
Configurations of Series-Parallel
Networks with Maximum Reliability

Gutjahr, W., Pflug, G.C. and Ruszczynski, A.

IIASA Working Paper

WP-93-060

October 1993

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33895225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Gutjahr, W., Pflug, G.C. and Ruszczynski, A. (1993) Configurations of Series-Parallel Networks with Maximum Reliability.

IIASA Working Paper. WP-93-060 Copyright © 1993 by the author(s). http://pure.iiasa.ac.at/3754/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

Working Paper
Configurations of

Series-Parallel Networks
with Maximum Reliability

Walter Gutjahr
Georg Ch. Ppug

Andrzej Ruszczyriski

WP-93-60
October 1993

HIIASA International Institute for Applied Systems Analysis o 14-2361 Laxenburg Austria

Telephone: +43 2236 715210 Telex: 079 137 iiasa a o Telefax: +43 2236 71313

Configurations of
Series-Parallel Networks

with Maximum Reliability

Walter Gutjahr
Georg Ch. Pflug

Andrzej Ruszczy.risLi

WP-93-60
October 1993

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute or of its National Member
Organizations.

Bll ASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

Telephone: +43 2236 715210 Telex: 079 137 iiasa a Telefax: +43 2236 71313

Configurations of Series-Parallel Networks
with Maximum Reliability

Walter Gutjahr '1, Georg Ch. Pjlug *), Andrzej Ruszczyn'ski **I

*) Institute of Statistics, Operations Research and Computer Science, University of
Vienna, Austria

**) International Institute for Applied Systems Analysis, Laxenburg, Austria

I{e yu~ords:
open failure, shorted failure, series-parallel networks, reliability.

Reader aids:
Purpose: Provide an algorithm for designing optimal network configurations.
Special math needed: Elementary probability, calculus.
Special math needed to use results: Elementary arithmetics.
Results useful to: System reliability analysts.

Summary:
The optimal design problem for networks with 3-state components is the following: select
from a given class of networks with n components, each of which can be operative or
experience an open-mode or a shorted-mode failure state, the network with maximum
reliability. We present an algorithm for solving this problem in the case of %stage series-
parallel networks, i . e., networks consisting of a number of series configurations linked in
parallel or vice versa. For practically relevant network sizes (up to 100 components), the
algorithm is fast.

1 Introduction

Networks composed of 3-state devices have been intensively investigated in the literature
on reliability. A 3-state device is one which can, besides its normal operative state, assume
two different failure states: an open-mode and a shorted-mode failure state. Corresponding
to these failure possibilities, a network (with specified source and sink) whose components
are :3-state devices can either be operative, or experience an "open failure" or a "shorted
failure".

An ope12 failure occurs if every path through the system (from source to sink) con-
tains at least one component in the open-mode failure state.

A shorted failure occurs it there exists a path through the system (from source to
sink) consisting only of components in the shorted-mode failure state.

The optimal design problem is the following: select from a given class of networks with
n components one which has maximal reliability, i.e., minimal probability that the system
fails in either the open mode or the shorted mode.

Usually, it is assumed that both

q = probability of an open-mode failure

and

s = probability of a shorted-mode failure

are the same for each component, and that failures occur independently from each other.
In every case q + s < 1.

For a more detailed description of the problem, examples of applications and further
references, see [5]. This type of problems was also thoroughly investigated in [7] and in

PI.

As to the class under consideration, Page and Perry [5] investigated series-parallel
networks, i.e., networks consisting either of a single component or of series-parallel sub-
networks connected to each other in series or parallel (cf. Fig. 1.). Because of the
computational complexity of the problem, only networks up to nine components were
treated by esact optimization.

Fig. 1. A series-parallel network. (a): the usual graph representation;
(1)) : tree representation. S means series, P means parallel and the leaves L are single

components.

In the present article, we will restrict ourselves to 2-s t age series-parallel networks. It
will be shown that for this class even 100 and more components can be dealt with by
means of an exact optimization algorithm.

A 2-stage series-parallel network is a series-parallel network with the property that,
in its tree representation, each leaf has depth 2 (cf. Fig. 2.). Notice that we do not only
allow binary trees, as Page and Perry [5] did, but general (rooted) trees. There are two
types of such networks:

(1) PS-networks (cf. Fig. 2 (a)). They consist of a number of series configurations of
components, linked in parallel.

(2) SP-n,etworks (cf. Fig. 2 (b)). They consist of a number of parallel configurations of
components, linked in series.

Fig. 2. Two examples for 2-stage series-parallel networks.
(a): a PS-network; (b): an SP-network.

Special cases of 2-step series-parallel networks are the so-called arrays, where the
number of components in each series configuration (resp. in each parallel configuration)
is constant. The reliability of arrays with 3-state components was investigated in [3].

In the sequel, we will restrict ourselves to PS-networks. The results for SP-networks
follow immediately by exchanging symbols S and P in the tree representation and by
exclianging open-mode and shorted-mode failure probabilities in the equations.

Formulas for the reliability of PS-networks may easily be derived, using elementary
probability theory. For a PS-network, let xi denote the number of components in the
i th series configuration. By m we denote the number of series configurations. (In the
example of Fig. 2 (a), X I = 3, x2 = 1, x3 = 4 and m = 3.) Let x = (z l , . . . , x,). It should
be noted that a PS-network is completely determined by x. Then with q, s as above, the
total failure probability (i. e. the sum of the open and the shorted failure probability) is
given by

m m

(cf. [7], p. 102).

The optimal design problem may now be formulated as follows: For given 12, q and s,

find an integer m > 0 and a vector x = (x l , . . . , x,) of integers > 0, such that

F(x) -t min

E x i = n.
i= 1

2 Optimization by complete enumeration

Pa.ge's and Perry's [5] solution strategy for the optimal design problem is complete en.u-
me~xtion: they compute all series-parallel networks of a given size (i.e., number of com-
ponents) tha.t are nonequivalent with respect to their reliability, and select the best one.
Clearly, complete enumeration is also possible for the special case of PS- (or SP-) networks.
We shall describe such an enumerative approach which is efficient for small n.

Let us start with the observation that interchanging the elements X I , . . . , xm in a
vector x describing a PS-network leads to an equivalent network (a network with identical
reliability for arbitrary q and s as the original one). For example, the PS-network described
by x = (3,4,1) has always the same reliability as the network of Fig. 2 (a), described
by x = (3,1,4). So it suffices to check all partifio~zs of the given integer n, i.e., all
representations of 12 as unordered sums of positive integers (see, e.g.. [6], pp. 107-124).
In tlie case n = 5, for example, there are seven partitions, namely 5, 4+1, 3+2, 3+1+1,
2+2+1. 2+1+1+1 and 1+1+1+1. We shall also use the notation (4.1) instead of 4 + 1,
etc. Each partition corresponds to a PS-network, the failure probability of which may be
determined from (1). The network with minimal value F (x) yields the solution.

In order to minimize space and time when running through the partitions, it is useful
to apply a partition generating algorithm of "nextn-type, i.e., an algorithm which takes
a partition x as input and computes the next partition x' in a pre-specified order for all
partitions of fixed integer n as output. Such an algorithm was described by Nijenhuis ancl
Wilf ([4], pp. 63-69). They chose antilexicographic order, i. e., the first partition is (n) ,
the last partition is (1, . . . , I) . Since this algorithm will be used again in section -5, we
cite it here (without much explanation) for the ease of the reader:

A partition x is represented by two arrays:

r[:l.] > . . . > r [d] are the distinct integers occuring in x ,

, [I] , . . . , m [d] are their respective multiplicities.

First partition:
r [l] := n ; m[l] := 1; d := 1.

Switch to the next partition:
procedure next-partition (x)
begin
if r [d] = 1 then begin CT := m [d] + 1; d := d - 1 end

else g := 1;
f := r [d] - 1;
if m [d] > 1 then begin m [d] := m [d] - 1; d := d + 1 end;
r [d] := f ;
m [d] := Lg/ f] + 1;
s := g (mod f) ;
if s > 0 then begin d := d + 1; r [d] := s ; m [d] := 1 end;
if n? [dl = n then final exit (* last partition reached *);
end.

During the enumeration process only the actual partition x and the best solution x*
found up to that time has to be stored.

For 11 = 50, an optimization run required about 4 minutes on a PC 486.

Even by this a.pproach, however, sizes of (say) n = 100 are beyond the limits of
tractability. According to a formula by De Bruijn [2], the number ~ (n .) of partitions of n

1

P(") -- qh. , exp (ad*) .

For 72 = 100, this already yields ~ (1 0 0) 2.10' partitions to be examined. (Compare
with p(50) = 204226.) Thus, the solution space of the optimization problem has to be
restricted in order to obtain a more efficient algorithm for large ~ 2 .

3 The continuous analogue

In order to get more information about the problem (2), we consider its continuous nnn-

logzie, obtained by dropping the condition of integrality for the numbers xi. Now the
values xi may be arbitrary real numbers > 0. With

this yields the problem

nm (1 - rxi) + 1 - nm (1 - sxi) + min
1 = 1 2=1

czl x; = n (3)

xi > 0 (i = l , . . . , m) .

Therein, m is also a variable to be optimized. At first, however, let us fix m. Since
q + s < 1, one has s < r .
Let now y; = x;/n and

rn = exp(-p), sn = exp(-a) (4)

such that a > p.
Then (3) may be rewritten as

The set of feasible solutions is now the (open) m-dimensional standa.rd simplex.

For abl)revia.tion, let us define

Because of the differentiability of the objective function h(p, y) + 1 - h(a, y) in (F j) , a
necessary condition for a point y in the set of feasible solutions (the open simples) to be
an optinia.1 solution is stntionarity, i.e.,

with 1 = (1 , l) t and an appropriate Lagrange multiplier 11 E R.
From ('i), with

~ P (Y) = (~ ~ P (P Y) - I) - '

one obtains

~ ~ l . (~ : Y) ~ p (~ i) - a h (a , y) g , (y ;) = / ~ (i = l , . . . , m)

Thus

g p (~ i) = ~ l g a (y i) + ~ 2 (i = l , . . . ,m .)

with constants cl, c2 independent of i.

It is possible to show the following property:

Lemma 3.1. The equation

~ P (Y) = c 1 9 0 (y) + c2

has at most two solutions i n y > 0.

Proof. With u = e x p (a y) (u > 1) and a = p / a (0 < a < I) , equation (1 0) reads

The right hand side of (1 1) is linear. We show that ~ (u) = (u - l) / (u o - 1) is strictly
concave for u > 1 ; hence the assertion follows, since a strictly concave function cannot
have more than two intersection points with a linear one.
One cornputes

4" '~) = f1(u) f2(u)

with
f l (~) = a ~ a - 2 (~ a - > 0,

and
f 2 (U) = (a - 1)uO1+l - (a + l) ua + (a + 1) u - (a - 1) .

Furthermore, it is easily verified that f : (u) < 0 for all u > 1 . Because of f 2 (l .) = f ; (l) = 0 ,
also f2(21) < 0 for all u > 1 . Therefore ~ " (u) < 0 (u > 1).

Lemma 3.1 allows a drastic reduction of the set of possible optimal solutions of (5)
From (9) , we immediately obtain:

Proposition 3.1.To each optimal solution y* = (Y ; , . . . Y ;) of (5) there are two values
a , b, such that y: = a or yf = b (1 < - i 5 n) . In other words: the components yl? of an
optimal solvt io~l cannot assume more than two different values.

Let a , b be the different values assumed by the variables yf (a 2 b) . Furthermore, let
(L and 6 occur k tirnes and m - k times in y*, respectively; without loss of generality we
may assume y; = . . . - - - yc = a , y i+ l = . . . - Y , * = b. Then ka + (m - k)b = 1 . From
a > 11 follows b 5 l lm. Hence with X = bm, an optimal solution y* of (5) may be written

where 0 5 X 5 1.

Tlle representation (1 2) of the solution still contains three parameters m, k, X to be
opt,imized. 111 the next section it will be shown how this can be done numerically for
given q,s. Clearly, it would be desirable to obtain a closed formula for the optimal
solution of (5) . Because of the highly nonlinear (and even multi-extremal) character of
the optimization problem, this seems not achievable. Our numerical observations led to
the follo~ving conjecture, but we were not able to prove it:

Conjecture. In an optimal solution y* of (5) with an optimal value m = m*, all compo-
nents yf are equa.1. (I.e., X = 1 and k arbitrary in (1 2)) .

4 An approximation algorithm

An approximate solution of (2) can be found by the following algorithm.

For all m = 1, . . . , n :

(a) Compute an approximate solution for the continuous problem (5) with fixed m
by optimizing numerically the parameters k and X in (12). This yields variables

m) -("I = nyj(") > 0 (i = 1 , . . . , m) with ~ i j = n. xi

(b) Round the variables i j m) to integers xlm), in such a way that the condition xjm) =
n remains satisfied.

(c) Compute by (1) the objective function F(x(")) for x (~) = (xim), . . . , xim)).

Tlle final solution is x * = x (~) for that m which minimizes F'(x(")) (m = 1, . . . , n)

In the theory of integer programming it is well known that roundings of an optimal
solution of a continuous optimization problem need not produce an optimal solution of
the corresponding integer optimization problem ([I] , p. 715). So even i f , in step (a) above,
we find the exact solution dm), there is no guarantee that the final solution is optimal for
the original problem (2). Thus the algorithm above is only a heuristics, albeit a rather
good one, as will be seen in the next section.

Step (a) and (b) of the algorithm will now be specified in more detail:

(a) In principle all possible values k = 1, . . . , m have to be checked. (As far as we
observed, already k = 1 leads to the optimum in each case, but we have no proof
for that) . For fixed k (and m) , the optimal value X can be found as follows: With

- 1 [-exp(-$)]m-k = b(p,y*) , f (p , A) = [I - exp (- m k
where y* is defined by (l2) , the problem

E(A) = f (p , X) + 1 - f(a, A) -+ min

O < X < l

has to be solved. This can be done numerically by line search. For example, take
t + 1 equidistant search points X = 0, lit, 2/t, . . . , (t - I) , t , 1. It is not difficult t,o
see that the function .f(p, .) is Lipschitz-continuous with Lipschitz constant p; as a
consequence, F (.) is Lipschitz-continuous with Lipschitz constant

p + a = - log(^-s) . n = Ir'n

Now choose, for given r > 0, the integer t as t = [Ir'nlel. Then the objective func-
tion value F (X) obtained from the optimal search point X differs from the minimal
objective function value & A *) only by r or less, so (13) can be solved to any given
accuracy e.

(b) In the case where all components j.!m) lie in the same interval [j , j + 11, there is a

unique way to round the real numbers ilm) to integers xjm), such that x ! ~) = n
and xjm) 2 xi;;) (i = 1,. . . , m - I.).
Otherwise, there may be different possible ways to do the rounding. Since, according
to our experience gathered so far, an optimal value m always leads to a solution
$(m) with Z!m) = . . . - - j.p), it is not important how to treat the latter case: any

way of rounding may be chosen.

Clearly, application of a faster search method than equidistant search in step (a) of
the algorithm (for example binary search or Golden Section search) would be desirable.
Unfortunately, however, F (A) is not unimodular in all cases; hence local search methods
are insufficient. To see this, consider e. g. the case m = 5 , k = 1, p = 10 and a = 16.
Then, as Fig. 3 shows, there are two local minima.

-
Fig. 3. F(A) for m = 5, k = 1, p = 10 and a = 16 in the interval [O.S,l].

Since the determination of 1, as described above, requires O(n) time, the time required
by the whole procedure is of order O(n3). For n = 100, the computation took about one
minute on a PC 486.

5 Fast exact optimization by solution inprovement

As already mentioned, the algorithm described in section 4 may possibly stop with a
suboptimal solution. The aim of the present section is to develop a strategy of solution
improvement: If a "good" (but possibly not optimal) feasible solution x has been found,
we use information delivered by w = F(x) in order to find an optimal solution x* .

For this purpose. two estimations will be considered:

E~tim~ation 1:
Let x * = (r ; , . . . , zh) be optimal, and let w = F (x) be the value of the objective function
(1) for an arbitray feasible solution x . Then for each i = 1,. . . , m:

since the probability of a shorted failure caused by the i th series configuration is a lower
bound for the total failure probability.
By taking logarithms and observing that xt is an integer, we obtain

so k, is a lower bound for the number of components in each series configuration of an
optimal network.

Estimation 2:
With x* = (x;, . . . , xh) and k, as above, consider a PS-network x0 consisting of m series
configurations, each with exactly k, components (while the optimal network x* consists
of m series configurations with at least k, components). The open failure probability of
xO is (1 - r")", and obviously this is a lower bound for the open failure probability of
x* . Thus with w as above,

(1 - rkO)" 5 F(x*) < W. (16)

Again by taking logarithms, one finds

log w
o g - r k o l l = mO.

Thus we obtain lower hounds k, and m, for the "width" and the "height" of a,n optimal
network, respectively. Clearly, these bounds are the better, the nearer w = F (x) gets
to the optimal objective function value F (x *) . It is therefore important to start with a
sufficiently good feasible solution x .

By using the information on minimal width and height, the position of k, m, compo-
nents in an optimal network is already determined. The remaining 12 - k,m, components
may be arranged optimally by complete enumeration of partitions:

Example 5.1. Let n = 20 and q = s = 0.1. We start with the feasible solution
x = (4,4,3? 3 ,3 ,3) produced by the algorithm in section 4. One computes 10 = F(x) =
0.004S311, and hence k, = 3, m, = 5. So already 15 of the 20 components can he arranged
(cf. Fig. 4).

Fig. 4. Construction of an optimal network in Example 5.1, using the estimates
ko and mo.

The remaining 5 components have to be arranged by complete enumeration of parti-
tions:

For m = 5, each partition of n - kom = 5 into m = 5 or less parts has to be
a.dded to the partition (3, 3, 3, 3, 3), where addition is performed componentwise
(if necessary, fill up with zeros to the right hand side). This yields the partitions

(8, 3, 3, 3, 3),
(77 4, 3, 3, 31,
(6, 5, 3, 3, 3) (shown in Fig. 4.),
(6, 4, 4, 3, 3),
(5, 5, 4, 3, 3),
(5, 4, 4, 4, 3),
(4, 4, 4, 4, 4).

The failure probabilities of the corresponding networks have to be computed.

For m = 6, each partition of n - kom = 2 into m = 6 or less parts has to be added
to the partition (3, 3, 3, 3, 3, 3). This yields the partitions

(5, 3, 3, 3, 3, 31,
(4, 4, 3, 3, 3, 31,

Again, failure probabilities have to be computed.

m = 7 is not possibly anymore, since 3 . 7 = 21 > 20.

Among the 9 enumerated partitions, (4, 4, 3, 3, 3, 3) leads to minimal failure proba-
bility, so the initial solution is already optimal.

We give now a general description of the optimization algorithm:

(1) Compute an approximate solution x and w = F(x) by the algorithm of section 4.

(2) Compute the lower bounds k, and m, from (15) and (17).

(3) Find the optimum by complete enumeration of the partitions satisfying the bounds
determined by k, and m,.

In more detail, step (3) consists of the following procedure:

f o r m := m, t o Ln/k,J do
begin for all partitions u of n - k,m

if length (u) 5 m
then begin add u to the partition

(k, , . . . , k) (m parts), yielding partition r;
compute F(r) and store r if it is better than the
best previously found partition
end

end.

The partitions of n - k,m can be determined successively by the procedure next-partition
described in section 2.

Clearly, also the algorithm above may lead to high execution costs, if the number
n - k,m, of remaining components gets large. It turns out, however, that for "reasonable"
sizes of n , the integer n - k,m, remains comparatively small, especially if q and s are
small (which is a realistic assumption). In the case n = 100,q = 0.1 and s = 0.001, e.g.,
only n - k,m, = 8 of the 100 components have to be arranged by complete enumeration.

For n = 100, q = 0.1 and s = 0.1, the number of components to be arranged by
complete enumeration is 40. Fig. 5. shows a comparison of execution times required for
q = 0.1 and s = 0.1. The reader should notice that even in the case n = 100 the larger part
of the execution time is consumed by step (1) of the algorithm, i.e., the computation of an
approximate solution according to the algorithm of section 4. This algorithm: however,
has only the polynomial worst case behavior of O(n3).

Fig. 5. Execution times (in seconds) for q = 0.1 and s = 0.1.
I: Complete enumeration (section 2); 11: approximation algorithm (section 4);

111: approximation plus solution improvement (section 5).

Interestingly enough, we never encountered a case where the solution determined by
the algorithm of section 4 turned out to be suboptimal. Thus, the above-described so-
lution improvement procedure only served as a verification of optimality. For practical
applications where near-to-optimal solutions are also acceptable, this verification may be
dropped at all. Then even very large network sizes can be treated.

Fig. 6. shows optimal values of m for n = 20 and different failure probabilities q, s.
If the optimal m for some n, q, s is known, an optimal or near-to-optimal PS-network can
be construced in the following way (cf. the conjecture in section 3 and the observation
above) :

Build up m series configurations, each with [nlm] components.

To n - [nlm] . m of the m series configurations, add an additional component.

These solutions are slight modifications of arrays (cf. section I).

Page and Perry [5] observed that series-parallel networks that are optimal (among
series-parallel networks) for any q, s, also occur as optimal networks in an arbitrary small
neighborhood of (q, s) = (0,O). In our own experiments, we observed an analogous prop-
erty for the class of PS-networks: No value m "dies out" as a possible optimal network
height as (q, s) tends to the origin. In view of this, there is little hope that the case of
very small q and s might lead, via asymptotic considerations, to closed-form solutions;
applica.tion of a.n optimization algorithm seems to be indispensible also for this case.

Fig. 6. Optimal network height m for n = 20 and different values q, s.

6 Conclusions

We have presented a reliability optimization algorithm for 2-stage (PS- or SP-) series-
parallel networks with a given number n of components that may experience open-mode
or shorted-mode failures. The algorithm consists of two parts: a heuristics, based on the
continuous analogue of the optimization problem, and a solution-improving mechanism
finding with certainty an optimal solution. In all cases observed by us, already the heuris-
tics yielded an optimal solution which was then confirmed by the solution-improving

mechanism. The described algorithm is fast enough to deal with all network sizes of
practical interest.

All detected optimal PS-networks are of "array-like" type: They consist of series con-
figurations linked in parallel where the numbers of components in the series configurations
differed at most by one.

Some future work needs to the done: The obvious next step should be to remove the
restriction to 2-stage networks and consider multi-stage networks instead. Page and Perry
have addressed this situation in their stimulating article [5], but their strategy of complete
enumeration only works for small n. One could possibly apply well-known techniques of
global combinatorial optimization, such as taboo search or simulated annealing, to this
problem. Initial solutions, as they are required by such techniques, could be obtained
by restriction to the 2-stage case and application of the above presented algorithm: It
was remarked in [5] that not in all, but in several cases the optimal solutions even of the
multi-stage problem were arrays.

Acknowledgment

We are indebted to V. Zaslavskii for drawing our attention to the problem investigated
here.

References

[l] F.S. Hillier, G.J. Liebermann, Introduction to Operations Research, Holden-Day (1980).

[2] N.G. De Bruijn, "Denumerations of rooted trees and multisets", Discrete Applied Math.,
6, 1983, pp. 25-33.

[3] B.W. Jenny, D.J. Sherwin, "Open and short circuit reliability of systems of identical items",
IEEE Trans. Reliability, Vol. R-35, 1986, pp. 532-538.

[4] A. Nijenhuis, H.S. Wilf, Combinatorial Algorithms, Academic Press (1975).

[5] L.B. Page, J.E. Perry, "Optimal 'series-parallel' networks of 3-state devices", IEEE Trans.
Reliability, Vol. R-37, 1988, pp. 388-394.

[6] J. Riordan, An Introduction to Combinatorial Analysis, Wiley (1958).

[7] V. Volkovich, A. Voloshin, V. Zaslavskii, I. Ushalov, Models and Techniques for Optimiza-
tion of Reliability of Complex Systems, Naukovo Dumko (1993) (in Russian).

[8] V.A. Zaslavskii, O.V. Franchuk, "Optimal reservation of a complex system by two types
of failure state elements", in: Vestnik K.G.U., Modeling and Optimization of Complex
Systems, No. 8, pp. 64-68 (1989) (in Russian).

