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Foreword 

The paper considers the problem of exact observability for nonstationary linear hyperbolic sys- 

tems with nonstationary interior observations in the case when outputs lie in L,M+l (0, O), where 

n stands for the spatial dimensionality of the system in question. Three types of scanning 

observations are considered and the existence of measurement curves and set-valued maps for 

sensors that ensure exact observability is established. The proposed method is based on a priori 

energy estimates of instantaneous type for solutions. It allows to obtain required measurement 

curves that are continuous in [0,O] or measurement maps that are lower semi-continuous in 

[O, O] with respect to Lebesgue measure. 

iii 
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1. Introduction, statement of problem. 

Let R be a bounded domain of an n-dimensional Euclidean space Rn with a boundary 80. 

We consider the following homogeneous problem for the nonstationary hyperbolic equation: 

with unknown initial conditions yo and yl. We assume that A( t )  is time-varying and 

uniformly coercive, 



a a a 
A(t) = C - aij(2, t)- - C ai(z, t)- - U(Z,  t), 

i,j=l 
axi a x j  ;=I axi 

We further assume that all the coefficients in (1.2) are sufficiently smooth and 

(I-3] 1 aijt, ai, a,  aijtt, aij, I 5 p1, p i  = const > 0. 

The main aim of the paper is to study the problem of exact observability for the system (1.1)- 

(1.3) with respect to the "energy" space H = Hi(R) x L2(L?) in the case when observations 

are finite dimensional at every instant of time. The latter is typical in physical situations. 

We shall consider three types of interior scanning observations that may be represented in 

the following general form: 

Here .(a) is an (n + 1)-dimensional output, y, = (y,,, . . . , y,,)' and G(t)  stands for an 

observation operator. Each type of observations requires a corresponding regularity of solutions. 

In order to provide i t ,  in every particular case we introduce the set of admissible initial conditions 

that enables to ensure a needed smoothness. We denote this set by Ho, (Ho C H )  and endow 

Ho with the "energy" metric, namely, 

For the sake of simplicity we shall use below the notation ( (.) I for 1) ( a )  . 

The system described by (1.1)-(1.4) is said to be exactly observable (see [2,4]) on {Ho, B), 

where B stands for the space for outputs, if 



for any y that  satisfies (1.1)-(1.3) and such that {y(-, 0), yt(-, 0)) E Ho. 

The problem of exact observability for stationary hyperbolic systems mostly with different 

types of infinite-dimensional (if the dimensionality of x is higher than 1) observations a t  every 

instant of time has been studied by a number of authors by means of the Hilbert Uniqueness 

Method introduced by Lions [9, 101. This method supposes that  all the spaces in question are 

Hilbert. The case of finite-dimensional a t  every instant of time interior observations has been 

studied in the stationary setting by Lop Fat Ho [ l l ]  for the one-dimensional wave equation with 

outputs in L2(T) (although [ l l ]  mainly deals with outputs from L2((xl, 22) x T)). El Jai and 

others [3] have discussed how HUM can be linked with the pointwise sensor structure. Due to  

finite speed of propagation, observations received from the stationary sensors are able t o  provide 

the system with exact observability only if the duration of observations is big enough. 

In the present paper we establish the existence of scanning observations (they are natu- 

ral when studying nonstationary processes) of three types with (n + 1)-dimensional images 

a t  every instant of time that  make the nonstationary system (1.1)-(1.3) (in general, of arbi- 

trary spatial dimensionality) be exactly observable when the space for outputs is L?+,(T) = 

Lm(T)  x . . . x Lm(T) (e.g., not Hilbert and not separable). This space is rather natural in 
\ I .. 

n i l  
applications when working with measurement data. The applied techniques is based on the 

"energyn estimates for solutions (we remind that the nonstationary system (1.1) is not conser- 

vative) that  are of instantaneous type. This approach has been used for the wave equation in 

[6] and for parabolic systems in [7]. Another approach to  observability problem with scanning 

observations has been suggested for parabolic systems by Martin [12], who essentially used the 

stationary property of the system in question. 

The paper is organized as follows. Section 2 deals with a number of preliminary results 

concerning the correctness of observations. We begin then (Section 3) by studying the one 

dimensional nonstationary hyperbolic equation with scanning pointwise observations: 

In this case measurements are taken in the domain l2 along prescribed measurable curves 

z'(.), i = 0 , l .  In order to  provide a necessary smoothness of solutions, we assume that 



We prove the existence of measurement curves in (1.6) that make the system (1.1)-(1.3), (1.7) 

be exactly observable. These curves may be selected t o  be continuous in [O,8). 

In Section 4 we consider observations of the following type: 

where ~ ~ ~ ( ~ ) ( f ' ( t ) ) ,  i = 0 , l  is the Euclidean neighborhood in Rn of radius hi(t) of point 

zi(t), 

the measurable functions zi(t), h;(t) > 0 are given. We extend the results of Section 3 for the 

case of the observations (1.8) when x E R1 under the same regularity conditions for solutions. 

However, we do not manage here t o  establish the required existence results for the general case 

when the spatial dimensionality of the system in question is higher than 1 (at least under the 

assumed regularity). In order t o  do the latter, in Section 5 we introduce generalized scanning 

observations, as follows: 

where {Q~( t ) }~=, ,  O1(t) are given set-valued maps from [O,8] into the set of all measurable 

subsets of 0, 



and {v,O(~,t));=~, vl(x,t) are given measurable functions of sign type, so as 

It is assumed here and everywhere below that, if one or more sets in (1.9) are of zero-measure 

at some instants of time, the corresponding coordinates in (1.9) are omitted (we do not make 

observations at  these instants) and substituted for zero. The last type of observations may be 

considered as a next step in the generalization of scanning observations that corresponds the 

regularity of the system (1.1)-(1.3) in the general case, when measurement curves can not be 

well-defined. The maps {Rg(.));=l, R1(-) play here the role of measurement curves. However, 

in order to ensure the enclosure of the range of observation operator in (1.9) into LE+l(T), we 

set 

We study properties of the observations (1.9) and establish the existence of set-valued maps 

{RO(.));=l, R1(-) that make the system (1.1)-(1.3), (1.10), (1.9) be exactly observable. These 

maps may be selected to be lower semi-continuous with respect to Lebesgue measure in [O, 81. 

2. Preliminary results. 

It is known that under the conditions (1.2)-(1.3) the system (1.1) admits solutions from the 

"energy" class [8]: 

and the "energy" estimate holds, 

Here c(t) is a monotone positive non-decreasing function that is defined only by the constants 

from (1.2)-(1.3) [8]. In turn, this implies the existence of such a constant i > 0 that 



E ' / ~ ( ~ ( - ,  0)) I e E ~ / ~ ( Y ( . ,  t)), vt E [o, el 

for any solution of the system (1.1), since, due to  PoincarC's inequality, 

the standard norm in H,'(Q) x L2(R) is equivalent to  the "energy" one. 

Thus, we may conclude that if all the sets {R;(t)),"=,, R1(t), t E [O, 81 are measurable, 

the observations of type (1.9) are well-defined at  every instant of time (for (1.8) it is always so) 

under the general assumptions of Section 1. In order t o  ensure the enclosure of the corresponding 

ranges of the observation operators in (1.8), (1.9) into Lr+l(T), we have t o  add additional 

requirements on the dynamics of measurement maps that will be specified in Sections 4, 5. 

Assume now that z E R C R1 and Ho = ( ~ ~ ( 0 )  n Hi(Q))  x H,'(Q). In addition to  

(1.2)-(1.3), we assume that 

In this case [8], 

and, consequently, by virtue of the embedding theorems [13], H1(R) C C(n). The latter 

implies that both yx(z, t), yt(z, t )  are of the Carathkdory type and for any pair of measurable 

functions {zO(t), zl(t)), t E T the observations (1.6) are well-defined [5, 11. We recall further 

that for any solution y of (1.1)-(1.3), (1.7), (2.2) we have the following estimate [8]: 



where c1 (8 )  also depends upon v l ,  v2, p1, p2. The last estimate yields 

( I ; )  . L ? ( T ; C ( Q ) )  

and 

for any pair of measurable curves { i t0( . ) ,  i t 1 ( . ) ) .  

Thus, we conclude that the observations of type (1 .6)  are well-defined under the assumptions 

(1 .2) ,  (1 .3) ,  (2 .2) ,  (1 .7 ) ,  so as the range of the observation operator (1 .6)  belongs to  L F ( T ) .  

Remark 2.1. Set 

where 

Then we may say that in the present paper we study the property of bounded invertibility of the 

operator K with respect to  the "energy" norm and the constant 7 in (1 .5 )  may be selected as 

follows 

3. The one dimensional hyperbolic equation: pointwise obser- 

vat ions. 

In this section we consider the system (1.1)-(1.3),  (1 .6 )  assuming that the conditions (1 .7) ,  (2 .2)  

are fulfilled. The main result here is the following 

Theorem 3.1. There exist measurement curves { z O ( . ) ,  z l ( . ) )  that provide the system 

(1.1)-(1.3),  ( 1 .7 ) ,  (2 .2) ,  (1 .6)  with exact observability. 



We begin the proof of Theorem 3.1 with an auxiliary result. Namely, we show how for any 

given solution y one can construct measurement curves that ensure the inequality (1.5) for 

this particular solution. In addition we show that, in order to do this, i t  is sufficient to make 

observations in any a priori given subset (of positive measure) of T. 

Let y be an arbitrary solution of system (1.1)-(1.3), (1.7), (2.2) and 0 > 0 be given. Let 

r be an arbitrary measurable subset of the time interval (0,e) such that meas{r} > 0. We set 

next 

eo = {(x, t) E 0 x r I Y:(x,~) L vrai m a x ~ : ( ~ , t )  - 0 1, 
(z,t)€nxr 

el = {(x, t)  E f2 x T 1 Y?(X, t) 2 vrai max y?(x, t )  - p }. 
(z,t)€nxr 

It is not hard to see that both sets eo and el are non-empty and have positive measures for 

any 0 > 0. 

We introduce now two set-valued maps as follows 

where r i  = dom Fi(t) = {t 1 { X I  (x, t )  E e;} # 01, i = 0, l .  

By virtue of the embedding theorems [13], the sets Fo(t) and Fl(t) are closed almost 

everywhere accordingly in r0 and rl. Applying the theorem on measurable selection [5, 11, we 

conclude that there exists such a pair of measurable functions {iii(t), t E rO; ~ ' ( t ) ,  t E r l )  that 

We may easily extend the above functions for the whole interval T (assuming only iiO(t), iil(t) E 

n ), so as 



(3.6) 

Note next that 

0 yz(2°(t), t)  2 vrai rnax y:(z, t)  - P, a.e. in T , 
( z , t ) E n x r  

y:(~'(t), t)  2 vrai rnax y?(z, t) - P, a.e. in r'. 
( z , t ) E n x r  

vrai max E(y(.,t)) = vrai max (y:(z, t)  + y:(z, t))dz 5 
t € r  t € r  

5 meas {R) vrai rnax (y:(z, t)  + y:(z, t)). 
( x , t ) E n x r  

Finally, combining (2.1), (3.5)-(3.7) yields the needed estimate: 

Thus, we arrive at 

Lemma 3.1. Given solution y of the system (1.1)-(1.3), (1.7), (2.2) and given /3 > 0 and 

r C T, meas { T )  > 0, an arbitrary pair of measurable curves {zO(t), ~ ' ( t ) ) ,  t E T constructed 

along the lines (3.1)-(3.4) ensures the estimate (3.8). 

Remark 3.1. We stress that the estimate (3.8) is uniform over the set of all solutions of the 

system in question. 

Proof of Theorem 3.1. For any solution of the system (1.1)-(1.3), (1.7), (2.2) Lemma 3.1 

allows us to construct (on an arbitrary subset of T )  measurement curves that ensure (3.8). 

This, taking into account Remark 3.1, gives us a hint to seek required curves for the set of all 

solutions among the ones that consist of non-overlapping pieces each of which, in turn, ensures 

(3.8) for some particular solution. 

Let Y stand for the set of all the solutions of the system (1.1)-(1.3), (1.7), (2.2). We recall 

that 

Y c H ~ ( Q ) .  



Take any positive value 6. Since Ho in our case is separable, we can select in Y, by virtue of 

(2.1) and (2.3), a countable &net, 

in such a way that for any y E Y there exists an element yk*, so as 

(3.9) 

and 

(3.10) 

It is clear that y6 may be selected in infinitely many ways (see Remark 5.6 below). Moreover, 

due to (2.3), we may suppose that (3.10) is completed by the estimates 

We proceed now to the construction of a pair of measurement trajectories that ensure the 

estimate (1.5). 

Let { t k )g l  be an arbitrary monotone sequence in T, so as 

It is clear that there exists t* E [0, O] , 

t* = lim tk. 
k-+oo 

jFrom Lemma 3.1 it follows that for each k there exists a pair of curves {?Ok(.), ?Ik(-)} that 

ensure the estimates 



Let {ZO(.), 3'(.)) be an arbitrary pair of measurable trajectories defined on [0,8] such 

that 

Let us show that {iiO(.), z'(-)) satisfy the necessary requirements. Take any solution y 

of the system (1.1)-(1.3), (1.7), (2.2) and let yk be an element in y6 for which theestimates 

(3.10)-(3.11) are fulfilled (for the sake of simplicity we omit the symbol " t " here). Hence, in 

particular, 

(3.14) 11  Yx - YZ k I I ~ ~ ( ( t ~ , t ~ + , ) ; c ( n ) )  I '3 11 Yt - k I l ~ ~ ( ( t ~ , t ~ + ~ ) ; ~ ( f i ) )  < - 6. 

iFrom (3.10) (adjusted for our pair of functions), i t  follows 

The last estimate and (3.12)-(3.13) imply 

Now, by virtue of (3.14), we arrive a t  

E ~ / ~ ( Y ( - . ~ ) )  I meas1I2 {Q) (2 I I  YZ(~O('), .) l l im( tk , tk t l )  + 

In other words, we obtain the estimate (1.5) with 



This completes the proof of Theorem 3.1. 

Corollary 3.1. Measurement curves in Theorem 3.1 may be selected to be continuous in 

[o, 8). 

Indeed, set t* = 8. Then, taking into account that for any solution y both y,(z,t) and 

yt(z,t) are continuous in z for almost all t E [0,8] (we recall that y E H2(Q)), we can 

modify the above proof in order to obtain the needed assertion. 

Remark 3.2. From (3.16) and Remark 2.1 we deduce that 

Remark 3.3. In the proof of Theorem 3.1 the set of all the solutions of the system (1.1) plays 

an important role. However, by virtue of the linearity of the equations (1 . l )  and (1.6) in order 

to prove Theorem 3.1 (in general, for another constant r), this set may be replaced by the set 

of all those solutions that have unit "energy" norm at the initial instant. 

4. Spatially-averaged observation operators of type (1.8). 

We begin by studying the properties of the observations of type (1.8). 

Let us recall first that y E C([O,8]; H )  and, hence, for any t E [O,8] the sets of Lebesgue 

points of the functions (in z )  y,(z,t) and yt(z, t) have a full measure in R, namely, 

(4-1) meas{Q \fl(yz(., t))) = 0, meas{Q \R(yt(., t))) = 0, vt E [O, 81, 

where (we recall that 52 is open) 

R(yz(-, t)) = {z I lim I meas-'{Sh(z)) 
h-+O 

Sh (21 



O(yt(., t)) = {z I lim I meas"{~h(z)) / yt(s, t)ds - yt(z, t) I = 0). 
h+O 

Sh(") 

Let F( t )  be a set-valued map from T into the set of all the measurable subsets of O. We 

shall say that F ( t )  is continuous (see [I]) with respect to Lebesgue measure at  t = t* if 

meas{F(te) A F(te + At)) + 0, At + 0, 

where AAB stands for the symmetric difference: 

AAB = (A\B) U(B\A). 

Remark 4.1. The continuity of F(t)  at  t = t* implies the continuity of the function 

f ( t )  = meas{F(t)) at  t = t*. 

Lemma 4.1, Let O*(t), t E [0,8] be a continuous with respect to Lebesgue measure set- 

valued map with images that are of positive measure for all t € [O,8]. Then, for any solution 

y of the system (1.1)-(1.3) the following functions 

are continuous in time. 

Proof. Indeed, since the solutions of the system (1.1) are functions that are continuous in 

time in the "energyn norm, the functions in (4.2) are continuous as superpositions of continuous 

functions. We obtain, for example, 

1 / ~x,(z, t )dz - I meas{Oe(t)) meas{Oe(t + At)) / yXp(z, t+At)dz I 5 
n*(t) R*(t+At) 



From here i t  follows 

1 

meas{R*(t + At)) 
n0(t+At) 

+ (I meas-'{R*(t)) - meas-'{R*(t + At)) ( meas1f2 (R*(t + At)) + 

+ me=-'{Q*(t)) me=lf2{R*(t) A n*( t  + a t ) )  ) 11  yx,(.,t + ~ t )  I I ~ ~ ( ~ )  . 

All the other terms in (4.2) may be evaluated in the same manner. This implies the conclusion 

of Lemma 4.1, since we recall that y E C([O, 81; H). 

Lemma 4.2. Given solution y of the system (1.1)-(1.3) and given P > 0 and an interval 

r c T, there exist such a set of simple measurable functions hi(.), ifi(-), i = 0 , l  and an 

interval r* c r that the following estimates are fulfilled in r*  : 

(4.3) (meas-' {s~,(~) (ifO(t)) n R) / yx(z,t)dz 2 vrai max y:(z,t) - P, t E r*, 
(x,t)Enxr 

{sho(t)(zo(t))nn) 

(4.4) (rneas-'(shl (t)(ifl ( t))nR) / yt(z,t)dz)2 2 vrai maxy:(z, t )  - P, t E r*. 
(z,t)Enxr 

{shl(t)(zl(t))n~l 

P w f .  Indeed, due t o  (4.1), we can specify an instant t = t* and associated pairs (h; > 

0, 3' E R), i = 0 , l  that ensure the estimates 

(rneas-'(~h,(if~) n R) / yx(z, t*)dz )2 > vrai max y:(z, t )  - P/2, 
(z,t)Enxr 

isho (zO)nn) 

(meas-'(Sh, (if1) n R) / yt(z, t*)dz )2 > vrai max y:(z, t )  - PI2. 
(x,t)Enxr 

ishl (21 Inn) 

Hence, applying Lemma 4.1 yields the required assertion. 

We extend now the results of Section 3 for the case of observation operators of type (1.6). 



Theorem 4.1. There exists a class of functions {zO(.), zl(.), ho(-), h l ( - ) )  that make the 

system (1.1)-(1.3), (1.7), (2.2), (1.8) be exactly observable. 

Proof. Since the estimates (4.3), (4.4) play the role of the relations (3.5), (3.6) of the 

previous section, we enable to prove first the assertion of Lemma 3.1 (adjusted for our case) for 

the observations of type (1.8). Then, noting that 

m e a s - ' { ~ ~ ~ ( ~ ) ( f ~ ( t ) )  n Q} / l d z  = 1, V ~ E T ,  i = 0 , 1 ,  

tshi(t)(zi(t))nn1 

we obtain that the inequalities (3.14) imply 

where G( . )  stands for the observation operator in (1.8). Since the latter plays a crucial role in 

deriving (3.15), we may establish the required assertion of Theorem 4.1. 

Remark 4.2. Measurement maps in Theorem 4.1 may be selected piecewise constant with a 

countable number of pieces or continuous with respect to Lebesgue measure in [0,9). 

The existence of a &net (with respect to the "energy" norm) in the set of all the solutions 

of the system (1.1)-(1.3), (1.7), (2.2) plays an important role in the proofs of Theorems 3.1, 

4.1. An addition, and that is critical, such a net simultaneously must generate, due to (1.4), the 

associated net in the set of outputs (see (3.11)). We remind that the space for outputs LT(T) 

is not separable and, therefore, the construction of an appropriate net in the above is essentially 

based on a priori estimates of instantaneous type for solutions of the system in question. In 

the case of one dimensional spatial variable the construction of a suitable net has been achieved 

by applying the embedding theorems and a priori estimates (2.3)-(2.4). However, when the 

dimensionality of the spatial variable exceeds 1, we do not manage to obtain the required result 

at least under the regularity conditions (1.2), (1.3), (1.7), (2.2). A possible way to overcome 

this difficulty is to increase the regularity of the system (1.1). For example, we may restrict 

ourselves by classical solutions. In this case we can construct a proper net using the separability 

of the space of continuous functions. Another way is to introduce more general type of scanning 

observations in order to make them be adequate to the regularity of system in question. In the 

next section we shall pursue this way. 



Remark 4.3. In the sequel of this section we point out a possible (direct) extension of 

Theorems 3.1, 4.1 for the case of n-dimensional spatial variable: 

Let YI be an arbitrary countable set of solutions to the system (1.1)-(1.3),  

Given 6 > 0,  we consider an arbitrary set 36) for which YI is a &net in the sense of (3.10),  

(3.11).  Then, the assertion of Theorem 4.1 may be extended for the set y6) with 

5. Generalized spat ially-averaged observations. 

The main result of this section is 

Theorem 5.1. There exist set-valued maps {R: ( t ) }$ l ,  R1 ( t ) ,  t  E [0 ,8]  that make the 

system (1.1)-(1.3),  (1.10),  (1.9)  be exactly observable. 

The assertion of Theorem 5.1 includes the statement that required maps ensure the enclosure 

of the range of the corresponding observation operator into L?+, (T). 

We begin again by studying the properties of observations (1.9) .  Set 

Then we may rewrite the formula (1.9)  in the form 



Lemma 5.1. Let {R:*(-)):=,, R i ( . )  in (5.1) be continuous with respect to  Lebesgue 

measure in [ O ,  81 and all the sets { R ; ( ~ ) ) F = ~ ,  R1( t )  be of positive measure for all t E [O,  81. 

Then outputs of the system (1.1)-(1.3), (1.9) are continuous in [0,8]. 

The assertion of Lemma 5.1 immediately follows from Lemma 4.1. 

The following class of measurement maps plays a crucial role below. 

Assumption 5.1. Let F ( t )  be a set-valued map from T into the set of all the measurable 

subsets of 0. We shall say that F ( t )  satisfies Assumption 5.1 at t = t* if 

1. it is lower semi-continuous [ I ]  at  t = t* with respect to  Lebesgue measure: 

V ul > 0 3 u2 > 0 such that 

(5.2) meas{F(t*) \ F(t* + A t ) )  < ul ,  V A t ,  ( A t  1 < u2; 

Remark 5.1. 

i) I f  F ( t )  satisfies Assumption 5.1 everywhere in [O,8], then the function f ( t )  = 

meas{F( t ) )  is lower semi-continuous in [0,8]. 

ii) Let T *  be a closed subinterval of T .  Then measurement maps satisfying Assumption 

5.1 in T *  ensure the enclosure of outputs of the system (1.1)-(1.3), (1.9) into L:+,(T*). 

We introduce now measurement maps that satisfy Assumption 5.1 in [O,8] and allow us 

then to  extend the result of Lemma 3.1 for the case of generalized observations (1.9). 



Let y be an arbitrary solution of the system (1.1)-(1.3) and /3 > 0 be given. We set for 

tE[O,B], p = l ,  ..., n: 

(5.4) 
0 

T ~ + ( Y '  t)  = 

= {z E 0 I yXp(z, f )  > 0, yXp(z,t) > meas-'/2{0} min 11  yxp(.,t) I l ~ z ( ~ )  - P}, 
t€[O,Ol 

(5.4)' rp-(y,t) 0 = 

= {z E 0 I  yxp(z,t) < 0, I yxp(z, t) I > meas-1/2{n} min 11  yxp(., t )  JlL2(*) - P}, 
t€[O,OI 

(5.5) T:(Y,~) = 

= {z E 0 I yt(z, t )  > 0, ~ t ( z ,  t )  > meas-'12{0} min 11 yt(., t )  I l ~ z ( ~ )  - PI, 
t€[O,O] 

I t  is not hard t o  see that for every t E [0, B] all the sets 

are of positive measure and the condition (5.3) is fulfilled for them in [O,B]. Furthermore, from 

continuity of the functions yxp(-, t), yt(., t )  in t in the norm of ~ ' ( 0 )  i t  follows that for any 

E > 0 

(5.6) meas{z I I y,(z, t + At) - y,(z,t) I 2 E} + 0, when A t  + 0, 

(5.7) meas{z 1 1  y t ( z , t + A t ) - y t ( z , t ) ( >  E } + O ,  when A t + O .  

18 



In turn, the relations (5.6), (5.7) and the fact that all the inequalities in (5.4)-(5.5)' are strict 

imply for Vt E [0, B]  : Vul > 0 3u2 > 0 such that 

(5.8) meas{r;(~, t) \ r;(y,t + At)} < y, A t ,  I At I < v2, P = 1,. . . , 

Hence, the maps {r;(y, t));=l, rl(y, t )  satisfy the condition (5.2) iri [0, B]  and we obtain 

Lemma 5.2. Let y be an arbitrary solution of the system (1.1)-(1.3) and P > 0, a closed 

interval r [O, B]  be given. Let {SZ:k(y, t));=l, t), t E T satisfy the following relations: 

(5.11) R:(Y, t) = r:(y, t), t E r, 

where T ,  t), T ,  t) are constructed along (5.4)-(5.5)'. Then t));=l, Q1(y, t )  

satisfy Assumption 5.1 in r. 

Remark 5.2. Let y be an arbitrary solution of the system (1.1)-(1.3). Then we may deduce 

from (5.6), (5.7) that for any sequence {yi)zl of solutions of the system (1.1)-(1.3) that 

converges to y in the norm of C([O, 81; H) the following estimates are fulfilled 

0 
lim me={ri(yi, t)) 2 min meas{r,(y, t)), p = 1,. . . , 
ihoo t€[o,e] 

lim me={rl(yi, t)) 2 min me as{^'(^, t)), 
i + ~  t€[O,@I 

uniformly over t E [0, B ] .  

Lemma 5.3. Let y be an arbitrary solution of the system (1.1)-(1.3) and P > 0, a closed 

interval r 2 [0, B]  be given. Then the maps {R:*(t));=l, R i ( t ) ) ,  t E r,  defined by the 

relations (5.10) and (5.1 I),  ensure the estimate 



Proof. Taking into account (2.1), we obtain 

E(Y(., 0)) 5 i2 E(Y(-, t)), vt E r ,  

and then, by (5.4)-(5.5)', 

n 

(5.13) 5 i2 meas{R) (2 vrai rnin Y:~(X, t) + 2 vrai min y:(z, t) + 2 (n  + 1) b2), Vt E r. 
p=l X E T ; ( Y , ~ )  X E T l  ( y , t )  

iFrom (5.13) we immediately obtain the needed result. 

Remark 5.3. The constants in (5.12) do not depend upon y and r, P. 

Proof of Theorem 5.1. Below we follow, in fact, the scheme of the proof of Theorem 3.1, 

although the argument essentially differs in the technical aspect. 

Let Y stand again for the set of all solutions to the system (1.1)-(1.3). Select an arbitrary 

monotone sequence {6j)j00,1, 

Specify next for each j, a Gj-net 

y6j = {~k j )Kl ,  Ykj  E Y, 

so as for any solution y of the system (1.1)-(1.3) and j = 1,. . . there exists such an element 

Yk*j  that 



In turn, the estimate (5.14) implies 

We stress that such a net may be selected in infinitely many ways (see Remark 5.6 below). 

Select p > 0. Then, due t o  Lemma 5.2, for any y we can construct the sets {ri*(y, t));=:=l, 

r&(y, t), t E [O, 01 that  are defined by (5.4)-(5.5)' and satisfy Assumption 5.1 everywhere in 

[O, 01. This means, in particular, that  

min meas{r;(y,t)) > 0, p = 1,. . . , n, 
t€Io,el 

min meas{rl(y, t)) > 0. 
t€[O,@I 

Let { E ~ } P O , ~  be a monotone decreasing sequence of positive numbers such that 

lim EI = 0. 
l-*oo 

Split the set of all the solutions of the system (1.1)-(1.3) as follows : 

K = {y I ~ 1 - 1  > min meas{r:(y, t)), min meas{rl(y, t)} > E ~ ) .  
t ~ [ 0 , 0 ] ,  p=l, ..., n t€[O,@] 

Take an  arbitrary monotone sequence of instants { t j ) g l ,  

We select next in each interval ( t j  , t ~ + ' )  an arbitrary monotone sequence of instants { t i } g l ,  

SO as 



Let {R;(t));=,, R1( t ) ,  t E [O, 81 be arbitrary maps that in [O,tl) (J [limj,, t j ,  81 satisfy 

Assumption 5.1 and 

(5.18) R1( t )  = r l ( yk j , t ) ,  t E [&ti+,), k ,  j = 1,. . . . 

Let us show that the observations (1.9) (or (5.1)), (5.17), (5.18) with 

v l ( z , t ) =  { + I 3  
k ) t E [ t i ,  t i+,), 

k , j =  1, . . .  
~ ' ( y k j ,  t ) ,  f E [ t i ,  t i+,), 

provide the system (1.1)-(1.3), (1.10), (1.9) with exact observability. 

We note first that the range of the corresponding observation operator belongs to LT+l(T). 

Take any solution y of the system (1.1)-(1.3), (1.10) and assume that y E x, so as 

min meas{r;(y, t ) )  > a [ ,  p = 1 , .  . . , n ,  
tc[o,ei 

min meas{rl(y, t ) )  > al. 
te[o,e~ 

Remark next that for any k j ,  j = 1, . . . such that (5.14)-(5.16) are fulfilled with k j  substituted 

for k*, the following chain of estimates holds: 



Combining the last estimate and (5.20) yields (via Remark 5.2) that, beginning from some 

j = jt, the following estimates are fulfilled: 

In a similar way we may obtain the chain of inequalities for yt. Thus, for any given a > 0 

there exists such an element ykl,j,, j, = j ( a )  that (in addition to the estimates (5.14)-(5.16)) 

for the pair y, ykl,j,, we can write: 

11  G*( f ) (~ ( ' , t )  - Yk1.j*(',f)) Ilnn+l 5 a, vt E [ti:e,t<*+l), 

where G,(.) stands for observations (1.9), (5.17)-(5.19). In other words 

(5.22) I I  G*(t)~kjej( ' , t)) IInn+l 5 ( I  G*(t)Y(',t) I I R ~ + ~  + a, Vt E [ t t , f<e+ l ) -  

Ln turn, from (5.14) and Lemma 5.3 we obtain 

2 11 G*(.)Ykjej*(., a )  ll;, e j e  )'I2 + bj*, 6,. = 6,. -+ 0 when a -+ 0. 
n + ~  ( t :k je~t~ le+ l )  

Finally, (5.22) and the latter yields 



~ ' / ~ ( y ( . ,  0)) < 2 meas'12{R) (2 (n + 1)p2 + 4 11 G.(-)y(., -) JIiJI(T.) + 2a2)'I2 + 6j(a)7 

which is valid for V a  > 0. The last estimate completes the proof of Theorem 5.1. 

Corollary 5.1. Measurement maps that satisfy Theorem 5.1 may be selected lower semi- 

continuous in [O, 81. 

Pmf. Since the number of all the functions {ykj)zjS;.=l forming a sequence of bj-nets in 

the proof of Theorem 5.1 is countable, instead of the above type of choice of instants  ti}^,,=, 
we can make a selection that has the only limit point t = 8. Then we can construct required 

maps in ( ,  k, j = 1 , .  . in the same manner as in the above. Setting all the sets 

{ R ( t ) } l ,  ( t ) ,  { R ( 8 ) } l ,  ( 8  to be non-empty, but of zero-measure, yields the 

needed assertion of Corollary 5.1. 

Remark 5.4. Given P > 0, arbitrary maps {R:*(-));=l, Ri( . )  constructed along the lines 

(5.17)-(5.19) ensure the estimate 

Remark 5.5. From the proof of Theorem 5.1 it follows that, in order to ensure exact observ- 

ability in a prescribed finite-dimensional subspace spanned by a finite number of solutions of 

the system (1.1)-(1.3), it is sufficient to specify a finite number of pieces of type (5.17)-(5.19). 

Remark 5.6. For constructing suitable &net we may use Galerkin's method. 

Concluding remarks. 

The problem of exact observability with scanning sensors has been discussed for the nonsta- 

tionary hyperbolic systems. Three types of scanning observations have been considered and 

the existence of required measurement curves and maps that ensure exact observability with 

L,M++, (T) to be taken for the space for outputs has been established. At every instant of time all 

of the above types of observations provide finite-dimensional outputs that is critical in physical 

situations. The method of proofs, to some extent, is an analogue of Galerkin's method which 

is widely used when working with the existence results in the theory of generalized solutions of 

PDE's. Here we have the case when the space for outputs L,M+l(T) is not Hilbert. There- 

fore, we construct a countable 6-net (it plays a role of "basis") in the set of solutions that, 



in turn, must generate a similar net in the set of outputs. In order to do this a priori energy 

estimates of instantaneous type for solutions have been used. The proposed method allows to 

obtain measurement curves that are continuous in [O,8) and measurement maps that are lower 

semi-continuous in [O, 81 with respect to Lebesgue measure. 
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