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Foreword 

This is the first of a series of papers giving a.n early account of the application of ellipsoidal 
techniques to various problems in modeliilg dyilamical systems. The problem of control syn- 
thesis for a linear system under bounded co~ltrols was selected as the first simple application 
of these techniques. The second paper extends these results to  the case where unknown but 
bounded disturbances are present. The third deals with guaranteed state estimation - also to 
be interpreted as a tracking probleiii - a.gain under unknown but bounded disturbances. 
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Ellipsoidal Techniques: 
the Problem of Control Synthesis 

A.B. Kurz1~anski, I. Va'lyi 

Introduction 

This paper introduces a technique for solvilig the problem of control synthesis with constraints 

on the controls. Although the probleni is treated liere for linear systems only, the synthsized 

system is driven by a nonlinear control strateg. and is therefore generically nonlinear. Taking a 

scheme based on the notion of estrenial aiming strategies of N. N. I<rasovski, the present paper 

concentrates on constructive solutioiis generated through ellipsoidal-valued calculus and related 

approximation techniques for set-valued maps. Nalnely, tlie primary problem which originally 

requires an application of set-valued analysis is substituted by one which is based on ellipsoidal- 

valued functions. This yields constructive scliclnes applicable t o  algorithmic procedures and 

simulation with comput,cr graphics. 

1 The Problem of Control Synthesis 

Consider a control syst,em 

with controls u being subjected t o  a constl.aiiit. 

where P ( t )  is a continuous set-valued function with values P ( t )  E convRn (the set of all convex 

compact subsets of R n ) .  The function f(2, z ,  u )  is such that the respective set-valued map 

is continuous in t and upper-scii~icoiit i i i~~ot~s i n  n.. Let .A4 E convRn be a given set. The problem 

of control synthesis will colisist in specifying a set-valued functioi~ U = Zl(2, x ) ,  (Zl(t, x )  C P( t ) )  

- "the synthesizing control strategy" - wl~ich \rould ensure that all the solutions x(t ,  T ,  x,) = x[t] 

t o  the equation 



that start a t  some given position { r , x , ) ,  ( r  E [ t o , t l ] ,  x ,  = x ( r ) ) ,  would reach the terminal 

set M at  the given instant of time t = t 1  - provided x ,  E W ( r ,  M ) ,  where the solvability set 

W ( r , M )  is the set of states from ivliicli the solutioil to the problem does exist a t  all. Here we 

kept the notation f for the set-valued function defined as f ( t , x , U )  = {U f ( t , x , u ) ( u  E U } .  

We presume 

W ( r ,  M )  # 4, to I t i 2 1 ,  

The strategy U ( t , x )  must belong to  a class T of feasible feedback strategies, which would en- 

sure that the synthesized system (a  differentin1 inclusion) does have a solution defined through- 

out the interval [to, t ] ] .  

We now recall a technique that allows to deterlnine U ( t ,  x )  once the problem satisfies some 

preassigned conditioils that will be listed bcloiv. 

For a given instant r E [ tO , t l )  coilsider the "largest" set LV( r ,M)  of states x ( r )  = x ,  from 

which the problem of control synthesis is resoli~able in a given class T. Having defined W(r ,  M )  

for any instant r ,  we come to a set-valued function 

The following simplest conditions. ['L]. ensure that the function W [ r ]  is convex compact 

valued and cont,inuous in 1. 

Lemma 1.1 Assunze that the sei-vnl~rctl mnppiizg 3 ( t , x )  is upper semicontinuous in x for all 

t ,  continuous in t ,  witit 3 ( t , x )  E convRn nnd 

for some k > 0 and h ( t )  irztcgrnblc on [ t o ,  t . l ] .  Also t1ss11171e that the graph 

g r 3  = { ( t , x ) l t  E [to, 1 1 1 , ~  E 3 ( t , x ) )  

of the mapping 3 ( t ,  x )  is convex. 

Then the set W [ t ]  E convRn for t E [ to, t l ]  and the function W [ t ]  is continuous in t .  

We further assume that W [ r ]  E coniXn.  

The Synthesizing Strategy is def ned then as the folloiring set-valued map 

Here e0 = p(t, 2 )  is a unit vector t l ~ a t  rcsolves the problem 



where symbol p( l  I W )  = max{ ( l , x ) l r  E W )  stands for the support function o f  set W and 

aeg( l ,  t )  denotes the subdiflerenlinl o f  g(C, 1 )  in the variable l. 

Strategy U ( t , x )  reflects the rule o f  "estremal aiming" introduced by N . N .  Krasovski [ I ] .  

Particularly, it indicates that with z $! W [ t ]  one 11a.s to  choose the unit vector -lo that is 

directed from x t o  so, namely -Lo = ( so  - z)llso - xll-', where so is the metric projection o f  x 

onto W [ t ] .  After that ,  U ( t ,  x )  is defined as the set o f  points u0 E P ( t )  each o f  which satisfies the 

"maximum" condition: 

so that U ( t , x )  = {uO) .  T h e  latter procedures are summarized in (3). 

Lemma 1.2 Once the conditions of Leriziiltr 1.1 are scltisjed and the system ( I )  is linear in u ,  

the following assertioizs are true: 

( i )  The set-valued nzap U ( t ,  x )  is conocx compact-valued, continl~ous in  t and upper semicon- 

tinuous in x. This secures the existence of solutions to the differential inclusion 

(ii) If x ,  E W [ T ] ,  for n giz!en T E [ l o .  1 ), then orzy sol71lion x [ t ]  to the system 

i t )  € f ( ) . ( , ( ) ) ) ,  T 5 2 5 I ] ,  x ( 7 )  = x,, 

satisfies the inclusion z [ t ]  E Pt'[t], T < t 5 t l ,  in particular, 

It is obvious that the crucial elelnent for constructing the synthesized control strategy U ( t ,  z )  

is the set-valued function W [ t ] .  It is therefore important to  define an evolution equation for W [ t ] ,  

121. 

Lemma 1.3 Under the conditions of Leiiznzn 1.1 the set-valued function W [ f ]  satisfies the evo- 

lution equation 

lim h ( W [ t  - a ] , ~ { ( x  - aF( t ,n . ) )J .u  E W [ t ] ) )  = 0, t o  5 1 5 t l  o++o ( 5 )  

with boundary condition 

)\:[I,] = JU 



Here h(W1, W") is the Hausdorff distance between W', W". Namely, 

h(W1, W") = mas{h+(PV1, W"), h-(W', W")) 

where 

h+(W1, W") = mi11{r 2 O)).V1 C W" t TS), 

h-(W', W") = h+(W1', W') are the Hausdorff semidistances and S is the unit ball in Rn.)  

The  conditions of Lemmas 1.1 and 1.2 are clearly satisfied for a linear system 

The  evolution equation (5) for determining W[1] then turns to  be as  follows 

lim u - ' h ( ~ [ t  - a] ,  ( I  - A(t)cr)t%'[t] - uT'(t)) = 0, 
o++O 

20 I t  I t l ,  

(here I is the unit matrix), and 

The aim of this paper is t o  denlonstrate that tliis theory could be converted into constructive 

relations that  allow algorithmizatiol~ aiid olllille computer simulation. This could be achieved 

by introducing a calculus for ellipsoid al-valued functiolls that  would serve t o  approximate the 

set-valued functions of tlie theory of the above, (also see [3], $5 10-12). 

It is important t o  observe that  tlie relations given in the sequel do allow an exact approxi- 

mation of the solution t o  the primary problem through ellipsoidal approximations. 

We will further concentrate on the linear system (6). By substituting z(t)  = S( t ,  t l )x(t)  and 

returning t o  the old notation, without any loss of generality it could be transformed into 

where z E Rn, P ( t ) , M  E convRn, the function P ( t )  is continuous in t and the matrix valued 

function S ( t , t l )  E Rnxn is the sollitio~l to  the equation 

2 The Ellipsoidal Techniques 

In this pa.per we do  not ela.borate on tlie ellil~soidal calculus in wllole but do indicate the necessary 

amount of techniques for the specific probleul of coiltrol synthesis. 



We will start with tlie assumption that P ( t )  is an ellipsoidal-valued function and that set 

M is a.n ellipsoid. Namely 

where the notations are such t1ia.t the support function is 

With det Q # 0 this is equivalent to the inequality 

Therefore a stands for the center of t l ~ c  ellipsoid and Q > 0 for the symmetric matrix that 

determines its configuration. 

With sets &(p(t.), P( t ) ) ,  &(m, Af) being give11 we are to determine the tube W[t] for t 5 tl 

under tlie boundary condition W[tl ]  = M = f ( n , ,  AP). According to the a.bove, the set-valued 

function W[t] satisfies the evollrtio12 eq~~crtioti 

lim a - 'h (~v [ t  - a],  W[t] - a&(p(t) ,  P(t))) = 0, 5 t 5 t l ,  W[tl] = &(m, AP). ( lo)  0-+o 

0 bviously 

so that W[t] is sin1ila.r to the nttoitzobility donznin for system (6) but here it is taken in 

backwa.rd time; W[t] is tlie set of a11 states from which it is possible to steer system (6) to the 

set &(m, M) in time tl - t with open loop control 

It is clear that although &(iiz, Ail), I (p ( t  ), P( t ) )  are ellipsoids, tlie set W [t], in general, is not 

an ellipsoid. 

Therefore the first problem that does arise liere is as follows: is it possible to approximate 

W[t], both externally and internally, wit 11 ellipsoidal-valued functions? 

The answer to the question is afirrnativc as will be sl~own in the sequel. We will first state 

the results for A(t) $ 0 in  (6). 

Consider tlie inclusion 



with W[T] = W(T, M) being the set of all sta.t'es z, from wliicli there exists an open-loop control 

u(t) E &(p(t), P( t ) )  tha.t steers the solution from x, into &(m, A!). 

Denote w(t) E R n ,  T < t < t l ,  to be the solution to the equation 

and Ws(t) E Rnxn to  be the solution to the matrix equation 

wliere S(t )  is a continuous matrix valued fuiictio~i 

with invertible values (the set of all sucl~ f l ~ ~ ~ c t i o ~ i s  wilI be deiioted as C). 

T h e o r e m  2.1 ( In te rna l  Approx imat ion)  

(i) The follou~iizg inclusioiz is t l . 11~  

whatever is the function S( . )  E Y.  

(ii) The following eqrrality is ti.rre 

where the symbol K stands for the closure of set K. 

Further on, denote Mf,(t) to be tlie solution to  tlie equation 

where n(t) > 0 is a continuous scalar filnction 

(the c1a.s~ of sucli functions will bc dcliotcd as 11). 



T h e o r e m  2.2 ( E x t e r n a l  Approx imat ion)  

( i )  The following inclusion is true 

whatever is the function T ( . )  E II. 

(ii) The following equality is true 

W [ T I  = n &(w(.), H'=(T)). (19)  
,(.)En 

Equations (16)  (19) are obviously silnplifietl under the condition A(2) r 0 (we further pre- 

sume that it holds). It is therefore clear that tlic set-valued function W [ t ]  satisfies the inclusions 

whatever are the functions S(.)  E 2. 7 i ( . )  E II. 

Since W [ t ]  is the solution to  tlie evolution ecluation (10 )  the next question arises: do there 

exist any two types of evolut,ion equations wlrose solutions would be &-[ t ]  and L+[2] respectively? 

The answer to  this questioti is givcn i l l  tlic follo\ving assertion: 

Consider the evolution equatiot~ 

lim a- 'h+(&[ l  - a ] , I [ t ]  - o l ( p ( t ) , P ( t ) ) )  = 0 ,  to 5 t 5 t l ,  &[ill = &(m, M ) .  (21)  a-+O 

We will say that function &+It.] is a solution to  cquation (23)  if it sa.tisfies (23)  almost 

everywhere and if it is ell i~)soidol-~ic~I~~e~l (!) .  

Also consider the evolutioli equation 

lim a-'h-(&[t - a ] ,& [ t ]  - a l ( p ( t j ,  P ( t ) ) )  = 0 ,  to 5 t 5 t l ,  &[ill = &(m, M ) .  a-++O (22)  

We will define &-[t] to  be a solution to  equation (24)  if it 

satisfies (24)  almost everywliere, 

is ellipsoidal-valued and 

is also a maxinzal solution to (24) .  

The latter means that there exists no otlicr ellipsoidal-valued solution f 1 [ 2 ]  to  (24)  such that 

&- [ t ]  C &'[t] and &- [ t ]  $ tY[ i ]  10 < 1 5 1 1 .  

Each of tlie equations (23) ,  ( 24 )  has a nonuniqltc solution. 



Lemma 2.1 Whatever are the solutions 5+[1], &-[t] to the evolution equations (23), (24)) the 

following inclusions are true 

Lemma 2.2 Each of the ellipsoidal-valued functions &-[t] = &(w(t), Ws(t)), (S(.) E C) is a 

solution &-[t] to equation (24). 

Lemma 2.3 Each of the ellipsoidal-valued functions Lt[t] = &(w(t), W,(t)), (?r(.) E IT) is a 

solution &+[t] to equation (23). 

To conclude this section we underline that t,he tube W[t] can be ezactly approzimated by 

ellipsoids - both internally and externally - according to relations (18), (21). To achieve the 

exact approxin~ation it is necessary in general to use an infinite variety of ellipsoids (actually, a 

countable set). The given approach, (see also [4]), therefore goes beyond the suggestions of [5] 

and [6], where the sums of two or more convex sets were approsiinated by one ellipsoid. 

The ellipsoidal approximations \rill nour be used to devise a syllthesized control strategy for 

solving the problem of tlie above. Tliis strategy will guarantee the attainability of the terminal 

set M in prescribed time. 

3 Synthesized Strategies for Guaranteed Control 

The idea of constructing the synthesizing strategy I l ( t ,  z )  for tlie problem of tlie above was that 

U(t,x) should ensure that all tlie solut io~~s n:[t] = .r(t, r ,  z,) to the equa.tion 

i t )  E I (  ( t ) ) .  r < t < t l ,  

with initial state x[ r ]  = x, E W[r ] ,  w011ld satisfy tlie inclusion 

and would therefore ensure x[t l ]  E M. 

We will now substitute W[t] by one of its iliternal approxilnations &-[t] = &(w(t), W(t)).  

The conjecture is that once 'LV[t] is substitutcd by 5-[t], we sliould just copy the scheme of 

Section 1, constructing a strategy IA- (1 ,~)  sucli that for every solution xlt] = x( t , r ,x , )  that 

satisfies equation 

the following inclusion would be true 



and therefore 

X [ ~ I ]  E &(nz, d l )  = M .  

It will be proven that once the approsilnation & - [ I ]  is selected "appropriately", the desired 

strategy U-(2, x) may be constructed again according to the scheme of (3), except that W [ t ]  will 

now be substituted by &-[t ] ,  namely 

E ( P ( ~ ) ,  P ( t ) )  if x E E- [ t ]  
U ( t ,  x) = 

p(t )  - p(t)e0(e0, ~ ( t ) l ~ ) - l / ~  if x g' &-[ t ] ,  

where e0 = a,d(z, &-[ t ])  at point x = x ( t ) ,  that is the unit vector that solves the problem 

(eO, X )  - p(eO I &- [ t ] )  = mas{(P,s.) - p ( f  I L - [ I ] ) I ( J C J I  I ) .  (26 )  

The latter problem may bc solved \ v i t l ~  more cletail (since I - [ t ]  is an ellipsoid). Indeed, if so 

is the solution to the nlii~inlization problem 

then we can take 

in (26) .  

Lemma 3.1 Consider ( I  noizdegeizelnte ellipsoirl L = & ( a ,  Q )  and a vector x $! &(a ,  Q ) ,  then the 

subgradient e0 = a,d(z, &(a ,  Q ) )  cniz be esprrssed throt~gh lo = z - sO/( lx  - sol[, 

where A > 0 is the unique root of the equntioiz h (X )  = 0, with 

h ( ~ )  = ( ( I  t X Q - ' ) - ' ( ~  - ~ ) , Q - ' ( I  + XQ- ' ) - ' (X  - a ) )  - 1.  

Assume a = 0. Then the necessary conditions of optilnality for the minization problem 

are reduced t o  the equation 

- x  t s $ XQ-Is = 0 

where X is to be calculated as t.hc root. of t11c cquatiol~ h ( X )  = O,(n = 0).  

Since it is a.ssumed that x g' 1 ( O ,  Q ) ,  \vc Ila\.c h(0)  > 0. \Vith X co we also have 



This yields h(A) < 0, A 2 A, for some A. > 0. The equation h(A) = 0 therefore has a root 

A0 > 0. The root A0 is unique since direct calculation gives hl(A) < 0 with A > 0. The case 

a # 0 can now be given through a direct shift- x + x - a .  

We will now prove that the ell i~~soidol vohred sfrntegy ZA-(2, x)  of (26) does solve the problem 

of control synthesis, provided we start from a point x, = x ( r )  E &-[TI, r 5 t  5 t l .  Indeed, 

assume x, E &-[TI and x[t] = x( t , r ,z , )  to  be the respective trajectory. We will demonstrate 

that once x[t] is a solution to  equation (23), then we will have (24). (With isolated trajectory 

x[t] given, it is clearly driven by a unique control u[t] = x(t) a.e. such that v[t] E P(t) ) .  

Suppose, on the contrary, that tlie distance d(n.[t,], &-[t,]) > 0 for some value t ,  > r. Since 

x[r ]  E &-[TI and since d[t] = d(x[t],C-[I]) is differentiable, there exists a point t,, E (r , t , ]  such 

that 

Calculating 

d[t] = mas { ( f , x ( t ) )  - p(C I &-[t])llllll I 1) 

we observe 

and since lo is a unique masimiser, 

where &-[t] = &(w(t), W(t)).  

For a fixed function S ( - )  we have ::-[I] = ::(t11(t), I,17s(t)) , where w ( t ) ,  IVs(t) satisfy the 

system ( I s ) ,  (16), ( A ( t )  - 0). Su l~s t i t~ l t i l~g  this into tlie relat,ion for the derivative of d[t] and 

remembering the rule for differentia.tilrg a masimnnl of a. variety of functions 

or due to  the Bunyakovsky-Sc1iwal.tz incqnality 

where 

.ll[i] E ::(p(i), P ( i ) )  

and 

~ r [ f ]  E 74-(1, x). 

10 



For the case x @ &- (w(i) ,  l l ~ s ( i ) )  the last relation gives us 

which contradicts with (28). 

What follows is the assertion 

Theorem 3.1 Define an  internal npproriiizaiion &- [t] = & - ( w ( t ) ,  WS(t)) with givenpammetriza- 

tion S( t )  of (16). Once X[T] E &-[TI and the sylztkesizing straiegy is U-(t,x) of (26), the 

following inclusion is true: 

and therefore 

The ellipsoidal synthesis thus gives a solutiori strategy U- ( t ,  x) for any internal approximation 

&- [t] = &- ("(t), IVs(t)). 

With x @ &-[t], the function 24-(1, .T) is silrgle-valued, whilst with x E &-[I] it is multivalued 

(U-(t, x) = &-[t]) being therefore upper-se~nic.ont i~iuo~~s in x, measureable in t and ensuring the 

existence of a solution to  tlle differential inclusion (23). 

We will now proceed with numerical exalnples t l ~ a t  demonstrate the constructive nature of 

the solutions obtained above. 

4 Numerical Examples 

We take system (14) to be 4 dimensional, and study it between the initial moment to = 0 and 

final moment t l  = 5. 

As the ellipsoids appearing in tliis problem are four dimensional, we present their two di- 

mensional pmjections. Tlie figures are divided into four windows, and each shows projections 

of the original ellipsoids onto the planes spanned by the first and second, third and fourth, first 

and third, and second and fourth coordinate axes, in a clockwise order starting from bottom 

left. The drawn segments of coordinate axes corresponding to  state variables range from -10 to 

10 according to the above sclie~ne. 111 solile of t llc figures, where we sliow the graph of solutions 

and of solvability set, the third, skew axis col~l~csponds to time and ranges from 0 to 5. 



Let the initia.1 position (0 ,  xo) be give11 1,. 

the target set M = &(m, M) by 

and 

a t  the final moment t1  = 5. il/e c o ~ ~ s i t l c ~  a case \itllcn the right hand side is constant: 

describing the position and velocity of t\vo independent oscillators. The restriction u( t )  E 

& ( p ( t ) ,  P ( t ) )  on the control u ,  is also tlcfi~~cd by tilile independent constraints: 

so that the controls couple the syste111. Tl~ereTorc tllc class of feasible strategies is such that 

The results to be presented 11~re ohtai~r by way of discretization. \.Ire divide the interval 

[O, 51 into 100 subintervals of equal lengths. and IISC the discretized version of (16). Instead of 

the set valued control strategy (26)  we app ly  a s ing lc  vr~llrcc/ selection: 



~ ( 1 )  if n: E &- [ t ]  
u(t, x) = 

p(t) - ~(t) tO(tO, P(t)eO)-'/' i f  z $ &-[t]. 

again in its discrete version. 

We calculate the parameters of tlie ellipsoitl &- [t] = &- (w(t ), IVs(t)) by chosing 

in (16). 

The calculations give the following internal ellipsoidal estimate &-[0] = &(w(O), Ws(0)) of 

the solvability set W(0, M ) :  

and 
31.1385 U 0 

I , , s o  = 
5 0 ) . 

0 12.1845 2.3611 

0 2.3611 44.1236 

Now, as is easy to  check, xo E 1-[0] ant1 tl~ei~cfol~c Tlleorem 3.1 is applicable, implying that the 

control strategy of (26) steers tlle solritio~i of (23) into ,M, producing 

as a final state. 

Figure 1 shows tlie graph of tlic cllipsoidnl v;~lued map 1- [t], t E [O, 51 and of the solution of 

where we use u(t, x) of (29). 

Figure 2 sllows the target set M = f ( 7 1 1 ,  J l ) ,  (projections appearing as circles), the solvability 

set &-[O] = &(w(O), T/lis(0)) at tlrc init iiil i i io~ii~ilt I = 0, and the trajectory of the solution of 

(30). 



+II 
- 

Target Problem 

I .  

Figure 1: Tube of ellipsoidal solvability sets and graph of solution 



f~ 

- 
Target Problem 

I 

Figure 2: Target set, initia.1 ellipsoidal solvablity set and trajectory in phase space - initial state 

inside 

In the next example we show by way of numerical evidence, what can happens if the initial 

state xo does not belong to the ellipsoidal solvability set &-[O]. Leaving the rest of the data to 

be the same, we change the initial sta.te so in such a wa,y that the inclusion 



jg 
- 

Target Problem 

I .  

Figure 3: Initial sta.te outside, "but not far away". 

Though Theorem 3.1 cannot be used, still we apply formulae (29) and (30). Analogously to  

Figure 2, Figure 3 shows the pha.se portrait of the result. The trajectory of the solution to  (30) 

is drawn with a thick line, as long a.s it is outside of the respective ellipsoidal solvability set, and 

with a thin line if it is inside. The dra.wn projections of the initial state are inside, except one, 

(upper left window). As the illustratio~l shows, a.t one point in time the trajectory enters the 

tube &-[t] ,  the line changing into thin. After this happens, Theorem 3.1 does take effect, and 



the trajectory remains inside for the rest of the time interval. In this way we obtain 

as a final state. 

The above phenomenon indicates 

first that for the initial state must be inside the solvability set W(0, M ) ,  that is actually 

as it was possible t o  steer the solution to (29) a,nd (30) into the target set M ,  

and second, that in th is particular izu.nzericn1 exanzple the control rule works beyond the 

tube &-[t]. 

In the third exa.mple, we move the initial sta,te xo further away, so that the control rule does 

and obtain as final state 



- 
Target Problem 

I .  

Figure 4: Initial st.ate outside, "fa,r away". 

Figures 5 and 6 show the effect of changing the target set. We take the data  of the first 

example except for the matrix M in the target set M = &(m, h4) by setting the radius to be 2: 

resulting in a filial state 



- 
Target Problem 

Figure 5: Graph of sol~itioll for larger target set 



?LJ 
- 

Target Problem 

I ,  

Figure 6: Pha.se space representation for larger target set 

The switching of the control, due to  the specific form of (29), is clearly seen in Figure 6. and 

later in Figure 8. 

Taking again the data of the first example, we allow more freedom for the controls, changing 

the matrix P ( t )  in the bounding set P = & ( p ( t ) ,  P ( t ) )  again by setting the radius to be 2: 



with a final state 

- 
Target Woblem 

I .  

Figure 7: Graph of solution for larger co~ltrols 



- 
Target Problem 

I )  / 
Figure 8: Phase space rcprcscntat,ion for 1a.rger controls 
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