
A Regularized Jacobi Method for
Large-Scale Linear Programming

Kallio, M.J., Ruszczynski, A. and Salo, S.

IIASA Working Paper

November 1993

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33895224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Kallio, M.J., Ruszczynski, A. and Salo, S. (1993) A Regularized Jacobi Method for Large-Scale Linear Programming. IIASA

Working Paper. Copyright © 1993 by the author(s). http://pure.iiasa.ac.at/3753/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

Working Paper
A regularized Jacobi method for
large-scale linear programming

Markku Kallio
Andrzej Ruszczyn'ski

Seppo Salo

WP-93-61
November 1993

El I I ASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

Telephone: +43 2236 715210 o Telex: 079 137 iiasa a o Telefax: +43 2236 71313

A regularized Jacobi method for
large-scale linear programming

Markku Kallio
Andrzej Ruszczyriski

Seppo Salo

WP-93-61
November 1993

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute or of its National Member
Organizations.

BllASA International Institute for Applied Systems Analysis o A-2361 Laxenburg Austria

Telephone: +43 2236 715210 Telex: 079 137 iiasa a Telefax: +43 2236 71313

Abstract

A parallel algorithm based on Jacobi iterations is proposed to minimize the aug-
mented Lagrangian functions of the multiplier method for large-scale linear program-
ming. Sparsity is efficiently exploited for determining stepsizes (column-wise) for the
Jacobi iterations. Linear convergence is shown with convergence ratio depending on
sparsity but not on the penalty parameter and on problem size. Employing simula-
tion of parallel computations, an experimental code is tested extensively on 68 Netlib
problems. Results are compared with the simplex method, an interior point algorithm
and a Gauss-Seidel approach. We observe that speedup against the simplex method
generally increases with the problem size, while the parallel solution times increase
slowly, if at all. Our preliminary results compared with the other two methods are
highly encouraging as well.

Keywords: Large-Scale Linear Programming, Augmented Lagrangians, Parallel Com-
puting, Partial Equilibrium.

1. Introduction

The main objective of this paper is to develop a parallel procedure for solving the
standard linear programming problem

T minc x

where x E Rn is the vector of decision variables, c, 1 and u are some vectors in Rn,
b E Rm and A is an m x n matrix. We think of A as a large-scale and sparse matrix,
which does not necessarily possess other structural properties. To begin, we shall
consider the multiplier method [12, 221 for solving (1 .I). Using Jacobi-type iterations
(aimed at parallel computing), we develop a simple solution algorithm for augmented
Lagrangian subproblems. It combines and develops the ideas of our earlier theoretical
results reported in [24] and of the tatonnement procedure of [14] based on Gauss-Seidel
iterations.

After some preliminary concepts and results we discuss weak convergence of Jacobi
iterations in Section 4. We introduce a safe stepsize for the iterations to ensure conver-
gence. Sparsity will be efficiently exploited for determining such stepsizes separately
for each column and for each iteration. We indicate experimentally that such stepsizes
indeed are reasonably large. In Section 5, convergence at a linear rate is shown with
convergence ratio depending on sparsity. It is interesting to note, however, that the
size of the problem and the penalty parameter do not appear in the rate of convergence
estimates. Both for the safe stepsize and for the rate of convergence much stronger
results are presented for linear programs as compared with more general results for
convex programming developed in [24].

The code of [14] for Gauss-Seidel iterations was revised for Jacobi iterations result-
ing in an experimental code called Jacobi. This implementation is described in Section
6. Particular attention is paid to the definition of primal and dual tolerances, as well
as to the penalty parameters: dual tolerances are defined by column, and primal tol-
erances as well as the penalty parameters are defined by row. Each one of them is
recalculated in each iteration. For these reasons, scaling of (1.1) appears irrelevant for
the code: Jacobi is practically invariant to scaling.

Extensive computational tests on 68 Netlib [19] problems are reported in Section
7. We simulate parallel computations on an HP9000/720 serial computer. In such
simulations, the communication time for parallel processors is omitted while estimating
the parallel run times based on serial run times.

First, a basic version of Jacobi is tested against the simplex method employing
Minos 5.1 [18]. We observe that speedup against the simplex method generally increases
with the problem size, while the parallel solution time increases only moderately. Three
additional test runs are reported on larger problems than those above. For these
problems with 5 to 16 thousand rows, the parallel run time appeared to be about the
same or smaller than the average for the 68 smaller problems. However, the run time
is sensitive to the precision requirement: decreasing the tolerances by a factor of ten

increases the average parallel run time for the 68 Netlib problems from 0.18 sec to 0.85
sec.

Variants of Jacobi are tested in Section 7.2. We consider the safe stepsize against a
constant stepsize, as well as possible line search procedures for accelerating the Jacobi
iterations. Sensitivity testing with respect to the program parameters is reported in
Section 7.3.

Finally in Section 7.4, a comparison of Jacobi is presented against serial algorithms
based on Gauss-Seidel iterations (see 1141) and on an interior point algorithm [I]. In
applications where extreme precision is not required for the solution, e.g. for economic
models, our preliminary results compared with the simplex method, Gauss-Seidel and
interior point methods are highly encouraging.

2. Preliminaries

The use of the duality theory for solving linear programs is almost as old as the theory
of linear programming itself (see [5] and the references therein). Nowadays, the most
efficient linear programming algorithms, both simplex-like and interior-point methods,
heavily exploit duality. Duality is also the main theoretical foundation of decomposi-
tion approaches to large structured problems, like, e.g., the decomposition principle of
Dantzig and Wolfe [6]. The aim of this paper is to use duality in a nonstandard way
to develop a parallel computational method for (1.1) under the assumption that the
constraint matrix A is sparse but does not necessarily possess any additional structural
properties.

Let us recall that the (ordinary) Lagrangian for (1.1) can be defined as

L(x, n) = cTx + nT(b - Ax),

where n E Rm is the vector of multipliers associated with the equality constraint
Ax = b. The Lagrangian can be used to define the dual function

i (n) = inf L(x, n) = bTa + i j (n) l < x L u
j=1

with
T Lj(n) = inf (cj - n Aj)xj,

',<x, Lu,

where Aj denotes the j t h column of A.
The dual problem associated with (1.1) is formulated as

max i (n) .
nERm

Much is known about problem (2.3) and its relation to (1.1). For our purposes the
most important facts are that i is a concave piecewise linear function (which is readily
seen from (2.2)) and that the following duality theorem holds.

Proposition 1. Assume that (1.1) has an optimal solution. Then (2.3) has an optimal
solution and

(a) for every optimal solution i of (1.1) and every optimal solution i? of (2.3)

cT i = L(i?);

(b) for every optimal solution i? of (2.3) a point 15 i 5 u is an optimal solution of
(1.1) if and only if

T (c - % A) - min (cj - - . i rT~j)xj , j = 1 , . . . , n
- l J < x J < u J

However, two main difficulties impede the straightforward application of the La-
grangian duality in linear programming. First, the dual (2.3) is a nonsmooth optimiza-
tion problem with a concave piecewise-linear objective. Since we are still in the class
of linear programming problems, it cannot be substantially easier than the solution
of (1.1), unless the problem has a special structure. Secondly, not every point x de-
fined by (2.4) satisfies (2.5); auxiliary procedures are necessary to identify the primal
solution. There are many ways of overcoming these difficulties. One is to generate a
sequence of primal-dual pairs in such a way that it always satisfies one of conditions
(2.4)-(2.5) and successively decreases the violation of the other. Another possibility,
that we are going to follow here, is to embed the original linear programming problem
into a family of nonlinear problems which have some desirable properties of the dual
function and of the set of Lagrangian minimizers. As an example of such an approach
may serve the primal-dual logarithmic barrier method in which Lagrangian minimizers
are unique and the system of primal and dual feasibility conditions can be solved by
Newton's method.

We are going to base our work on yet another idea, namely on the augmented
Lagrangian duality. The augmented Lagrangian for (1.1) can be defined as follows:

where p is a positive penalty parameter. Similarly to (2.1)-(2.3) we can introduce the
regularized dual function

A(n) = inf A(x, x),
l < x < u

the set of minimizers

and the regularized dual problem

max A(a).
7r€Rm

Referring to [25], we note that problem (2.7) is equivalent to a partial equilibrium
problem, where rows of A refer to commodities and quantity units for these commodities
are chosen so that the slope of each one of the (linear) price functions is - p . In fact,
our earlier work [14] originated from a Gauss-Seidel approach to a partial equilibrium
model for the world forest sector [13].

For the augmented Lagrangian we can state a theorem similar to Proposition 1 (see,

e-€5, [23, 21).

Proposition 2. Assume that (1.1) has an optimalsolution. Then (2.9) has an optimal
solution and

(a) for every optimal solution i of (1.1) and every optimal solution 7i of (2.9)

(b) for every optimal solution ii of (2.9) a point 1 5 i 5 u is an optimal solution of
(1 . I) if and only if

A(?, ii) = min A(x, +).
l < x < u

(2.10)

Let A j denote the j t h column of A. We define for j = 1, . . . , n the functions

Then (2.10) can be rewritten component-wise as

- -
A i n) = min Aj(xj, il n)

'I 5x1 5%

which corresponds to (2.4). It is worth stressing that condition (2.5) is not needed
now; it is implied by the optimality of ii and (2.10). This is an important advantage of
the augmented Lagrangian approach over the standard duality, because our ultimate
objective is to develop a parallel method in which individual component,^ of the solution
vector could be calculated separately. It is, therefore, crucial for us to avoid additional
conditions of form (2.5) which inevitably lead to some centralized procedures.

The other advantage is that the dual function (2.7) has much nicer properties. It
is concave, piecewise-quadratic and smooth. This allows the application to the dual
problem (2.9) of the following steepest ascent method.

Method of Multipliers

Step 1 For fixed multipliers nk find a solution xk of the problem

min A(x, nk).
l<x<u

Step 2 If Axk = b then stop; otherwise set

with some y E (0,2), increase k by one and go to Step 1.

The following is the fundamental property of the method of multipliers (see [21, 21).

Proposition 3. If problem (1.1) has an optimal solution then the method of multipliers
with y = 1 stops after finitely many iterations at an optimal solution 7i of the dual
problem (2.9).

It follows from Proposition 2 that the primal solution calculated at Step 1 of the
method of multipliers is an optimal solution of the primal problem (1.1). For recent
references on the application of the method of multipliers to linear programming see

[3, 111.
Let us note that we could have easily considered a more general version of the

method of multipliers having different penalty coefficients for different rows. This is
theoretically equivalent to re-scaling the constraints. Obviously, (2.13) can be then re-
scaled accordingly. We shall not consider this version in our theoretical considerations,
because it would complicate the notation without any influence on the structure of
results, but we shall have scaling in the implementation.

There are two main disadvantages of the method of multipliers: first, Step 1 re-
quires a solution of a quadratic programming problem and, secondly, the augmented
Lagrangian does not possess the separability properties of the ordinary Lagrangian.
There are many approaches to reformulate some specially structured problems in order
to obtain some separability properties of the augmented Lagrangian and decompose
Step 1 of the multiplier method. We can mention here the alternating direction methods
[8, 9, 101 and the separable approximation developed by Stephanopoulos and Wester-
berg [26] and used in [27, 41. The reader is referred to [3] for an extensive discussion
of the subject and multiple examples.

In the next section we shall present a Jacobi-type method for the problem of mini-
mizing the augmented Lagrangian (2.6) at Step 1 of the multiplier method. It is close
in spirit to the earlier ideas of [26, 27, 41. Next, adapting the theory developed in [24]
we shall show that convergence properties of the method, in particular the speed of
convergence, heavily depend on sparsity properties of the matrix A in (1.1).

3. Outline of the method
The main idea of our approach is to carry out under-relaxed nonlinear Jacobi iterations
for problem (2.12). If we select the j t h variable and assume that all other variables
x,, s # j are fixed at some values x$', the best value of x j can be found from the
problem

This can be deciphered as

with A j defined by (2.11). The regularized Jacobi method can now be stated in detail
as follows.

The Regularized Jacobi Method

Initialization. Set xk10 = xk-I and v = 0.

Dual Phase. Calculate the current primal error yklU and current prices p k t u by

Pr ima l Phase. Calculate the reduced cost

Solve for j = 1 , . . . , n subproblems (3.1) getting optimal solutions

where [.I;" denotes the projection on the interval [1,u]. Next, for j = 1 , . . . ,n
update the primal variables by

where <'" E (0,1], j = 1 , . . . , n are some under-relaxation parameters.

S topp ing Test. If tk~" # xkf" then increase v by one and go to Dual Phase; otherwise,
if y k 9 v # 0, then set

xk+l = ypk7" + (1 - y)x , k
(3.7)

xk = xk7", increase k by one and go to Initialization; otherwise stop.

It is a matter of elementary calculation to show that (3.2)-(3.5) indeed produce a
solution to (3.1).

The nonlinear Jacobi method has a long history (see [3] for an extensive discussion
of this issue). There are also some works in which it was suggested for minimizing
the augmented Lagrangian in a decomposed way. We should mention here the pi-
oneering work of Stephanopoulos and Westerberg [26] (where the results are mostly
experimental) and the further works [4, 27, 281.

In general, the Jacobi method has been regarded as slow because available theoret-
ical results (see, e.g., [27]) imply very small values of the under-relaxation parameter
(corresponding to j's in (3.6)) to ensure convergence. However, the analysis in [24]
shows that for some classes of problems the under-relaxation parameters in the Jacobi
method can be relatively large and the speed of convergence quite high. It turns out
that performance of the method depends heavily on the sparsity of the constraints.
Application to stochastic programming [17] provided a practical evidence for it.

In our case the entire Jacobi method could be boiled down to a series of very
simple algebraic operations. This utmost simplicity and good theoretical properties
(to be shown in the next sections) provide a solid basis for an efficient implementation,
especially in parallel computing environments.

4. Weak convergence

Before proceeding to the convergence analysis let us introduce some measures of spar-
sity of the constraint matrix A. Let Mi denote the number of nonzeros in the ith row

of A, i = 1, . . . , m . We define for each column Aj of A, j = 1 , . . . , n , the average
rowcount

In other words, Nj is the weighted average of the number of nonzeros, where the weights
are squared column entries. Clearly, there is a simple upper bound on Nj:

Nj 5 max{Mi : a,j # 0),

which is invariant with respect to scaling of A. We assume that all singleton rows (rows
with M, = 1) are removed from A in preprocessing, so that Nj 2 2.

We shall show that the Nj's have a direct influence on convergence properties of
the method.

Our convergence analysis will use the following algebraic property of sparse matri-
ces.

Lemma 1. Let A be an m x n matrix and let Nj, j = 1, . . . , n be defined by (4.1).
Then for every d E Rn and every h E Rn

Proof. Expansion into single entries yields

where V(i, j) is the set of such s that a;ja,, + 0. Applying Schwarz inequality to the
right side of the above equation and noting that s E V(i, j) if and only if j E V(i, s)
we get

where in the last relation we used the fact that V(i, j) has Mi elements. The required
result follows now from the definition of the Nj's.

Before stating our first convergence theorem, let us note that (3.5) can be equiva-
lently expressed as

k,v k v k,v (I+ = rj - cj> dj , 3

where d:'" is the unconstrained step given by

and cl' is the largest coefficient in [0, 11 for which (tl" remains in [Ij, uj].

Theorem 1. If the under-relaxation coefficients i:'" E (0,1] in (3.6) satisfy the in-
equalities

k ,v 2 0 < T ~ < --- , j = 1 ,..., n,
d . " N, (4.4)

where Nj is given by (4.1) (and there is no subsequence of { ~ f " } ~ = ~ convergent to any
of the bounds), then

k v k ,v (a) for all j = 1 , . . . , n we have limv-OO((j' - xj) = 0,

(6) each accumulation point of the sequence { x ~ ~ " } ~ is a solution of (2.12).
v=o

Proof. Let us denote

In this part of the proof, for clarity, we shall omit the superscripts k and v. By a
straightforward calculation, with the use of (3.2)-(3.4),

1
A + (- x k) - (x k) = T ~ T ([- X) + 2 p A ~ ((- x)IJ2.

Using Lemma 1 with d = h = T((- x) we obtain the inequality

A(x + T((- x), rk) - A(x , rk) 5

Using (4.2) and (4.3) in (4.5) we see that for v = 0,1,2,. . . (with the full notation
again)

00

Thus for ij 's satisfying (4.4) the sequence {A(xkvv, rk)}vFo is decreasing and convergent,
hence the left side of (4.6) converges to zero. The right side is non-positive, so it
converges to zero, too, and assertion (a) is true.

By the definition of f t t U ,

Let xk be the limit point of {fk.y)m . Passing to the limit in the last equation (over
v = o

a convergent subsequence) we get

Therefore xk is a solution of (2.12).

Remark. It is clear from our earlier considerations that we can further broaden the
bounds (4.4) by defining N j dynamically in the following way. At first, we determine
the set of variables that will not change their values at the current iteration (which
have gtY = x ~ ") . Then, in calculating Nj by (4.1) we can decrease the counts M, by
ignoring the columns that correspond to the variables which remain unchanged at this
iteration.

5. Speed of convergence and strong convergence

We shall now show that the speed of convergence of the Regularized Jacobi Method
for solving (2.7) is linear. We shall suppress superscripts k of successive augmented
Lagrangians. For the stepsize parameters r:" and (F'" we suppress the iteration counter
v as well.

To begin, we develop expressions for the reduced cost and for the optimality gap.
Note that the optimal reduced cost i. is unique over i E ~ (a) . It is given by

where
q 2 0, qT(3 - 1) = 0,

Taking any 3 E i (~) and employing (5.1), the reduced cost F for xu is

For the optimality gap we obtain by direct calculation

L e m m a 2. If the sequence A,, v = 1,2, ..., converges to zero, then there exists 8 such
that, for all v 2 8 , there is iu E k (a) with the property 3; = x;, for all j such that
X V = 1 . O f X V Uj. 3 3 3

Proof . Let JL and JU be disjoint subsets of (1, . . . , n}. Let us pick any i* E ~ (a) .
Let r(&, Ju) = minr<,<,(p/2) - - 1 1 A(x - i*) 1 1 ' +ijT(x - 1) + tT (u - x) subject to

= 1 . ,, j E JL,xt = U j , j E JU. If E (~ L , JU) = 0, there is i E ~ (a) with ij = lj, j E

JL, iij = uj, j E Ju. Let E be the smallest positive e(JL, &) over all possible sets JL
and &. By assumption, there exists fi such that A, < E, for all v 2 f i , and hence the
proof is complete.

T h e o r e m 2. Let Nj be defined by (4.1) and Cj by (4.2), for all j . Let p E (0,2) be a
constant and define for j = 1,2, . . .

~j = min (1, p/(Cj Nj)) .

Then the Regularized Jacobi Method converges linearly:

with the convergence ratio q such that

where X is the smallest nonzero eigenvalue of all matrices BBT, such that B is obtained
by taking a nonempty subset of columns of A,

8 = max { N ~ I I A ~ ~ ~ ~ }
1<j<n

and
p* = min (p, 1 - p /a) ,

with cr E (p, 2) chosen in such a way that

Proof.Let JL and Ju be the sets of indices j with ijj > 0 and & > 0, respectively. By
theorem 1, A, + 0, so that by (5.3) A(xu - i) + 0, ijT(xu - I) + 0 and tT(u - xu) + 0.
Therefore, C + ij - (in (5.2), x; + lj, for all j E JL, xr + uj, for all j E Ju. Therefore
there exists fi such that, for all v 2 fi and j E JL U JU, (employing (3.4), (4.2) and
(4.4)), ~j is given as

-Cj
~j = min [1, - = min [17 6 max (I ' p l lA j l12(i j - x;))] = 1.

Note that ~j = 1 implies that the componenent x j ends up on its bound. Thus, for all
u 2 fi, xy = i j , for all j E J L U Ju.

From now on we consider the tail of iterations v > fi, with f i large enough so that
the property of lemma 2 holds as well. In particular, let as study the iteration from xu
to xu+'.

We define the sets of "basic" and "nonbasic" variables as follows. We choose some
cr E (p, 2) (the exact value of cr will be specified later) and define

Let us note that in this way we include into JB all variables that do not hit a bound
at the current iteration. Additionally, we include some variables which hit a bound,
provided that the projection in (3.5) did not decrease the steplength too much. Next,
JN is the set of all other indices j ; i.e., for j E JN we have ~j = 1 and Cj < (1-p/cr)/Nj.

Observe that .rjCj = p/Nj, if ~j < 1, and .rjCj 5 p/Nj, otherwise. Therefore, with
p* given by (5.6), we obtain

If JB is empty, then by lemma 2, the process stops, and there is nothing to prove.
Otherwise, denote XB = (xj) jEjB, X N = (xj)jE j,, B = (Aj)jEjB and N = (Aj)jE j,.
Let TB, (B and SB be diagonal matrices with entries ~ j , Cj and IIAj((, for j E JB,
respectively. Similarly for JN we define diagonal matrices TN, CN and SN.

By lemma 2 we can choose i E X (T) so that ij = xy", for all j such that xyfl = l j
or xy" = wj. By (5.2), (3.5), (4.2) and (4.4), because (j = 0 for j E JL U Ju, we have
for all j, by (5.2),

6% = C , ~ A T A (X ~ - i.),

whence

Since x;" = j N , (5.10) implies

- - T
B(X?' - i ~) = B(x1;j - iB) - BB (B , N)(x" - i) (5.1 1)

and

0 = N(5; - iN) - N N T (~ , N) (X ~ - j.), (5.12)

where

Let us define the matrix
E = (I - NNT).

From (5.12) we obtain

Let us now make an important observation that explains our definitions of JB and JN.
By lemma 1 and (5.9) for every u we have

Therefore all eigenvalues of N ~ N are in [O,1 - p/cr]. The nonzero eigenvalues of N ~ N
and N N ~ are the same. Hence, the eigenvalues of E are in [plcr, l].Consequently, E
is nonsingular. Denote the maximum eigenvalue of E by XE.

The optimality gap in (5.3) simplifies into

P
AV = 211eV1121 (5.15)

where eV = A(xV - i) is the primal feasibility error. By (5.13) we have

with
u = s ~ T ~ ' / ~ [~ ~ / ~ (x ; - PB).

Summing equations (5.11) and (5.12) and using (5.16) we get

Therefore, by (5.15), (5.16) and (5.17), with Q = E - ~ J ~ B , we obtain

where parameters At refer to all nonzero eigenvalues of QQT. Let X B denote the largest
eigenvalue of B B ~ , and recall that the smallest eigenvalue of E is at least p l a . Then
At 5 aXB/p, for all t . Similarly to (5.14), lemma 1 with (5.8) yield XB 5 p. Therefore,
At 5 a. Hence, by (5.18) and because XE 5 1

2
5 max [(I - a)', X; (1 - A?)] .

AV

with Aqm'" = mint At.
Let AT and A? denote the smallest positive eigenvalue of B B ~ and BBT, re-

spectively. Then A$" > AF"/XE. Consequently,

With p* and 8 given by (5.6), employing (5.8) we have

In summary, X E E [p, 11 and A$" E [p*A/B, p]. Therefore by (5.20),

We shall now show that a solution a* to (5.7) exists such that a* E (p, 2). Indeed, at
a = p the left hand side of (5.7) is positive and the right hand side equals 0, while at
a = 2 we have the converse relation. For a = a* both cases at the right side of (5.23)
are equal and we get the desired expression for the ratio q. The proof is complete.

Let us note that if the columns of A are normalized, the parameter 0 in (5.5) equals
just maxj Nj, while X can be interpreted as the inverse of a generalized condition index
of A.

We are now ready to prove strong convergence of the Regularized Jacobi Method.

Theorem 3. Adopt definitions of theorem 2. Then the sequence { x u } is convergent to
a solution P E X (K) and there is a constant C such that

where q E (0 , l) is defined by (5.5) .

Proof. Let fi be defined as in the proof of theorem 2. For v > fi from (5.10) and
(5.15) we obtain

Then by (5.4)
llxU+l - xUll < c ~ ~ ~ / ~

with some constant C1. It follows that { x u } is a Cauchy sequence and the distance to
its limit i can be estimated as

By theorem 1, the limit is in ~ (a) . The proof is complete.

Strong convergence of nonlinear Jacobi iterations has been earlier proved in [~ C I] ,
but with small stepsizes (of order l l n) . Our analysis provides more practical stepsize
bounds and rate of convergence estimates relating them to the numbers of nonzeros in
rows, which are for large problems orders of magnitude smaller than n.

6. Implement at ion

An experimental computer code has been developed on the basis of the theoretical
results presented in this paper and an earlier Gauss-Seidel code of [14]. The initial
experiments have immediately shown that scaling is crucial to make the method work in
practice. It has also proved inefficient to carry out primal iterations until the optimality
of each one of the augmented Lagrangian problems is obtained. In fact, our experiments
indicate (see the following section), that just one primal iteration after each dual update
is justified, given that steps for updating the dual multipliers are suitably under-relaxed.

We consider alternative definitions for stepsize in updating the primal variables. In
particular, a constant stepsize is compared against a safe stepsize ~j defined by (4.4).
We also experiment with versions, where the primal steps defined by the former two
variants are used only for determining a search direction, and updating primal variables
is based on line search optimization in that direction. For line search, two alternatives
are tested: first, unconstrained line search followed by under-relaxation and projection
(to meet the bounds on primal variables), and constrained line-search optimization.
Experience with all such variants will be discussed in the following section.

We shall call our implementation Jacobi. An iteration in Jacobi consists of a dual
phase, a primal phase and, depending on the variant, possibly of a line search (along
the direction specified in the primal phase). It should be stressed that all phases of
the method have a great potential for parallelization. The dual phase can be carried
out simultaneously for all rows. Revised prices are then submitted to processors of
the primal phase. After the dual phase is completed for all rows, all primal variables
can be processed in parallel. The line search can be done in parallel as well. The line
search stepsize can be shared by primal processors to update primal variables, and
these values can be subsequently sent to dual processors. The dual phase starts after
all primal variables have been updated. Let us note that sparsity can be exploited in
communication as well. The iterations end when optimality conditions are met within
specified tolerances, or if an iterations limit is met.

It was pointed out that scaling is crucial for an efficient performance of the algo-
rithm. However, any scaling on the top of the one employed in our implementation
is unnesessary, because (excluding the minimum tolerance parameter to be introduced
shortly), our approach is independent of scaling. This means that unless the minimum
tolerance becomes active, the iterations in our algorithm produce the same sequence
of solutions for all problems that are obtained by scaling primal and dual variables.

We shall discuss each one of the three components of Jacobi in more detail shortly.
However, we begin with feasibility tolerances, penalty parameters and data structure
employed in Jacobi.

Feasibility tolerances

A positive dual tolerance vector 6 = (6j) E Rn depending on the current solution
will be applied while checking dual feasibility and complementarity: a reduced cost
E j vanishes, if it is equal to zero within tolerance 6,. Similarly, a positive primal
tolerance vector c = (6;) E Rm depending on the current solution is employed to test

primal feasibility. Tolerances 6 and t are defined for each iteration as follows. First, a
reference primal vector Q = (Q;) E Rm and a reference dual vector V = (V,) E Rn are
defined so that

where xj and p; denote primal and dual solutions at the beginning of the current
iteration. We then define auxiliary tolerance vectors 6' and t' equal to a fraction of
reference vectors V and Q, respectively:

6 '= q5V and t' = q5Q,

where 4 is a relative tolerance. Let a be a minimum tolerance (both for primal and
dual) and denote by 6- and t- the tolerances at the beginning of the iteration. For the
first iteration, such initial values of all primal and dual tolerances are set to a. Finally,
the updated tolerances 6 and t for the current iteration are computed as

where cr is an exponential smoothing parameter. Its purpose is to prevent erratic
behavior of tolerances over the iterations.

Penalty Parameters and Scaling

We shall denote by D; the penalty parameter associated with row i. Let D be the
diagonal matrix with diagonal elements D;. Given a primal tolerance vector t > 0, one
might at tempt to solve the LP problem by introducing large values for D; and solving
the augmented Lagrangian problem for some T. If the resulting optimum price vector
is p, then the primal error y = D-'(p - T) tends to meet the tolerance t . However,
large penalty parameters imply very small primal steps. Therefore, this approach is
extremely inefficient.

In order to cure this handicap, several approaches may be considered. First, fol-
lowing [7] , one might solve a sequence of equilibrium problems gradually enlarging the
penalty parameters until primal tolerance is met. This approach suffers from serious
inefficiency as well. Second, following [12] and [22], we may solve a sequence of aug-
mented Lagrangian problems with maintaining the penalty parameters unchanged, but
shifting the dual multipliers T; from one problem to another: if a t the optimum of an
augmented Lagrangian primal feasibility is violated, for some i , then for the subsequent
problem we increase T; by y; y; D, (cf. (2.13)), where y; is an under-relaxation parameter
and y; is the primal infeasibility. Based on our experience, this approach performs well
provided that one learns at first how to choose the penalty parameters. Again, there is
a risk that if parameters D; are too large we end up with small inefficient steps. On the

other hand, if these elements are too small and optimization of augmented Lagrangians
is not carried to the end, then the sequence of solutions generated in the course of the
iterations does not necessarily converge.

We shall apply our earlier approach of [14] and factorize D; into pS;. Here a
serves as a scaling factor for row i and the penalty factor p is the penalty parameter
in (2.6) (applied to the problem with rows scaled by a) . Again, let 6j and 6; be the
dual and primal tolerances. The penalty parameter is then defined following [14] :

where operator Ej refers to an average over j, for a;j nonzero. Initially we experimented
with Ej being an arithmetic mean. However, a geometric mean proved to result in a
more robust implementation. Finally we ended up with a harmonic mean, which is
cheaper to compute and provides a similar robustness as the geometric mean.

Along with the tolerances, also the penalty parameters will be updated in the course
of the iterations. We shall first apply (6.1) for obtaining auxiliary penalty parameters.
The penalty parameters employed in Jacobi are then obtained via exponential smooth-
ing over iterations. Again, we employ the weight o for the auxiliary parameter and
1 - o for the parameter employed in the preceding iteration. For the first iteration
such initial values are set equal to zero.

The Data Structure

The data in A and c are stored columnwise accounting for sparsity. For the purpose
of dual updates, the locations of nonzero elements of A and c are stored row-wise as
well. Bounds 1 and u are stored as dense vectors. Vector b is stored in bounds for the
logical variables.

Dual Phase

To begin the first iteration, we set all dual multipliers x; to zero. The dual update
of Jacobi consists of the following steps for each row i.

1. Update the penalty parameters, primal tolerances and dual tolerances of the
logical (slack) variables, and compute the primal infeasibility (3.2).

2. Optimality test is carried out for primal feasibility, and for dual feasibility and
complementarity of the slacks for inequalities.

3. Update dual multipliers x according to (3.7) with under-relaxation. The under-
relaxation parameter 7 is constant over the iterations, unless the relative primal
error p; = (y ; l / c ; < p where p is a dual update threshold. In the latter case, 7 is
scaled down by the factor p;/P (the significance of this detail is tested in section
7.3). For inequality rows, x; is projected for correct sign.

4. The price is updated by (3.3), and for inequalities, projected as well.

Primal Phase

To begin the first iteration we set all primal variables equal to zero and project
onto the bounds. The primal update, for each activity j, is as follows.

1. Evaluate the reduced cost cj by (3.4), update the dual tolerances and compute
ATDA,.

2. Perform the optimality test, i.e. dual feasibility and complementarity test, for
column j.

3. Determine the direction hj: Let x j be the level of activity j at the beginning of
the iteration and rj a stepsize parameter. We define

where Cj and dj are given by (4.2) and (4.3). However, if the relative dual error
Icj)/bj < 7, we set hj = 0. Here 7 is a primal update threshold.

4. Determine the updated primal solution: if no line search is considered, then
the updated activity level is x j + hj. Otherwise, a line search is carried out
employing the direction h = (hj) , and the primal variables obtain their revised
values thereafter.

The stepsize rj is either constant for all j , or it is given by rj = min(1, l/CjNj)
following (4.4). Such safe stepsize is computed taking into account only active rows and
columns while determining Nj. A column is considered active at a certain iteration,
if it has failed the optimality test (at least once) during a lag period of iterations.
Similarly a row is considered active, if it is of equality type or if it has been binding
(at least once) over the same lag period. Also in the dual phase, only active columns
are taken into account for computing auxiliary penalty parameters.

Line Search (Optional)

If a line search is applied in the direction h, an updated primal vector is obtained
by taking an under-relaxed step toward the unconstrained line search optimum and
projecting onto the simple bounds. A line search under-relaxation parameter is denoted
by w. Alternatively, we may perform a constrained line search, whereby we check the
feasibility with respect to the bounds on primal variables while moving in the direction
h. In this case no under-relaxation is applied. The computations for the line search
are distributed to primal and dual processors.

7. Computational Tests

Jacobi and some of its variants were tested on 68 problems from the Netlib library. The
set is the same as the one used in our earlier study [14] concerning Gauss-Seidel type

of iterations for serial computing. Tables 1 and 2 show the names and dimensions of
these problems. The serial run times (excluding input and output) in a HP9000/720
for Minos 5.1 using default values for specs parameters are reported as reference times
to be used for efficiency comparisons. For Jacobi, simulation runs were performed on
the same computer to obtain estimates of parallel run times.

The outline of this section is as follows: we discuss first the base case of Jacobi and
compare the results with Minos 5.1. Secondly, the performance of the safe stepsize of
Theorem 1 is compared with a constant stepsize employed in the base case. Thereafter,
constrained line search is applied to the two stepsize variants of Jacobi. Subsequently,
these variants without line search are tested as well. Sensitivity of the base case
of Jacobi with respect to various program parameters is tested by altering a single
parameter at a time. The impact of the number of iterations between updates of
multipliers T ; is studied thereafter. Finally, a comparison of Jacobi against a Gauss-
Seidel approach [14] and against an interior point algorithm [l] is reported.

7.1 The Jacobi Base Case

For the relative tolerance 4, two values are applied in the tests: 4 = 0.01 and 4 = 0.001.
A minimum tolerance a = 0.14, both for primal and dual constraints, is applied. Initial
values for primal variables xj and for dual multipliers T ; are all equal to zero; initial
penalty parameters D; are all equal to zero. For determining active rows and columns,
the iteration count for the lag is Om, with O = 10. A maximum iteration limit is
employed with values 50,000 and 300,000, for 4 = 0.01 and 4 = 0.001, respectively.
Other default parameters of Jacobi are given in Table 3.

Denote by t, the serial run time obtained by a simulation run. Let X be the share
of t, taken by the primal phase (including line search computations allocated to primal
processors) and 1 - X the corresponding share of the dual phase. The share X is
measured for each test problem separately, ranging from 24 % to 56 %. Thus for
parallel computations, omitting communication time among processors and assuming
that there is at least one processor for each row and column, Xt,/n is a measure of the
parallel run time for primal updates and (1 - X)t,/m is that for the dual. Thereby we
obtain a measure of the parallel run time t,:

This formula assumes that all processors (in a particular phase, primal or dual) are
loaded with equal tasks, so that the execution time is the same for all. Alternatively,
we might define the parallel run time based on the worst cases (the longest run times
of primal and dual phases). Our measurement indicates that this definition yields a
run time which is 3.5 times the one given by (7.1), on the average. In the sequel we
shall employ (7.1) for the following reasons. The worst case results from the increase
of the cost in the dual phase due to unequal distribution of nonzeros over the rows.
Nineteen of the test problems contain rows (excluding the objective row) with more
than 100 nonzeros (the maximum being 1477 for woodw). The main effort for the dual
phase is to compute three vector inner products (with dimension equal to the nonzero

I Rows Columns Nonzeros Time

80bau3b
stocfor2
degen3
sctap3
pilot
ganges
sierra
ship121
shipl2s
woodw
sctap2
scfxm3
pilotnov
pilot-ja
czprob
25fv47
ship081
ship08s
pilot- we
nesm
scfxm2
perold
gfrd-pnc
shell
fffff800

agg2
agg3
seba
scrs8

agg
scagr25
standmps
grow22
pilot4
ship041
ship04s
etamacro

Table 1: Number of rows, columns and non-zeros for Netlib test problems. Time is the
reference time (sec) obtained by Minos 5.1.

Table 2: Number of rows, columns and non-zeros for Netlib test problems. Time is the
reference time (sec) obtained by Minos 5.1.

Problem

scsd8
scorpion
standgub
standata
stair
tuff
scfxml
bandm
sctapl
grow 15
capri
bore3d
e226
brandy
sc205
vtp.base
israel
beaconfd
forplan
scsd6
grow7
scagr7
stocforl
sharelb
sc105
share2b
recipe
scsdl
adlittle
sc50a
afiro

Rows Columns Nonzeros Time

398 2750 11334 25.86
389 358 1708 .36
362 1184 3147 .36
360 1075 3038 .36
357 467 3857 3.66
334 587 4523 4.44
33 1 457 2612 1.32
306 472 2659 1.92
30 1 480 2052 .62
30 1 645 5665 3.74
272 353 1786 .58
234 315 1525 .46
224 282 2767 1.26
221 249 2150 1.38
206 203 552 .26
199 203 914 .12
175 142 2358 .70
174 262 3476 .26
162 42 1 4916 .96
148 1350 5666 3.24
141 30 1 2633 .76
130 140 553 .14
118 111 474 .10
118 225 1182 .50
106 103 281 .10
9 7 79 730 .12
9 2 180 752 .04
78 760 3148 .68
57 9 7 465 .06
5 1 48 131 .02
2 8 3 2 88 ,004

Parameter Default Value Interpretation

P 0.5 Penalty factor
w 0.5 Line search under-relaxation
CY 0.5 Exponential smoothing weight

T 0.1 Primal stepsize
rl 1.0 Primal update threshold

Y 0.1 Dual stepsize
P 1 .O Dual update threshold

Table 3: Default values of parameters

count). Such tasks could be further parallelized, for instance, by sharing the capacity
of processors which are less heavily loaded. Therefore, we believe that formula (7.1)
serves as a better indicator of the potential of Jacobi.

We define the speedup of Jacobi against another method as the serial run time of the
latter divided by the parallel run time t , of Jacobi. The simplex method and interior
point methods do not suit for parallel computation the way Jacobi does. Therefore
for these algorithms, we use the serial run time in the comparisons. Obviously, there
is some gain from parallel computation for the non-Jacobi methods as well. Besides,
communication time is omitted for Jacobi. Therefore our speed-ups should be regarded
as optimistic.

Speed-ups for the two tolerances 4 = 0.01 and 4 = 0.001 of Jacobi base case
against Minos 5.1 are depicted in Figure 1 as a function of problem complexity which
is measured by the time required by Minos. In Figure 2 the same speed-ups are shown
as a function of (the inverse of) problem density (the share of nonzeros in matrix A), a
measure which is readily available from problem data. The general tendency in these
results seems to be that the larger the problem in terms of complexity the larger is
the speed-up in favor of Jacobi. For relative tolerance 4 = 0.01 and 4 = 0.001, a
linear regression on logarithms, which is depicted in Figure 1 as well, indicates that
the speed-up increases by a factor of 1.6 when the Minos time doubles. A similar
regression in Figure 2 implies an increase in speed-up by a factor 2.0 when the density
decreases by fifty percent.

Serial run times, iteration counts and relative errors in the objective function value
for Jacobi base case are reported in Tables 4 and 5 and depicted in Figures 3-5, respec-
tively. Omitted figures in Tables 4 and 5 refer to cases which did not converge within
the iteration limit. A general observation in Figure 3 is that the parallel run time as a
function of problem complexity increases slowly: when the Minos time doubles the run
time for Jacobi increases by 27 percent only. Similarly, doubling of Minos time implies
a 20 percent increase in the number of iterations (see Figure 4).

For the entire set of 68 test problems, the average run time for Jacobi was 0.18 sec.

and 0.85 sec., and the average number of iterations was 4900 and 23000, for relative
tolerances $ = 0.01 and $ = 0.001, respectively. Thus the precision requirement has
a significant impact on computational effort: decreasing relative tolerances by a factor
of ten increases the solution time approximately by a factor of five.

The error in the objective function is typically of the same order of magnitude
as the relative tolerance $. Thinking, for instance, of economic applications of linear
programming, the precision obtained by Jacobi appears quite satisfactory in most cases,
in particular, for $ = 0.001. There are some notable exceptions, like problems tuffand
forplan, however. In most nonconvergent cases the accuracy obtained at the iteration
limit appears quite satisfactory; see problems woodw and etamacro, for example. In
such cases it turns out that the algorithm reaches the neighborhood of the optimum
rather fast, but then it fails to meet dual and/or primal feasibility for a few variables
and/or constraints. Avoiding nonconvergence and poor precision in such cases requires
further investigation.

Figures 6-10 illustrate the behavior of Jacobi over the iterations. The largest test
problem in Table 1, called 80bau3b, was chosen as an example, with relative tolerance
$ = 0.001. Figure 6 shows the relative error of the objective function value over the
iterations. At the end, after 28591 iterations, an error of 0.06% is obtained. The same
level is reached already in about 2000 iterations. The long tail, characteristic to Jacobi,
comprising of 90% of iterations is needed to meet the optimality conditions. Figures 7
and 8 show the maximal primal and dual errors (relative to tolerances) and the number
of infeasibilities. In the tail, the relative errors decrease slowly while the number of
infeasibilities is small as compared to the numbers of variables (9799) and constraints
(2263). This too is typical for Jacobi. The run was made with a constant stepsize.
However for the illustration also the safe stepsize i-j was computed at each iteration.
Figure 9 shows the minimum, maximum and average value of the safe stepsize over
the iterations, and Figure 10 indicates the number of active rows and columns (in
percent relative to the number of constraints). The results confirm our theoretical
expectations; the safe stepsizes are quite large and they quickly grow in the final stage
of the algorithm when the numbers of active rows and columns decrease.

The largest Netlib problem, called stocfor3, has 16676 rows, 15695 columns, and
74004 non-zeros. It was successfully solved with Jacobi: for relative tolerance equal
to 0.01, the run time t, was 0.092 sec and the relative error in the objective function
value was 0.044%. Two additional energy-economy models, called 0731 u and 0748,
were obtained from IIASA. Their respective dimensions m x n are 6479 x 4585 and
5171 x 4015, and the numbers of nonzero elements in A are 37269 and 23862. For
relative tolerance $ = 0.01, the run time t, was 0.220 sec and 0.132 sec for o731u and
0748, respectively, and the relative errors in the objective function 0.007 % and 0.056
%.

7.2 Stepsize and Line Search Variants

In Theorem 1 the safe stepsize for primal updates was introduced. We shall now
compare the impact of this rule relative to the base case, where a constant step size
is applied to all primal variables. With respect to line search, we shall compare three

Table 4: Parallel run time (msec), number of iterations and relative error in the objec-
tive function value for Jacobi base case; 4 = relative tolerance.

Error

4=0.01 4=0.001

.00112 .00056

.00573 .00007

.00220 .00010

.00185 .00003

.08303 .00166

.24595 .01750

.00793 .00239

.03603 .00039

.02641 .00047

.00596 .00061

.00026 .OOOOO

.00147 .00009

.00088 .00061

.00662 .00081

.00137 .00014

.23585 .00276

.00683 .00012
,00369 .00150
.00314 .00055
.00761 .00023
.00429 .00056
.05544 .00043
.05750 .00116
.00003 .00026
.00566 .00036
.00254 .00015
.00673 .00067
.02721 .02742
,01201 .00161
.00750 .00684
.01333 .00139
.00607 .00013
.00097 .00050
.00686 .00034
.00490 .00031
.00446 .00042
.00044 .00002

Problem

80bau3b
stocfor2
degen3
sctap3
pilot
ganges
sierra
ship121
shipl2s
woodw
sctap2
scfxm3
pilotnov
pilot-ja
czprob
25fv47
ship081
ship08s
pilot-we
nesm
scfxm2
perold
gfrd-pnc
shell
fffff800
a€@
a m 3
seba
scrs8

a€%
scagr25
standmps
grow22
pilot4
ship041
ship04s
et amacro

Time

4=0.01 4=0.001

1220 1077
99 652
79 4355
3 2 156

1826 8085
175 998
90 303
65 524
19 227

126 808
147 916

1207 2099
469 3347
331 424
198 974
66 298
4 0 7 5

285 1148
527 1459
130 640
144 1248
247 1242
138 376
191 -

24 1209
20 214

117
79 1324
26 6 1
46 76
63 512
43 44

124 479
69 208
49 83
34

Iterations

4=0.01 4=0.001

32059 28591
3899 25349
1692 103296
1145 5392

28392 136015
6982 39307
3187 10490
1436 11475
638 7540

4516 30247
5120 32926

32423 55711
11631 87463
8225 10312
5426 27283
1379 6027
1209 2275
7706 31732

10695 29481
4608 22929
4779 41639

10541 54275
4935 13783
5725
767 41982
660 6891

3909
2937 53044
89 1 2113

2034 3386
2200 19498
1017 1039
3650 14721
1526 4702
141 1 2398
1417

1 Time I Iterations 1 Error 1

Problem

scsd8
scorpion
standgub
standata
stair
tuff
scfxm 1
bandm
sctapl
growl5
capri
bore3d
e226
brandy
sc205
vtp.base
israel
beaconfd
forplan
scsd6
grow7
scagr7
stocfor 1
sharelb
sc105
share2b
recipe
scsdl
adlittle
sc50a
afiro

Average

Table 5: Parallel run time (msec), number of iterations and relative error in the objec-
tive function value for Jacobi base case; 4 = relative tolerance.

Table 6: Average speed-up against Minos 5.1, average relative speed-up against Jacobi
base case and number of non-convergent problems for two stepsize variants of Jacobi.

Line Search

Unconstrained
Constrained
None

Unconstrained
Constrained
None

Unconstrained
Constrained
None

alternatives: unconstrained, constrained and no line search. We shall carry out tests
with the relative tolerance q5 = 0.01 and using 50 smallest of the problems in Tables 1
and 2 only.

Stepsize
Constant Safe

Speedup

37.7 35.3
18.8 19.0
24.0 16.6

Relative Speedup

1 .OO .74
.49 .47
.66 .46

Non-convergence

0 1
0 3
2 1

Unconstrained Line Search

First, consider the two stepsize variants, where for primal updates, an unconstrained
line search is performed, thereafter an under-relaxed step towards that optimum is
taken and finally projection onto the simple bounds is carried out. Table 6 shows the
relative performance of these variants against each other. (Here the constant stepsize
and unconstrained line search refers to the Jacobi base case.) The figures are the
average speedup against Minos 5.1, the average relative speedup against Jacobi base
case and the number of non-convergent problems. We may observe that on the average
the safe steps result in 26% decrease in efficiency. The reason for this is not obvious,
given that line search is applied in each case.

Constrained Line Search

Next, consider variants, where the simple bounds are taken into account in the line
search optimization. Table 6 shows the performance of the resulting two variants as
well. In both cases the solution efficiency decreased considerably as compared with the

variants employing unconstrained line search. For constant stepsize, for instance, the
average run time about doubled.

N o Line Search

Finally, Table 6 shows the result, when line search is omitted so that the primal
update is obtained directly employing the stepsize and projection. These variants
appear somewhat less robust (in comparison with unconstrained line search) in that
more nonconvergent problems appear, and the run time increases as well.

7.3 Parameter Sensitivity

Sensitivity tests concerning program parameters were carried out by varying the default
values one at a time. Again these tests are performed with the relative tolerance
q5 = 0.01 and using 50 smallest of the problems in Tables 1 and 2 only. The results are
summarized in Table 7 showing the average speedup against Minos 5.1, the average
relative speedup against Jacobi base case and the number of non-convergent problems.
Note that the speedups are defined as averages over the problems which converged in
the particular case. Thus it may happen that the speedup against Minos is larger than
in the base case, yet the relative speedup is less than 1. (see p = 1 ., for instance, where
two nonconvergent problems appear). The default values of parameters are indicated
in parentheses.

We conclude that a line search stepsize w = 1.0 results in a run time increase of 60 %
as compared with the Jacobi base case. This is explained by often too long steps which
after projection result in a decrease in the function value. On the other hand, w = 0.3
seems too conservative, so that on the average the run time increases by about 40 %.
For the penalty parameter, p = 0.2 appears too small resulting in slow convergence of
the dual multipliers, and p = 1.0 seems too large so that the convergence of the primal
variables slows down. Besides, two nonconvergencies appear in the latter case. The
run time sensitivity with respect to changes in a appears relatively small.

For dual stepsize y, the default value y = 0.1 performs better than comparing
values y = 0.05 and y = 0.2. The loss in efficiency in these two cases is 30-50 %.
A similar conclusion applies to the dual update threshold parameter P for which the
default value is P = 1. The values P = 0.5 and P = 2 resulted in a loss of efficiency of
20-30 %. For P = 0, the run time tripled on the average and two problems failed to
convergence. This may justify the use of parameter P.

Changes up and down in the primal stepsize constant T results in some loss of
efficiency, in particular for the smaller value T = 0.05, where robustness suffers as well.
For the primal update threshold 17, instead, a change down from the default value
17 = 1 always improves. Besides, generally the precision in the objective function value
improves as well. These runs may be considered as our best cases of Jacobi so far.

As a final parameter test we experimented with multiple sweeps of primal and dual
phases between the updates of the dual multipliers T; . The approach is the same as
the Jacobi base case except that we update the dual multipliers in every nth iteration
only. We experimented with n equal to 2, 5, 10 and 20, and y equal to 0.1, 0.2, 0.5,

Table 7: Sensitivity with respect to parameters w , p, a, y, p, T and 77 (default values
are indicated in parentheses). The figures are average speed-up against Minos 5.1,
average relative speed-up against Jacobi base case and the number of nonconvergent

Jacobi Base Case

Line search stepsize (w = 0.5)
w = 0.3
w = 1.0

Penalty parameter (p = 0.5)
p = 0.2
p = 1.0

Exponential smoothing (a = 0.5)
a = 0.3
a = 0.7

Dual stepsize (y = 0.10)
y = 0.05
y = 0.20

Dual update threshold (p = 1.)
,B = 0.0
p = 0.5
p = 2.0

Primal stepsize (T = 0.10)
T = 0.05
T = 0.15

Primal update threshold (77 = 1.0)
77 = 0.0
77 = 0.5
77 = 0.9

Number of sweeps (K = 1, y = 0.1)
K = 5, y = 0.1
K = 5, y = 0.2
K = 5, y = 0.5
K = 5 , y = 1.0
K = 5, y = 1.5

problems.
27

Relative Non-
Speedup Speedup Convergence

37.7 1 .OO 0

34.2 0.71 1
23.2 0.64 1

29.9 0.79 0
41.9 0.86 2

47.7 1 .OO 1
32.2 0.85 0

32.0 0.67 1
37.1 0.78 1

15.7 0.33 2
31.7 0.84 0
35.7 0.75 1

38.3 0.78 2
33.8 0.90 0

46.2 1.23 0
43.6 1.16 0
45.2 1.20 0

16.0 0.54 1
30.8 0.64 1
32.6 0.86 0
35.8 0.93 1
43.8 1.18 2

1.0 and 1.5 (all other parameters having their default values). For K = 2, in the best
case with y = 0.2, the parallel time was 9 % less than in the Jacobi base case. For
other values of y the performance slightly deteriorated as compared with the base
case. For K = 5, the results are given in Table 7. The only case with an increase in
the average speed-up occurs with y = 1.5; however, two nonconvergencies appeared
so that the case is less robust compared with the Jacobi base case. For K equal to 10
and 20, improvement with respect to the Jacobi base case was not achieved, neither in
speed-up nor in robustness. In conclusion, we observe that an increase in the number
of sweeps K allows an increase in stepsize y for the dual multipliers. However, at the
same time the robustness of the approach tends to suffer without any significant gain
in the run time.

7.4 Comparison with Gauss-Seidel and Interior Point Met h-
ods

Figure 11 shows the speed-up of the base case of Jacobi against a serial algorithm
based on Gauss-Seidel type of iterations for minimizing augmented Lagrangians [14].
The problems from Tables 1 and 2 for which both methods converged were chosen
for comparisons. The Gauss-Seidel approach basically differs from Jacobi in that the
primal variables are updated sequentially, and the price vector p is revised after the
update of each primal variable. No line search is employed in Gauss-Seidel. Again
the Minos time is taken as a measure of problem complexity. We may conclude from
Figure 11, that the speed-ups appear somewhat independent of the problem complexity.
However, when the relative tolerance q5 is decreased from 0.01 to 0.001, the average
speedup decreases from 26 to 9, on the average.

Finally, Table 8 shows a comparison between Karmarkar's algorithm, Jacobi base
case and Minos 4.0. The speed-up factors for Karmarkar are adopted from [I], from
which all Netlib problems with over 800 constraints have been chosen for the compari-
son. Again, the comparison is made assuming that Karmarkar's algorithm and Minos
are run in a serial and Jacobi in a parallel computer. For relative tolerance q5 = 0.01
and q5 = 0.001, the speed-ups of Jacobi appear favorable. However, for q5 = 0.01, the
precision is not always satisfactory, notably for the problem 25fv4'7 (see Table 4).

8. Conclusions

The linear programming method analysed in this paper updates the dual variables as in
the multiplier method and the primal variables by under-relaxed Jacobi-type iterations.
Each iteration of the method is highly parallelizable.

Our theoretical analysis provides us with the estimates of safe stepsize coefficients
and of the convergence ratio of the method. They turn out to be independent on the
size of the problem and on penalty value and are determined mainly by the average
number of nonzeros that appear in the rows of the constraint matrix.

The computational experience gained so far indicates that the method can be very
efficient for large problems, especially in parallel computing environments, where we

sctap3 1481
ship121 1152
shipl2s 1152
sctap2 1091
scfxm3 991
czprob 930
25fv47 822

Problem Rows

Average

Table 8: Speed-up factors for Karmarkar's algorithm and Jacobi base case relative to
Minos 4.0; 4 = relative tolerance.

Karmarkar
Speedup

can expect speedups of many orders of magnitude. It also shows that our theoretical
estimates of safe stepsizes have practical importance.

Jacobi Speedup
4 = 0.01 4 = 0.001

Acknowledgement

Financial support for this work is gratefully acknowledged from The Foundation
for the Helsinki School of Economics. The authors also thank Ms. Irina Ivanova for
her help in preparing the pictures.

References

[:I] I. Adler, M. Resende, G. Veiga and N. Karmarkar, An Implementation of the
Karmarkar Algorithm for Linear Programming, Mathematical Programming 44
(1989) 297-335.

[2] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Aca-
demic Press, 1982).

[3] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation
(Prentice-Hall, Englewood Cliffs, 1989).

[4] G Cohen and D.L. Zhu, "Decomposition-coordination methods in large scale op-
timization problems: the nondifferentiable case and the use of augmented La-
grangians," in: Advances in Large Scale Systems, vol. 1, J . B. Cruz (ed.), JAI
Press 1984, pp. 203-266.

[5] G.B. Dantzig, Linear Programming and Extensions (Princeton University Press,
Princeton, 1963).

[6] G.B. Dantzig and P. Wolfe, "Decomposition principle for linear programs", Oper-
ations Research 8(1960) 101-1 11.

[7] Fiacco, A. and G. McCormick, Nonlinear Programming: Sequential Unconstrained
Minimization Techniques (John Wiley & Sons, 1968).

[8] M. Fortin and R. Glowinski, "On decomposition-coordination methods using an
augmented Lagrangian," in: Augmented Lagrangian Methods: Applications to
the Numerical Solution of Bocudery-Value Problems, M. Fortin and R. Glowin-
ski (eds.), North-Holland, Amsterdam, 1983, pp. 97-146.

[9] D. Gabay and B. Mercier, "A dual algorithm for the solution of nonlinear vari-
ational problems via finite-element approximations," Comput. and Math. Appl.
2(1976), pp. 17-40.

[lo] R. Glowinski and A. Marocco, "Sur l'approximation par klkments finis d'ordre un
et la rksolution par pknalisation dualitk d'une classe de problkmes de Dirichlet non
linkaires," Revue Fran~aise d'Automatique Informatique Recherche Ope'rationelle,
Analyse Nume'rique, R-2(1975), pp. 41-76.

[l :I.] 0 . Giiler, "Augmented Lagrangian algorithms for linear programming", Journal
of Optimization Theory and Applications 75(1992) 445-470.

[12] M. R. Hestenes, "Multiplier and gradient methods", Journal of Optimization The-
ory and Applications 4(1969) 303-320.

[13] M. Kallio, D. Dykstra and C. Binkley (eds.), The Global Forest Sector: An Ana-
lytival Perspective (John Wiley & Sons, 1987).

[14] M. Kallio and S. Salo, "Tatonnement procedures for linearly constrained convex
optimization," Helsinki School of Economics, 1992 (accepted for publication in
Management Science).

[15] N. Karmarkar, "A New Polynomial Time Algorithm for Linear Programming,"
Combinatorica 4(1984) 373-395.

[16] J.M. Mulvey and A. Ruszczyriski, "A diagonal quadratic approximation method
for large scale linear programs," Operations Research Letters 12(1992) 205-315.

[17] J.M. Mulvey and A. Ruszczyriski, "A new scenario decomposition method for
large-scale stochastic optimization," technical report SOR 91-19, Department of
Civil Engineering and Operations Research, Princeton University, Princeton 1991
(accepted for publication in Operations Research).

[18] B. Murtagh and M. Saunders, MINOS 5.1 User's Guide, Technical Report SOL
83-20R, Systems Optimization Labooratory, Stanford University, 1987.

[19] Netlib, LP Test Problems, Bell Laboratories.

[20] A.R. De Pierro and A.N. Iusem, "On the convergence of SOR- and JOR-type
methods for convex linear complementarity problems", Linear Algebra and Its
Applications 154-156(1991) 601-614.

[21] B.T. Polyak and N.V. Tretyakov, "An iterative method for linear programming
and its economic interpretation", Matecon lO(1974) 81-100.

[22] M. J.D. Powell, "A method for nonlinear constraints in minimization problems",
in: Optimization, R. Fletcher (ed.), Academic Press, New York 1969, pp. 283-298.

[23] R.T. Rockafellar, "Augmented Lagrangians and applications of the proximal point
algorithm in convex programming", Mathematics of Operations Research l(1976)
97-116.

[24] A. Ruszczyriski, "Augmented Lagrangian decomposition for sparse convex opti-
mization", working paper WP 92-75, International Institute for Applied Systems
Analysis, Laxenburg 1992 (accepted for publication in Mathematics of Operations
Research).

1251 P. Samuelson, "Spatial Price Equilibrium and Linear Programming", The Amer-
ican Economic Review 42(1952) 283-303.

[26] G. Stephanopoulos and W. Westerberg, "The use of Hestenes' method of multi-
pliers to resolve dual gaps in engineering system optimization", Journal of Opti-
mization Theory and Applications, 15(1975) 285-309.

[27] P. Tatjewski, "New dual-type decomposition algorithm for nonconvex separable
optimization problems", Automatica, 25(1989) 233-242.

[28] N. Watanabe, Y. Nishimura and M. Matsubara, "Decomposition in large system
optimization using the method of multipliers," Journal of Optimization Theory
and Applications, 25(1978) 181-193.

Figure 1. Speed-up of Jacobi base case against Minos 5.1 as a function of serial run
time for Minos; 4 = relative tolerance.

r, 0.1 J u I

0.001 0.01 0.1 1 10 100 1000 10000

Minos time (sec.)

1000

g l o o
0
0)
al g 1 0 -

1 --

100 --

10 --

1 --

0.1 7 I

0.001 0.01 0.1 1 10 100 1000 10000

Minos time (sec.)

--

--

Figure 2. Speed-up Jacobi base case against Minos 5.1 as a function of the inverse
of problem density; 4 = relative tolerance.

0.1 b I

10 100 1000

lldensity

0.1 In m
8-4 I

10 100 1000

lldensity

