounds I 5 x 5 u. Since such a function is subdifferentiable, 
an algorithm of minimizing it would consist of two interchanged operations: solving a 
quadratic programming problem that determines the lowest Euclidean norm element of 
the subdifferential and then finding a directional minimum of the function. However, 
such a method would usually require much more computations than the simplex method: 
the number of constraints in the quadratic problems, low in the beginning iterations, 
would gradually increase to the number of active constraints at the final solution, and 
the computational effort to solve each of them might be higher than when solving the 
problem by simplex method. 

Under certain conditions, however, a subdiferentiable algorithm might be well compet- 
itive with the initial phase of a simplex algorithm - as long as the number of constraints 
in related quadratic programming problems will be low. 

Consider thus the following exact penalty term: 

@(x) = m,ax (max(O, b; - a('lTx) + max(0, a('lTx - bi - r ; ) )  
l< t<m ( 1 2 4  

Finding a feasible point means finding a minimum x of @(x) w.r.t. I 5 x 5 u such 
that @(x)=O. The subdifferential of @ has the form: 

where: 

In a typical subdifferentiable algorithm, the following quadratic programming problem 
would be solved: 

d = argmin lld1I2 
d ~ a q x )  



in order to check whether a minimum is found (if d = 0) or to use d = -d in a 
subsequent directional search. However, there are simpler tests (e.g. @(x) = 0) to check 
that a minimum is found in this case and any d E -d@(x) can be used for subsequent, 
directional search. Thus, we shall approximate the solution of (12f) and apply a simple 
but effective directional search. The resulting subdiflerential feasibility phase algorithm is 
as follows. 

Figure 2: An illustration of the subdifferential feasibility algorithm. 
a)  full penalty approach, 
b) penalty term for infeasibilities. 

lo Starting with given x, d and assuming x = x + ~ d ,  determine (similarly as when 
choosing a variable that leaves the basis in a simplex iteration, see Appendix 1) the values 

"-u 7 71 of the coefficient T that result in satisfying either all constraints which increase along 
d or all constraints which decrease along d; 

2' Set 7, as the arithmetic mean of T,, 71 and shift x := x + 7,d. If 71 < 7, (which 
indicates that T ( x ,  d) n Int X, # 0 and @(x) = 0) - stop. 

3" Solve (12f) for an approximate subdifferential while taking into account at  most 
two elements -a(" or a(" that span (12b). Due to this approximation, one iteration 
of this algorithm requires a computational effort not exceeding the effort of one simplex 
iteration. Set d 2 -d, return to lo. 

The algorithm is presented in more detail in Appendix 1; the main features of the 
algorithm are illustrated in Fig. 2. 

The subdifferentiable feasibility algorithm is not always effective. If a (uniform) mea- 
sure of the set X, is much smaller than the measure of the set B, = {x E Rn : 1 5 x 5 u )  
- see Fig. 3 - then a more standard simplex feasibility phase might be more effective, 
with a computational effort depending on the number of violated constraints, not on 



Figure 3: The impact of the relative measure of the set X,: 
a) relatively large measure, 
b) relatively small measure. 

the measures of these sets. Thus, the subdifferentiable feasibility algorithm might be 
used optionally in the initial phase, but it can be always used e.g. in further iterations 
of a repetitive augmented simplex algorithm, when an adjusted x might happen to. be 
infeasible. 

A rough implementation of the subdifferentiable feasibility algorithm for the example 
of discretized circle was prepared and its results compared with the number of iterations 
needed for the initial phase of a standard simplex algorithm. The results are given in 
Table 3. Although this comparison is not quite fair - the discretized circle exaggerates 
the difficulties of a simplex algorithm - these results are rather striking. 

I Table 2.  Comparison of standard with subdifferentiable feasibility phase 

11 1 1  0 1 -3 1 -6 1 -77 1 -77 1 -77 
Bounds 

4.2 A repet it ive augmented simplex algorithm. 

Iterations standard f. ph. 
Iterations subdiff. f .  ph. 

When starting an augmented simplex algorithm with a relative lower bound strategy, 
a point x situated in the middle of B, = {x E Rn : 1 5 x 5 u) might be selected, 
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e.g. x = 0.5(u  + I). The starting direction might be either d = c or d = u - I. 
After correcting x by the subdifferential feasibility algorithm, we might use yet different 
d = x - x, where either x = u or both x and x are suitably modified after restarting the 
augmented simplex algorithm. 

Figure 4: An illustration of a repetitive augmented simplex algorithm. 

Recall that x and x denote relative lower and upper bounds for the solution x, while 
we know that i E X, . We shall use a heuristic supposition to estimate new and 
x. Suppose that a feasible x is found and the multiple-objective phase is completed at 
a point x E X,. The single-objective phase starts from x, but only a relatively small 
number of simplex iterations K, 2 2 is performed in this phase which results in another 
point x E x,. During these iterations, the monotonicity of changes of each variable might 
be tested. The supposition is that if the changes of a variable xj  are monotone, they will 
continue to be monotone until its optimal value ij is reached. In this supposition, the 
concept of monotonicity might be variously interpreted: either as strict monotonicity, 
that each change of a variable must have the same sign, or as relaxed monotonicity, that 
the total change during K, iterations is much larger than the sum of changes with opposite 
sign. 

The monotonicity supposition might be not true (imagine the surface of a sphere 
approximated by small triangles); therefore, we must check whether x is contained within 
the relative bounds x, x after K, simplex iterations of the single- objective phase and 
relax these bounds if needed. Even if the current solution x violates the relative bounds, 
we should use the available information to establish new relative bounds. 

For example, if we accidentally tightened relative bounds too much, as in Fig. 3a, and 
obtain some z j  < zj, this means that z j  is essentially decreasing. We should set then 
Z j  := z j  but, at the same time, relax Z j  rather strongly; we can take then Z j  "all the way 



through X ,  " - see Appendix 2 for details. The same applies to all other variables for 
which new estimates x are established by monotonicity supposition. 

On the other hand, if the repetitive augmented simplex proceeds normally without 
violating relative bounds, it might give best results after new estimates for all z j  are 
obtained by monotonicity supposition, see Fig. 3b. 

The heuristic rules discussed above are summarized in an outline of a repetitive aug- 
mented simplex algorithm for sequential computations presented in Appendix 2. The 
algorithm is constructed in such a way that it is convergent in a finite number of itera- 
tions. 

4.3 A parallel version of the augmented simplex algorithm. 

For a parallel version of the augmented simplex, heuristic rules of choosing directions 
d are needed. If the relative lower bound strategy is used, this choice should result in 
possibly best estimates of the relative bounds x ,  while the bounds x play an auxiliary 
role. 

It is known in the theory of multi-objective optimization that finding a precise lower 
bound (called sometimes a nadir point) for a Pareto set is a rather difficult computational 
problem. However, experience in estimating approximate bounds (e.g. in DIDAS-like 
systems) suggests a heuristic rule: to  estimate lower bounds, reference points should be 
displaced along vectors m(j) = (1 . . . 1  O ( j )  1 . . . l)T , while displacements along versors 
e( j)  = (0 . .  . 0  l(j) 0 . .  . O)T should be used in the case of upper bounds. Clearly, {m( j ) )  
differs from {e(j)) if n > 3. 

Therefore, at least 2n + 2 essential directions d(*), 11, = 1, . . .2n + 2, including d(') = c; 
d(2) = 5 - 2: as well as all vectors m( j ) ,  e(j) should be used in a parallel version of the 
augmented simplex algorithm (see Appendix 3 for more details). 

However, in an iteration of the parallel and repetitive augmented simplex algorithm, 
these directions generate a cluster of points x(*) (each taken at the end of K, iterations 
of the single-objective phase). These points can be appropriately re-ordered according 
to the values of objective function. A convex combination of the best n of these results 
(with the highest values of the objective function) can be especially useful for generating 
an additional essential direction; this is a heuristic conclusion from Mazur theorem on 
the convergence of convex combinations. Thus (in next iterations) a preferred essential 
direction d(O) corresponding to such convex combination of best x(*) should be added. 

Moreover, auxiliary directions d(*), 11, = 2n + 3,. . . 11,, might be useful, if they concen- 
trate rather closely around d(O), d('), d(2). Such auxiliary directions might be generated 
as convex combinations of d(O), d('), d(2) with other essential directions. 

Thus, if P processors are available for parallel computations, we should choose 11,, > 
3n + 2 such that X ,  = (11,, + 1)lP is an integer, indicating how many times a processor will 
be used in one large iteration - and then generate enough auxiliary directions to use fully 
the available processors. The times of executing an assigned number of large iterations 
of the repetitive augmented simplex algorithm might vary between the processors. The 
assignment of tasks for processors should be such that parameterized problems with more 
essential directions should be run first and the less preferred problems with auxiliary 
directions and larger 11, should be run last on all processors. We can stop then all processors 
at  the same time - say, when at least 11,, > 2n + 3 results x* are available - without 
the danger of loosing much results for more preferred directions. 



The data obtained from all processors must be appropriately used for establishing 
new relative bounds and 5,  see Appendix 3 for details. All this results in an outline 
of a parallel version of the augmented simplex algorithm, presented also in Appendix 3. 
While most discussions of this paper, for exposition purposes, concentrate on the relative 
lower bound strategy, it should be stressed again that a relative upper bound strategy - 
choosing Z as a starting point - is also possible. 

A rough implementation of the repetitive augmented simplex algorithm and a sim- 
ulation of its parallel versions were tested on the example of discretized circle (with 
simplifications related to n = 2) and predictably gave better results than those presented 
in earlier sections; the results for relative upper bound strategy were slightly better than 
those for lower bound strategy. However, such results for n = 2 might be misleading; a 
full implementation and much more extensive testing are intended. 

5 Conclusions. 

A concept of a modification of the standard simplex algorithm was presented, based 
on an imbedding into a multiple-objective family and exploiting some ideas of subdiffer- 
entiable optimization and of interior point methods. The resulting repetitive augmented 
simplex algorithm might be competitive with interior point methods in such cases when 
a standard simplex algorithm would spend much time on processing consecutive vertices. 

Moreover, some of the properties of this algorithm might be useful in various mod- 
ifications of linear programming algorithms, such as alternative initial feasibility phases 
or crash updates of the basis. The property of starting with any internal point and then 
finding vertices of the simplex might provide an alternative way of recovering a vertex 
solution for interior point methods, see e.g. Mehrotra (1991). However, the main advan- 
tage of the proposed algorithm is the possibility of its coarse-grained parallelization which 
might indicate a way of using future computers of scalably parallel structure. 

The proposed algorithms must be yet fully implemented and extensively tested. How- 
ever, an early publication of these conceptual results was deemed important, since the 
concept of a parametric imbedding of optimization algorithms for their coarse-grained par- 
allelization might be also used in any other classes of problems in nonlinear and discrete 
optimization. 
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A Appendices. 

A.l  A subdifferent ial feasibility algorithm. 
The algorithm presented in the main text is described here in somewhat more detail: 

1" Starting with given 2 ,  d and assuming x = 2 + r d ,  determine the values of the 
coefficient r that result in satisfying either all constraints which increase along d or all 
constraints which decrease along d: 

r lm = r lm(Z, d) = max (Ij - zj)/dj 
j=l, ... n (13b) 

bi - a(i)T* bi + r; - a ( i)Tg 
ru = ru(Z, d) = min(rum, min , min ~ E I '  a(i)Td t € I U  a(;)Td 1 ( 1 3 ~ )  

b, - a(i)T* b; + ri - a(i)T* 
71 = 7' ( 2 ,  d) = max(rlm, max , max 

I a(i)Td i c ~ l  a( i )Td  1 ( 1 3 4  

where: 

Note that ru 5 r1 indicates that T (2 ,  d) fl Int Xo = 0, but in this case a middle point 
between these points might be taken as an approximate directional minimum of @(x+ rd ) .  

2" Set: 

where: 



If 71 < 7, - which indicates that T ( x , d )  n Int X ,  # 0 and @(x )  = 0) - stop. Note 
that the algorithm is not stopped if 71 = 7, , because this would imply x on the boundary 
of X, and we can use subgradient information in such a case to find a point in the interior 
of X, . 

3" Determine IL(x), I,"(x) as in (12c,d). Set 

If 8 = 1, set d := -d(') , go to lo. Determine Euclidean norms lld(j)ll, reorder d(j) in 
such a way that lld(')ll 5 I ~ ~ ( ~ ) I I  5 . . . 5 lld(0)ll . Determine: 

If X < 0, set X : = O .  If X > 1, set X := 1. Set: 

Step 3 solves approximately problem (12f). The most probable numbers of elements 
d(j), j = 1, . . .8,  spanning the subdifferential d@(x)  in this algorithm are 8 = 1 or 2. 
If 8 = 1, problem (12f) is trivial. If 8 = 2, this problem is solved precisely: an element 
d = Xd(') + (1 - X)d(') of lowest norm, if X would not be constrained, would be orthogonal 
to d(') - d(2) which implies (133); because X E [O; 11, it is sufficient to project its value on 
this interval. If 8 > 2, the solution of (12f) is approximated by taking into account only 
two d(') and d@) that have the lowest norms. Due to this approximation, one iteration 
of this algorithm requires a computational effort not exceeding the effort of one simplex 
iteration. 

Only the basic elements of the algorithm are presented above; they should be sup- 
plemented with such details as counting the number of iterations and limiting it to  some 
reasonable value 9, - e.g. to a fraction of n + m  - or projecting the directions on bounds 
in the case that a component x j  is equal to lj or u j  . 

A.2 An outline of a repetitive simplex algorithm for sequential 
computations. 

Two cases are distinguished in the algorithm: the monotonicity test is either satisfied 
or violated. 

In the latter case, the variables that violate the relative bounds are distinguished from 
others. If the relative bounds are tightened too much, and some x j  < zj  is obtained, 
it is assumed that x j  is essentially decreasing. Therefore, x j  := x j  is set and, at the 
same time, z j  is rather strongly relaxed: it might be taken "all the way through X, " 
using the operation T,(x, -e(j)) defined as in (13c) with e( j)  = (0 . .  . 0  l(j) 0 . .  . o ) ~  . The 
same applies in this case to all other variables which change monotone and for which new 
estimates x are established. 

If monotonicity tests justify a new estimate z j  after a violation of relative bounds, Z j  
should be strongly relaxed by taking it to uj. For variables that do not change monotone, 



original Z j  and Z j  might be reset. Additionally, since a violation of relative bounds might 
indicate a problem difficult to  solve, no should be increased - say, by setting no := 26, . 

In the former case, when the repetitive augmented simplex proceeds normally without 
violating relative bounds, new estimates for all Z j  are obtained by monotonicity supposi- 
tion. As long as only Z j  := x j  is set and Z j  was not modified in such a way yet, Z j  might 
be adjusted by taking it " half-way through Xo " while using the operation T, (2, -e(j)) 
defined as in (13g). 

The heuristic rules discussed above can be summarized in the following outline of a 
repetitive augmented simplex algorithm for sequential computations: 

1" Choose an option of starting with a standard or a subdifferentiable feasibility phase, 
of interpreting the monotonicity supposition and of using d = c or d = x - x; select 
parameters no and 29, . Set k := 1, x := 1 and use the subdifferentiable feasibility phase 
algorithm for at  most 290 of its iterations. If x E Int Xo is not found, apply a standard 
simplex feasibility phase starting from last x. 

2" Apply the multiple-objective phase of the augmented simplex algorithm until x E 
x0 is found; then perform K, iterations of the single-objective phase to obtain x and set: 

Cj := 1 if x j  monotone increases, 
Cj := -1 if it monotone decreases, 
Cj := 0 otherwise 

initialize updating of x and x: 

i f k = l ,  set t j : = O V j = l ,  . . .  n, 

else test whether a violation of relative bounds occurred: 

if x j  $ [xj; xj] for any j = 1, . . .  n, go to4"  

3" Perform a normal update of relative bounds; for all j = 1 , .  . . n: 

if Cj > 0, set Z j  := xj,  tj := 1, 

if Cj < 0, set Zj  := x j  and if tj = 0, set sj := x j  - rm(x,  -e(j)) 

Set d := c or d := x - 2, k := k + 1, go to 2" . 

4" Perform an update of violated relative bounds; for all j = 1,.  . . n set tj := 0 and: 

if x j  > f j  or if Cj > 0, set Z~ := x j , t j  := 1 and f j  := u j  (14f) 

if X j  < Z j  or if Cj < 0, set f j  :=x j ,  zj := x j  - ~ ~ ( x , - e ( j ) )  (14g) 



else (if not (14f, g) and) if G = 0, set L j  := uj, Ej := rj - ru(x, -e(j)) ( 1 4 4  

Set d := c or d := x - x, k := k + 1, test whether x E Xo by performing operations 
(13a,. . . e) of the subdifferential feasibility phase; if not, set x := x + rl(x, d)d. Set 
K := 2K, go to 2". 

Various details can be further specified for this outline, e.g. if a standard simplex 
feasibility phase is used, it might start either from I or from u; this phase should be 
followed by the operations (13a, . . . f )  of the subdifferentiable feasibility phase in order 
to obtain an 2 E Int X,. Various modifications of the rules of updating x, particularly 
after a violation of relative bounds, are also possible - for example, we could use more 
conservative updates based not on the current solution x, but on the point 37: obtained 
after the multi-objective phase. 

Note that the algorithm is convergent in a finite number of iterations (except, in 
practice, badly conditioned problems for which also a standard simplex might fail): normal 
updates of relative bounds result in an increased effectiveness of the algorithm when 
compared to a standard simplex algorithm, while updates of violated bounds result in 
increasing K, and eventually in using standard simplex algorithm longer in the single- 
objective phase until the optimal solution is found. 

A.3 Details of parallel version of the augmented simplex al- 
gorit hm. 

The 2n + 2 essential directions d($) ,  $ = 1,.  . .2n + 2 postulated for a parallel version of 
the augmented simplex algorithm are: 

d(') = c; d(2) = 5 - 5, = rn(*-2) for $ = 3,.  . . n + 2, 
d($) = e('+!'-n-2) for $ = n + 3,. . .2n + 2 (154  

If such directions are used in a parallel implementation of the repetitive augmented 
simplex algorithm, various points ~ ( $ 1  are obtained after a large iteration of the algorithm 
(each taken at the end of K, iterations of the single-objective phase). Since for all ~ ( $ 1  
also the values qi$) = cTx($) are known, the results can be reordered according to the 
decreasing values of the objective function. They will be used appropriately for updating 
the relative bounds 5, 2 .  

However, the effectiveness of the algorithm might increase considerably if a convex 
combination of the best n of these results (with the highest values of the objective function) 
were used in next large iterations for generating an additional essential direction: 

where 9, is the set of indices of n best x$ . Moreover, auxiliary directions d($), $ = 
2n + 3,.  . . $, are useful, if they concentrate closely around d(O), d('), d(2). Such auxiliary 
directions might be generated as convex combinations of d(O), d('), d(2) with other essential 
directions: 



where X E (0; 1) is either determined or a random variable; values X close to 1 and 
j = 3,. . . n + 2 (corresponding to vectors m(j) that are useful for estimating 2) should be 
preferred. Additionally, other convex combinations (say, of all essential directions with 
random positive coefficients summing up to 1) might be used. It is advisable to use at 
least n auxiliary directions. 

The directions are assigned to parallel processors as described in the main text. When 
stopping parallel computations after a large iteration, admissible data might come also 
from such processors that finished less than K ,  but at least 2 iterations in the single- 
objective phase (and thus the monotonicity indicators (! are available for each xi*)). 

The data should be tested whether x(*) do not exceed the relative bounds; however, 
since there is more data in the parallel case, an update of violated relative bounds is needed 
only if, say, less than 3 best data is within the bounds. If an update of violated relative 
bounds is not needed, the set of indices of admissible data 9 is formed from all x* that 
do not violate the relative bounds; set @ is ordered then according to decreasing values 
of @). 

In a normal update of relative bounds, if the rules (14d,e) are used to establish new 
bounds and many admissible data x(*) are available coming from various parts of the 
Pareto boundary of a polytope, various updates 2:" and d:.") (usually for different $ 
and $I) are obtained and a rule of choosing between them is needed. A reasonable rule 
is that priority is given to data corresponding to highest values of objective function (to 
the lowest indices of j after reordering) and to updating 2 j  . Thus, 2:" and di*') are 
chosen that correspond to lowest indices $ and $', not such that ive e.g. the most tight 
bounds. These updates might be contradictory in the sense that Z b )  might be lower than 

fj*'), because the supposition of monotonicity might be not true. Following the adopted 

rule, the update 2; is chosen first and then a non-contradictory %I*') is selected with the 
possibly lowest index $I. 

These rules can be summarized in the following outline of a parallel version (based on 
lower bound strategy) of the augmented simplex algorithm: 

1" Choose an option of starting with a standard or a subdifferentiable feasibility phase, 
of interpreting the monotonicity supposition, parameters K ,  and 19, and initial x, x as in 
the repetitive algorithm, set k := 1. Choose integers $,, x,, $, such that: 

Determine essential d(*) as in (15a) for j = 1, . . .2n + 2. Choose a rule of selecting 
auxiliary d(*) as in (15c) for $ = 2n + 3,. . . $, + 1 and select them. Assign to each of P 
processors a first direction d(*) starting with $ = 1,. . . P, then a second direction starting 
with lowest remaining $ etc. until each processor has X, directions assigned. 

2" Run on each processor (if k= l )  the feasibility phase and (for any k) the multiple- 
objective phase and K ,  iterations of the single- objective phase of the augmented simplex 
algorithm for each assigned direction d(*) starting from a common 2, to obtain x(*) and 
the corresponding monotonicity indices (PI , j = 1, . . . n (as in the repetitive algorithm) 



together with the corresponding qLi) = cTx($) . Stop if at least rl,, such data sets for 
various rl, are available (while accepting data from all processors that have monotonicity 
indicators d') available). 

Initialize updating of x and X: if k = 1, set tj := 0 for all j = 1, . . . n. Determine the 
set Q of admissible data: 

Reorder Q in such a way that qL$) 5 qLtl+') for all rl, = 1, . . . IQ I .  If 19 1 < 3, determine 
the smallest rl, = rl,' 5 3 for which a violation of bounds x, x occurred, go to 4' . 

3O Perform a normal  update of relative bounds; for all j = 1,.  . . n select subsequent rl, 
(as reordered) until: 

5;') > 0; if such rl, < 191 is found, set iij := x r ) ,  G := 1 ( 1 6 ~ )  

Then select subsequent rl, until 5;') < 0 and, if G = 1, xj') > r j ;  if such rl, 5 IQI is 
found, set: 

Zj := x(?) .I and if tj = 0, set iij := xj" - rm(x(*, -e(j)). (16d) 

Go to 5O. 

4' Perform a n  update of violated relative bounds - for all j = 1, .  . . n set tj := 0 and: 

($7 if xi"') > Pj, set r j  := x j  , 6 := 1 and f j  := uj  ( 164  

otherwise select subsequent rl, E 9 U {$I) and perform (16c), 

or select subsequent rl, E 9 U {$I) and perform (16d) while using the operation rU 
instead of rm , 

Set d = c or d = x - x, k := k + 1, test whether x E Xo by performing operations 
(13a, . . . e) of the subdifferential feasibility phase; if not, set x := x + rl (x, d )d .  Set 
K O  := 21c0 . 

5' Set k := k + 1, 9, := 9 n (1, . . . n), n' := 19,1 and determine d(O): 

Update d(2) = Z - x, reassign d(') to each processor as in lo but starting with d ( O ) ,  
go to 2O. 

Various details of this algorithm have to be modified for the case of upper bound 
strategy, when starting the searches from x instead of x. 


