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Foreword 

This paper which was presented during the author's visit to the SDS Program of IIASA is 
related to the problem of on-line identification of a parameter of a distributed hyperbolic system 
through available continuous measurements. The solution is achieved here by introducing an 
adjoint dynamic model with feedback control developed on the basis of the observation data. 
The suggested on-line reconstruction algorithm ensures numerical stability of the procedure and 
leads to effective simulation results. 



On the Reconstruction of a Parameter for 
a Hyperbolic System 

Yu. S. Osipov 

November 23, 1991 

The problem of reconstructing a parameter of a hyperbolic system by mea- 
suring its states is considered here. Firstly, the suggested reconstruction 
algorithm is stable with respect to errors of measurement and, secondly, it 
can be applied for restoring desired parameters in real time (synchronously 
with a motion of the system). 

The problem belongs to the class of the inverse problems of dynamics that are 
being intensively studied today (see, for example, investigations [I-191, where 
the corresponding bibliography is given). To solve the problem, the method 
suggested by A.V. Kryazhimskii and the author (see, for example, [I-61) is 
applied. The method is based on (the ideas of) the theory of differential 
games [20-241 and the theory of ill-posed problems [25]. The essence of 
the method is the following: an appropriately controlled dynamical system 
referred to as a model is constructed; the model act simultaneously with 
the initial dynamical system, the parameter of which is to be reconstructed. 
The model is controlled positionally (by feedback); at each time instant t, a 
control is formed on the basis of a state of the model and of measurements 
of the states of the system realized up to t. It becomes clear that for a 
sufficiently wide class of inverse problems, a control law for the model can be 
chosen in such a way that a control realization approximates (reconstructs) 
the unknown parameter of the system in the desired way, namely, stable 
with respect to the errors of measurement. Thus the initial inverse problem 
is reduced to a direct problem of control theory. 



1. Let us first consider the problem of reconstruction of a "hindrance" for a 
hyperbolic system. 

Denote: 

T = [to, 91 - a time interval 
V and H - real Hilbert spaces 
V' and H* - spaces dual to V and H, respectively, 

(., .) and I . I v  ( (., .) and I . I H )  - the scalar product and the corresponding 
norm in V(H), U - a uniformly convex real Banach space. Suppose that 
V is densely imbedded in H. We identify spaces H and H*. The notions 
introduced below without comment are given, for example in [26-281. 

Let the following objects be given: 

q5 : V 4 (-m, +m] - a convex, proper, lower semi-continuous function; 

a(., a )  - a continuous bilinear form on V satisfying, with a certain cl > 0, the 
condition: 

B : U 4 H - a linear continuous operator; f E L2(T, H), f E L2(T, H) (f 
denotes the derivative of f). 

The continuous linear symmetric operator corresponding to the form a ( . ,  -) 
will be denoted by A. The measurability and integrability of a function 
will always be understood as defined by Lebesgue, differentiability will be 
understood as in the theory of distributions. 

Consider the hyperbolic system the evolution of which is described by the 
following variational inequality: for almost all t E T and all w E V 



!/(to) = Yo, Ayo E H 

Here u E L2(T, U), u E L2(T, U). We call function u a disturbance (implying 
certain concrete systems). 

Under the imposed conditions [27-291 

jl E Lm(T, H). (1.5) 

Here Vw is the space V equipped with a weak topology. We also assume that 

(For conditions on a and cp ensuring (1.6), see [29], p. 139-143). When 
necessary, we write y = y, emphasizing that y depends on u. 

The problem considered is the following. u is and unknown disturbance. 
It is known only that almost all values u(t) belong to a bounded convex 
set P c U. The aim is to form an approximation vh to the disturbance 
u knowning the results ((t) of the measurements of the velocity jl(t) of the 
evolution of the system with error h: 



The mean square approximation is implied: 

Let us state the problem more precisely. 

Let N be the set of all functions from L2(T, P) such that for almost all t E T 
all w E V 

Thus N is the set of all disturbances v that can generate the evolution pro- 
duced by the disturbance u, but in general, does not satisfy the inclusions 
6 E L2(T, H ) .  Obviously, N is convex and closed in L2(T, P). 

For v E L2(T, P), we put 

Let 6 > 0 ,6  5 19-to and D : (0,6] x L2(T, H )  + L2(T, P ) .  Now we formulate 
the initial problem as follows: 

Problem 1.1 Find an operator D such that 

sup J((D(h,()) + 0 as h -, 0. 



Here sup is calculated over all (L2(T, H) such that I((t) - Y(t)J 5 h, t E T. 
An operator D satisfying (1.10) will be called a reconstruction algorithm. 

Remark 1.1  If N is one element, i.e. it contains a single element u, then the 
algorithm D reconstructs a mean square approximation to the disturbance 
u. It is also easily seen that the algorithm D reconstructs a mean square 
approximation to an element of N with a minimal L2(T, U)-norm. 

Remark 1.2. Let (1.2) be equivalent to a variational inequality. Then the 
conditions ti E L2(T, U), j E L2(T, U), the second condition (1.3), and the 
condition (1.6) can be omitted. 

Let us construct an algorithm D. 

Fix an h, 0 < h 5 6, and a ( (see (1.10)). Decompose the interval T by 
points t;: 

where cl > 0 is fixed. 

Consider the control system on T (call it a model) described by the following 
conditions: for almost all t E T and all w E V. 

and z(t0) =yo, i(t0) = Y O .  

Here v h  : T + U is a piecewise constant control formed by the rule: 
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Here v; is an element of P such that 

a(.;) = min{@(v), v E P}, (1.3) 

a(h)  is a nonnegative function on (0,6) such that h/a(h) 4 0 as h -+ 0. 
(According to the terminology of the theory of ill-posed problems [25], a(h)  
is a regularization parameter). 

Now define D as the mapping, putting in correspondence to each pair (h,[) 
a function vh from (1.1 1)-(1.14): D(h, [) = vh. 

Theorem 1.1. The operator D solves the Problem 1.1. 

The proof of the theorem follows those of analogous statements from [2]. It 
is based on the following: 

Lemma 1 .1 .  Let 

2 
+a(h) l ~ h  l ~ ~ ( [ t ~ , t ~ , ~ )  - ~(h)lu122(h.tl.u). 

There exists a c3 > 0 such that 

A(t) 5 cg(A(h) + h), t E T .  

Remark 1.3. According to the terminology of [2], A is a stabilized Lyapunov 
functional. 



Remark 1.4 Note that to form the control vh only the measurement [(ti) 
at time ti is used. Thus the constructed algorithm can be applied to recon- 
structing the parameter in real time. In [3], algorithms of this kind are called 
dynamical (positional). 

2. Now consider the following problem of reconstruction of a parameter for 
a hyperbolic system. 

Let an operator A : V + V* depending on p E P c U, 

be given. Suppose that for each p the operator Ab] is linear, continuous and 
self-adjoint. Denote by a(p; ., -) the bilinear form on V corresponding to Ab]. 
Suppose that for certain XI 0, X2 0, X3 2 0, and all p E P 

Let a function f E L2(T, H) n C(T, V') be given. Consider the typerbolic 
system ([27], p. 281-282) 

Here u : T -, P is a measurable function such that for any wl E V, w2 E V 
the function a(u(t); wl, w2) is continuously differentiable on T. 

A solution to (2.1) satisfied the conditions [27] 



The parameter u(t), t E T, in (2.1) is unknown. It is to be reconstructed 
(mean square approximated, see Section 1) on the basis of measurements 
t l ( t ) ,  t2(t)  of values y(t), y(t), with error h: 

Let us state the problem more precisely. 

Suppose that following conditions are fulfilled: 

(1) there exists a nonnegative function U ~ ( E ) ,  E > 0, U(E) -+ 0, such that for 
t l  E T, t2 E T 

(2) if a sequence { v ( ~ ) )  converges weakly to v0 in L2(T, P), then for any 
rC, E C(T, V) and t E T the sequence 

converges to 

in V*. 

Introduce a set analogous to the set N from Section 1. Let Nl be the set of 
all functions v from L2(T, P) such that for almost all t E T 



The condition ( 2 )  implies that Nl is a weak compactum in L2(T, P ) .  

For v E L2(T, P )  we put 

J1 ( v )  = min lu - pIL1 ( T ,  P ) .  
P E N  

Let Dl : (0 ,6]  x L2(T, V )  x L2(T, H)  -, L2(T, P ) ,  where a > 0, a < 19 - to 
is fixed. 

Problem 2.1. Find an operator Dl such that 

Here the sup is calculated over all t1 E L2(T, V ) ,  t2 E L2(T, H)  satisfying 
( 2 . 2 ) .  

An operator Dl is satisfying (2.4)  will be called a reconstruction algorithm. 

Remark 2.1. The algorithm Dl reconstructs the unknown parameter u of 
the system (forms a mean square approximation to u) ,  provided Nl is one 
element. In general, Dl reconstructs an element from Nl the L2(T, U)-norm 
of which is minimal. 

Let us construct the algorithm D l .  

Introduce the following condition: 

(3) for each wl E V , W ~  E V the mapping a(v;wl ,w2)  : P + (-m,m) 

is weakly upper-semicontinuous. Following Section 1, introduce the 
control system 



z(t0) = Yo ,  i ( t o )  = Y, 

[ ; ( t )  = t l (r;) ,  ti 5 t  < t i+ l ,  i = O ,..., m -  1 .  (2.5) 

Here vh( t )  is a piecewise constant control on T formed by the rule 

vh( t )  = vi, t ;  5 t  < i = 0 , m  - 1 

where v; is an element from P such that 

@l(v i )  = m i n { @ l ( v ) , v  E P ) ,  

Define the operator Dl to be the mapping which puts correspondence to each 
triplet ( h , t l ,  (2) the function vh from (2.5))  (2.6). 

Theorem 2.1. Let u2(e)  be a module of continuity of f in V* and a l ( h )  be 
such that 

Then the operator Dl solves the problem 2.1. 

The proof of the Theorem follows those of the analogous statements from 
[l-31. It is based on the following 



Lemma 2.1. Let 

a ( h )  I ~ l L ( ~ ~ . t ~ . u ) .  

There exists a X4 5 0  such that 

Remark 2.2. Note that the control vh on [ t ; , t ;+l )  is formed on the basis of 
measurements tl ( t ; ) ,  tz ( t i )  at time t i .  Therefore, the constructed algorithm 
allows us to reconstruct the parameter u  in real time 

3. There follow below several examples. 

Ezample 1. For the system ( 1 . 1 ) )  (1.2) we have 

P = [ - I ,  11, 10, yo = 0 ,  yo = n . sin x, n = @, 

awz dx, ~ u ( t )  = u ( t )  - n sinx. I = o ,  w.) = j z. - 
0 

dx 

Consequently the system is described by the question 

2 = + u ( t )  n sin x, x  E (0, a )  
y(t ,O) = 0  = y ( t , n ) ,  t E T = [0,11 
y ( ~ ,  X )  = 0 ,  2 ( 0 , x )  = n . sin x  



The set N contains the single element u = u ( t ) ,  t  E T .  

Below, the results of the reconstruction of the concrete parameter u ( t )  = t  
are shown. The measurement was made in the form 

where p is a given number. The parameter of regularization was determined 
by a = h1I2. The function vh approximating u was calculated according to 
the following rule: 

v h ( t )  = v;, ti 5 t  < t i+ l ,  i = 0 , .  . . ,m - 1 ,  

r 
- 1  7; = a tc - / sin x  . (:(ti, x )  - - ( t i ,  x )  dx. 

0 
at at > 

The results of computer simulations are given in the table and in the figures. 
S stands for the mean square error of approximation. 



Ezample 2. For system (2.1) we have 

Consequently, the system is described by the equation 

2 = u ( t )  2~ x E (0,  n )  a x =  ' 
y(t,O) = 0 = y(t ,  n ) ,  t  E T 
~ ( 0 ,  x )  = K sin x, (0,  x )  = 0.  

The set Nl contains the single element u = u ( t )  t  E T .  Below, the results 
of the reconstruction of the parameters 

1) ~ ( t )  = 1 + t 2 E P  = [ 0 , 5 ] , t ~ T  = [0,2] ,  
and 

2) u ( t )  = 2 + sin2nt E P = [1,3] ,  t  E T = [0,1.5].  

are given. The measurements were made in the form 

where ml and m2 are given numbers. The parameter of regularization was 
determined by a = h. The function v,, approximating u was calculated 
according to the rule (2.6) .  The results of the computer simulations are 
given in the figures. 



Example 3. For the system (2.1) we have 

V = ~ ' ( 0 ,  I), H = L2(0, I ) ,  f = 0, yo = sin nx, io = 0, 

The parameter a = a(x), 0 < x < 1, not depending on time to be recon- 
structed. Below, the results of the reconstruction of the concrete parameter 

are given. The set Nl contains a single element. The measurements 

where ml, m2,pl, and p.l are given, were considered. The initial infinite 
dimensional problem was approximated by a finite dimensional one using 
the method of lines, the decompostions step in x was equal to 0.02. The 
parameter of regularization was defined by a = h1I6. The function vh was 
calculated according to the rule (2.6). The functions u.(t) = a(x,),t E T, and 
the construction results v;l(t) = vh(t,x.), t E T for x. = 0.5 and x. = 0.75 
are shown in the figures. 



The author is grateful to A.V. Kryazhimskii and A.I. Korotkii for helpful 
discussions and for their assistance. 
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