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Foreword 

A bifurcation analysis of a periodically forced ecological model shows that  seasonalities can 
give rise to  quasi-periodic and chaotic behavior of predator-prey communities. The analysis, 
performed with a continuation method, focuses on codimension two and three bifurcations and 
the results are in agreement with the local theory of forced Hopf bifurcations. 
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1. Introduct ion 

The problem of determining what regulates natural populations and makes 

them viable has engaged ecologists over the past f i f ty  years. The most 

credited approach (see [May & Seger, 19861 fo r  a recent discussion) is to  

think of plant and animal species as interacting components of a dynamical 

system driven by exogenous forces. The interaction mechanisms are  nonlinear 

because ra tes  of harvest, birth, death, and migration depend strongly on 

population densities, while the driving forces a re  periodic because food, 

temperature, humidity, light and other environmental factors vary periodically 

(seasons, daily, moon, and tide cycles). This implies that  the theory of 

periodically forced nonlinear dynamical systems is  the relevant theory: all 

modes of behavior of an aggregate of species living in a periodic environment 

can be classified, a t  least in principle, by looking a t  the bifurcation 

diagram of a dynamical system. In particular, the classical results on 

periodically forced Duffing and Van der Pol equations [Guckenheimer & Holmes, 

19861 and the more specific results on periodically forced Hopf bifurcation 

[Rosenblat & Cohen, 1981; Kath, 1981; Garnbaudo, 1985; Bajaj, 1986; 

Namachchivaya & Ariaratnam, 19871 are  of great interest, because ecosystems 

with oscillating populations are,  by f a r ,  the most intriguing ones. Taking 

this l i terature into account, one should therefore a priori expect that  

multiple at t ractors,  catastrophic transitions, subharrnonics, phase-locking, 

quasi-periodic behavior, and chaos show up quite frequently in ecosystems 

which a re  strongly influenced by some kind of seasonality. 

Indeed, the analysis of a number of recorded time series of seasonally 

perturbed plant, animal, and human populations seems t o  confirm the existence 

of the above phenomena. Subharmonics of period 2, 3, and 8 days, a s  well as  

phase-locking with the moon cycle, have been found by analyzing the abundance 



of reef fishes influenced by tides [Robertson et al., 19901. A low dimensional 

strange attractor has been ascertained in the Canadian lynx population by 

applying Takens method to  the 200 yr. long time series of number of skins 

shipped by the Hudson's Bay Company [Schaffer, 19841, while higher dimensional 

strange attractors have been detected in plant populations through the 

analysis of tree-rings [Gutierrez & Almiral, 19891. But the most convincing 

and detailed analysis showing evidence of chaos in a periodically perturbed 

population is, with no doubt, the study carried out by Schaffer and coauthors 

on a number of childhood diseases which are  strongly influenced by the 

seasonality of the contact ra tes induced by the Summer and Christmas vacations 

in schools IKot et al., 1988; Olsen et al., 19881. Other examples can be found 

in the broad area of food chain and food web systems which comprises forest 

ecosystems with recursive insect-pest outbreaks and aquatic ecosystems with 

chaotic algae blooms seasonally triggered by light intensity. 

Parallel t o  the studies based on field data and laboratory experiments we 

have a number of purely theoretical investigations of the bifurcations of 

simple models which pretend to  capture the essence of ecological systems. Some 

of these models are constant parameter discrete-time systems (maps1 in which 

the time step coincides with the period of the forcing function, while the 

others are continuous-time systems with periodically varying parameters. 

Models of the f i rs t  class are much more easy to  handle and can give rise to  

spectacular dynamics, in particular when the map is non-invertible a s  in the 

famous case of seasonally breeding organisms with nonoverlapping generations 

[May, 19741. Examples from this class are  a study on bivoltine populations 

[Kot & Schaffer, 19841 which proves that seasonality can give rise to  multiple 

at tractors and chaos, and a study on host-parasitoid models based on Hopf 

bifurcations [Lauwerier & Metz, 19861 which shows that periodic, 

quasi-periodic and chaotic solutions are possible. More interesting, both 



biologically and mathematically, are the investigations concerning 

continuous-time models. Subharmonics of period two, three. and four have been 

numerically detected in classical SEIR epidemic models with periodic contact 

ra tes [Schwartz & Smith, 1983; Aron & Schwartz, 19841. Periodic solutions of 

general Lotka-Volterra competition models are discussed in [Cushing, 1980; De 

Mottoni & Schiaffino. 1981; Namba, 19861 where i t  is proved that seasonality 

can support coexistence, while studies on more specific models which mimic the 

dynamics of two species of algae competing fo r  the same nutrient in a lake 

with seasonally varying inflow have been carried out in [Smith, 1981; Butler 

et al., 19851. Seasonal Lotka-Volterra predator-prey systems have also been 

analyzed, mainly with reference to periodic solutions [Cushing, 1977; Bardi, 

1981; Cushing, 19821, while much more realistic predator-prey models have been 

discussed in [Inoue & Kamifukumoto, 1984; Toro & Aracil, 1988; Schaffer, 1988; 

Allen, 19891. 

In this paper we analyze the most commonly used predator-prey model, from 

now on called canonical, in which the prey has a per capita growth ra te  

decreasing with density (intraspecific competition) and the predator has a 

saturating functional response due to  i ts limited gut capacity (this is not so 

in Lotka-Volterra systems !I. We analyze the effect that  seasons can have by 

assuming that the time needed by a predator t o  find i t s  prey varies 

periodically. We will show that this implies that only one parameter of the 

model must be varied periodically, and that this parameter directly affects 

the dynamics of both prey and predator. This is  not so neither in [Schaffer, 

19881 where the quality of the prey is periodically varied, nor in [Inoue & 

Karnifukumoto, 1984; Toro & Aracil, 1988; Allen, 19891 where the prey 

reproductive rate is the perturbed parameter (see next section for  a criticism 

on the correctness of this assumption). The discussion in [Inoue & 

Kamifukumoto, 19841 is mainly focused on the influence of the frequency of the 



forcing function, which is classical in mechanics and electronics but has a 

very l i t t le sense in ecology, while in [Toro & Aracil, 1988; Allen, 19891 only 

the results of a few simulations a re  shown. On the contrary, the discussion in 

[Schaffer, 19881 is more systematic and points out that  chaos can be obtained 

through torus destruction by increasing the magnitude of the seasonal 

variations. This is confirmed by our analysis which, nevertheless, shows that  

the period doubling route t o  chaos is also present. 

The paper i s  organized a s  follows. In the next section we describe the 

periodically forced predator-prey model and in Sec.3 we recall i t s  properties 

in the limit case of no environmental variability. In Sec.4 we briefly 

describe the continuation method and the corresponding interactive package we 

have used. The results of the analysis, comprising the proof of the existence 

of multiple at t ractors,  phase-locking, torus destruction and strange 

at t ractors,  a re  presented in Sec.5. They a re  mainly focused on resonances and 

codimension two and three bifurcations and they perfectly agree with the local 

theory of periodically forced Hopf bifurcation [Gambaudo, 1985; Bajaj, 19861. 

The final section i s  devoted t o  the discussion of the results and to  the 

comparison with related works. 

A s  f o r  the style of the paper, we have taken the liberty of being somehow 

naive in the presentation of the model and in the biological interpretation of 

the results, as well as in the description of the mathematical technicalities. 

We hope that  th is will make the paper accessible t o  a broader class of 

readers, ranging from theoretical biologists t o  applied mathematicians. 

2. The Mode1 

We now describe the canonical model [Gilpin, 1972; May, 1972; Shimazu et 

d l . ,  19721 that  has been used in the last twenty years t o  interpret t he  



behavior of many predator-prey communities and has been modified and extended 

t o  study more complex ecosystems, such as  food chains and competition systems. 

The model accounts f o r  the relationships between prey and predator populations 

in the case that the individuals a re  uniformly distributed in space and that 

age-structure and sex-ratio do not significantly af fect  the ra te  of growth of 

both populations. Under these assumptions, the dynamics of the two species is 

described by the following differential equations 

where x and y a re  the numbers of individuals of prey and predator populations 

o r  suitable (but equivalent) measures of density or biomass. In the absence of 

predators (y  = 0 )  the ra te  of growth of prey per unit of biomass, namely r(l - 

x/K), decreases with x. This is the standard assumption of logist ic growth of 

populations [Verhulst, 18451 which accounts for  competition fo r  food and space 

among individuals of the same species and fo r  increased mortality a t  high 

density due, for  example, t o  higher chances of epidemics a t  higher frequency 

of encounters among individuals. The intrinsic growth rate r describes the 

exponential growth of the prey population at low densities, while the carrying 

capaci ty K is the prey biomass at equilibrium in the absence of predators. The 

intrinsic growth rate and the carrying capacity increase with the amount of 

food available to  the prey population and can therefore undergo synchronous 

periodic variations during the year. Realistic values of r and K fo r  various 

kinds of aquatic and terrestr ia l  populations living in different habitats can 

be found in the literature. The function p(x) in Eqs. (11, (2) is the 

functional response of the predator [Holling, 19651, namely the prey biomass 



destroyed by each predator in one unit of time. The parameter e in Eq.(2) is a 

simple conversion factor, called efficiency, that specifies the number of 

newly born predators fo r  each captured prey, while d is the predator death 

rate per capita. 

To define the model completely, we must specify the functional response 

p(x). For this we select the type 2 functional response proposed by Holling 

which is, by fa r ,  the most commonly used in this type of study. This 

functional response can be justified as follows ( for  a more detailed 

interpretation see [Metz & van Batenburg, 19851). Let us assume that the 

searching time, namely the time the predator spends t o  find a unit of prey is 

inversely proportional t o  prey density, i.e., s /x ,  where s is a suitable 

parameter. If the time needed by each predator to  handle one unit of prey is h 

and all other activities of the predator occupy a fraction u of i ts time, we 

can write 

from which i t  follows that 

with 
1 - u  S 

a = -  b = -  
h h 

Thus, p(x) is a concave saturating function and a is the maximum harvest ra te 

of each predator, while b is the half saturation constant, namely the density 

of prey a t  which the predation rate is half maximum. In conclusion, by taking 

Eqs.(l)-(4) into account, the canonical model turns out t o  be 



where the s ix  parameters r, K. a. b. d, e are  positive. 

Of course, the parameters must be time varying if relevant environmental 

factors fluctuate in time. For example, seasonal variations in the caloric 

content of plants eaten by herbivores can be simply modelled by assuming that 

the efficiency e of the herbivores i s  periodic of period 1 year [Schaffer, 

19881, while the periodic presence of a superpredator exploiting the predator 

population can be taken into account by periodically varying the death ra te  d 

in Eq.(6). In these cases the seasonality is taken into account by perturbing 

only one parameter appearing in one of the two equations. Physical and 

biological mechanisms giving r ise t o  periodicities in the amount of food 

available t o  the prey population can be modelled by varying r and K in Eq.(5). 

Thus, results of analysis dealing with periodic variations of only one of 

these two parameters, like those presented in [Inoue & Kamifukumoto. 1984; 

Toro & Aracil, 1988; Allen, 19891 are difficult to  be interpreted 

biologically. Finally, there a re  more complex seasonality mechanisms which can 

be modelled only varying parameters which directly af fect  both differential 

equations. This happens, fo r  example, when the degree of mimicry of the prey 

is not constant during the year o r  when variations of the habitat facilate the 

escape or the capture of the prey in some specific season. In these cases the 

searching time of the predator is st i l l  inversely proportional to  the prey 

density but the coefficient of proportionality (s in Eq.(4)) is periodically 

varying in time with period 1 year. Thus, from Eqs.(l)-(4) i t  follows that 

only one parameter of the model. namely b, is periodic, but this parameter 



appears in both equations. This is the case we analyze in this paper, because 

we believe that mechanisms involving periodicities in the parameters of the 

functional response are the most interesting ones from a biological point of 

view (the analysis we have carried out on the other seasonality mechanisms 

confirms this guess). Therefore, in the following, we analyze Eqs.(5)-(6) with 

r, K, a, d, e constant and b periodic of period 1 year. For simplicity we 

consider sinusoidal perturbations, i.e., 

b = bo(l + c s in 27rt (7) 

where bo is the average value of b and cbo i s  the amplitude of the 

perturbation. Obviously, 0 S c 3 1, because b cannot be negative: c = 0 

corresponds to absence of seasonality, while c = 1 means that the searching 

time of the predator in i ts  most unfavourable season is twice i t s  average 

value. 

Model (51-(7) is of the form 

with f and g periodic with respect to  t and f(0,y.t) and g(x,O,t) bounded fo r  

all t ,x,y r 0. It is therefore a positive dynamical system, since x(O), y(0) r 

0 implies x(t), y(t) r 0 f o r  all t r 0. Autonomous systems of this kind have 

been studied by Kolrnogorov in a celebrated paper [Kolmogorov, 19361 and by 

many other authors since then [Cushing, 19821. In the autonomous case and 

under suitable (but biologically sound) conditions. Kolmogorov systems have a 

single attractor [equilibrium or  limit cycle) in the f i r s t  quadrant IWrzosek, 

19901. We will see in the next sections that the canonical model ( 5 ) - ( 7 )  



satisfies this property in the absence of seasonality ( c  = O), but has 

multiple at tractors when there is a sufficiently high degree of seasonality. 

3. The Constant Parameter Case 

For E = 0 system (51-(71 becomes the autonomous second order system 

where all parameters and state variables are nonnegative. The analysis of the 

local stability of i ts equilibria shows that there is a Hopf bifurcation a t  

and a self-crossing bifurcation a t  

1 The Hopf bifurcation is  always supercritical, e . ,  the corresponding 

appearing limit cycle is  always stable, and the asymptotic period of this 

cycle is 

1 
The computation of the Liapunov number is relatively easy if one considers 

the orbitally equivalent system obtained by multiplying Eqs.(8),(9) by (bo+x). 



Moreover, the limit cycle is  unique [Cheng, 1981; Wrzosek, 19901 and i t s  

period T i s  a decreasing function of bo. 

Thus, the parameter space is partitioned into three regions, 

characterized by low, intermediate and high values of bo (see Eqs.(lO),(l l) 

f o r  the  cri t ical values of bo identifying the three cases). For al l  

combinations of the parameters there is  a single a t t rac tor  which i s  globally 

stable in the f i r s t  quadrant as indicated in Fig.1. More precisely, f o r  bo 

sufficiently small the a t t rac tor  is  a stable limit cycle. For increasing 

values of bo th is cycle shrinks and disappears through a Hopf bifurcation. 

Then the  a t t rac to r  is  a stable equilibrium which is positive fo r  intermediate 

values of bo and trivial (absence of predator population) f o r  high values of 

4. Bifurcat ion Curves and Method of Investigation 

For c > 0 system (5)-(71, adding the  equation t = 1 (t  mod 1). can be 

transformed into an  autonomous three- dimensional system f o r  which Poincare 

section and f i r s t  return map (x(O),y(O)) (x(l),y(l)) can be defined 

[Arnold, 1982; Guckenheimer & Holmes, 19861. Fixed points of the  k-th i te ra te  

of the map correspond t o  periodic solutions of Eqs.(5)-(7) with period k. We 

will re fe r  t o  these points as period k f i xed  points. I t  should be noted that  a 

periodic solution with period k corresponds to a k-ple of period k f ixed 

points of the Poincare map. Moreover, closed and regular invariant curves of 

the Poincare map correspond to  quasi-periodic solutions ( invariant tor i )  of 

the three-dimensional system, while irregular invariant se ts  correspond t o  



chaotic solutions (strange attractors). 

Fixed points, regular invariant curves and all other orbits of the 

Poincare map form i ts phase portrait. In our figures (see the bottom part of 

Figs.2, 4) we always have an odd number of fixed points: the central one is a 

period one fixed point while the others are period two fixed points (fixed 

points of period three or  higher are not shown in the portraits). We will use 

schematic phase portraits of the PoincarC map t o  il lustrate the behavior of 

system (5) - (7) .  The stability of the fixed points and of the closed invariant 

curves is clearly detectable from these portraits. I t  is important t o  remark 

that  in some subregions of the parameter space the phase portraits a re  not so 

regular a s  shown in our figures. In particular, the closed and regular 

invariant curves might be substituted by strange attractors like the one shown 

in Fig.3. 

Fixed points of the Poincare map of system ( 5 ) - ( 7 )  can bifurcate a t  some 

parameter values. We use the following notation for  fixed point codimension 

one bifurcation curves. 

hrk) - Hopf (Neimark-Sacker) bifurcation curve. For parameter values on 

this curve the map has a period k fixed point with a pair of multipliers on 

rk) +iw the unit circle: p = e . w > 0. 
1 .2  

f r k )  - f l i p  (period doubling) bifurcation curve. For parameter values on 

rk 1 this curve the map has a period k fixed point with a multiplier p = -1. 
1 

trk) - tangent (fold) bifurcation curve. For parameter values on this 

ck, curve the map has a period k fixed point with a multiplier pl = 1. 

Phase portraits of the PoincarC map fo r  parameter values near these 

curves are described in [Arnold, 1982; Guckenheimer & Holmes, 19861. 

The bifurcation curves presented in the following section have been 

computed by means of a continuation method interactively supported by the 

program LOCBIF developed by the f i rs t  author and by A. Khibnik, V. Levitin and 



E. Nikolaev at the  Research Computing Centre of the USSR Academy of Sciences 

at Pushchino. 

The method can be briefly described as follows (see [Khibnik, 1990a,b]). 

Each bifurcation curve is  computed by projecting a one-dimensional manifold 

located in the four  dimensional space (x ,y ,p  , p  ) on t he  (p , p  1- plane, where 
1 2  1 2  

p and p a r e  two parameters of (5) - (7) .  The manifold i s  determined by the two 
1 2 

f ixed point equations and by a bifurcation condition imposed on the 

multipliers of the  fixed point. This condition is writ ten using the  

characterist ic polynomial de t  (A  - PI), where A i s  t he  Jacobian matr ix  of the 

Poincare map at point ( x , y )  and I is  the unit matr ix. More precisely, the 

bifurcation conditions a r e  the  following 

R [det  ( A  - PI), de t  (PA - I)] = 0 ( fo r  Hop f bif urcation2), 

det (A + I) = 0 ( fo r  f l i p  bifurcation), 

de t  ( A  - I) = 0 ( fo r  tangent bifurcation), 

where R [ . , - I  stands fo r  the resul tant  of two polynomials [Lancaster & 

Tismenetsky, 19851. In the  program LOCBIF the  bifurcation curves a re  computed 

by means of a n  adaptive prediction-correction continuation procedure with 

tangent prediction and Newton correction. All relevant derivatives, as well as 

the Poincare map, a r e  evaluated numerically. Codimension two bifurcation 

points a r e  detected automatically. The program LOCBIF also produces phase 

2 Actually, th is  condition implies t ha t  plp2 = 1 and, therefore, corresponds 

also t o  a nonbifurcating neutra l  sadd le  f ixed point with p = 1/p2 with real 
1 

p1.2' 



portraits of the PoincarC map, continues fixed points in any ( x , y , p  )-space 
l 

and detects codimension one bifurcations. 

5. Analysis of t h e  Resul ts 

In th is section we present bifurcation diagrams of system (5)-(7) in the 

(c,bo)-plane fo r  fixed values of the remaining parameters. Parameter values 

fo r  which the period TH of the appearing limit cycle i s  integer will play an 

important role since in these cases the rat io between the period T and the 
H 

period of the forcing function (see Eq.(7)) is  integer. Parameters e ,  a and d 

will be fixed during the analysis (e = 1, a = 2 . 2 ~ ~  d = 2n), while r will vary 

and cross 'resonants values r and r corresponding t o  T = 1 and TH = 2 
1 2 H 

respectively. Note that  rl > r . fo r  example, fo r  our values of e ,  a and d we 
2' 

have r = 3 . 2 ~  and r = 0 . 7 5 ~ 2 ~ .  
1 2 

5.1. Case r < r (see Fig.2) 
2 

On the b -axis there is a point H corresponding t o  the Hopf bifurcation 
0 

of the nontrivial equilibrium in the constant parameter system. Since r < r 
2 

the period TH of the limit cycle appearing through the Hopf bifurcation is 

greater than 2 and increases while b decreases. In what follows we assume 
0 

t ha t  r is  fixed at some generic value ( r  = 0 . 7 3 . 2 ~ )  and present bifurcation 

curves in the (c ,b  )-plane (Fig.2). 
0 

Hopf bifurcation o f  period one fixed points ih"'1 

Point H is a root of the Hopf bifurcation curve h"' of system (5)-(7). 

The curve h"' shown in Fig.2 has been obtained by continuation start ing from 

point H. When curve h"' is crossed from above (i.e., from region 0 to  region 



1 in Fig.2) a small stable closed invariant curve of the Poincare map appears: 

in other words, the forced stable cycle of period 1 of system (5)-(71 

bifurcates into a stable torus. 

Flip bifurcation o f  period one fixed points [ f "'I 
h'l' 

While continuing curve from the lef t  t o  the right the multipliers 

p ( l )  vary smoothly and become equal to  -1 when the terminal point A is 
1.2 1 

reached. This is  a codimension two bifurcation point called strong resonance 

1:2 which is  studied in [Arnold, 19821 by means of the normal form approach. 

In the present case the two coefficients of the corresponding normal form are  

negative. A f l ip bifurcation curve f(" passes through point Al. The two 

branches of curve f"' have been obtained by continuation start ing from A in 
1 

the two possible directions. 

Since the coefficients of the normal form are  negative one can conclude 

[Arnold, 19821 that when curve f"' is crossed from region 0 t o  region 2 the 

period one fixed point loses stability and a pair of period two fixed points 

appears. If curve f'l' i s  crossed from region 1 t o  region 3 ( just  below point 

A ) a pair of repelling period two fixed points appears while the unstable 
1 

period one fixed point becomes a saddle. 

Tangent bifurcation o f  period two fixed points [t(2'l 

The analysis of the f l ip bifurcation on f"' by means of the method 

developed in [Kuznetsov & Rinaldi, 19911 shows that  there a r e  two other 

codimension two bifurcation points ( D l  and D2) on the fl ip bifurcation curve 

f") at which the coefficient of the cubic term in the normal form vanishes. 

( 2 )  
These points a re  two terminal points of the tangent bifurcation curve t 

[Arnold et al., 19861. When curve t(') is crossed from region 1 to region 4 

two pairs of period two fixed points appears: two a re  repelling points and two 



are  saddle points. The two saddle points a re  the same points which disappear 

through the f l ip bifurcation on the segment D D of curve f").  
1 2  

Hop f bi f wcat ion o f  period two f [xed points [h(2)l 

Point Al is also the origin of the Hopf bifurcation curve ht2) of period 

two fixed points [Arnold, 19821. If h(" is crossed from region 3 t o  region 2 

then two small unstable invariant curves around the period two fixed points 

appear while the corresponding fixed points become stable. 

Bifurcations o f  period three f ixed points ~ t ( ~ )  and f ( 3 ) ]  

If r > r then there is a point on the b -axis a t  which the period T of 
3 0 

the limit cycle of the unperturbed system is equal to  3. From this point two 

branches (not shown in Fig.2) of a tangent bifurcation curve t(3) originate. 

When curve t(3) is crossed two triplets of period three fixed points (one 

stable and one of saddle type1 appear. Then, the stable fixed points of period 

three undergo a period doubling bifurcation on a curve f t 3 )  (not shown in 

Fig.2). 

Global bifurcations o f  closed invariant curves 

A s  predicted by the normal form analysis of point Al [Arnold, 19821, the 

closed invariant curves of the PoincarC map shown on the phase portrait f o r  

region 2" undergo global bifurcations of homoclinic type in region 2 and, 

finally, disappear. The same holds fo r  the closed invariant curve appearing on 

curve ,,'I' which f i rs t  loses smoothness and then disappears on some 

bifurcation set in regions 1, 3 and 4 thus giving rise t o  strange attractors 

like the one shown in Fig.3. 



5.2. Case r < r < r (see Fig.4) 
2 1 

If r approaches r2 the points A and D of Fig.2 tend toward point H on 
1 1 

the b -axis. In the limit, when r = r curve h") does not exist and curves 
0 2' 

f(l), h(2' and t(2) originate from the same root (namely, from point H). 

If r < r C r then the period T of the limit cycle appearing through 
2 1 H 

the Hopf bifurcation in the unperturbed system is between 1 and 2. In the 

following section we assume that  r is fixed a t  some generic value (r = 1 . 2 ~ )  

and present bifurcation curves on the (c,bo)-plane (Fig.4). 

Hopf and f l i p  bifurcations of period one f i r e d  points [h"' and f "'I 

For r C r < r the Hopf bifurcation curve h"' is rooted a t  point H on 
2 1 

the b -axis and terminates a t  point A2 which is  a codimension two bifurcation 
0 

(1) 
corresponding to  p = -1. This strong resonance is  different than in the 

1.2 

preceding case because the coefficients of the corresponding normal form (see 

[Arnold, 19821) a re  of opposite sign. This implies that no Hopf bifurcation 

curve h(2' originates a t  point A 
2' 

The fl ip bifurcation curve f(" still goes through point A2, but the 

character of the f l ip bifurcation in the neighborhood of point AS is 

different. Crossing f"' just above point A from region 5 t o  region 2 results 
2 

in the disappearance of a pair of saddle type period two fixed points while 

the period one fixed point which is stable in region 5 becomes a saddle in 

region 2. Crossing f(" just below point A from region 6' to  region 2 results 
2 

in the disappearance of a pair of period two saddle fixed points while the 

repelling period one fixed point bifurcates into a saddle. 



Tangent bifurcation of period two fixed points[ t(2'] 

t'2' The tangent bifurcation curve has two branches (t'2' and t i2 ' )  
1 

originating a t  point K 2  on the b -axis where the limit cycle of the 
0 

unperturbed system has period 2. Branch t'2' terminates at point Dg which i s  a 
1 

codimension two bifurcation point on the f l ip bifurcation curve f"'. Some 

details concerning the system behavior near point K2 can be found in 

[Guckenheimer & Holmes, 19861 where an example of this bifurcation i s  

considered. On the  branch t:2' and on the branch t:' close t o  point K two 
2 

pairs of period two f ixed points appear, namely a pair of stable points and a 

pair of saddle points. 

A t  point B on curve t r '  the Poincare map has a period two fixed point 

with two multipliers C C ( 2 )  = 1. This is  a codimension two bifurcation which has 
1.2 

also been studied in [Arnold, 19821. The Hopf bifurcation curve h'2' 

originates at this point. 

Hopf and f l i p  bifurcations o f  period two fixed points [h'2' and f ( 2 ' ]  

The Hopf bifurcation curve 
h'2' can be constructed by continuation 

star t ing f rom point B and terminating a t  point C where the multipliers C((2' of 
1.2 

the second i terate of the Poincare map a r e  both equal t o  -1. This is  again a 

codimension two bifurcation point. A curve f12'  corresponding to  the f l ip 

bifurcation of period two fixed points goes through point C. Of course, fixed 

( 2 )  points of period four appear when crossing curve f . 

Cascade o f  period doublings 

The analysis shows tha t  f l ip bifurcation curves f '4 ' ,  f"), . exist 

(2' in the vicinity of curve f , and that  this cascade of period doublings 

results in a strange at t ractor  which can be found in some subregion of regions 

8 and 9. One of these at t ractors  is shown in Fig.5. 



Bifurcations of closed invariant curves 

A s  in the previous case, closed and regular invariant curves bifurcate. 

For example, in accordance with [Guckenheimer & Holmes, 19861, the stable 

torus appearing through the Hopf bifurcation on curve h") disappears through 

a homoclinic structure on a bifurcation set  resembling a curve connecting 

point A with a point on curve t'2' near the bo-axis. 
2 1 

5.3. Case r > r (see Fig.6) 
1 

If r > r then the period T of the limit cycle appearing through the 
1 H 

Hopf bifurcation in the unperturbed system is smaller than 1. In the following 

we assume that r is fixed at some generic value (r = 3.3.2n) and we present 

bifurcation curves on the (c,bo)-plane (Fig.6). 

For r r r the bifurcation curves described in the previous section stil l 
1 

remain. Moreover, a triangular region K E E bounded by the bifurcation curve 
1 1  2 

t'l' appears (this region shrinks t o  a point when r tends to  r 1. The curve 
1 

(1) has two branches (t") and t 1 start ing at point K on the b -axis a t  which 
1 2 1 0 

the unperturbed system has a stable limit cycle of period 1 (note that point 

K is above point K 1. The f i rs t  branch t") terminates a t  point E and the 
1 2 1 1 

second one t'" terminates at point E2. These two points of codimension two 
2 

correspond to  the cusp bifurcation of the period one fixed points. The two 

cusps a re  connected by the third branch ti" of t'l'. Inside the triangle the 

PoincarC map has three fixed points of period one: one saddle point and two 

non-saddle points. 

There a re  two codimension two bifurcation points G1 and G2 on t (1) 

(1) characterized by C"' = 1. The Hopf bifurcation curve h start ing from point 
1,2 

H on the b -axis terminates a t  point G and originates again a t  point G2. The 
0 1 



stable closed invariant curve appearing on h"' bifurcates inside the triangle 

through homoclinic structures. 

6. Concluding Remarks 

The canonical model used in ecology t o  describe damped o r  sustained 

oscillations of predator-prey communities has been analyzed in this paper 

under the assumption tha t  one of i ts  parameters i s  periodically varying in 

time with period 1 year. This corresponds t o  deal with a specific seasonality 

mechanism affecting the dynamics of prey and predator populations. m e  

analysis is much more detailed and complete than in other contributions on the 

same subject [Inoue & Kamifukumoto, 1984; Toro & Aracil, 1988; Schaffer, 1988; 

Allen, 19891 where simulation i s  the only tool of investigation. On the 

contrary, we have used an interactive package implementing a continuation 

method which allows one t o  detect codimension one and two bifurcations as well 

as t o  continue bifurcation curves. By means of this method we have shown that 

the model has stable and unstable periodic solutions of various periods, as  

well as  stable and unstable quasi-periodic solutions and chaotic motions. Two 

different routes t o  chaos have been detected: in the case analyzed in Sec. 5.1 

the strange at t ractor  (see Fig. 3) arises from a torus which f i r s t  loses 

smoothness and then is destroyed, while in the case analyzed in Sec. 5.2 the 

strange at t ractor (see Fig. 5 )  arises from a cascade of period doublings. 

Although the bifurcation diagrams presented in Figs. 2,4,6,7 a re  not 

complete because bifurcations of periodic solutions of period greater than or  

equal t o  three as well as homo- and heteroclinic tangencies of the saddle 

invariant manifolds and bifurcation sets of the closed invariant curves are 

not presented, the structure of bifurcations of periodic solutions of period 

one and two is completely understood and proves that  forced ecological 



osci l lators a re  a s  reach a s  the well known mechanic and electronic 

oscillators. 

I t  is also interesting t o  notice tha t  our numerical results near the 

parameter values a t  which the period of the appearing limit cycle of the 

unperturbed system i s  one ore two times the  period of the forcing function 

a r e  in perfect agreement with the local theory of periodically forced Hopf 

bifurcation. The comparison becomes straightforward if one considers 

bifurcation curves near the resonance 1:2 in the ( r ,b  )-plane f o r  c = const 
0 

(see, f o r  example, our Fig.7 and Fig.25 in [Gambaudo, 19851 and Fig.1 in 

[Bajaj, 19861). Nevertheless, the bifurcations f a r  from these resonances ( for  

example, the f l ip bifurcation of period two fixed points) a re  not predicted by 

the local analysis performed in [Gambaudo, 1985; Bajaj,  19861. 

The results of our analysis a re  also very interesting from a biological 

point of view, because they confirm tha t  seasonality has the power of 

transforming simple ecosystems into complex ecosystems. In fact ,  our 

predator-prey model has always a single a t t rac tor  in the case of no 

seasonality, while the perturbed model may have multiple at t ractors.  For 

example, in region 5 of Fig. 4 the system has a stable period one solution as 

well a s  a stable period two solution. The coexistence of a stable period two 

solution with a strange at t ractor  is also possible in region 2 of Fig. 2. 

Moreover, in the unperturbed case the at t rac tor  varies smoothly with 

parameters and catastrophic transitions cannot occur. On the contrary, in the 

case of sufficiently pronounced seasonality, the  system can sharply change i t s  

mode of behavior if a strategic parameter is  only slightly perturbed. Suppose, 

f o r  example, tha t  the parameters a r e  such that  the system i s  in region 2" of 

Fig.2 and that  the  mode of behavior is  a stable period two limit cycle. Then, 

if bO decreases so  tha t  the bifurcation curve h(" i s  crossed, the stable 

period two solution becomes unstable and the system moves toward a completely 



different at t ractor which may be even a strange at t ractor  like the one shown 

in Fig.3. 

As a last remark we would like t o  point out that  the number of possible 

asymptotic modes of behavior of the system is  not a s  high a s  i t  might appear 

f rom a superficial analysis of our figures. Indeed, many of the bifurcation 

curves shown in Fig. 2, 4, 6 concern only unstable solutions. Nevertheless. 

these curves a re  needed if one likes t o  fully understand the ultimate 

structure of the bifurcations of this predator-prey system. 



REFERENCES 

Allen, J.C. [I9891 "Are natural enemy populations chaotic ?", in Estimation 

and Analysis o f  Insect Populations, eds. McDonald, L., Manly, B., 

Lockwood, J. & Logan, J., Lecture Notes in Statistics, 55 (Springer 

Verlag, Berlin) pp. 190-205. 

Arnold, V.I. [I9821 Geometrical Methods in the Theory o f  Ordinary Differential 

Equations (Springer-Verlag, New-York, Heidelberg, Berlin). 

Arnold, V.I., Afraimovich, V.S., Il'yashenko ,Yu. S.& Shil'nikov, L.P. [I9861 

"Bifurcation theory" in Dynamical Systems, V, eds. Anosov, D.V. & 

Arnold, V.I. (VINITI, Moscow) pp. 5-218 [in Russian]. 

Aron. J.L. & Schwartz, I.B. [I9841 "Seasonality and period-doubling 

bifurcations in an epidemic model", J. Theor. Biol. 110, 665-679. 

Bajaj,  A.K. [I9861 "Resonant parametric perturbations of the Hopf 

bifurcation". J. Math. Anal. Appl. 115, 214-224. 

Bardi. M. [19811 "Predator-prey models in periodically fluctuating 

environments", J. Math. Biol. 12, 127-140. 

Butler, G.J., Hsu, S.B. & Waltman, P. (19851 "A mathematical model of the 

chemostat with periodic washout rate", SIAM J. Appl. Math. 45, 435-449. 

Cheng, K.S. [I9811 "Uniqueness of a limit cycle for  a predator-prey system", 

SIAM J .  Math. Anal. 12, 541-548. 

Cushing, J.M. [I977 I "Periodic time-dependent predator-prey systems", SIAM J. 

Appl. Math. 32, 82-95. 

Cushing, J.M. [19801 "Two species competition in a periodic environment", J. 

Math. Biol. 10, 384-400. 

Cushing, J.M. [I9821 "Periodic Kolmogorov systems", SIAM J. Math. Anal. 13, 

811-827. 

De Mottoni, P. & Schiaffino, A. (19811 "Competition systems with periodic 

coefficients: a geometric approach", J. Math. Biol. 11, 319-335. 



Gambaudo, J.M. [I9851 "Perturbation of a Hopf bifurcation by an external 

time-periodic forcing", J. Di f f .  Eqs. 57, 172-199. 

Gilpin, M.E. 119721 "Enriched predator-prey systems: theoretical stability", 

Science 177, 902-904. 

Guckenheimer, J. & Holmes, P. 119861 Nonl inear Osci l lat ions, Dynamtcal 

Systems, and Bifurcat ions o f  Vector Fie lds (Springer-Verlag, New-York, 

Heidelberg, Berlin, Tokyo). 

Gutierrez, E. & Almiral, H. [19891 " Temporal properties of some biological 

systems and their f ractal  attractors", Bull. Math. Biol. 51, 785-800. 

Holling, C.S. 119651 "The functional response of predators to  prey density and 

i t s  role in mimicry and population regulation", Mem. Entomol. Soc. Can. 

45, 5-60. 

Inoue, M. & Kamifukumoto, H. [I9841 "Scenarios leading to  chaos in a forced 

Lotka-Volterra model", Progr. Theor. Phys. 71, 930-937. 

Kath, W.L. [I9811 "Resonance in periodically perturbed Hopf bifurcation", 

Studies in Appl. Math. 65, 95-112. 

Khibnik, A.I. [1990al "LINLBF: A program fo r  continuation and bifurcation 

analysis of equilibria up t o  codimension three", in Continuation and 

Bifurcat ions: Numerical Techniques and Applications, eds. Roose, D . ,  de 

Dier, B. & Spence, A. (Kluwer Academic Publishers, Netherlands) pp. 

283-296. 

Khibnik, A. I. (1990bl "Numerical methods in bifurcation analysis of dynamical 

systems: parameter continuation approach", in Mathematics and Model 1 ing, 

eds. Zarhin, Yu.G. & Bazykin, A.D. (Center of Biological Research of the 

USSR Academy of Sciences, Pushchino) pp. 162-197 [in Russian]. 

Kolmogorov, A.M. [I9361 " Sulla teoria di Volterra della lotta per 

l'esistenza", Ciornale del l ' Ist i tuto Ital iano degl i Attuari 7, 74-80 [in 

Italian]. 



Kot, M. & Schaffer ,  W.M. 119841 "The e f fec ts  of seasonality on discrete models 

of population growth". Theor. Pop. Biol. 26, 340-360. 

Kot, M., Schaffer,  W.M., Truty,  G.L., Grasser, D.J. & Olsen, L.F. 119881 

"Changing cr i te r ia  f o r  imposing order", Ecol. Modelling 43, 75-110. 

Kuznetsov, Yu.A. & Rinaldi, S. [I9911 "Numerical analysis of the  f l ip  

bi furcat ion of maps", Appl. Math & Cornp. 43, 231-236. 

Lancaster,  P. & Tismenetsky, M. [I9851 The Theory o f  Matrices (Academic 

Press, San Diego). 

Lauwerier,  H.A. & Metz, J.A.J. [I9861 "Hopf bifurcation in host-parasitoid 

models", I M A  J. Math. Appl. Med. & Btol. 3 ,  191-210. 

May, R.M. 119721 "Limit cycles in predator-prey communities", Science 17, 

900-902. 

May, R.M. [I9741 "Biological populations with nonoverlapping generations: 

s table points, s table cycles, and chaos", Science 186, 645-647. 

May, R.M. & Seger, J. 119861 "Ideas in ecology", Am. Sci. 74,  256-267. 

Metz, J.A.J. & van Batenburg, F.H.D. 119851 "Holling's "hungry mantid" model 

f o r  the  invertebrate functional response considered as a Markov process. 

P a r t  I: the fu l l  model and some of i t s  limits", J. Math. Biol. 22, 

209-238. 

Namachchivaya, S. N. & Ariaratnam, S.T. I19871 "Periodically perturbed Hopf 

bifurcation", SIAM J. Appl. Math. 47, 15-39. 

Narnba, T. [I9861 "Bifurcation phenomena appearing in the  Lotka -Volterra 

competition equation: a numerical study", Math. Biosct. 81, 191-212. 

Olsen, L.F., Truty, G.L. & Schaffer ,  W.M. [I9881 "Oscillations and chaos in 

epidemics: a nonlinear dynamic study of s ix  childhood diseases in 

Copenhagen, Denmark", Theor. Pop. Biol. 33, 344-370. 

Robertson, D.R., Petersen, C. W & Brawn, J.D. 119901 "Lunar reproductive cycles 

of benthic-broading reef f ishes: reflections of larval biology o r  adult  



biology ?", Ecol. Monogr. 60, 311-329. 

Rosenblat, S. & Cohen, D.S. [I9811 "Periodically perturbed bifurcation - 11. 

Hopf bifurcation", Studies in Appl. Math. 64, 143-175. 

Schaffer,  W.M. (19841 "Stretching and folding in Lynx f u r  returns: evidence 

f o r  a strange a t t rac to r  in nature  ?", Amer. Nat. 124, 798-820. 

Schaffer,  W.M. 119881 "Perceiving order  in t he  chaos of naturen, in Evolution 

o f  L i fe  Histories o f  Mammals, ed. Boyce, M.S. (Yale University Press, New 

Haven) pp. 313-350. 

Schwartz, 1.B & Smith, H.L. 119831 "Infinite subharmonic bifurcation in an 

SEIR epidemic model", J. Math. Biol. 18, 233-253. 

Shimazu, Y., Sugiyama, K., Kojima, ' T. & Tomida, E. [I9721 "Some problems in 

ecology oriented environmentology", J. Earth Sci. Nagoya Univ. 20, 31-89. 

Smith, H.L. [I9811 "Competitive coexistence in an oscillating chemostat", SIAM 

J .  Appl. Math. 40, 498-522. 

Toro, M. & Aracil, J. [I9881 "Qualitative analysis of system dynamics 

ecological models", Syst.  Dyn. Review 4, 56-80. 

Verhulst, P.F. [I8451 "Recherches mathkmatique su r  l a  loi d'accroissement de 

la  population", Mem. Acad. Roy. Belg. 18, 1-38 [in French]. 

Wrzosek, D.M. [19901 "Limit cycles in predator-prey models", Math. Biosci. 98, 

1-12. 



Fig.1. Phase portrai ts of the constant parameter system (8),(9): 

K(ea - d )  
(a): bo c e 

ea + d 



Fig.2. Bifurcat ion d iagram of system (5147) f o r  t h e  case r < r The 
2' 

parameter  values a r e  r = 0.73-2n, e = 1, a = 2.271, d = 271. 



0 X 0.8 

Fig.3. A strange at t ractor  of system (5)-(7) appearing through torus 

destruction. The parameter values a r e  r = 0.73-217. bo = 0.28, e = 1. a = 2.217. 

d = Zn, c = 0.35. 



Fig.4. Bifurcation diagram of system (5)-(7) fo r  the case r2 < r < r . 
1 

The parameter values a r e  r = 2n, e = 1, a = 2-2n, d = 2n. 



Fig.5. A strange attractor of system ( 5 ) - ( 7 )  appearing through a cascade 

of period doublings. The parameter values are r = 2n, b = 0.4, e = 1, a = 
0 

Zm27r, d = ZK, c = 0.7. 



Fig.6. Part  of the parametric portrait  of system (5147) fo r  the case r > 

r (the rest  of the portrait  is like in Fig.4). The parameter values are  r = 
1 



Fig.7. Parametric portrait  of system (5147) in the ( r ,b )-plane fo r  c = 
0 

(1) 
0.4 and e = 1, a = 2.21~. d = 2n. Note tha t  the f l ip bifurcation curve f is 

closed. Labels of points and curves correspond to  those in Figs.2, 4. 


