View metadata, citation and similar papers at core.ac.uk brought to you by I’fCORE

provided by International Institute for Applied Systems Analysis (IIASA)

’ s International Institute for
- Applied Systems Analysis

[1AS A www.iiasa.ac.at

Ellipsoidal Techniques: The
Problem of Control Synthesis

Kurzhanski, A.B. and Valyji, I.
IIASA Working Paper

WP-91-003

March 1991



https://core.ac.uk/display/33895031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Kurzhanski, A.B. and Valyi, I. (1991) Ellipsoidal Techniques: The Problem of Control Synthesis. IIASA Working Paper.
‘WP-91-003 Copyright © 1991 by the author(s). http://pure.iiasa.ac.at/3560/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other
organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on
servers or to redistribute to lists, permission must be sought by contacting repository @iiasa.ac.at


mailto:repository@iiasa.ac.at

Working Paper

Ellipsoidal Techniques:
The Problem of Control Synthesis

A.B. Kurzhanski, 1. Vilyi

WP-91-003
March 1991

II B S B International Institute for Applied Systems Analysis O A-2361 Laxenburg O Austria
Telephone: +43 2236 715210 O Telex: 079 137 iiasa a O Telefax: +43 2236 71313




Ellipsoidal Techniques:
The Problem of Control Synthesis

A.B. Kurzhanski, I. Vilyi

WP-91-003
March 1991

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute or of its National Member

Organizations.

='II!= I IASA International Institute for Applied Systems Analysis O A-2361 Laxenburg O Austria
] | ]

] .

llli= Telephone: +43 2236 715210 D Telex: 079 137 lasaa O Telefax: +43 2236 71313

7



Foreword

This is the first of a series of papers giving an early account of the application of ellipsoidal
techniques to various problems in modeling dynamical systems. The problem of control syn-
thesis for a linear system under bounded controls was selected as the first simple application
of these techniques. The second paper extends these results to the case where unknown but
bounded disturbances are present. The third deals with guaranteed state estimation — also to
be interpreted as a tracking problem — again under unknown but bounded disturbances.
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Ellipsoidal Techniques:
the Problem of Control Synthesis

A.B. Kurzhanski, I. Valyi

Introduction

This paper introduces a technique for solving the problem of control synthesis with constraints
on the controls. Although the problem is treated here for linear systems only, the synthsized
system is driven by a nonlinear control strategy and is therefore generically nonlinear. Taking a
scheme based on the notion of extremal aiming strategies of N. N. Krasovski, the present paper
concentrates on constructive solutions generated through ellipsoidal-valued calculus and related
approximation techniques for set-valued maps. Namely, the primary problem which originally
requires an application of set-valued analysis is substituted by one which is based on ellipsoidal-
valued functions. This yields constructive schemes applicable to algorithmic procedures and

simulation with computer graphics.

1 The Problem of Control Synthesis

Consider a control system
z(t) = f(t,z(t),w(t)), =z(t),u(t)eR", 1o <1<y, (1)
with controls « being subjected to a constraint
u(t) € P(t), to<t<ty,

where P(t) is a continuous set-valued function with values P(t) € convR™ (the set of all convex

compact subsets of R™). The function f(t,z,u) is such that the respective set-valued map
F(t,x) = {uf(t,z,u)lu € P(t)}

is continuous in ¢t and upper-semicontinuous in 2. Let M € convR™ be a given set. The problem
of control synthesis will consist in specifying a set-valued function U = U(2,z), (U(t,z) C P(t))
- “the synthesizing control strategy”™ — whicli would ensure that all the solutions z(t,7,z,) = z[t]

to the equation

2(1) € f(t,2(t),U(t,2(1)),  to <t <ty 2)



that start at some given position {r,z,}, (7 € [to,t1], £ = z(7)), would reach the terminal
set M at the given instant of time ¢t = ¢, - provided z, € W(r, M), where the solvability set
W(r, M) is the set of states from which the solution to the problem does exist at all. Here we
kept the notation f for the set-valued function defined as f(t,z,U) = {Uf(t,z,u)|u € U}.

We presume

W(T$M)#¢, tOStStlv

The strategy U(t,z) must belong to a class T of feasible feedback strategies, which would en-
sure that the synthesized system (a differential inclusion) does have a solution defined through-
out the interval [tg,1;].

We now recall a technique that allows to determine (¢, z) once the problem satisfies some
preassigned conditions that will be listed below.

For a given instant 7 € [tg,t;) consider the “largest” set W(r, M) of states z(7) = z, from
which the problem of control synthesis is resolvable in a given class T. Having defined W(r, M)

for any instant 7, we come to a set-valued function
Wlrl = W(r,M), 1o <1<t W] =M.

The following simplest conditions, [2], ensure that the function W[r] is convex compact

valued and continuous in ¢.

Lemma 1.1 Assume that the set-valued mapping F(t,2) is upper semicontinuous in ¢ for all

t, continuous in t, with F(1,x) € convR"™ and
1 F(t, =) < k- 0(2), to <1<,

for some k > 0 and h(t) integrablc on [tg,11]. Also assume that the graph
grF = {(t,2)|t € [to, 1], ¢ € F(t,z)}

of the mapping F(t,x) is convez.
Then the set W[t] € convR"™ for t € [tg,t;] and the function W(t] is continuous in t.

We further assume that W[r] € convR™".
The Synthesizing Strategy is defined then as the following set-valued map

P(1) if 2e W[
Ut z) = (3)
{u] f(t,z u) = Oep(=(° | F(1,2))} if z¢& WI[].

Here (0 = ¢%(¢,2) is a unit vector that resolves the problem

(€0,2) = p(% | W[1]) = max { (C,2) = p(C| W[ | |1 €1},




where symbol p(€ | W) = max{({,z)|z € W} stands for the support function of set W and
Org(€,t) denotes the subdifferential of g(£,1) in the variable €.

Strategy U(t,z) reflects the rule of “extremal aiming” introduced by N.N. Krasovski [1].
Particularly, it indicates that with 2 € W]t] one has to choose the unit vector —£0 that is
directed from z to s°, namely —¢° = (s% — 2)||s° — z||~!, where s is the metric projection of z
onto W[t]. After that, U(t,z) is defined as the set of points u® € P(t) each of which satisfies the

“maximum” condition:
(_[O’ f(t’ zvuo)) = ma,x{(—ﬁo, f(tv z, u))|u € P(t)}, (4)

so that U(t,z) = {u°}. The latter procedures are summarized in (3).

Lemma 1.2 Once the conditions of Lemma 1.1 are satisfied and the system (1) is linear in u,

the following assertions are true:

(i) The set-valued map U(l,z) is conver compact-valued, continuous in t and upper semicon-

tinuous in . This secures the existence of solutions to the differential inclusion
(1) € f(t,a(t),U(t,z(1))) to<t<ty.
(11) If z, € W|r], for a given T € [tg.11), then any solution z[t] 1o the system
() € f(t,a(1),U(t,z(1)), 7<t<ty, z(r)=z,.,
satisfies the inclusion z[t] € WI[t], 7 <1< 1,, in particular,
z[t] € W] = M.

It is obvious that the crucial element for constructing the synthesized control strategy U(¢, z)

is the set-valued function W[t]. It is therefore important to define an evolution equation for W(t],

[2].

Lemma 1.3 Under the conditions of Lemma 1.1 the set-valued function W[t] satisfies the evo-

lution equation
linlo hW[t — o],U{(z —oF(t,z))lt e W[1]}) =0, 1o <t <t (5)
o—

with boundary condition

}'\"[11] = M.




Here h(W', W") is the Hausdor[f distance between W', W". Namely,
h(W', W) = max{hy (W' ,W"),h_(W , W)}
where
hey (W', W") = min{r > 0)W C W' + S8},

h_ (W', W") = h (W", W) are the Hausdorff semidistances and § is the unit ball in R".)

The conditions of Lemmas 1.1 and 1.2 are clearly satisfied for a linear system
£(t) = A(t)z(t) +u(1), u(t) € P@), to<t<t,. (6)
The evolution equation (5) for determining W[t] then turns to be as follows
a]_im()a*h(W[t —a],(I = A(t)a)W[t] — aP(t)) = 0, (7)
to <t < ty,
(here I is the unit matrix), and
W[t] = M. (8)

The aim of this paper is to demonstrate that this theory could be converted into constructive
relations that allow algorithmization and online computer simulation. This could be achieved
by introducing a calculus for ellipsoidal-valued functions that would serve to approximate the
set-valued functions of the theory of the above, (also see [3], §§ 10-12).

It is important to observe that the relations given in the sequel do allow an exact approxi-
mation of the solution to the primary problem through ellipsoidal approximations.

We will further concentrate on the lincar system (6). By substituting z(t) = S(¢,1;)z(t) and

returning to the old notation, without any loss of generality it could be transformed into
£(t) = u(t), u(t)eP(t), to<t<t, z(h)eM, (9)

where z € R",P(t), M € convR", the function P(t) is continuous in t and the matrix valued

function S(1,1;) € R"*™ is the solution to the equation

S(t,t1) = =S(t,11)A(t), to<t<ty,  S(,t)=1.

2 The Ellipsoidal Techniques

In this paper we do not elaborate on the ellipsoidal calculus in whole but do indicate the necessary

amount of techniques for the specific problew of control synthesis.



We will start with the assumption that P(t) is an ellipsoidal-valued function and that set

M is an ellipsoid. Namely
P(t) = S(p(t),P(t)), to S t S ty,

M =E(m, M).

where the notations are such that the support function is
p(E] £(a,Q)) = (£,0) + (£,Q0)V2.

With det @ # 0 this is equivalent to the inequality

£@,Q)={z € Rl(z-a)'Q ' (z —a) < 1}.

Therefore a stands for the center of the ellipsoid and @ > 0 for the symmetric matrix that
determines its configuration.

With sets E(p(t), P(t)), £(m, M) being given we are to determine the tube W[t] for t < t;
under the boundary condition W[t;] = M = £(m, M). According to the above, the set-valued

function W[t] satisfies the evolution equation
a@%aqmmm—ame—afwuymnnzOJOgtgn, Wit] = E(m,M).  (10)
Obviously
Wt] = E(m, M) — /j‘ E(p(T), P(m))dr, to <t<ty, (11)

so that W(t] is similar to the attainability domain for system (6) but here it is taken in
backward time; W[t] is the set of all states z; from which it is possible to steer system (6) to the

set £(m, M) in time t; — t with open loop control
u(t) € P(r), t <1<y,

It is clear that although &£(m, M), E(p(t), P(t)) are ellipsoids, the set W[t], in general, is not
an ellipsoid.

Therefore the first problem that does arise here is as follows: is it possible to approximate
W][t], both externally and internally, with ellipsoidal-valued functions?

The answer to the question is aflirmative as will be shiown in the sequel. We will first state
the results for A(t) £ 0 in (6).

Consider the incluston

&€ A)r + E(p(1), P(1)), T<t1<t,, z(ty) € Em,M) (12)




with W[r] = W(r, M) being the set of all states 2, from which there exists an open-loop control

u(t) € £(p(t), P(t)) that steers the solution from z, into £(m, M).

Denote w(t) € R", 7 <t < 11, to be the solution to the equation
w(t) = A(Ww(t) +p(t), 7ty w(ty) = m,
and Wg(t) € R™™" to be the solution to the matrix equation

Ws(t) = A(t)Ws(t) + Ws(t)A'(t) -

STHOISOWs)S' (OIS P@)S (]2 S7 () -
— STHOIS@PE)S WM SOWs()S ()] 57(1),

T<St<t,
Ws(ty) = M,
where S(t) is a continuous matrix valued function
SC¢):[r 1] = R™*"
with invertible values (the set of all such functions will be denoted as X).

Theorem 2.1 (Internal Approximation)
(i) The following inclusion is truc
E(w(r), Ws(r)) C W[r]

whatever is the function S(-) € X.

(i) The following equality is true

U &Qw(r),Ws(r)) = W[r],

S(-)exr

where the symbol K stands for the closure of set K.

Further on, denote W,(t) to be the solution to the equation

Wo(t) = AW, () + WL ()A (1) —n 1 (Q)We()—m()P(1), T <t < 1y,

where m(t) > 0 is a continuous scalar function:
w(:): [, 1] — (0, 00)

(the class of such functions will be denoted as 11).

(13)

(14)

(15)

(16)

Wi(t1) = M,(17)




Theorem 2.2 (External Approximation)

(i) The following inclusion is true
W[t} C E(w(T), Wa(T)) (18)

whatever is the function «(-) € II.

(i) The following equality is true

Wirl= [ E(w(r), Wa(7)). (19)

w(-)ell

Equations (16) (19) are obviously simplified under the condition A(t) = 0 (we further pre-

sume that it holds). It is therefore clear that the set-valued function W([t] satisfies the inclusions
E[t] = E(w(t), Ws(t)) C W[t C E(w(t), Wa(1)) =ETt], o<t <t (20)

whatever are the functions S(-) € &, =(-) € Il
Since WI[t] is the solution to the evolution equation (10) the next question arises: do there
exist any two types of evolution equations whose solutions would be £~[t] and £*[t] respectively?
The answer to this question is given in the following assertion:

Consider the evolution equation
lirgoa"hJ,(S[t —ol, &[] = a&(p(t), P(1))) =0, tg<t<ty, ] = E(m, M). (21)

We will say that function &,[t] is a solution to equation (23) if it satisfies (23) almost
everywhere and if it is ellipsoidal-valued (!).

Also consider the evolution equation
ol_iﬂ()d"h-(é'[t —al,E[t] - a&(p(t), P(1)) =0, te <t < 1y, &[] = E(m, M). (22)
We will define £_[t] to be a solution to equation (24) if it
e satisfies (24) almost everywhere,
e is ellipsoidal-valued and
e is also a maximal solution to (24).

The latter means that there exists no other ellipsoidal-valued solution &'[t] to (24) such that
E_[t]c &'t] and E_[1] £ E'[t] 1o <1 < Uy

Each of the equations (23), (24) kas a nonunique solution.

-1



Lemma 2.1 Whatever are the solutions £4[t],E_[t] to the evolution equations (23), (24), the

following inclusions are true
E_[t] Cc WIi] C &4+]1], to <t <.

Lemma 2.2 Fach of the ellipsoidal-valued functions £~[t] = £(w(t),Ws(t)), (S(-) € £) is a
solution E_[t] to equation (24).

Lemma 2.3 Each of the ellipsoidal-valued functions E¥[t] = E(w(t), Wx(t)), (x(:) € 1) is a
solution £.[t] to equation (23).

To conclude this section we underline that the tube W[t] can be ezactly approzimated by
ellipsoids - both internally and externally — according to relations (18), (21). To achieve the
exact approximation it is necessary in general to use an infinite variety of ellipsoids (actually, a
countable set). The given approach, (see also [4]), therefore goes beyond the suggestions of [5]
and [6], where the sums of two or more convex sets were approximated by one ellipsoid.

The ellipsoidal approximations will now he used to devise a synthesized control strategy for
solving the problem of the above. This strategy will guarantee the attainability of the terminal

set M in prescribed time.

3 Synthesized Strategies for Guaranteed Control

The idea of constructing the synthesizing strategy l4(t, 2) for the problem of the above was that

U(t,z) should ensure that all the solutions z[t] = z({,7,z,) to the equation
#(t) € Ut 2(1)), T<t<1y,
with initial state z[r] = z, € W[r], would satisfy the inclusion
[t e W[t], T<t<t

and would therefore ensure z[t;] € M.

We will now substitute W[t] by onc of its internal approximations £_[t] = E(w(t), W(1)).
The conjecture is that once W][t] is substituted by &_[t], we should just copy the scheme of
Section 1, constructing a strategy /_(t,z) such that for every solution z[t] = z(t,7,z,) that

satisfies equation
[t = U_(t,z[t]), T<t<t;, a[r]=ua,, z, € £_[T], (23)

the following inclusion would be true

oD



z[e & [t], T<t<t, (24)

and therefore

z[th) € E(m, M) = M.

It will be proven that once the approximation £_[{] is selected “appropriately”, the desired
strategy U_(t,z) may be constructed again according to the scheme of (3), except that W[t] will

now be substituted by £_[t], namely

Ut z) = £(p(1), P(1)) ?f z €[t -
p(t) = P()E(E, P(O)O)™V/? if z ¢ £_[t],

where 0 = 9,d(z,£_[t]) at point z = z(t), that is the unit vector that solves the problem
(€0,2) - p(| £_[1)) = max{(€,2) — p(C | E_[DII1€] < 1}. (26)

The latter problem may be solved with more detail (since £_[t] is an ellipsoid). Indeed, if s°

is the solution to the minimization problem
& = argmin{[(z — s)llls € £_[1], @ = 2(1)} (27)

then we can take

O = x() — s°

in (26).

Lemma 3.1 Consider a nondegenerate ellipsoid £ = £(a,Q) and a vector z ¢ £(a,Q), then the

subgradient €0 = 8,d(z,£(a,Q)) can be expressed through €° = z — s9/||z — s9)|,
SC=(T+2Q7H) (2 - a)+a,
where A > 0 is the unique root of the equation h(A) = 0, with
r) = (T+2Q7) e = 0),Q7 I +23Q7) (2 ~ ) - 1.
Assume a = 0. Then the necessary conditions of optimality for the minization problem
|z — s|| = min, (s,Q07's) <1

are reduced to the equation

—-.’L‘+5+/\Q_15:0

where A is to be calculated as the root of the equation h{A) = 0,(a = 0).

Since it is assumed that z € £(0,Q), we have h(0) > 0. With A — oo we also have

((T+2Q7) . Q7' (1 + AQ7Nz) — 0.




This yields A(A) < 0, A > A, for some A. > 0. The equation h(A) = 0 therefore has a root
A% > 0. The root A% is unique since direct calculation gives k(1) < 0 with A > 0. The case
a # 0 can now be given through a direct shift-z — z — a.

We will now prove that the ellipsoidal valued strategy U_(t, z) of (26) does solve the problem
of control synthesis, provided we start from a point z, = z(r) € £_[r], 7 < t < t;. Indeed,
assume z, € £_[r] and z[t] = z(t,7,2,) to be the respective trajectory. We will demonstrate
that once z[t] is a solution to equation (23), then we will have (24). (With isolated trajectory
z[t] given, it is clearly driven by a unique control u[f] = #(¢) a.e. such that u[t] € P(1)).

Suppose, on the contrary, that the distance d(z[t.],£_[t.]) > 0 for some value . > 7. Since

z[r] € £_[7] and since d[t] = d(z[t],£-[t]) is differentiable, there exists a point t.. € (7,,] such

that
d , .
ad[z_||,=,__ >0, d[t.]>0. (28)
Calculating
dlt] = max {(C, 2(1)) - (€| E_[DIE]] < 1}
we observe

d _dro 0] e
Sl = [(C saft]) — p(€ |,,_[z])]
and since £0 is a unique maximiser,

L) = (20,81~ Fp(le-11]) = (C,ult) - 2 [(w(1) + (&, WD) ]

where £_[t] = E(w(t), W(t)).
For a fixed function S(-) we have £_[t] = £(w(t), Ws(t)) , where w(t), Ws(t) satisly the
system (15), (16), (A(t) = 0). Substituting this into the relation for the derivative of d[t] and

remembering the rule for differentiating a maximuni of a variety of functions

4
dt

(€, 57 OASOWSOS OISO POS @] + SO POS (S OWs()S'O]/2)8 (1)¢°)

dlt) = (€, ult]) = (€,p(0)) = 5(, Ws()e0) 2

or due to the Bunyakovsky-Schwartz inequality

%d[f] < —(C.p(1)) + (€0, P()E) 2 4 (€2, ult]),

where
ut] € E(p(1), P(1))

and

ult] € U_(t, ).
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For the case z ¢ £_(w(t),Ws(1)) the last relation gives us

d
E([[I]i =0

(=lea

which contradicts with (28).

What follows is the assertion

Theorem 3.1 Define an internal approzimation E_[t] = £_(w(t), Ws(t)) with given parametriza-
tion S(t) of (16). Once z[r] € E_[7] and the synthesizing strategy is U_(t,z) of (26), the

following inclusion is true:

x[t] € E-[t], T<1<y,

and therefore

x[ty] € E(m, M).

The ellipsoidal synthesis thus gives a solution strategy U_(t, z) for any internal approximation
E_[t] = E-(w(t), Ws(2)).

With = ¢ £_[t], the function /_(¢, 2) is single-valued, whilst with z € £_[t] it is multivalued
(U-(t,z) = £_[t]) being therefore upper-semicontinuous in z, measureable in ¢ and ensuring the
existence of a solution to the differential inclusion (23).

We will now proceed with numerical examples that demonstrate the constructive nature of

the solutions obtained above.

4 Numerical Examples

We take system (14) to be 4 dimensional, and study it between the initial moment ¢, = 0 and
final moment ¢; = 5.

As the ellipsoids appearing in this problem are four dimensional, we present their two di-
mensional projections. The figures are divided into four windows, and each shows projections
of the original ellipsoids onto the planes spanned by the first and second, third and fourth, first
and third, and second and fourth coordinate axes, in a clockwise order starting from bottom
left. The drawn segments of coordinate axes corresponding to state variables range from —10 to
10 according to the above scheme. In some of the figures, where we show the graph of solutions

and of solvability set, the third, skew axis corresponds to time and ranges from 0 to 5.

11



Let the initial position {0, z¢} be given by

4
1
g = }
0
0
the target set M = E(m, M) by
0
5
m =
5
0
and
1 0 0 O
01 00
M=
0 0 10
0 0 0 1

at the final moment t; = 5. We consider a case when the right hand side is constant:

01 00
-10 00
A(t) = ,
00 01
00 —-40

describing the position and velocity of two independent oscillators. The restriction u(t) €

E(p(1), P(t)) on the control u, is also defined by time independent constraints:

0
0
pll) = ,
0
0
1 0 0 0
0 1 0 O
Pit) = ,
0 01 0
0 0 0 1

so that the controls couple the systemn. Therelore the class of {easible strategies is such that
T = {U(t,2)|4(t.2) C E(p(t), P(1))}.

The results to be presented here we obtain by way of discretization. We divide the interval
[0,5] into 100 subintervals of equal lengths, and use the discretized version of (16). Instead of

the set valued control strategy (26G) we apply a single valucd selection:

12



u(t.z) = p(t) ifz e &_[t] (29)
’ p(t) = P(EO(L, P(1)(°)1/2 if 2 ¢ £_[1].

again in its discrete version.
We calculate the parameters of the ellipsoid £_[t] = £_(w(t), Ws(t)) by chosing

5(t)=P~V%(1), 0<t<5

in (16).
The calculations give the following internal ellipsoidal estimate £_[0] = £(w(0), Ws(0)) of
the solvability set W(0, M):

42371
1.2342
w(0) = ,
-2.6043
-3.1370
and
31.1385 0 0 0
0 31.1385 0 0
Ws(0) =

0 0 12.1845 2.3611
0 0 2.3611 44.1236

Now, as is easy to check, =g € £_[0] and thercefore Theorem 3.1 is applicable, implying that the

control strategy of (26) steers the solution of (23) into M, producing

0.0264
4.9512
4.0457

z[5] =
—0.0830

as a final state.

Figure 1 shows the graph of the cllipsoidal valued map £_[t], t € [0, 5] and of the solution of
z[t] = A(t)z[t] + u(t, 2[t]), 0 <1 <5, 2[0] = ap (30)

where we use u(t,z) of (29).
Figure 2 shows the target set M = &(m, Al'), (projections appearing as circles), the solvability
set £_[0] = £(w(0),Ws(0)) at the initial moment ¢ = 0, and the trajectory of the solution of

(30).
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3] Target Problem

Figure 1: Tube of ellipsoidal solvability sets and graph of solution
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rﬂ Target Problem

)

A\ >

—

D

Figure 2: Target set, initial ellipsoidal solvablity set and trajectory in phase space - initial state

SN

SN

)«
L/

inside

In the next example we show by way of numerical evidence, what can happens if the initial
state zo does not belong to the ellipsoidal solvability set £_{0]. Leaving the rest of the data to

be the same, we change the initial state z¢ in such a way that the inclusion

zg € E-[0]
is hurt, but “not very much”, taking
4
1
Xg =
0
2
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Figure 3: Initial state outside, “but not far away”.

Though Theorem 3.1 cannot be used, still we apply formulae (29) and (30). Analogously to
Figure 2, Figure 3 shows the phase portrait of the result. The trajectory of the solution to (30)
is drawn with a thick line, as long as it is outside of the respective ellipsoidal solvability set, and
with a thin line if it is inside. The drawn projections of the initial state are inside, except one,
(upper left window). As the illustration shows, at one point in time the trajectory enters the

tube £_[t], the line changing into thin. After this happens, Theorem 3.1 does take effect, and

16




the trajectory remains inside for the rest of the time interval. In this way we obtain

0.0255
4.9528
4.0215
—0.1658

as a final state.

The above phenomenon indicates

e first that for the initial state must be inside the solvability set W(0, M), that is actually
zo € W(0,M)\ €_]0],
as it was possible to steer the solution to (29) and (30) into the target set M,

e and second, that in this particular numerical ezample the control rule works beyond the

tube £_[t].

In the third example, we move the initial state 2o further away, so that the control rule does

not work any more, (Figure 4):

and obtain as final state
0.0460

4.9150
3.3668
—-0.5540
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Figures 5 and 6 show the effect of changing the target set. We take the data of the first

N

Figure 4: Initial state outside, “far away”.

example except for the matrix M in the target set M = £(m, M) by setting the radius to be 2:
‘ 4 0 0

0 4
0 0
0 0

A=

(== == =
= o O

resulting in a final state
0.5875

4.8914
3.0158
—0.0536
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Figure 5: Graph of solution for larger target set
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Figure 6: Phase space representation for larger target set

The switching of the control, due to the specific form of (29), is clearly seen in Figure 6. and

later in Figure 8.

Taking again the data of the first example, we allow more freedom for the controls, changing

the matrix P(t) in the bounding set P = &£(p(t), P(t)) again by setting the radius to be 2:

4.0 0 0
40 0
P(1) =
00 4 0
000 4




with a final state
0.0235

4.9565
4.0536
—-0.1308

z[5] =

r:_] Target Problem

e
7 N
RECIIAET N
SN

-. // N

/

W

I
01 .

Figure 7: Graph of solution for larger controls
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Figure 8: Phase space representation for larger controls
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