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Foreword

The author studies the exact (best possible) rate of approximability of an uncertain or
control system by means of N-stage discrete-time systems. An ultimate solution is pre-
sented in the linear case and an estimate of the rate of approximability is given for a
broad class of nonlinear systems. Some applications for numerical treatment of optimal
control problems and of uncertain systems are indicated.

Alexander B. Kurzhanski
Chairman,
Systems and Decision Sciences Program

il



Contents

1

2

Introduction

Characterization of the approximability

rates.

An auxiliary result
The linear case
The nonlinear case.

Some Applications

v

10

16

22



Best Approximations of Control/Uncertain
Differential Systems by Means of Discrete-Time

Systems

V.M. Veliov

1 Introduction

The approximability of control (uncertain) systems by means of discrete-time systems
is a central issue in several areas of applications like approximation of optimal control
problems, discretization of the associated Hamilton-Jacobi equations, simulation or
guaranteed control of uncertain systems. In the paper we address the following problem:
how accurate (and in which sense) a continuous-time system can be approximated by

means of N-stage discrete-time systems.

We consider a continuous-time system
z = f(z,t,u), z(t) = zo, (1)

u(t) € U, (2)
where £ € R"™, t € [to,T), u(-) is a function with values in the compact set U C R,
f:R*xR! x R" — R".

The above system can be interpreted as a differential equation containing a control (or
uncertain) function u(-) which is allowed (resp. a priori known) to take values in U.
A function z(-) is a solution of (1),(2) on [to,7] if z(:) is absolutely continuous and

satisfies (1) for some
u € U(to,7) = {u(-) € Li(to,7); u(t) € U for a.e. t}.
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The following two objects are of critical importance in the theory of control/uncertain

systems:
X - the set of all solutions of (1),(2) on [te, T};
R = {z(T);z(-) € X} - the set of all reachable points at time T

according to (1),(2).

A lot of work has been done for development of approximations either to the whole sets
X and R or to particular subset or elements of these sets (for instance those, optimiz.-
ing certain criterion, or satisfying some additional conditions). In this respect we refer
to Kurzhanski [11], Kurzhanski and.Vélyi [12], Chernousko [1], Dontchev [4], and the
bibliographies given there. Most of the approaches explicitly or implicitly exploit tech-
niques for approximation of system (1),(2) by means of discrete-time control/uncertain
systems. An overview on the last subject can be found in the forthcoming paper by
Dontchev abd Lempio [6].

In the further lines we give a precise formulation of the problem. In order to avoid

unessential technicalities, from now on we assume the following:

Supposition 1. There is a compact set S C R™ such that for every u(-) € U(to, T)
(1) has a unique solution z(-) on [to, T] and z(t) € S for t € [to, T].

Together with system (1),(2) consider an N-stage discrete-time system
Try1 = fn(zk, k,up), To — given in (1), (3)

ur €U, k=0,...,N -1, (4)

where fy(-, k,u): R® = R". A sequence zy,...,zn that satisfies (3),(4) together with
appropriate ug,...,un—1 is called (N-stage) solution of (3),(4). In order to make a
link between systems (1),(2) and (3),(4) we introduce the uniform grid ¢, = to + kb,
h = (T —1to)/N and associate the moment ¢, of the continuous time with the k-th stage
of the discrete time. Moreover, with every sequence uy,...,un-1 € U we associate the

function uuy,...,un-1](t) = u; for t € [t;,t;41).

We shall use two criteria for the quality of the approximation that (3),(4) provides to
(1),(2). The first one, p% is connected with the set of trajectories.

p% is the infimum of those reals p for which:
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i) for every ug,...,un—1 € U and corresponding solution zy, ...,z N of (3), the solution

z(+) of (1) corresponding to u(-) = ufug,...,un-1](-) satisfies

|z(tx) — zx| < p for k=0,...,N; (5)

ii) for every solution z(-) of (1),(2) there is a solution zo,...,zn of (3),(4) satisfying

(5)-

Similarly we define the criterion R connected with the reachable set:

AR is the infimum of those reals p that satisfy the above conditions i) and ii) with (5')
below instead of (5).
lz(tn) — an| < p. (%)

The values of 5% and pf depend on the particular discrete-time system (3),(4). Now
PN N

we define
p¥ = inf {f%; fn(-,-, k) runs over the functions R* x U - R", k=0,...,N —1}

and similarly pR is the infimum of pf over all N-stage discrete-time systems of the
form of (3),(4) (observe that the only relation between (1),(2) and a system of the
type of (3),(4) is the presence of the same set U and the same initial condition z¢ in
the latter). The functions N — p% and N — pR will be called rates of z (resp. R)
- approximability of the system (1),(2) by means of discrete-time systems. The main
goal of the paper is to investigate the approximability rates. In the single-valued case
(U = {u} - a singleton) the solution is trivial, namely p% = pR = 0 for every N.
Actually, one can define fy(z,k,u) as the value at the moment tz4; of the solution
of (1) starting from z at t; (supposing existence and uniqueness). This definition of
system (3) is not constructive from the numerical point of view, but provided that
f is sufficiently smooth one can use, say, a Runge-Kutta scheme in order, to define
constructively a discrete-time equation with a given accuracy. The situation is quite
different in the multivalued case (U being not a singleton). An intrinsic characterization
of the rates of approximability is given in Section 2 together with some comments and
examples, the aim of which is to show that the rate of z-approximability is typically

const/N and the rate of R-approximation is between const/N and const/N2.

An auxiliary result, providing a basis for the analysis of the R-approximability rate

and being also of independent interest, is presented in Section 3. The principle results,



saying that the rate of R-approximability of a linear system is const/N? and of a large
class of nonlinear ones — not less than const /N5, are stated in sections 4 and 5. Some

applications are indicated in Section 6.

2 Characterization of the approximability

rates.

The simple proposition below gives an intrinsic characterization of the approximability

rates. Most of the present section will be devoted to discussions of its consequences.

Define
= {u(-) € U(to,T); u(-) is constant on every [t;,ti41), i =0,...,N—1}.

To this subclass of the set & = U(ty,T') there corresponds a set of solutions Xy on
[to,T'] and a reachable set Ry = {z(T'); z(-) € Xn}. Define

o = inf tx) — z(te)|,
G G s M

= su f -z
pN 1‘6% :BIGI}:{N Ix xl
(pR is the Hausdorff distance between R and Ry, p% is the Hausdorff “distance”

between X and Xn corresponding to the semi-norm maxx=o..n~ |z(tx)| in C[to, T)).

Proposition 1. Let Supposition 1 hold, let U be compact and let f be Lipschitz
continuous in z in a compact neighborhood S of S (uniformly in t € [to, T], u € U),

measurable in ¢ and continuous in u (uniformly in z € S, ¢ € [to, T]). Then
o < B < 2, (6)
pn < by < 205 (7)
for every sufficiently large N.

Proof. The proofs of (6) and (7) are identical. Let us start with the first inequality
in (6). From the suppositions it follows that there is 6 > 0 such that for every z € S,
s € [to,T) and u € U the equation

t = f(z,t,u), z(s) =
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has a unique solution z[z,s,u](-) on [s,min{s + 6, T}] and it does not abandon S.
Given N, k€ {0,...,N—1},z € S and u € U we define fn(z, k,u) = z[z, tg, u](tr+1)-
The definition is correct for N > (T — t5)/6. Outside S fn(-, k,u) could be defined
arbitrarily. Consider the discrete-time system (3),(4) with the so defined fy. It is
straightforward that point i) of the definition of g% is satisfied with p = 0 and point

ii) — with p = p%. Hence p% < % -

Now, fix N and take € > 0. Let z(-) € X be arbitrary. There is a discrete-time system
(3),(4) such that the corresponding p% satisfy '

v < ok + e (8)

By definition there is a sequence uo, . ..,un—_1 € U such that the corresponding solution
Zo,...,zN of (3) satisfies

lz(te) — z| < % + &, k=0,...,N. (9)

Let Z(-) be the solution of (1) corresponding to u(-) = u[ug,...,un-1](:). Then by
definition '

2(t) — zk| < PR + & (10)
Combining (8), (9) and (10), we obtain

ja(t) — #(t)] < 265 + 3.
Since € > 0 is arbitrary, this means g% < 2p% and the proof is complete.

The proof of the first part of Proposition is nonconstructive in the numerical sense.
However, it is clear that one can use some single-step discretization scheme (say, of
a Runge-Kutta type) in order to define a sequence of discrete-time systems (3),(4) in
terms of the values of f (and possibly of its derivatives), provided that f is sufficiently
smooth. In contrast to the case of a single differential equation, however, the accuracy
of the approximation in the sense of % of 5X cannot be better than proportional to

p% (resp. pR), independently of how smooth f is.

It is quite clear that % and p% are strictly positive, excluding some “degenerate” cases
like a single-valued U. In the next lines we mention some positive and negative results

that throw some light on the behaviour of p% and p%.

Nikol’skii [13] proved the estimation p% < const/+/N but short time later the results
in Nikol’skii [14], Dontchev and Farkhi [5], Wolenski [22] implied that under quite
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general conditions % < const/N (the same for p&). On the other hand, the following

claim shows that this estimate for p% cannot be improved in general.

Claim 1. Consider the system

-1 1

=
¥ = 1zl

.5 — 1 n 1 r .

T - f;(-’E,---,.'E,u,...,u,t) 1=3,...,n,

where f; are arbitrary, u! € [-1,1], (uv?,...,u") € U; - arbitrary, t € [0,1]. Then
5 > 1/(2aN).

In contrast to p%, it turné out that the sequence p& can converge faster. The estimate
AR < const/N?

was proven in Veliov [18] for linear systems and in Veliov [20] for a (very special) class

of nonlinear systems. On the other hand, it holds
Claim 2. Consider the system

T = Az + b, te|o,1],
:‘] = f(:v,y,ul,...,ur),

where z € R?, y € R*, u! € [-1,1], (u?,...,u") € U where A, b, f and U are arbitrary.
Let rank {b, Ab} = 2. Then there is a constant ¢ such that

PR > /N2

We shall mention that, in the case of a polyhedral set U, second order approxima-
tions with respect to the set of trajectories were introduced in [19], making use of an

appropriate expansion of the set U (and thus being outside the above framework).

3 An auxiliary result

We shall present a result that provides the basis for the estimates of the R-approxi-

mability rate given in the next sections. The essence of the result is that it estimates



the variation of the derivative of the maximum of a family of functions by means
of the variations of the derivatives of these functions. This is an important point
in the context of the discrete approximations because, as known from Ivanov [8] (or.
Sendov and Popov [16]) the second order approximability of integrals by means of linear
quadrature formulae is connected with boundedness of the variation of the derivative

of the subintegral function (similarly, for differential equations).

We proceed with the exact formulation. Denote by \/ p the variation of the function
p(:) : [s,t] — R". If p(-) is considered as an element of L, then the notion still has

sense as the infimum of the variations of the functions equivalent to p(-).

Let {p(-,v)}vev be a family of functions, everyone defined for a.e. t € [to,T], where V
is an arbitrary set. We say that the family is of bounded joint variation if there is a

number w such that .
Elp(tiavi) "P(ti+1,vi), S w (].].)

i=1
for every finite collection tg < t; < ... < ty41 < T, vy,...v, € V for which p(t,—,b,-)
and p(ti41,v;) are defined, ¢ = 1,...,s. If {p(-,v)}vev is of bounded joint variation,
then the infimum of those numbers w that satisfy (11) will be called joint variation of
the family and will be denoted by J V,T; p(-, V). We shall mention that boundedness ot
the joint variation of a family is a stronger property than uniform boundedness of the

variations of the functions from this family.

Proposition 2. Let {p(-,v) : [to,T] — R; v € V} be a family of functions such that
(i) |p(t1,v) — p(tz,v)| < L|t, — t;]| for every ty,tz € [to,T] and v € V;

(ii) the family {Z(-,v)}vev is of bounded joint variation.

Then the function p(t) = sup{p(t,v); v € V} is Lipschitz continuous and

T T b
V() s2L+27V 5p(, V).
to to

Proof. From Clarke [2, Theorem 2.8.6] it follows that p(-) is Lipschitz continuous and
the Clarke’s generalized derivative Op(t) satisfies

Bp(t) C cleof im_pi(ti,v); i = t, plt,) = p(1)) = [a(0),b(8)],  (12)



where in the right-hand side stands the closed convex hull of the condensation points of
all sequence pj(t;,v;)), for which this derivative exists and t; — t, p(t,v;) — p(t). Since
the mapping ¢t — 3dp(t) is u.s.c. [2, Proposition 2.1.5] we can extend for convenience
p(-) to the whole interval [to, T] in such a way that /i p(-) does not change and p(t) €
[a(t), b(t)] for every t € [to, T]. Actually, at a point ¢t where p(t) does not exist one can
define it as an arbitrary condenzation point of a sequence p(t;) such that ¢t; — ¢ and

p(t;) exists.

Take arbitrarily to < t; < ... < t,41 < T and consider
]

w =Y |p(t:) = p(tiy1)|-
=1

Without any restriction we can assume that p(t;)— p(ti+1) changes its sign alternatively
with 7, since otherwise one can remove some of the points {t;} ensuring this property

without changing w. Thus
=3 (=1)(h(t) = Bt (19)
Since p € [a(t), b(¢)] for every ¢ € [to, T] we have
a(t) = Bltias < plt:) - H(tinn) < B(t) — altiaa).

Hence, using (13) we estimate

s
'UJSEIC{—C,‘.Hl,

=1
where ¢; is either a(t;) or b(¢;),z =1,...,s+ 1.
Denote
61 - 05(t2 - t]), 63+1 S 0.5(t,+1 - ts),
8; =0.5min{t; — ti1, tig1 — i}, 1=2,...5.

Since ¢; are extreme points of the right-hand side of(12), for every € > 0 and each
i=1,...,5+ 1 there exist 8; € [to, T] and v; € V such that p}(8;,v;) exists and

|6: — t;| < €67, (14)
p(ti,vi) > p(t:) — €87, (15)
|pi(6:,v:) — il < €6 (16)
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Using (16) we obtain

s+1

w < D 1P(0i,vi) — Pi(Oipr, via)| + 26 D6 < wy + 26(T — o). (17)
=1 =1

Consider the function
Y(t) = —p(t,vi) + p(t, vig1 )fort € [t;,ti41].

From (15) we have
Y(t:) < —p(t:) + €8] + plt:) = &6},

P(tipr) = —p(tis1) + p(tip1) — €87, = —eb2,,.

Hence
ti41 ti+]—56.'2
—e(82+62,,) < / $(t) dt < 4e82L + / (1) dt
L ti+eb?

< 4e82L + (tigy —t; — 2662) essup {h(1); t € [t; + €62, 141 — €67]}
and there is 7; € (t; 4 €67, ;41 — €67) at which 3(7;) exists and

_ 2e(87 4 62, +462L)

Z —’25(5,' + 5,'+1 + 4L6,)
tiy1— L

p(r) >
Thus we can estimate
wn € S0+ 30 00 2) = il 0] + 3 B vies) = i i)

and since §; < 7; < ;41 (see (14))we have

s T
wy < Z:¢(Ti)+€(T—to)(4+8L) + IV (V) (18)

to

we cal express

8 s—1
Z Y(ri) = Z(P:(Ti’ Viy1) — P:(Ti+1, viy1)) + P: (Tay Vsg1) — P;(Tl’ v1)
=1

i=1

T

to
The last inequality combined with (17) and (18) implies the claim of the proposition,
since € > 0 is arbitrary. Q.E.D.



We shall apply the above proposition for p(t,v) = (r(t),v),v € U where r(:)
[to,T] — R", U C R". Then p(t) = sup,ey(r(t),v) = p(r(t)|U) is the support

function of U in the direction r(¢).

Corollary 1. Let r(-) be Lipschitz continuous with Lipschitz constant L, and let 7(-)

be of bounded variation. Let U be convex and compact. Then

T d T
V Ze(r®)U) < 2UI(L, +2V/7),

to to

where |U| = max{|u|; u € U}.

The claim follows directly from Proposition 2, since (r(-),v) is Lipschitz continuous
with Lipschitz constant L,|U| and

T T
JV < UV
to to

4 The linear case

Consider a linear system
t = A(t)z + B(t)u, ue UCR", te€t,T] (19)

Suppose that A is of bounded variation, B is Lipschitz continuous, B is of bounded

variation, U is convex and compact.

As mentioned in Section 2, for every solution z(-) of (19), there is un(-) € Un such

that the corresponding solution zn(-) satisfies
|zn(tk) — z(tk)| < const/N, k=0,...,N.

On the other hand, from Veliov [18] if follows that there is @n(-) € Un such that the

corresponding Zn(+) satisfies
|#n(T) — z(T)| < const/N2.

The next theorem proves that one can assume znx(-) = Zn(:) in the above two claims.
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Theorem 1. There are constants C; and C; such that for every solution z(-) of (19)
on [to,T] corresponding to some u(-) € U and for every N there exists a trajectory

zn(-) of (19) corresponding to some un(-) € Un such that

lz() = zn()lle £ Ci(T = to)/N,
[2(T) — zn(T)| £ Co(T —to)*/N”.

As in Section 3 we denote by Vg the variation of a function ¢ on [s, ].
In the proof of Theorem 1 we shall use the following lemmas.

Lemma 1. Let g(¢, z) be defined on [to, T] x R™ and be measurable in ¢ and Lipschitz
continuous in z with Lipschitz constant L uniform in {. Then for every function ¢
with bounded variation and for every a € (0,T — o) there is an absolutely continuous

function ¢, such that

T T
[ la(t,agu() = gt,cqe)ldt < 2°LV/g

to

and
T ] 9 T
Vi < =-Va
to o to

Proof. Define

if:-‘-a q(S)dS, te [to,T _a]a
qa(t) =
i— f;_a q(s)ds, t€ [T —a,T]

Obviously ¢,(-) is Lipschitz continuous and

T . 1 T T ) T
V da < —(Vq+Vq) <=V
to @ NMota to @ 4

Moreover,

T T
[lstt 00 () = g(t,agldt < oL [laalt) ~ q(t)]dt

to

11



< aLT]a lq(t) — %7 q(s)ds|dt + alL / lg(t) — — / q(s) ds|dt
t

to
T]a t7a t+a / 7
<L \/ qdsdt + L \/ gqdsdt
T—a T-a T-a
T-o 444 T T T -
<aL(/ qut+ / V th) < aL(/ qut+ / V th) < 2(12qu.
T-o T-a — T-o to
Q.E.D. ‘

Lemma 2. Let the function f : R® — R be Lipschitz continuous with Lipschitz
constant L and let it have the property that for every Lipschitz continuous function
r: [to,T] = R" with 7 of bounded variation, the superposition f (r(+)) satisfies

T d T
V f(T'( )) < diL, + dzvf‘

to
where L, is the Lipschitz constant of r and d; and d; do not depend on r. Let

p,q : [to,T] = R™ are such that p is absolutely continuous and p and g are of bounded

variations. For an integer NV consider

g T —t
= [ () + —a(t)) dt
and N
. L T=to
In > —24(E),
where #; = to + (1 — 0.5)(T — to)/N
Then
7 7 (T —t0)? Y
lIn — In| < —N—(o .25d, L, + 0.25d, \/p + (4L + 0.25(d; + 2d3)) \/ q).
= f(p(t) + ),

Proof. Let gy be the function from Lemma 1 corresponding to g(¢,z)

a = (T — to)/N and the function ¢ above. Denote

T
= [ 16) + T tan(t)

— Yo ().

12




Then
le - INl < |Iv—In| + |Iv — In| + |In—IN|

T—t - . 2L(T —to)* T
< Tt 1S (@) = ol + P = Jn] + 22210

=1 to

T—t 1 t|+1 t 2 T
S( o)” (ZV‘1+\/‘1)+|JN—JN| %Vq
=1 T—o
<4(T—t(,)2L

<=z Va+ v — JInl. (20)

to

Here we have used the particular form of gy as defined in Lemma 1.

According to K. Ivanov [8] (see also B. Sendov and V. Popov [16]) we estimate

(T-t)? T d (T — to)

T — O —_ . Sl 7P
v =JInl < Y 5 f(()) + —x—aw())
(T — to)? T . (T —to) .
< .
S INe (L. + d2¥(1’() TN n))
T — t0)? T ) T
to to
The Lipschitz constant of I%IQN is estimated above by V;"; q
Combining this with (20) we obtain the desired result.
Lemma 3. Let p(:) and ¢(-) be as in Lemma 2. Then
g (T — to) ‘ L Tt
t —22g()|U)dt — ( —2g(%; ) '
|/p(p(> + S g()y) ()|
T —to)? T T

to to
where p(I|U) = maxyev < l,u > is the support function, |U| = max {|u|; u € U}, N is

an integer and ¢; are as in Lemma 2.

Proof. The support function of U is Lipschitz continuous with Lipschitz constant |U|.
According to Corollary 1

T

d T
V Zo(r(®)|U) < 2L, +2U] V.
to

to

13



Thus we can apply Lemma 2 with d; = 2|U|, d; = 2|U|. This gives estimation (21).

Proof of Theorem 1. Consider the space E = R" x C"[to, T'] with the norm

Iz, 20l = max {Je, 2 le()lc

where the norms in the right-hand side are taken with respect to the Euclidean norm

in R*. Without any restriction we can suppose z(to) = 0. Denote
Z = {(z(T),z(-)); z(-) solves (11) for some u(-) € U},

Zn = {(z(T),z(-)); z(-) solves (11) for some u(-) € Un}.

Obviously Zy C Z C E. Since both Zx and Z are convex and compact in E, we need

to estimate the difference

p = sup {sup <p,z> — sup < u,zv >}, (22)
ueE* z€Z zNEZN
[lxlle <1
where E* is the conjugate to F, <,> is a duality functional and || |[. is the corre-

sponding norm in E*. One can identify F* with R" x (C"[to, T'])* with

@G == [+ [T Allen)- ,1€ R Ae (CT),

T —-1

< ($’$(°))’ (l’ A) >=<lz> + < A’-7:(') >,

where <, > in the right-hand side means the scalar product in R™ and the duality
functional in C™ x (C™)*, respectively. Taking into account the Riesz representation of

the elements of (C™)* we can reduce the estimation of (22) to estimation of

T

/x(t)d)\(t)) - sup (<lizn > +
(znzN())EZN

T — 1

sup { sup (<lz> +

[+V2 a1 Mzz())€z to

T
T -1,

- / a:N(t)d)\(t))}, (23)

o

where | € R™ and A(-) runs over the functions [tp, 7] — R" with bounded variation.

Denote by ¢(t,z) the fundamental matrix solution of (19),

p(t) = B*¢°(T,1)l,

14



T

a(t) = [ B()6"(s,8) dN(s).

t

Then for fixed ! and A(:) the first term in the braces in (23) is

T
to
sup (<1, / ST, ) Bt)yu(t)dt > + = ! t/ (s,8)B(t)u(t) dt dA(s))
7 —t g —1
= mup, [<ott) + %0),ut)> dt = [o(p(t) + —2a(t)IU) .

to

Similarly we express the second term in (23). Hence the expression in the braces in
(23) can be estimated by

t|+1

Tp p(t) + T—toq(t) U)dt - E p ) + T_toq(t))dt’U
/ N N

=0
T T — 1 | T—to N2l /Tty .
< [o(pt) + —alv) at - p(pa.-) + —a(@|v)
Z N N ; N
tita 1 tiqa T —1¢ 2
+E|U|( VP+ \/Q)(N—zo)-
Here we use that
tig1 t:
T—to - (T—t0)2 i+1 )
) — tdt| < =% \/p
T - [t < S5 yp

ti41 t
T—to ,- Wi
) — dt| <

t

the first of which follows again from the result in Sendov and Popov [16].

Now we can apply (21) to estimate the expression in the braces in (23) by
%—:W|U|(O.SLP+O.5§?15+5.5\Zq) + ﬂw( }T{p + % }7‘1)
It remains to estimate VtT0 p and VtTO q. We have
\/p < \/ B (T, < a4
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for some constant ay, since B and A are of bounded variations and |I| < 1. Finally, in

order to estimate V,j; q one can use the estimation

T

T T
V [ r6s)dde) < (r e + L) VA,

to

where L, is the Lipschitz constant of r with respect to the first variable. The proof of

the theorem is complete.

As a consequence of the above theorem, we obtain the estimation
pR < const(T — to)/N?

know from [18] while the claim for simultaneous approximation of any solution of (19)
and its end point will be essential for the analysis of the nonlinear case presented in

the next section.

We shall stress the fact that the constants C; and C; in Theorem 1 depend on |U|, on
[to, T'], on the Lipschitz constant of B and on the variations of B and A and the norms

of these matrices, but not on the particular set U and particular matrices A and B.

We shall mention also that the "error” in the reachable set (in Hausdorff sense), that
one makes when replacing the set of all selections of U on the interval [tk,tks1] With
all constant selections, is (in general) proportional to 1/N?, whatever is the compact
initial set at ¢;,. Moreover, this "error” propagates over time and contributes to the
final "error” at ¢ty = T. Nevertheless, the final "error”, as the above inequality shows,
remains proportional to 1/N?. That is, the "errors” arising in the intervals [t;,tx11] do
not accumulate. This nonaccumulation effect is explained in more details in [21] and

(in the context of the discrete approximations) in [18].

5 The nonlinear case.

In this section we consider the nonlinear system (1),(2), supposing linearity in u. That

is, we suppose that the system is in the form of

i = fo,0) + Y ug(a,t), alto) = o, (24)

=1
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u = (ug,...,u,) €U. (25)

It was proven in [20] that R < const/N?, provided that f and g; are sufficiently smooth
and (what is quite restrictive for many applications) r = n, rank[g1,...,9,] = n for
every (z,t) and U is strongly convex (like a nondegenerate ellipsoid in R,,). The proof is
not based on the nonaccumulation effect and, in fact, implies also that 5% < const/N2.
Here we present a result suggesting that the nonaccumulation effect (at least partly)
takes place for more general nonlinear systems. Despite that the next theorem does
not give a complete solution to the problem of estimation of 4%, it shows that under

quite unrestrictive conditions p& converges to zero faster than 1/N.

Theorem 2. Let Supposition 1 (from the introduction) hold and let f and g¢; be twice
differentiable in (z,t) and the second derivations are Lipschitz continuous in the set S.

Suppose, in addition that

g; — =2g; = Ofori,j,=1,...,r (26)
and for every z € S, t € [to,T]. Then there is a constant ¢ such that
v < ¢/N'?

for every integer N. Moreover, the constant ¢ depends on [to,T], zo, U, S the bounds
and the Lipschitz constants of f, g; and their derivatives up to second order in S x [to, T,

but not on the particular functions f and g;.

Proof. From t,7 € [to,T], t < 7 we denote by R(t, 7; X) the reachable set of (24),(25)
on [t,7] starting from the set X in the class U(t, ) of measurable selections u(-) of U.
Clearly, if X C R(to,t; zo) for some t, then R(t,7;X) is nonempty and is contained in
S for every 1 € [t,T]. The proof of the following lemma is standard and therefore it

will be omitted.
Lemma 4. For every t,7 € [to,T],t < 7, and X C R(to,; z0) it holds
H(R(to’ 75 -TO), R(ta L X)) < eLz(T—t) H(X, R(tO, t; 30)),

where L. is the Lipschitz constant of f and g; with respect to z € S and H is the

Hausdorff distance between sets.

The scheme of the proof of Theorem 2 is the following. Take an arbitrary integer N
and let M be the largest integer such that M? < N. Split the internal [to,T] into M

17



equal subintervals by the points t; = to + ih, where h = (T — t5)/M. Suppose that we
have known a function ¢(A, M) such that for every ¢ € [to,T), and X C R(to,t;zo) it
holds

H(RM(t,t+ A; X), R(t,t + A;X)) < o(A,M), 27)

where Rp(t,t+A; X) is the reachable set on [t,+A] starting from X and corresponding
to the set Up(t,t + A) of selections u(:) that are constant on every subinterval [t +
kA/M, t+ (k+1)A/M), k=0,...,M — 1. Then it is also standard to prove that

- Lz(T-10)
T tO,M) Me (28)

H(RM.M(to,T;-TO), R(t07T;$0)) < (P( M L (T _ to)

and clearly (28) holds also for Ry instead of Ras.ps in the left-hand side.
The main part of the proof will consist of the following proposition.

Proposition 3. Under the conditions of Theorem 2, the inequality (27) holds with

A3 A?
o(A, M) = c3(A* + i + m)a (29)

where c3 is independent of A and M and, moreover, is as claimed in the end of Theorem
2.

Using this proposition and (28) one obtains

(T—t)®  (T—1t)® T—tp\ el=(T—%)
H(Rn, R) < c"’( et s T M3) L.

< C4(T—t0)/M3 < 8C4(T—to)/N]'5

for N > 4. The theorem is proved.

It remains to prove Proposition 2, where we essentially use the following auxiliary

result.

Lemma 5. Let ¢ € L(6,7) and
I/go(t)dt) < § for every s € [0,7].
8
Let v(0) = 0 and v(-) be Lipschitz continuous with constant L. Then

| { w(t)v(t)dt/ < 2Lé(r —0).
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Proof. Take an integer M and denote §; = 6 + i(r — §)/M. Then

Define the functions v;(-) :

T T b
‘ / cp(t)dt| < ’ / cp(t)dt| + | / cp(t)dtl < 2.
8; [} [}
[0ic1,7] 2 R i=1,..., M, as

v(t)a te [01'—1,01']

v,-(t) =
’U(e,‘), te (01'77-]
and set vo(t) = 0. Then
T M‘ T
Jetwwar = 3 [ o) - v (30)
Actually, we shall prove by induction in k that
/cp =3 / — via(t)) dt. (31)
This is apparently true for £ = 1. Suppose that (23) holds and consider
Ok 41 Ok 41
[ etpi = 3 / + [ el
6 =14, 0
k41
-3 / — via()dt + - [ (t)o(t)dt
=1 6;—1 0k
i Ora1 PR ¥
=2 Oit) = via(®))dt — 3 [ (B)(ilt) — via(2))dt
=1 ;4 =1 %,
795 i Oxn
+ [ ewwdt = [ e®)dt) - vt
O =1 9.,
Bk 41 Ok y1
= [ vtmat + [ et
PR k 9:+1
=Y [ e — vt + [ p@)ornt) — vl

=1 q_

=1

6
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=Y [ ewilt) — vt

Thus (30) is proved. Hence, denoting ¢ =|| ¢ ||z, (6,r), We have

| / t)dtl

6;

[ O - v + S| / Pl)(lt) — via(t))d

i1 =1 %

<y / CL(t ~ b1) M (v(6) — v(6:-1)) / o(t)it

[ olt)utt) - v (8

-1

IN
.M:

1=1

1=1 ima 8;
<> - (0 — 6i21)® + > 2L(6: — 6;-1) 6
i=1 i=1
M CL T—0 M CL(r - 0)
< ZZ(p. — . . P. - 2 —0).
< 5 (6; — 6;y) 7t ‘; 2L(6; ~ 6;4) 6 57t 2L6(T - 0)

i=1
Since M is arbitrary and the left-hand side does not depend on M we get the desired

inequality. The lemma is proved.

Corollary 2. Let u and i be measurable bounded functions defined on [0, 8 + A]. Let
v(+) be a Lipschitz continuous function with Lipschitz constant Lk in [#,0 + k] and let

|/ t)dt — (t)dtl < ch for every s € [0,0+ h].

Then
: 8+h 8+h

/ u(t)v(t)dt — / ﬁ(t)v(t)dt‘ < 2cLh®.
]

Now, let us prove Proposition 3. Let f,A and X be as in the formulation. Then
according to Supposition 1 every solution of (24) starting from X at the moment ¢

exists up to the moment T and takes values in S.

Given an arbitrary u(-) € U(t,t + A) and a point =z = z(t) € R(to,t;zo) the corre-

sponding solution z(-) of (24) can be presented as

z(t+ A) = z(t) + aA + a;A? 4 azA
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, t+A . t+A t+A

+ ; / (bo + bi(s — t) + by(s — t)*)ui(s)ds + 'X=:1 d;; / ui(s)ds / u;(s)ds
+4 t+A

+Z / ui(3)¥y(s)ds + / Uo(s)ds + ((A), (32)

where |((A)] < csA* and c¢s is as in the last cla.lm of Theorem 2, a;, b;, d;; are vectors
that can be expressed by means of f,g; and their derivatives up to second order at the
point z(t) and, finally, ¥;(-), 2 = 0,...,r are functions that are linear combinations
with vector coefficients like a;, b; and d;; of integrals in the form of

s

/ a(0)7 B(r)drdfd or ] a(r)dr] B(r)dr, (33)

t
where a(-) and f(-) are some of the functions u;(-), j = 1,...,r or the constant 1.
The above representation can be obtained by expressing explicitly the members of the
Volterra series, corresponding to (24), that contain up to three iterated integrals, by
means of f,g; and their derivatives up to second order. Here we essentially exploit the

supposition (26) ([gi,9;] = 0) because otherwise terms containing

H]A ui(s) ] u;(7)drds

would appear in (32) for i # j.

Now we shall prove that there is @(:) € Un(t,t + A) such that
t+4
| [ p)uls) = ls))ds| < col?/M? (34)
t
for p(s) =1, p(s) = (t — s) and p(s) = (s — t)? and also that

t+A
| [ lui(s)9i(s) = @uls)Ti(s)lds < /M, i=0,...m, (35)

where by definition uo(s) = @ip(s) = 1. Here ¥; corresponds to ¥; according to (32) for
the selection i(-) instead of u(-) (see (33)). Namely, we define i(-) € Unm(t,t + A) to
be the selection that is claimed to exist (corresponding to u(-)) by Theorem 1 applied

for the linear system
3:(s) = ui(s), i=1,...,r, s€[ht+A]
vi(s) = (s=tui()), =(t) = wi(t) = z(t) = O,
z(s) = (s —t)%u(2).
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Apparently @(-) satisfies (34) for ¢ = ¢, (from Theorem 1). Moreover, if z;(-) and Z;(+)

are the solutions of the above linear system, corresponding to u(-) and #(-) then
jzi(s) = &i(s)| = | / — W(n)dr| < QA/M, (36)

where ¢, comes from Theorem 1. From (36) one can estimate

s ]

]
I[( [ﬂ T)dr — a(f [ T)dr)dl| < 2|U|c;A%/M,

/ dT/ B(r)dr — / (T)dT/B(T)dTl < 2|U|c; A%/ M.
Hence
|Wi(s) — Wi(s)| € er2m|U|AY/M = csA?/M, (37)

where m is the number of integrals of the type of (33) that are included in ¥, (depending
only on n and r) and ¢7 is a bound of the norms of the vectors multiplying the integrals
(33) in ¥;(-) (also dependent only on the bounds on f,g; and their derivatives up to

second order).

On the other hand, ¥; and ¥; are Lipschitz continuous with Lipschitz constant 2¢7|U2A.

Hence using (36) and Corollary we obtain
| / [wi(s)Ti(s) — %(s)Wi(s)]ds| < decr[UPAYM = A% M.  (38)
t

Combining (37) and (38) one immediately obtains (35). (34) and (35) together with

(32) give that the trajectory Z(-) of (24) corresponding to () € Un(t,t + At) satisfies
_ AS A2 |
|Z2(t+A) — z(t+ Q)| < (D + S +— 7

and this proves the proposition and Theorem 2.

6 Some Applications

In this section we present in details an application of Theorem 2 for discretization
of optimal control problems and then we only indicate some other application of the

previous results.
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6.1.Consider the optimal control problem
T
min{p(z(T) + [ (@(=(),8) + (u(t)al=(),t)ds} (39)
subject to
z = f(z,t) + G(z,t)u, z(t) = zo € R", (40)

ueUCR', (41)
where G = (g1,...,9r), f,9i : R* xR — R".

Let Supposition 1 be fulfilled together with the following conditions:

i) f, 9 1,92 are twice differentiable and all second derivatives are Lipschitz continuous
in S x [to, TY;

i1) p is Lipschitz continuous in S X [to, T'], ¢2 is nonnegative, U is convex and compact,

¢ is convex and bounded on Uj;

iii) [gi,9;] =0o0n S x [to, T),%,5 = 1,...,5.

In order to obtain a correct discretization of the problem (39)-(41) one can proceed in

the following way.

First reformulate the problem as

min{p(z(T)) + y}

subject to (40) and
¥ = a(zt) + qfz,t)v, y(t) = 0,

(u,v) €U = {(v,v);v € [p(u), M]} C R" xR/,

where M is a sufficiently large number. This is an optimization problem on a reach-
able set. Then consider the problem in the class Un of admissible control functions
(u(-),v(-)). Apply a single-step discretization scheme with (at least) third order local
accuracy (we use a second order Runge-Kutta scheme below). Finally, the so obtained
discrete optimization problem can be reformulated back in a form corresponding to
the original problem (39)—(41). The global error consists in the error of the change
of U with Un and of the error of discretization, which is locally 0(1/N3) and globally
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0(1/N?) since the right-hand side is twice smooth in every interval between two con-
sequent points t; = to+ k(T — to)/N, k =0,...,N. As a result of application of the

above scheme one obtains the following result.

Theorem 3. Let the suppositions listed at the beginning of the section hold.. Con-

sider the following mathematical programming problem (with respect to ug,...,un_1,
Z1,...ZIN):
N-1
min{p(en) + (0o te) + qu(z + AF(@n b ue), )
k=0
N-1 :
+ Y (g2(zh,te) + qzk + AF(zi, tr, ui), tk+1))9°(uk)} (42)
k=0 ’
subject to
Tpy1 = Tk + 0.5h(F(zk,tk,uk) + F(.’L‘k + hF(.’Ek,tk, uk), tks1, uk)), (43)
wel, k=0,. ,N-1, (44)

where for brevity F(z,t,u) = f(z,t) + G(z,t)u. Let V and Vy denote the minimum
value of the problems (39)—(41) and (42)-(44), respectively. Then there is a constant
¢ such that

[Ww = V| < ¢/N'®, (45)

2. if up,...,un-1 is an optimal control sequence of the discrete-time problem (42)-
(44) and u(t) = u; for t € [ti,ti41),2 =0,..., N ~1 then the control u(-) provides
a value Vy of the objective function (39)-(41) that satisfies

W ~ Wn| < ¢/N*°. (46)
Remark. If the functions ¢; and f are linear in z and ¢; and G are independent of

z then Theorem 1 is directly applicable. Under the corresponding suppositions the
exponent 1.5 in (45)—(46) can be replaced with 2 (see also [18]).

According to Theorem 2, the constant ¢ in (45),(46) depends on S, |U|, max {¢(u);u €
U} and the Lipschitz constants and the bounds of p, ¢, g2, f,G and the derivatives

up to second order of the last four functions. The situation is similar in the linear
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case as well (see the last sentence of Section 4). This means that the existence of the
constant ¢ and its value are not connected with the properties of the optimal control
(like Riemann integrability, boundedness ¢~ *he variation or Lipschitz continuity). The.
results in Silin [17] show that even in the case of a time-invariant linear system with

objective functions of the type of
|z(1) — zI* = min

(z- given) the optimal control can be nonintegrable in the Riemann sense (and this is in

a sense generic property when n > 3) but nevertheless the above remark is applicable.

6.2.Consider the optimal control problem

ming(z(T)) ,
z = f(z,t,u), z(to) =29, tE€E [to,T),
uel.

Let V (o, zo) be the optimal value as a function of the initial time and the initial state.

Then V is a viscosity solution of the Hamilton-Jacobi-Bellmann equation
2V(t:l:)+inf<iV(t )y flz,t,u)>=0 (47)
ot we © 9z D 7 B

(see Grandall and Lions [7]).

In spite of the fact that V does not satisfy (47) in the classical sense (since V is
nondifferentiable, in general) it is known to admit approximations by means of functions

satisfying appropriate discretized (in the time) versions of (47) (Dolcetta and Ishii [3]).

Such a discrete version of (47) reflects from the Belmann equation associated with a
discrete-time optimal control problem that approximates the above one in the sense of
the optimal value. Thus one can obtain a discretization of (47) using Theorem 3. If
the suppositions are fulfilled the accuracy of the solution will be proportional to the

step-length to degree 1.5. Details concerning the linear case are given in [18].

6.3 Another field of possible applications of the results of sections 2 and 3 will be
illustrated by the following estimation problem (see Krasowskii [10], Kurzhanski [11],

Schweppe [15] for more general considerations).Consider the system
z = A(t)z + B(t)u, z(to) = 0, (48)
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where u is an uncertain parameter, the only knowledge about which is that it takes
values in a given set U C R". If no observation is available, then the reachable set
R(to, T; zo) is the best (i.e. the minimal in the sense of inclusion) guaranteed estimation

of the state of the system at the moment T'.

Let the suppositions of Theorem 1 be fulfilled. Given N and ¢, k =0,..., N as above,
define

tria
Dy = / &(T,s)B(s)ds, k=0,...,N—1,
T
where 4(t,s) is the fundamental matrix solutions of (48) normalized at ¢t = s. Then

Theorem 1 implies that

N-1
H(R(to,T;0), > DyU) < const/N?.
k=0
In particular, if U is an ellipsoid, then R(to,T;0) can be constructively approximated
with accuracy const/N? by a sum of N ellipsoids. If U is a zonotope (that is a sum of,
say, m segments) then R(to,T,0) can be constructively approximated with accuracy
const/N? by a zonotope generated by mN segments. A computer realization of this

technique that takes into account even the effects of the computational errors is present

in Kirov and Krastanov [9].
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