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Abstract 

A parallel algorithm based on Jacobi iterations is proposed to minimize the aug- 
mented Lagrangian functions of the multiplier method for large-scale linear program- 
ming. Sparsity is efficiently exploited for determining stepsizes (column-wise) for the 
Jacobi iterations. Linear convergence is shown with convergence ratio depending on 
sparsity but not on the penalty parameter and on problem size. Employing simula- 
tion of parallel computations, an experimental code is tested extensively on 68 Netlib 
problems. Results are compared with the simplex method, an interior point algorithm 
and a Gauss-Seidel approach. We observe that speedup against the simplex method 
generally increases with the problem size, while the parallel solution times increase 
slowly, if at all. Our preliminary results compared with the other two methods are 
highly encouraging as well. 

Keywords: Large-Scale Linear Programming, Augmented Lagrangians, Parallel Com- 
puting, Partial Equilibrium. 



1. Introduction 

The main objective of this paper is to develop a parallel procedure for solving the 
standard linear programming problem 

T minc x 

where x E Rn is the vector of decision variables, c, 1 and u are some vectors in Rn,  
b E Rm and A is an m x n matrix. We think of A as a large-scale and sparse matrix, 
which does not necessarily possess other structural properties. To begin, we shall 
consider the multiplier method [12, 221 for solving (1 .I). Using Jacobi-type iterations 
(aimed at parallel computing), we develop a simple solution algorithm for augmented 
Lagrangian subproblems. It combines and develops the ideas of our earlier theoretical 
results reported in [24] and of the tatonnement procedure of [14] based on Gauss-Seidel 
iterations. 

After some preliminary concepts and results we discuss weak convergence of Jacobi 
iterations in Section 4. We introduce a safe stepsize for the iterations to ensure conver- 
gence. Sparsity will be efficiently exploited for determining such stepsizes separately 
for each column and for each iteration. We indicate experimentally that such stepsizes 
indeed are reasonably large. In Section 5, convergence at a linear rate is shown with 
convergence ratio depending on sparsity. It is interesting to note, however, that the 
size of the problem and the penalty parameter do not appear in the rate of convergence 
estimates. Both for the safe stepsize and for the rate of convergence much stronger 
results are presented for linear programs as compared with more general results for 
convex programming developed in [24]. 

The code of [14] for Gauss-Seidel iterations was revised for Jacobi iterations result- 
ing in an experimental code called Jacobi. This implementation is described in Section 
6. Particular attention is paid to the definition of primal and dual tolerances, as well 
as to the penalty parameters: dual tolerances are defined by column, and primal tol- 
erances as well as the penalty parameters are defined by row. Each one of them is 
recalculated in each iteration. For these reasons, scaling of (1.1) appears irrelevant for 
the code: Jacobi is practically invariant to scaling. 

Extensive computational tests on 68 Netlib [19] problems are reported in Section 
7. We simulate parallel computations on an HP9000/720 serial computer. In such 
simulations, the communication time for parallel processors is omitted while estimating 
the parallel run times based on serial run times. 

First, a basic version of Jacobi is tested against the simplex method employing 
Minos 5.1 [18]. We observe that speedup against the simplex method generally increases 
with the problem size, while the parallel solution time increases only moderately. Three 
additional test runs are reported on larger problems than those above. For these 
problems with 5 to 16 thousand rows, the parallel run time appeared to be about the 
same or smaller than the average for the 68 smaller problems. However, the run time 
is sensitive to the precision requirement: decreasing the tolerances by a factor of ten 



increases the average parallel run time for the 68 Netlib problems from 0.18 sec to 0.85 
sec. 

Variants of Jacobi are tested in Section 7.2. We consider the safe stepsize against a 
constant stepsize, as well as possible line search procedures for accelerating the Jacobi 
iterations. Sensitivity testing with respect to the program parameters is reported in 
Section 7.3. 

Finally in Section 7.4, a comparison of Jacobi is presented against serial algorithms 
based on Gauss-Seidel iterations (see 1141) and on an interior point algorithm [I]. In 
applications where extreme precision is not required for the solution, e.g. for economic 
models, our preliminary results compared with the simplex method, Gauss-Seidel and 
interior point methods are highly encouraging. 

2. Preliminaries 

The use of the duality theory for solving linear programs is almost as old as the theory 
of linear programming itself (see [5] and the references therein). Nowadays, the most 
efficient linear programming algorithms, both simplex-like and interior-point methods, 
heavily exploit duality. Duality is also the main theoretical foundation of decomposi- 
tion approaches to large structured problems, like, e.g., the decomposition principle of 
Dantzig and Wolfe [6]. The aim of this paper is to use duality in a nonstandard way 
to develop a parallel computational method for (1.1) under the assumption that the 
constraint matrix A is sparse but does not necessarily possess any additional structural 
properties. 

Let us recall that the (ordinary) Lagrangian for (1.1) can be defined as 

L(x, n) = cTx + nT(b - Ax), 

where n E Rm is the vector of multipliers associated with the equality constraint 
Ax = b. The Lagrangian can be used to define the dual function 

i ( n )  = inf L(x, n )  = bTa + i j ( n )  l < x L u  
j=1 

with 
T Lj(n) = inf (cj - n Aj)xj, 

',<x, Lu, 

where Aj denotes the j t h  column of A. 
The dual problem associated with (1.1) is formulated as 

max i (n)  . 
nERm 

Much is known about problem (2.3) and its relation to (1.1). For our purposes the 
most important facts are that i is a concave piecewise linear function (which is readily 
seen from (2.2)) and that the following duality theorem holds. 

Proposition 1. Assume that (1.1) has an optimal solution. Then (2.3) has an optimal 
solution and 



(a)  for every optimal solution i of (1.1) and every optimal solution i? of (2.3) 

cT i  = L(i?); 

(b) for every optimal solution i? of (2.3) a point 15 i 5 u is an  optimal solution of 
(1.1) if and only if 

T ( c  - % A )  - min (cj - - . i rT~j)xj ,  j = 1 , .  . . , n 
- l J < x J < u J  

However, two main difficulties impede the straightforward application of the La- 
grangian duality in linear programming. First, the dual (2.3) is a nonsmooth optimiza- 
tion problem with a concave piecewise-linear objective. Since we are still in the class 
of linear programming problems, it cannot be substantially easier than the solution 
of (1.1), unless the problem has a special structure. Secondly, not every point x de- 
fined by (2.4) satisfies (2.5); auxiliary procedures are necessary to identify the primal 
solution. There are many ways of overcoming these difficulties. One is to generate a 
sequence of primal-dual pairs in such a way that it always satisfies one of conditions 
(2.4)-(2.5) and successively decreases the violation of the other. Another possibility, 
that we are going to follow here, is to embed the original linear programming problem 
into a family of nonlinear problems which have some desirable properties of the dual 
function and of the set of Lagrangian minimizers. As an example of such an approach 
may serve the primal-dual logarithmic barrier method in which Lagrangian minimizers 
are unique and the system of primal and dual feasibility conditions can be solved by 
Newton's method. 

We are going to base our work on yet another idea, namely on the augmented 
Lagrangian duality. The augmented Lagrangian for (1.1) can be defined as follows: 

where p  is a positive penalty parameter. Similarly to (2.1)-(2.3) we can introduce the 
regularized dual function 

A(n) = inf A(x, x), 
l < x < u  

the set of minimizers 

and the regularized dual problem 

max A(a). 
7r€Rm 

Referring to [25], we note that problem (2.7) is equivalent to a partial equilibrium 
problem, where rows of A refer to commodities and quantity units for these commodities 
are chosen so that the slope of each one of the (linear) price functions is - p .  In fact, 
our earlier work [14] originated from a Gauss-Seidel approach to a partial equilibrium 
model for the world forest sector [13]. 

For the augmented Lagrangian we can state a theorem similar to Proposition 1 (see, 

e-€5, [23, 21). 



Proposition 2. Assume that (1.1) has an optimalsolution. Then (2.9) has an optimal 
solution and 

(a) for every optimal solution i of (1.1) and every optimal solution 7i of (2.9) 

(b) for every optimal solution ii of (2.9) a point 1 5 i 5 u is an optimal solution of 
(1 . I )  if and only if 

A(?, ii) = min A(x, +). 
l < x < u  

(2.10) 

Let A j  denote the j t h  column of A. We define for j = 1, . . . , n the functions 

Then (2.10) can be rewritten component-wise as 

- - 
A i n )  = min Aj(xj, il n )  

'I 5x1 5% 

which corresponds to (2.4). It is worth stressing that condition (2.5) is not needed 
now; it is implied by the optimality of ii and (2.10). This is an important advantage of 
the augmented Lagrangian approach over the standard duality, because our ultimate 
objective is to develop a parallel method in which individual  component,^ of the solution 
vector could be calculated separately. It is, therefore, crucial for us to avoid additional 
conditions of form (2.5) which inevitably lead to some centralized procedures. 

The other advantage is that the dual function (2.7) has much nicer properties. It 
is concave, piecewise-quadratic and smooth. This allows the application to the dual 
problem (2.9) of the following steepest ascent method. 

Method of Multipliers 

Step 1 For fixed multipliers nk  find a solution xk of the problem 

min A(x, nk). 
l<x<u 

Step 2 If Axk = b then stop; otherwise set 

with some y E (0,2), increase k by one and go to Step 1. 

The following is the fundamental property of the method of multipliers (see [21, 21). 

Proposition 3. If problem (1.1) has an optimal solution then the method of multipliers 
with y = 1 stops after finitely many iterations at an optimal solution 7i of the dual 
problem (2.9). 



It follows from Proposition 2 that the primal solution calculated at Step 1 of the 
method of multipliers is an optimal solution of the primal problem (1.1). For recent 
references on the application of the method of multipliers to linear programming see 

[3, 111. 
Let us note that we could have easily considered a more general version of the 

method of multipliers having different penalty coefficients for different rows. This is 
theoretically equivalent to re-scaling the constraints. Obviously, (2.13) can be then re- 
scaled accordingly. We shall not consider this version in our theoretical considerations, 
because it would complicate the notation without any influence on the structure of 
results, but we shall have scaling in the implementation. 

There are two main disadvantages of the method of multipliers: first, Step 1 re- 
quires a solution of a quadratic programming problem and, secondly, the augmented 
Lagrangian does not possess the separability properties of the ordinary Lagrangian. 
There are many approaches to reformulate some specially structured problems in order 
to obtain some separability properties of the augmented Lagrangian and decompose 
Step 1 of the multiplier method. We can mention here the alternating direction methods 
[8, 9, 101 and the separable approximation developed by Stephanopoulos and Wester- 
berg [26] and used in [27, 41. The reader is referred to [3] for an extensive discussion 
of the subject and multiple examples. 

In the next section we shall present a Jacobi-type method for the problem of mini- 
mizing the augmented Lagrangian (2.6) at Step 1 of the multiplier method. It is close 
in spirit to the earlier ideas of [26, 27, 41. Next, adapting the theory developed in [24] 
we shall show that convergence properties of the method, in particular the speed of 
convergence, heavily depend on sparsity properties of the matrix A in (1.1). 

3. Outline of the method 
The main idea of our approach is to carry out under-relaxed nonlinear Jacobi iterations 
for problem (2.12). If we select the j t h  variable and assume that all other variables 
x,, s # j are fixed at some values x$', the best value of x j  can be found from the 
problem 

This can be deciphered as 

with A j  defined by (2.11). The regularized Jacobi method can now be stated in detail 
as follows. 

The Regularized Jacobi Method 

Initialization. Set xk10 = xk-I and v = 0. 

Dual Phase. Calculate the current primal error yklU and current prices p k t u  by 



Pr ima l  Phase.  Calculate the reduced cost 

Solve for j = 1 , .  . . , n subproblems (3.1) getting optimal solutions 

where [.I;" denotes the projection on the interval [1,u]. Next, for j = 1 , .  . . ,n 
update the primal variables by 

where <'" E (0,1], j = 1 , .  . . , n are some under-relaxation parameters. 

S topp ing Test. If tk~" # xkf" then increase v by one and go to Dual Phase; otherwise, 
if y k 9 v  # 0, then set 

xk+l = ypk7" + (1 - y)x , k 
(3.7) 

xk = xk7", increase k by one and go to Initialization; otherwise stop. 

It is a matter of elementary calculation to show that (3.2)-(3.5) indeed produce a 
solution to (3.1). 

The nonlinear Jacobi method has a long history (see [3] for an extensive discussion 
of this issue). There are also some works in which it was suggested for minimizing 
the augmented Lagrangian in a decomposed way. We should mention here the pi- 
oneering work of Stephanopoulos and Westerberg [26] (where the results are mostly 
experimental) and the further works [4, 27, 281. 

In general, the Jacobi method has been regarded as slow because available theoret- 
ical results (see, e.g., [27]) imply very small values of the under-relaxation parameter 
(corresponding to  j's in (3.6)) to ensure convergence. However, the analysis in [24] 
shows that for some classes of problems the under-relaxation parameters in the Jacobi 
method can be relatively large and the speed of convergence quite high. It turns out 
that performance of the method depends heavily on the sparsity of the constraints. 
Application to stochastic programming [17] provided a practical evidence for it. 

In our case the entire Jacobi method could be boiled down to a series of very 
simple algebraic operations. This utmost simplicity and good theoretical properties 
(to be shown in the next sections) provide a solid basis for an efficient implementation, 
especially in parallel computing environments. 

4. Weak convergence 

Before proceeding to the convergence analysis let us introduce some measures of spar- 
sity of the constraint matrix A. Let Mi denote the number of nonzeros in the ith row 



of A, i = 1, .  . . , m .  We define for each column Aj of A, j = 1 , .  . . , n ,  the average 
rowcount 

In other words, Nj is the weighted average of the number of nonzeros, where the weights 
are squared column entries. Clearly, there is a simple upper bound on Nj: 

Nj 5 max{Mi : a,j # 0), 

which is invariant with respect to scaling of A. We assume that all singleton rows (rows 
with M, = 1) are removed from A in preprocessing, so that Nj 2 2. 

We shall show that the Nj's have a direct influence on convergence properties of 
the method. 

Our convergence analysis will use the following algebraic property of sparse matri- 
ces. 

Lemma 1. Let A be an m x n matrix and let Nj, j = 1, .  . . , n  be defined by (4.1). 
Then for every d E Rn and every h E Rn 

Proof. Expansion into single entries yields 

where V(i, j) is the set of such s that a;ja,, + 0. Applying Schwarz inequality to the 
right side of the above equation and noting that s E V(i, j) if and only if j E V(i, s )  
we get 

where in the last relation we used the fact that V(i, j) has Mi elements. The required 
result follows now from the definition of the Nj's. 

Before stating our first convergence theorem, let us note that (3.5) can be equiva- 
lently expressed as 

k,v k v k,v ( I+  = rj - cj> dj , 3 



where d:'" is the unconstrained step given by 

and cl' is the largest coefficient in [0, 11 for which (tl" remains in [Ij, uj]. 

Theorem 1. If the under-relaxation coefficients i:'" E (0,1] in (3.6) satisfy the in- 
equalities 

k ,v  2 0 < T ~  < --- , j = 1 ,..., n, 
d . "  N, (4.4) 

where Nj is given by (4.1) (and there is no subsequence of { ~ f " } ~ = ~  convergent to any 
of the bounds), then 

k v k ,v  (a) for all j = 1 , .  . . , n  we have limv-OO((j' - xj ) = 0, 

(6) each accumulation point of the sequence { x ~ ~ " } ~  is a solution of (2.12). 
v=o 

Proof. Let us denote 

In this part of the proof, for clarity, we shall omit the superscripts k and v. By a 
straightforward calculation, with the use of (3.2)-(3.4), 

1 
A + ( - x k )  - ( x k )  = T ~ T ( [  - X )  + 2 p A ~ ( (  - x)IJ2. 

Using Lemma 1 with d = h = T(( - x) we obtain the inequality 

A(x + T(( - x),  rk) - A(x , rk )  5 

Using (4.2) and (4.3) in (4.5) we see that for v = 0,1,2,.  . . (with the full notation 
again) 

00 

Thus for ij 's satisfying (4.4) the sequence {A(xkvv, rk)}vFo is decreasing and convergent, 
hence the left side of (4.6) converges to zero. The right side is non-positive, so it 
converges to zero, too, and assertion (a) is true. 



By the definition of f t t U ,  

Let xk be the limit point of {fk.y)m . Passing to the limit in the last equation (over 
v = o  

a convergent subsequence) we get 

Therefore xk is a solution of (2.12). 

Remark. It is clear from our earlier considerations that we can further broaden the 
bounds (4.4) by defining N j  dynamically in the following way. At first, we determine 
the set of variables that will not change their values at the current iteration (which 
have gtY = x ~ " ) .  Then, in calculating Nj  by (4.1) we can decrease the counts M, by 
ignoring the columns that correspond to the variables which remain unchanged at  this 
iteration. 

5.  Speed of convergence and strong convergence 

We shall now show that the speed of convergence of the Regularized Jacobi Method 
for solving (2.7) is linear. We shall suppress superscripts k of successive augmented 
Lagrangians. For the stepsize parameters r:" and (F'" we suppress the iteration counter 
v as well. 

To begin, we develop expressions for the reduced cost and for the optimality gap. 
Note that the optimal reduced cost i. is unique over i E ~ ( a ) .  It  is given by 

where 
q 2 0, qT(3 - 1 )  = 0, 

Taking any 3 E i (~)  and employing (5.1), the reduced cost F for xu is 

For the optimality gap we obtain by direct calculation 



L e m m a  2. If the sequence A,, v = 1,2, ..., converges to zero, then there exists 8 such 
that, for all v 2 8 ,  there is iu E k ( a )  with the property 3; = x;, for all j such that 
X V  = 1 .  O f  X V  Uj. 3 3  3 

Proof .  Let JL and JU be disjoint subsets of (1, . . . , n}. Let us pick any i* E ~ ( a ) .  
Let r(&, Ju) = minr<,<,(p/2) - - 1 1  A(x - i*) 1 1 '  +ijT(x - 1 )  + tT (u  - x)  subject to 

= 1 .  ,, j E JL,xt = U j ,  j E JU. If E ( ~ L ,  JU) = 0, there is i E ~ ( a )  with ij = lj, j E 

JL,  iij = uj, j E Ju.  Let E be the smallest positive e(JL, &) over all possible sets JL 
and &. By assumption, there exists fi such that A, < E, for all v 2 f i ,  and hence the 
proof is complete. 

T h e o r e m  2. Let Nj be defined by (4.1) and Cj by (4.2), for all j .  Let p E (0,2) be a 
constant and define for j = 1,2, .  . . 

~j = min (1, p/(Cj Nj)) . 

Then the Regularized Jacobi Method converges linearly: 

with the convergence ratio q such that 

where X is the smallest nonzero eigenvalue of all matrices BBT, such that B is obtained 
by taking a nonempty subset of columns of A, 

8 = max { N ~ I I A ~ ~ ~ ~ }  
1<j<n 

and 
p* = min (p, 1 - p /a )  , 

with cr E (p, 2) chosen in such a way that 

Proof.Let JL and Ju be the sets of indices j with ijj > 0 and & > 0, respectively. By 
theorem 1, A, + 0, so that by (5.3) A(xu - i) + 0, ijT(xu - I )  + 0 and tT(u - xu)  + 0. 
Therefore, C + ij - ( in (5.2), x; + lj, for all j E JL,  xr + uj, for all j E Ju.  Therefore 
there exists fi such that, for all v 2 fi and j E JL U JU,  (employing (3.4), (4.2) and 
(4.4)), ~j is given as 

-Cj 
~j = min [ 1, - = min [17 6 max (I ' p l lA j l12( i j  - x;) )] = 1. 



Note that ~j = 1 implies that the componenent x j  ends up on its bound. Thus, for all 
u 2 fi, xy = i j ,  for all j E J L U  Ju. 

From now on we consider the tail of iterations v > fi, with f i large enough so that 
the property of lemma 2 holds as well. In particular, let as study the iteration from xu 
to xu+'. 

We define the sets of "basic" and "nonbasic" variables as follows. We choose some 
cr E (p, 2) (the exact value of cr will be specified later) and define 

Let us note that in this way we include into JB all variables that do not hit a bound 
at  the current iteration. Additionally, we include some variables which hit a bound, 
provided that the projection in (3.5) did not decrease the steplength too much. Next, 
JN is the set of all other indices j ;  i.e., for j E JN we have ~j = 1 and Cj < (1-p/cr)/Nj. 

Observe that .rjCj = p/Nj,  if ~j < 1, and .rjCj 5 p/Nj, otherwise. Therefore, with 
p* given by (5.6), we obtain 

If JB is empty, then by lemma 2, the process stops, and there is nothing to prove. 
Otherwise, denote XB = (xj) jEjB, X N  = (xj)jE j,, B = (Aj)jEjB and N = (Aj)jE j,. 
Let TB, (B and SB be diagonal matrices with entries ~ j ,  Cj and IIAj((, for j E JB, 
respectively. Similarly for JN we define diagonal matrices TN, CN and SN. 

By lemma 2 we can choose i E X ( T )  so that ij = xy", for all j such that xyfl = l j 
or xy" = wj. By (5.2), (3.5), (4.2) and (4.4), because (j = 0 for j E JL U Ju, we have 
for all j, by (5.2), 

6% = C , ~ A T A ( X ~  - i.), 

whence 

Since x;" = j N ,  (5.10) implies 

- - T  
B(X?' - i ~ )  = B(x1;j - iB) - BB (B ,  N)(x" - i) (5.1 1) 

and 

0 = N(5; - iN) - N N T ( ~ ,  N ) ( X ~  - j.), (5.12) 

where 

Let us define the matrix 
E = (I - NNT). 



From (5.12) we obtain 

Let us now make an important observation that explains our definitions of JB and JN. 
By lemma 1 and (5.9) for every u we have 

Therefore all eigenvalues of N ~ N  are in [O,1 - p/cr]. The nonzero eigenvalues of N ~ N  
and N N ~  are the same. Hence, the eigenvalues of E are in [plcr, l].Consequently, E 
is nonsingular. Denote the maximum eigenvalue of E by XE. 

The optimality gap in (5.3) simplifies into 

P 
AV = 211eV1121 (5.15) 

where eV = A(xV - i) is the primal feasibility error. By (5.13) we have 

with 
u = s ~ T ~ ' / ~ [ ~ ~ / ~ ( x ;  - PB). 

Summing equations (5.11) and (5.12) and using (5.16) we get 

Therefore, by (5.15), (5.16) and (5.17), with Q = E - ~ J ~ B ,  we obtain 

where parameters At  refer to all nonzero eigenvalues of QQT. Let X B  denote the largest 
eigenvalue of B B ~ ,  and recall that the smallest eigenvalue of E is at least p l a .  Then 
At  5 aXB/p, for all t .  Similarly to (5.14), lemma 1 with (5.8) yield XB 5 p. Therefore, 
At 5 a. Hence, by (5.18) and because XE 5 1 

2 
5 max [(I - a)', X; (1 - A?) ] . 

AV 

with Aqm'" = mint At. 
Let AT and A? denote the smallest positive eigenvalue of B B ~  and BBT, re- 

spectively. Then A$" > AF"/XE. Consequently, 



With p* and 8 given by (5.6), employing (5.8) we have 

In summary, X E  E [p, 11 and A$" E [p*A/B, p]. Therefore by (5.20), 

We shall now show that a solution a* to (5.7) exists such that a* E (p, 2). Indeed, at 
a = p the left hand side of (5.7) is positive and the right hand side equals 0, while at 
a = 2 we have the converse relation. For a = a* both cases at the right side of (5.23) 
are equal and we get the desired expression for the ratio q. The proof is complete. 

Let us note that if the columns of A are normalized, the parameter 0 in (5.5) equals 
just maxj Nj, while X can be interpreted as the inverse of a generalized condition index 
of A. 

We are now ready to prove strong convergence of the Regularized Jacobi Method. 

Theorem 3. Adopt definitions of theorem 2. Then the sequence { x u }  is convergent to 
a solution P E X ( K )  and there is a constant C such that 

where q E ( 0 , l )  is defined by (5.5) .  

Proof. Let fi be defined as in the proof of theorem 2. For v > fi from (5.10) and 
(5.15) we obtain 

Then by (5.4) 
llxU+l - xUll < c ~ ~ ~ / ~  

with some constant C1.  It follows that { x u }  is a Cauchy sequence and the distance to 
its limit i can be estimated as 

By theorem 1, the limit is in ~ ( a ) .  The proof is complete. 

Strong convergence of nonlinear Jacobi iterations has been earlier proved in [ ~ C I ] ,  
but with small stepsizes (of order l l n ) .  Our analysis provides more practical stepsize 
bounds and rate of convergence estimates relating them to the numbers of nonzeros in 
rows, which are for large problems orders of magnitude smaller than n. 



6. Implement at ion 

An experimental computer code has been developed on the basis of the theoretical 
results presented in this paper and an earlier Gauss-Seidel code of [14]. The initial 
experiments have immediately shown that scaling is crucial to  make the method work in 
practice. It has also proved inefficient to carry out primal iterations until the optimality 
of each one of the augmented Lagrangian problems is obtained. In fact, our experiments 
indicate (see the following section), that just one primal iteration after each dual update 
is justified, given that steps for updating the dual multipliers are suitably under-relaxed. 

We consider alternative definitions for stepsize in updating the primal variables. In 
particular, a constant stepsize is compared against a safe stepsize ~j defined by (4.4). 
We also experiment with versions, where the primal steps defined by the former two 
variants are used only for determining a search direction, and updating primal variables 
is based on line search optimization in that direction. For line search, two alternatives 
are tested: first, unconstrained line search followed by under-relaxation and projection 
(to meet the bounds on primal variables), and constrained line-search optimization. 
Experience with all such variants will be discussed in the following section. 

We shall call our implementation Jacobi. An iteration in Jacobi consists of a dual 
phase, a primal phase and, depending on the variant, possibly of a line search (along 
the direction specified in the primal phase). It should be stressed that all phases of 
the method have a great potential for parallelization. The dual phase can be carried 
out simultaneously for all rows. Revised prices are then submitted to processors of 
the primal phase. After the dual phase is completed for all rows, all primal variables 
can be processed in parallel. The line search can be done in parallel as well. The line 
search stepsize can be shared by primal processors to update primal variables, and 
these values can be subsequently sent to dual processors. The dual phase starts after 
all primal variables have been updated. Let us note that sparsity can be exploited in 
communication as well. The iterations end when optimality conditions are met within 
specified tolerances, or if an iterations limit is met. 

It was pointed out that scaling is crucial for an efficient performance of the algo- 
rithm. However, any scaling on the top of the one employed in our implementation 
is unnesessary, because (excluding the minimum tolerance parameter to be introduced 
shortly), our approach is independent of scaling. This means that unless the minimum 
tolerance becomes active, the iterations in our algorithm produce the same sequence 
of solutions for all problems that are obtained by scaling primal and dual variables. 

We shall discuss each one of the three components of Jacobi in more detail shortly. 
However, we begin with feasibility tolerances, penalty parameters and data structure 
employed in Jacobi. 

Feasibility tolerances 

A positive dual tolerance vector 6 = (6j) E Rn depending on the current solution 
will be applied while checking dual feasibility and complementarity: a reduced cost 
E j  vanishes, if it is equal to zero within tolerance 6,. Similarly, a positive primal 
tolerance vector c = (6;) E Rm depending on the current solution is employed to test 



primal feasibility. Tolerances 6 and t are defined for each iteration as follows. First, a 
reference primal vector Q = (Q;) E Rm and a reference dual vector V = (V,) E Rn are 
defined so that 

where xj and p; denote primal and dual solutions at  the beginning of the current 
iteration. We then define auxiliary tolerance vectors 6' and t' equal to  a fraction of 
reference vectors V and Q,  respectively: 

6 '=  q5V and t' = q5Q, 

where 4 is a relative tolerance. Let a be a minimum tolerance (both for primal and 
dual) and denote by 6- and t- the tolerances at  the beginning of the iteration. For the 
first iteration, such initial values of all primal and dual tolerances are set to  a. Finally, 
the updated tolerances 6 and t for the current iteration are computed as 

where cr is an exponential smoothing parameter. Its purpose is to  prevent erratic 
behavior of tolerances over the iterations. 

Penalty Parameters and Scaling 

We shall denote by D; the penalty parameter associated with row i.  Let D be the 
diagonal matrix with diagonal elements D;. Given a primal tolerance vector t > 0, one 
might at tempt to  solve the LP problem by introducing large values for D; and solving 
the augmented Lagrangian problem for some T. If the resulting optimum price vector 
is p, then the primal error y = D-'(p - T) tends to  meet the tolerance t .  However, 
large penalty parameters imply very small primal steps. Therefore, this approach is 
extremely inefficient. 

In order to  cure this handicap, several approaches may be considered. First, fol- 
lowing [ 7 ] ,  one might solve a sequence of equilibrium problems gradually enlarging the 
penalty parameters until primal tolerance is met. This approach suffers from serious 
inefficiency as well. Second, following [12] and [22], we may solve a sequence of aug- 
mented Lagrangian problems with maintaining the penalty parameters unchanged, but 
shifting the dual multipliers T; from one problem to  another: if a t  the optimum of an 
augmented Lagrangian primal feasibility is violated, for some i ,  then for the subsequent 
problem we increase T; by y; y; D, (cf. (2.13)), where y; is an under-relaxation parameter 
and y; is the primal infeasibility. Based on our experience, this approach performs well 
provided that one learns at  first how to  choose the penalty parameters. Again, there is 
a risk that if parameters D; are too large we end up with small inefficient steps. On the 



other hand, if these elements are too small and optimization of augmented Lagrangians 
is not carried to the end, then the sequence of solutions generated in the course of the 
iterations does not necessarily converge. 

We shall apply our earlier approach of [14] and factorize D; into pS;. Here a 
serves as a scaling factor for row i and the penalty factor p is the penalty parameter 
in (2.6) (applied to the problem with rows scaled by a ) .  Again, let 6j and 6; be the 
dual and primal tolerances. The penalty parameter is then defined following [14] : 

where operator Ej refers to an average over j, for a;j nonzero. Initially we experimented 
with Ej being an arithmetic mean. However, a geometric mean proved to result in a 
more robust implementation. Finally we ended up with a harmonic mean, which is 
cheaper to compute and provides a similar robustness as the geometric mean. 

Along with the tolerances, also the penalty parameters will be updated in the course 
of the iterations. We shall first apply (6.1) for obtaining auxiliary penalty parameters. 
The penalty parameters employed in Jacobi are then obtained via exponential smooth- 
ing over iterations. Again, we employ the weight o for the auxiliary parameter and 
1 - o for the parameter employed in the preceding iteration. For the first iteration 
such initial values are set equal to zero. 

The Data Structure 

The data in A and c are stored columnwise accounting for sparsity. For the purpose 
of dual updates, the locations of nonzero elements of A and c are stored row-wise as 
well. Bounds 1 and u are stored as dense vectors. Vector b is stored in bounds for the 
logical variables. 

Dual Phase 

To begin the first iteration, we set all dual multipliers x; to zero. The dual update 
of Jacobi consists of the following steps for each row i. 

1. Update the penalty parameters, primal tolerances and dual tolerances of the 
logical (slack) variables, and compute the primal infeasibility (3.2). 

2. Optimality test is carried out for primal feasibility, and for dual feasibility and 
complementarity of the slacks for inequalities. 

3. Update dual multipliers x according to (3.7) with under-relaxation. The under- 
relaxation parameter 7 is constant over the iterations, unless the relative primal 
error p; = ( y ; l / c ;  < p where p is a dual update threshold. In the latter case, 7 is 
scaled down by the factor p;/P (the significance of this detail is tested in section 
7.3). For inequality rows, x; is projected for correct sign. 

4. The price is updated by (3.3), and for inequalities, projected as well. 



Primal Phase 

To begin the first iteration we set all primal variables equal to zero and project 
onto the bounds. The primal update, for each activity j, is as follows. 

1. Evaluate the reduced cost cj by (3.4), update the dual tolerances and compute 
ATDA,. 

2. Perform the optimality test, i.e. dual feasibility and complementarity test, for 
column j. 

3. Determine the direction hj: Let x j  be the level of activity j at the beginning of 
the iteration and rj a stepsize parameter. We define 

where Cj and dj are given by (4.2) and (4.3). However, if the relative dual error 
Icj )/bj < 7, we set hj  = 0. Here 7 is a primal update threshold. 

4. Determine the updated primal solution: if no line search is considered, then 
the updated activity level is x j  + hj. Otherwise, a line search is carried out 
employing the direction h = (hj) ,  and the primal variables obtain their revised 
values thereafter. 

The stepsize rj is either constant for all j , or it is given by rj = min(1, l/CjNj) 
following (4.4). Such safe stepsize is computed taking into account only active rows and 
columns while determining Nj. A column is considered active at a certain iteration, 
if it has failed the optimality test (at least once) during a lag period of iterations. 
Similarly a row is considered active, if it is of equality type or if it has been binding 
(at least once) over the same lag period. Also in the dual phase, only active columns 
are taken into account for computing auxiliary penalty parameters. 

Line Search (Optional) 

If a line search is applied in the direction h,  an updated primal vector is obtained 
by taking an under-relaxed step toward the unconstrained line search optimum and 
projecting onto the simple bounds. A line search under-relaxation parameter is denoted 
by w. Alternatively, we may perform a constrained line search, whereby we check the 
feasibility with respect to the bounds on primal variables while moving in the direction 
h. In this case no under-relaxation is applied. The computations for the line search 
are distributed to primal and dual processors. 

7. Computational Tests 

Jacobi and some of its variants were tested on 68 problems from the Netlib library. The 
set is the same as the one used in our earlier study [14] concerning Gauss-Seidel type 



of iterations for serial computing. Tables 1 and 2 show the names and dimensions of 
these problems. The serial run times (excluding input and output) in a HP9000/720 
for Minos 5.1 using default values for specs parameters are reported as reference times 
to be used for efficiency comparisons. For Jacobi, simulation runs were performed on 
the same computer to obtain estimates of parallel run times. 

The outline of this section is as follows: we discuss first the base case of Jacobi and 
compare the results with Minos 5.1. Secondly, the performance of the safe stepsize of 
Theorem 1 is compared with a constant stepsize employed in the base case. Thereafter, 
constrained line search is applied to the two stepsize variants of Jacobi. Subsequently, 
these variants without line search are tested as well. Sensitivity of the base case 
of Jacobi with respect to various program parameters is tested by altering a single 
parameter at a time. The impact of the number of iterations between updates of 
multipliers T ;  is studied thereafter. Finally, a comparison of Jacobi against a Gauss- 
Seidel approach [14] and against an interior point algorithm [l] is reported. 

7.1 The Jacobi Base Case 

For the relative tolerance 4, two values are applied in the tests: 4 = 0.01 and 4 = 0.001. 
A minimum tolerance a = 0.14, both for primal and dual constraints, is applied. Initial 
values for primal variables xj and for dual multipliers T ;  are all equal to zero; initial 
penalty parameters D; are all equal to zero. For determining active rows and columns, 
the iteration count for the lag is Om, with O = 10. A maximum iteration limit is 
employed with values 50,000 and 300,000, for 4 = 0.01 and 4 = 0.001, respectively. 
Other default parameters of Jacobi are given in Table 3. 

Denote by t, the serial run time obtained by a simulation run. Let X be the share 
of t, taken by the primal phase (including line search computations allocated to primal 
processors) and 1 - X the corresponding share of the dual phase. The share X is 
measured for each test problem separately, ranging from 24 % to 56 %. Thus for 
parallel computations, omitting communication time among processors and assuming 
that there is at least one processor for each row and column, Xt,/n is a measure of the 
parallel run time for primal updates and (1 - X)t,/m is that for the dual. Thereby we 
obtain a measure of the parallel run time t,: 

This formula assumes that all processors (in a particular phase, primal or dual) are 
loaded with equal tasks, so that the execution time is the same for all. Alternatively, 
we might define the parallel run time based on the worst cases (the longest run times 
of primal and dual phases). Our measurement indicates that this definition yields a 
run time which is 3.5 times the one given by (7.1), on the average. In the sequel we 
shall employ (7.1) for the following reasons. The worst case results from the increase 
of the cost in the dual phase due to unequal distribution of nonzeros over the rows. 
Nineteen of the test problems contain rows (excluding the objective row) with more 
than 100 nonzeros (the maximum being 1477 for woodw). The main effort for the dual 
phase is to compute three vector inner products (with dimension equal to the nonzero 



I Rows Columns Nonzeros Time 

80bau3b 
stocfor2 
degen3 
sctap3 
pilot 
ganges 
sierra 
ship121 
shipl2s 
woodw 
sctap2 
scfxm3 
pilotnov 
pilot-ja 
czprob 
25fv47 
ship081 
ship08s 
pilot- we 
nesm 
scfxm2 
perold 
gfrd-pnc 
shell 
fffff800 

agg2 
agg3 
seba 
scrs8 

agg 
scagr25 
standmps 
grow22 
pilot4 
ship041 
ship04s 
etamacro 

Table 1: Number of rows, columns and non-zeros for Netlib test problems. Time is the 
reference time (sec) obtained by Minos 5.1. 



Table 2: Number of rows, columns and non-zeros for Netlib test problems. Time is the 
reference time (sec) obtained by Minos 5.1. 

Problem 

scsd8 
scorpion 
standgub 
standata 
stair 
tuff 
scfxml 
bandm 
sctapl 
grow 15 
capri 
bore3d 
e226 
brandy 
sc205 
vtp.base 
israel 
beaconfd 
forplan 
scsd6 
grow7 
scagr7 
stocforl 
sharelb 
sc105 
share2b 
recipe 
scsdl 
adlittle 
sc50a 
afiro 

Rows Columns Nonzeros Time 

398 2750 11334 25.86 
389 358 1708 .36 
362 1184 3147 .36 
360 1075 3038 .36 
357 467 3857 3.66 
334 587 4523 4.44 
33 1 457 2612 1.32 
306 472 2659 1.92 
30 1 480 2052 .62 
30 1 645 5665 3.74 
272 353 1786 .58 
234 315 1525 .46 
224 282 2767 1.26 
221 249 2150 1.38 
206 203 552 .26 
199 203 914 .12 
175 142 2358 .70 
174 262 3476 .26 
162 42 1 4916 .96 
148 1350 5666 3.24 
141 30 1 2633 .76 
130 140 553 .14 
118 111 474 .10 
118 225 1182 .50 
106 103 281 .10 
9 7 79 730 .12 
9 2 180 752 .04 
78 760 3148 .68 
57 9 7 465 .06 
5 1 48 131 .02 
2 8 3 2 88 ,004 



Parameter Default Value Interpretation 

P 0.5 Penalty factor 
w 0.5 Line search under-relaxation 
CY 0.5 Exponential smoothing weight 

T 0.1 Primal stepsize 
rl 1.0 Primal update threshold 

Y 0.1 Dual stepsize 
P 1 .O Dual update threshold 

Table 3: Default values of parameters 

count). Such tasks could be further parallelized, for instance, by sharing the capacity 
of processors which are less heavily loaded. Therefore, we believe that formula (7.1) 
serves as a better indicator of the potential of Jacobi. 

We define the speedup of Jacobi against another method as the serial run time of the 
latter divided by the parallel run time t ,  of Jacobi. The simplex method and interior 
point methods do not suit for parallel computation the way Jacobi does. Therefore 
for these algorithms, we use the serial run time in the comparisons. Obviously, there 
is some gain from parallel computation for the non-Jacobi methods as well. Besides, 
communication time is omitted for Jacobi. Therefore our speed-ups should be regarded 
as optimistic. 

Speed-ups for the two tolerances 4 = 0.01 and 4 = 0.001 of Jacobi base case 
against Minos 5.1 are depicted in Figure 1 as a function of problem complexity which 
is measured by the time required by Minos. In Figure 2 the same speed-ups are shown 
as a function of (the inverse of) problem density (the share of nonzeros in matrix A),  a 
measure which is readily available from problem data. The general tendency in these 
results seems to be that the larger the problem in terms of complexity the larger is 
the speed-up in favor of Jacobi. For relative tolerance 4 = 0.01 and 4 = 0.001, a 
linear regression on logarithms, which is depicted in Figure 1 as well, indicates that 
the speed-up increases by a factor of 1.6 when the Minos time doubles. A similar 
regression in Figure 2 implies an increase in speed-up by a factor 2.0 when the density 
decreases by fifty percent. 

Serial run times, iteration counts and relative errors in the objective function value 
for Jacobi base case are reported in Tables 4 and 5 and depicted in Figures 3-5, respec- 
tively. Omitted figures in Tables 4 and 5 refer to cases which did not converge within 
the iteration limit. A general observation in Figure 3 is that the parallel run time as a 
function of problem complexity increases slowly: when the Minos time doubles the run 
time for Jacobi increases by 27 percent only. Similarly, doubling of Minos time implies 
a 20 percent increase in the number of iterations (see Figure 4).  

For the entire set of 68 test problems, the average run time for Jacobi was 0.18 sec. 



and 0.85 sec., and the average number of iterations was 4900 and 23000, for relative 
tolerances $ = 0.01 and $ = 0.001, respectively. Thus the precision requirement has 
a significant impact on computational effort: decreasing relative tolerances by a factor 
of ten increases the solution time approximately by a factor of five. 

The error in the objective function is typically of the same order of magnitude 
as the relative tolerance $. Thinking, for instance, of economic applications of linear 
programming, the precision obtained by Jacobi appears quite satisfactory in most cases, 
in particular, for $ = 0.001. There are some notable exceptions, like problems tuffand 
forplan, however. In most nonconvergent cases the accuracy obtained at the iteration 
limit appears quite satisfactory; see problems woodw and etamacro, for example. In 
such cases it turns out that the algorithm reaches the neighborhood of the optimum 
rather fast, but then it fails to meet dual and/or primal feasibility for a few variables 
and/or constraints. Avoiding nonconvergence and poor precision in such cases requires 
further investigation. 

Figures 6-10 illustrate the behavior of Jacobi over the iterations. The largest test 
problem in Table 1, called 80bau3b, was chosen as an example, with relative tolerance 
$ = 0.001. Figure 6 shows the relative error of the objective function value over the 
iterations. At the end, after 28591 iterations, an error of 0.06% is obtained. The same 
level is reached already in about 2000 iterations. The long tail, characteristic to Jacobi, 
comprising of 90% of iterations is needed to meet the optimality conditions. Figures 7 
and 8 show the maximal primal and dual errors (relative to tolerances) and the number 
of infeasibilities. In the tail, the relative errors decrease slowly while the number of 
infeasibilities is small as compared to the numbers of variables (9799) and constraints 
(2263). This too is typical for Jacobi. The run was made with a constant stepsize. 
However for the illustration also the safe stepsize i-j was computed at each iteration. 
Figure 9 shows the minimum, maximum and average value of the safe stepsize over 
the iterations, and Figure 10 indicates the number of active rows and columns (in 
percent relative to the number of constraints). The results confirm our theoretical 
expectations; the safe stepsizes are quite large and they quickly grow in the final stage 
of the algorithm when the numbers of active rows and columns decrease. 

The largest Netlib problem, called stocfor3, has 16676 rows, 15695 columns, and 
74004 non-zeros. It was successfully solved with Jacobi: for relative tolerance equal 
to 0.01, the run time t, was 0.092 sec and the relative error in the objective function 
value was 0.044%. Two additional energy-economy models, called 0731 u and 0748, 
were obtained from IIASA. Their respective dimensions m x n are 6479 x 4585 and 
5171 x 4015, and the numbers of nonzero elements in A are 37269 and 23862. For 
relative tolerance $ = 0.01, the run time t, was 0.220 sec and 0.132 sec for o731u and 
0748, respectively, and the relative errors in the objective function 0.007 % and 0.056 
%. 

7.2 Stepsize and Line Search Variants 

In Theorem 1 the safe stepsize for primal updates was introduced. We shall now 
compare the impact of this rule relative to the base case, where a constant step size 
is applied to all primal variables. With respect to line search, we shall compare three 



Table 4: Parallel run time (msec), number of iterations and relative error in the objec- 
tive function value for Jacobi base case; 4 = relative tolerance. 

Error 

4=0.01 4=0.001 

.00112 .00056 

.00573 .00007 

.00220 .00010 

.00185 .00003 

.08303 .00166 

.24595 .01750 

.00793 .00239 

.03603 .00039 

.02641 .00047 

.00596 .00061 

.00026 .OOOOO 

.00147 .00009 

.00088 .00061 

.00662 .00081 

.00137 .00014 

.23585 .00276 

.00683 .00012 
,00369 .00150 
.00314 .00055 
.00761 .00023 
.00429 .00056 
.05544 .00043 
.05750 .00116 
.00003 .00026 
.00566 .00036 
.00254 .00015 
.00673 .00067 
.02721 .02742 
,01201 .00161 
.00750 .00684 
.01333 .00139 
.00607 .00013 
.00097 .00050 
.00686 .00034 
.00490 .00031 
.00446 .00042 
.00044 .00002 

Problem 

80bau3b 
stocfor2 
degen3 
sctap3 
pilot 
ganges 
sierra 
ship121 
shipl2s 
woodw 
sctap2 
scfxm3 
pilotnov 
pilot-ja 
czprob 
25fv47 
ship081 
ship08s 
pilot-we 
nesm 
scfxm2 
perold 
gfrd-pnc 
shell 
fffff800 
a€@ 
a m 3  
seba 
scrs8 

a€% 
scagr25 
standmps 
grow22 
pilot4 
ship041 
ship04s 
et amacro 

Time 

4=0.01 4=0.001 

1220 1077 
99 652 
79 4355 
3 2 156 

1826 8085 
175 998 
90 303 
65 524 
19 227 

126 808 
147 916 

1207 2099 
469 3347 
331 424 
198 974 
66 298 
4 0 7 5 

285 1148 
527 1459 
130 640 
144 1248 
247 1242 
138 376 
191 - 

24 1209 
20 214 

117 
79 1324 
26 6 1 
46 76 
63 512 
43 44 

124 479 
69 208 
49 83 
34 

Iterations 

4=0.01 4=0.001 

32059 28591 
3899 25349 
1692 103296 
1145 5392 

28392 136015 
6982 39307 
3187 10490 
1436 11475 
638 7540 

4516 30247 
5120 32926 

32423 55711 
11631 87463 
8225 10312 
5426 27283 
1379 6027 
1209 2275 
7706 31732 

10695 29481 
4608 22929 
4779 41639 

10541 54275 
4935 13783 
5725 
767 41982 
660 6891 

3909 
2937 53044 
89 1 2113 

2034 3386 
2200 19498 
1017 1039 
3650 14721 
1526 4702 
141 1 2398 
1417 



1 Time I Iterations 1 Error 1 

Problem 

scsd8 
scorpion 
standgub 
standata 
stair 
tuff 
scfxm 1 
bandm 
sctapl 
growl5 
capri 
bore3d 
e226 
brandy 
sc205 
vtp.base 
israel 
beaconfd 
forplan 
scsd6 
grow7 
scagr7 
stocfor 1 
sharelb 
sc105 
share2b 
recipe 
scsdl 
adlittle 
sc50a 
afiro 

Average 

Table 5: Parallel run time (msec), number of iterations and relative error in the objec- 
tive function value for Jacobi base case; 4 = relative tolerance. 



Table 6: Average speed-up against Minos 5.1, average relative speed-up against Jacobi 
base case and number of non-convergent problems for two stepsize variants of Jacobi. 

Line Search 

Unconstrained 
Constrained 
None 

Unconstrained 
Constrained 
None 

Unconstrained 
Constrained 
None 

alternatives: unconstrained, constrained and no line search. We shall carry out tests 
with the relative tolerance q5 = 0.01 and using 50 smallest of the problems in Tables 1 
and 2 only. 

Stepsize 
Constant Safe 

Speedup 

37.7 35.3 
18.8 19.0 
24.0 16.6 

Relative Speedup 

1 .OO .74 
.49 .47 
.66 .46 

Non-convergence 

0 1 
0 3 
2 1 

Unconstrained Line Search 

First, consider the two stepsize variants, where for primal updates, an unconstrained 
line search is performed, thereafter an under-relaxed step towards that optimum is 
taken and finally projection onto the simple bounds is carried out. Table 6 shows the 
relative performance of these variants against each other. (Here the constant stepsize 
and unconstrained line search refers to the Jacobi base case.) The figures are the 
average speedup against Minos 5.1, the average relative speedup against Jacobi base 
case and the number of non-convergent problems. We may observe that on the average 
the safe steps result in 26% decrease in efficiency. The reason for this is not obvious, 
given that line search is applied in each case. 

Constrained Line Search 

Next, consider variants, where the simple bounds are taken into account in the line 
search optimization. Table 6 shows the performance of the resulting two variants as 
well. In both cases the solution efficiency decreased considerably as compared with the 



variants employing unconstrained line search. For constant stepsize, for instance, the 
average run time about doubled. 

N o  Line Search 

Finally, Table 6 shows the result, when line search is omitted so that the primal 
update is obtained directly employing the stepsize and projection. These variants 
appear somewhat less robust (in comparison with unconstrained line search) in that 
more nonconvergent problems appear, and the run time increases as well. 

7.3 Parameter Sensitivity 

Sensitivity tests concerning program parameters were carried out by varying the default 
values one at  a time. Again these tests are performed with the relative tolerance 
q5 = 0.01 and using 50 smallest of the problems in Tables 1 and 2 only. The results are 
summarized in Table 7 showing the average speedup against Minos 5.1, the average 
relative speedup against Jacobi base case and the number of non-convergent problems. 
Note that the speedups are defined as averages over the problems which converged in 
the particular case. Thus it may happen that the speedup against Minos is larger than 
in the base case, yet the relative speedup is less than 1. (see p = 1 ., for instance, where 
two nonconvergent problems appear). The default values of parameters are indicated 
in parentheses. 

We conclude that a line search stepsize w = 1.0 results in a run time increase of 60 % 
as compared with the Jacobi base case. This is explained by often too long steps which 
after projection result in a decrease in the function value. On the other hand, w = 0.3 
seems too conservative, so that on the average the run time increases by about 40 %. 
For the penalty parameter, p = 0.2 appears too small resulting in slow convergence of 
the dual multipliers, and p = 1.0 seems too large so that the convergence of the primal 
variables slows down. Besides, two nonconvergencies appear in the latter case. The 
run time sensitivity with respect to changes in a appears relatively small. 

For dual stepsize y, the default value y = 0.1 performs better than comparing 
values y = 0.05 and y = 0.2. The loss in efficiency in these two cases is 30-50 %. 
A similar conclusion applies to the dual update threshold parameter P for which the 
default value is P = 1. The values P = 0.5 and P = 2 resulted in a loss of efficiency of 
20-30 %. For P = 0, the run time tripled on the average and two problems failed to 
convergence. This may justify the use of parameter P. 

Changes up and down in the primal stepsize constant T results in some loss of 
efficiency, in particular for the smaller value T = 0.05, where robustness suffers as well. 
For the primal update threshold 17, instead, a change down from the default value 
17 = 1 always improves. Besides, generally the precision in the objective function value 
improves as well. These runs may be considered as our best cases of Jacobi so far. 

As a final parameter test we experimented with multiple sweeps of primal and dual 
phases between the updates of the dual multipliers T; .  The approach is the same as 
the Jacobi base case except that we update the dual multipliers in every nth iteration 
only. We experimented with n equal to 2, 5, 10 and 20, and y equal to 0.1, 0.2, 0.5, 



Table 7: Sensitivity with respect to parameters w ,  p,  a, y, p, T and 77 (default values 
are indicated in parentheses). The figures are average speed-up against Minos 5.1, 
average relative speed-up against Jacobi base case and the number of nonconvergent 

Jacobi Base Case 

Line search stepsize (w = 0.5) 
w = 0.3 
w = 1.0 

Penalty parameter ( p  = 0.5) 
p = 0.2 
p = 1.0 

Exponential smoothing (a  = 0.5) 
a = 0.3 
a = 0.7 

Dual stepsize (y = 0.10) 
y = 0.05 
y = 0.20 

Dual update threshold ( p  = 1.) 
,B = 0.0 
p = 0.5 
p = 2.0 

Primal stepsize (T = 0.10) 
T = 0.05 
T = 0.15 

Primal update threshold (77 = 1.0) 
77 = 0.0 
77 = 0.5 
77 = 0.9 

Number of sweeps ( K  = 1, y = 0.1) 
K = 5, y = 0.1 
K = 5, y = 0.2 
K = 5, y = 0.5 
K = 5 ,  y = 1.0 
K = 5, y = 1.5 

problems. 
27 

Relative Non- 
Speedup Speedup Convergence 

37.7 1 .OO 0 

34.2 0.71 1 
23.2 0.64 1 

29.9 0.79 0 
41.9 0.86 2 

47.7 1 .OO 1 
32.2 0.85 0 

32.0 0.67 1 
37.1 0.78 1 

15.7 0.33 2 
31.7 0.84 0 
35.7 0.75 1 

38.3 0.78 2 
33.8 0.90 0 

46.2 1.23 0 
43.6 1.16 0 
45.2 1.20 0 

16.0 0.54 1 
30.8 0.64 1 
32.6 0.86 0 
35.8 0.93 1 
43.8 1.18 2 



1.0 and 1.5 (all other parameters having their default values). For K = 2, in the best 
case with y = 0.2, the parallel time was 9 % less than in the Jacobi base case. For 
other values of y the performance slightly deteriorated as compared with the base 
case. For K = 5, the results are given in Table 7. The only case with an increase in 
the average speed-up occurs with y = 1.5; however, two nonconvergencies appeared 
so that the case is less robust compared with the Jacobi base case. For K equal to 10 
and 20, improvement with respect to the Jacobi base case was not achieved, neither in 
speed-up nor in robustness. In conclusion, we observe that an increase in the number 
of sweeps K allows an increase in stepsize y for the dual multipliers. However, at the 
same time the robustness of the approach tends to suffer without any significant gain 
in the run time. 

7.4 Comparison with Gauss-Seidel and Interior Point Met h- 
ods 

Figure 11 shows the speed-up of the base case of Jacobi against a serial algorithm 
based on Gauss-Seidel type of iterations for minimizing augmented Lagrangians [14]. 
The problems from Tables 1 and 2 for which both methods converged were chosen 
for comparisons. The Gauss-Seidel approach basically differs from Jacobi in that the 
primal variables are updated sequentially, and the price vector p is revised after the 
update of each primal variable. No line search is employed in Gauss-Seidel. Again 
the Minos time is taken as a measure of problem complexity. We may conclude from 
Figure 11, that the speed-ups appear somewhat independent of the problem complexity. 
However, when the relative tolerance q5 is decreased from 0.01 to 0.001, the average 
speedup decreases from 26 to 9, on the average. 

Finally, Table 8 shows a comparison between Karmarkar's algorithm, Jacobi base 
case and Minos 4.0. The speed-up factors for Karmarkar are adopted from [I], from 
which all Netlib problems with over 800 constraints have been chosen for the compari- 
son. Again, the comparison is made assuming that Karmarkar's algorithm and Minos 
are run in a serial and Jacobi in a parallel computer. For relative tolerance q5 = 0.01 
and q5 = 0.001, the speed-ups of Jacobi appear favorable. However, for q5 = 0.01, the 
precision is not always satisfactory, notably for the problem 25fv4'7 (see Table 4). 

8. Conclusions 

The linear programming method analysed in this paper updates the dual variables as in 
the multiplier method and the primal variables by under-relaxed Jacobi-type iterations. 
Each iteration of the method is highly parallelizable. 

Our theoretical analysis provides us with the estimates of safe stepsize coefficients 
and of the convergence ratio of the method. They turn out to be independent on the 
size of the problem and on penalty value and are determined mainly by the average 
number of nonzeros that appear in the rows of the constraint matrix. 

The computational experience gained so far indicates that the method can be very 
efficient for large problems, especially in parallel computing environments, where we 



sctap3 1481 
ship121 1152 
shipl2s 1152 
sctap2 1091 
scfxm3 991 
czprob 930 
25fv47 822 

Problem Rows 

Average 

Table 8: Speed-up factors for Karmarkar's algorithm and Jacobi base case relative to 
Minos 4.0; 4 = relative tolerance. 

Karmarkar 
Speedup 

can expect speedups of many orders of magnitude. It also shows that our theoretical 
estimates of safe stepsizes have practical importance. 

Jacobi Speedup 
4 = 0.01 4 = 0.001 
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Figure 1. Speed-up of Jacobi base case against Minos 5.1 as a function of serial run 
time for Minos; 4 = relative tolerance. 
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Figure 2. Speed-up Jacobi base case against Minos 5.1 as a function of the inverse 
of problem density; 4 = relative tolerance. 
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