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Foreword

This paper which was presented during the author’s visit to the SDS Program of IIASA is
related to the problem of on-line identification of a parameter of a distributed hyperbolic system
through available continuous measurements. The solution is achieved here by introducing an
adjoint dynamic model with feedback control developed on the basis of the observation data.
The suggested on-line reconstruction algorithm ensures numerical stability of the procedure and
leads to effective simulation results.
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On the Reconstruction of a Parameter for
a Hyperbolic System

Yu. S. Osipov

November 23, 1991

The problem of reconstructing a parameter of a hyperbolic system by mea-
suring its states is considered here. Firstly, the suggested reconstruction
algorithm is stable with respect to errors of measurement and, secondly, it
can be applied for restoring desired parameters in real time (synchronously
with a motion of the system).

The problem belongs to the class of the inverse problems of dynamics that are
being intensively studied today (see, for example, investigations [1-19], where
the corresponding bibliography is given). To solve the problem, the method
suggested by A.V. Kryazhimskii and the author (see, for example, [1-6]) is
applied. The method is based on (the ideas of) the theory of differential
games [20-24] and the theory of ill-posed problems [25]. The essence of
the method is the following: an appropriately controlled dynamical system
referred to as a model is constructed; the model act simultaneously with
the initial dynamical system, the parameter of which is to be reconstructed.
The model is controlled positionally (by feedback); at each time instant ¢, a
control is formed on the basis of a state of the model and of measurements
of the states of the system realized up to ¢t. It becomes clear that for a
sufficiently wide class of inverse problems, a control law for the model can be
chosen in such a way that a control realization approximates (reconstructs)
the unknown parameter of the system in the desired way, namely, stable
with respect to the errors of measurement. Thus the initial inverse problem
is reduced to a direct problem of control theory.
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1. Let us first consider the problem of reconstruction of a “hindrance” for a
hyperbolic system.

Denote:
T = [t,¥] - a time interval
Vand H - real Hilbert spaces

V* and H* - spaces dual to V and H, respectively,

(-,)and |- [v ( (+,) and | - |g) - the scalar product and the corresponding
norm in V(H), U - a uniformly convex real Banach space. Suppose that
V is densely imbedded in H. We identify spaces H and H*. The notions
introduced below without comment are given, for example in [26-28].

Let the following objects be given:
é:V — (—00,+00] - a convex, proper, lower semi-continuous function;

a(-,+) — a continuous bilinear form on V satisfying, with a certain ¢; > 0, the
condition:

a(w,w) > qlwl}, weVv; (1.1)

B :U — H - a linear continuous operator; f € LT, H), f € L*(T,H) (f
denotes the derivative of f).

The continuous linear symmetric operator corresponding to the form a(-,-)
will be denoted by A. The measurability and integrability of a function
will always be understood as defined by Lebesgue, differentiability will be
understood as in the theory of distributions.

Consider the hyperbolic system the evolution of which is described by the
following variational inequality: for almost allt € T and all w € V

(), (1) —wr + a(y(t),y(t) —w) +

+9(H(t) — p(w) < (Bu(t) + f(2),4(t) —w)n, (1.2)
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and

y(to) = vo, Ao € H (1.3)

y(to) = yo € D(p) = {w € V : p(w) < +o0} €

€ L}T,U), 4L¥T,U). (1.4)

Here u € L*(T,U), u € L*(T,U). We call function u a disturbance (implying
certain concrete systems).

Under the imposed conditions [27-29]

y € C(T,V), y € C(T,H)n C(T,V.,),

j € L(T, H). (1.5)

Here V, is the space V equipped with a weak topology. We also assume that

Ay(t)e H, teT. (1.6)

(For conditions on a and ¢ ensuring (1.6), see [29], p. 139-143). When
necessary, we write y = y, emphasizing that y depends on u.

The problem considered is the following. u is and unknown disturbance.
It is known only that almost all values u(t) belong to a bounded convex
set P C U. The aim is to form an approximation v, to the disturbance
u knowning the results () of the measurements of the velocity y(t) of the
evolution of the system with error A:



l5(t) — &@)lw < b, teT. (1.7)

The mean square approximation is implied:

/ lu(t) — va(t)[3dt —» 0 as h — 0. (1.8)
T

Let us state the problem more precisely.

Let N be the set of all functions from L?(T', P) such that for almost allt € T
alweV

(yu(t)7 gu(t) - w)H + a(yu(t)’y(t) - w) +

+‘P(yu(t)) - ‘P(w) < (Bv(t) +f(t)v yu(t)_w)H-

Thus N is the set of all disturbances v that can generate the evolution pro-
duced by the disturbance u, but in general, does not satisfy the inclusions

v € L*(T, H). Obviously, N is convex and closed in L*(T, P).

For v € L*(T, P), we put

J(v) = min|v—ple(z.p)- (1.9)

Let § > 0,8 < Y9—tgand D : (0,8]x LXT, H) — L*(T, P). Now we formulate
the initial problem as follows:

Problem 1.1 Find an operator D such that

sup Je(D(h,€)) = 0 as h — 0. (1.10)



Here sup is calculated over all §L*(T, H) such that |£(t) —y(t)] < h,t € T.
An operator D satisfying (1.10) will be called a reconstruction algorithm.

Remark 1.11If N is one element, i.e. it contains a single element u, then the
algorithm D reconstructs a mean square approximation to the disturbance
u. It is also easily seen that the algorithm D reconstructs a mean square
approximation to an element of N with a minimal L*(T, U)-norm.

Remark 1.2. Let (1.2) be equivalent to a variational inequality. Then the
conditions & € L*(T,U), f € L*(T,U), the second condition (1.3), and the
condition (1.6) can be omitted.

Let us construct an algorithm D.

Fix an k,0 < h < 4, and a ¢ (see (1.10)). Decompose the interval T by
points {;:

to<ti <...<tm =19, m=m(h),

A = A(h) = max(t;y1 — ;) < b,

where ¢; > 0 is fixed.

Consider the control system on T (call it a model) described by the following
conditions: for almost all t € T and all w € V.

(2(t), 2(t) —w)w + a(z(t),y(t) — w)+

+9((t)) — p(w) < (Bua(t) + f(t),2(t) — w)n (1.11)

and Z(to) = Yo, Z(to) = 3}0.

Here v, : T — U is a piecewise constant control formed by the rule:
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vh(t)=v,-, tist<t,‘+1, z=0,,m—1 (112)

Here v; is an element of P such that

®(v;) = min{®(v),v € P}, (1.3)

®(v) = 2(Bv,2(t:) — £t:)n + a(h)lp, (1.14)

a(h) is a nonnegative function on (0,8) such that Afa(h) — 0 as h — 0.
(According to the terminology of the theory of ill-posed problems [25], (k)
is a regularization parameter).

Now define D as the mapping, putting in correspondence to each pair (k,§)
a function vy, from (1.11)-(1.14): D(h,§) = vs.

Theorem 1.1. The operator D solves the Problem 1.1.

The proof of the theorem follows those of analogous statements from [2]. It
is based on the following:

Lemma 1.1. Let
A(t) = |9(8) — 2(O)lH + a(y(t) — =(2), ¥(t) — 2(t)+

+a(h)[val,qoa0) — 2Pl q0.a0): (1.15)

There exists a c3 > 0 such that

A(t) < cs(A(R) + k), teT.

Remark 1.3. According to the terminology of [2], A is a stabilized Lyapunov
functional.



Remark 1.4 Note that to form the control v, only the measurement £(t;)
at time ¢; is used. Thus the constructed algorithm can be applied to recon-
structing the parameter in real time. In [3], algorithms of this kind are called
dynamical (positional).

2. Now consider the following problem of reconstruction of a parameter for
a hyperbolic system.

Let an operator A: V — V* dependingon p € P C U,

A = Alpl,

be given. Suppose that for each p the operator A[p] is linear, continuous and
self-adjoint. Denote by a(p; -, -) the bilinear form on V' corresponding to A[p).
Suppose that for certain A\; >0, A\; >0, A3 >0,and all p€ P

Malwly > a(pw,w) + Mwll = Afwly, weV.

Let a function f € L*(T,H) N C(T,V*) be given. Consider the typerbolic
system ([27], p. 281-282)

y(to) = w €V, y(to) = go € H. (2.1)

Here u : T' — P is a measurable function such that for any w; € V, w, € V
the function a(u(t); wy, w,) is continuously differentiable on T'.

A solution to (2.1) satisfied the conditions [27]

y € C(T,V), y€C(T,H), ye L}T,V°).




The parameter u(t), t € T, in (2.1) is unknown. It is to be reconstructed
(mean square approximated, see Section 1) on the basis of measurements
£1(2), £2(t) of values y(t), y(t), with error h:

162(t) —y(D)lv <k, [o(t) —y(@)|lu <k, teT (2.2)
Let us state the problem more precisely.
Suppose that following conditions are fulfilled:

(1) there exists a nonnegative function o4(¢), € > 0, o(¢) — 0, such that for
theT, t,eT

la(u(t:); w, w) — a(u(ts); w,w)| <

ol = ta]) lwly,w e V; (2.3)

(2) if a sequence {v(")} converges weakly to v® in L*(T, P), then for any
Y € C(T,V) and t € T the sequence

{f AL

converges to

t

/ A%(T)]y(1)dr.

to

in V*.

Introduce a set analogous to the set N from Section 1. Let N, be the set of
all functions v from L*(T, P) such that for almost all t € T



y.u(t) = A[v(t)]yu(t) + f(t)

The condition (2) implies that N, is a weak compactum in L*(T, P).

For v € L*(T, P) we put
Ji(v) = ;2}\2 [v = plL2(T, P).
Let Dy : (0,6] x L*(T,V) x L*(T,H) — L*T, P), where ¢ > 0, 0 < ¥ — ¢,
is fixed.
Problem 2.1. Find an operator D, such that

sup Ji(Dy(h, &,&2)) — 0 as h— 0. (2.4)

1.§2

Here the sup is calculated over all § € L*(T,V), & € L*(T, H) satisfying
(2.2).

An operator D is satisfying (2.4) will be called a reconstruction algorithm.

Remark 2.1. The algorithm D; reconstructs the unknown parameter u of
the system (forms a mean square approximation to u), provided N; is one
element. In general, D, reconstructs an element from N; the L?(T, U)-norm
of which is minimal.

Let us construct the algorithm D;.
Introduce the following condition:
(3) for each wy € V,w; € V the mapping a(v;wi,w;) : P — (—00,00)

is weakly upper-semicontinuous. Following Section 1, introduce the
control system




(1) = Al + f(2), teT,

Z(to) = Yo, é(to) = gv

E;(t) = {1(7‘:’), t; < t<ti+l7 i=07"'am_1' (25)
Here v,(t) is a piecewise constant control on 7" formed by the rule
vh(t) =, L <t<tiyyy, 1=0m—1

where v; is an element from P such that

®,(vi) = min{®(v),v € P}, (2.6)

®1(v) = —2a(v;&i(ts), 2(L) — &a(t)) + en(h)vlp-

Define the operator D, to be the mapping which puts correspondence to each
triplet (k, &, &) the function v, from (2.5), (2.6).

Theorem 2.1. Let o,(¢) be a module of continuity of f in V* and a; (k) be
such that

[k +01(A(R)) + 02(A(R))] / an(h) = 0 as h — 0.

Then the operator D, solves the problem 2.1.

The proof of the Theorem follows those of the analogous statements from
[1-3]. Tt is based on the following
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Lemma 2.1. Let

M) = [5(t) = 205 + (k) wall, gy —

alh) - JulL, a0y

There exists a Ay < 0 such that

Ar(t) S Aq- (01(AR)) + o2(A(R)) + h), teT.
Remark 2.2. Note that the control v, on [t;,ti41) is formed on the basis of

measurements £;(t;), £&2(¢;) at time t;. Therefore, the constructed algorithm
allows us to reconstruct the parameter u in real time

3. There follow below several examples.

Ezample 1. For the system (1.1), (1.2) we have

V = HN0,7), H = L}0,r), U = R', T = [0.1],

P = [-1,1], =0, yo = O,y0o = k-sinz, £ = /2/m,

f =0, a(wy,wy) = / %-%ﬁdz, Bu(t) = u(t) - x-sinz.
0

Consequently the system is described by the question

?:t = g: + u(t)-x-sinz, z € (0,7)
y(t,0) = 0 = y(t,7),teT = [0,1]
y(0,z) = 0, 2 (0,z) = x-sinz

11



The set N contains the single element u = u(t), t € T.

Below, the results of the reconstruction of the concrete parameter u(t) =t
are shown. The measurement was made in the form

&(t,z) = y(t,z) = b k-sinz

where p is a given number. The parameter of regularization was determined
by @ = h'/2 The function vs approximating u was calculated according to
the following rule:

vp(t) = v, i<t <tipy, i=0,...,m—1,

—1)71' < _la
v = ¢ 7,-1<%<1,
lal S’Yiv

n

- . 0z 0¢
3 — 1. - - — . — — 3
Y%= a -k {smz ((,% (ti, ) 8t(t,,z))d:c.

The results of computer simulations are given in the table and in the figures.
S stands for the mean square error of approximation.
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Ezample 2. For system (2.1) we have
V = HI(O,‘II'), H=1*0,7),U = R', yo = & -sinz,

o = 0, % = 2m, [ =0, Afult)ly = u(t) 5.

Consequently, the system is described by the equation

The set Ny contains the single element u = wu(t) t € T. Below, the results
of the reconstruction of the parameters

1) ut) =1+ t*eP =1[0,5,teT = [0,2],

and

2) u(t) = 2 + sin2rte P = [,3],t €T = [0,1.5].
are given. The measurements were made in the form

&i(t,z) = y(t,z) + h-my-k-sinpt-sinz,

&(t,z) = y(t,z) + h-my - k-sinpyt -sinz,

where m, and m, are given numbers. The parameter of regularization was
determined by a = h. The function v, approximating u was calculated
according to the rule (2.6). The results of the computer simulations are
given in the figures.
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FEzample 3. For the system (2.1) we have

V = HY(0,1), H = L*(0,1), f =0, yo =sinz, jo =0,

P ={peH*0,1):1<p(x) <2, 0<z <1},

U = H(0,1), Alut)ly = 5 (a(z) - 32,

u(t,z) = a(z), teT = [0,1], z € [0,1].

The parameter a = a(z), 0 < z < 1, not depending on time to be recon-
structed. Below, the results of the reconstruction of the concrete parameter

a(z) =1+4+2,0<z<1

are given. The set N; contains a single element. The measurements

ﬁl(t,x) = y(t,z) + h-my - sinpit,

62(t’x) = y.(tax) + h'm2'~P2tv

where m;,mq,p;, and p, are given, were considered. The initial infinite
dimensional problem was approximated by a finite dimensional one using
the method of lines, the decompostions step in ¢ was equal to 0.02. The
parameter of regularization was defined by o = h'/6. The function v; was
calculated according to the rule (2.6). The functions u.(t) = a(z.),t € T, and
the construction results v} (t) = wi(t,z.),t € T for z, = 0.5 and z, = 0.75
are shown in the figures.
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