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Foreword 

This collaborative volume reports on the results of a contracted study agreement between 
the System and Decision Analysis Program and its project on the Methodology of De- 
cision Analysis at IIASA and a group of Polish institutes working in this area. This 
group includes: the Institute of Automatic Control, Warsaw University of Technology 
(coordinating the study on the Polish side), the Systems Research Institute of the Polish 
Academy of Sciences in Warsaw, the Institute of Computing Science of the Technical Uni- 
versity of Poznan, the Institute for Control and Systems Engineering of the Academy of 
Mining and Metallurgy in Cracow, and the Institute of Informatics, University of Warsaw. 

The study includes research in four directions: mathematical programming techniques 
for decision support, applications of decision support systems new methodological devel- 
opments in decision support, dissemination of results and educational activities. The 
papers in this volume are organized in parts somewhat differently. 

Part 1. Theoretical and Methodological Contributions contains four papers on mathe- 
matical programming for decision support and three papers on methodological issues. In 
the first four papers, specific features of certain mathematical programming problems are 
investigated in order to achieve fast and reliable computational algorithms that might be 
used in interactive decision support systems. Known algorithms for multistage stochastic 
programming are typically too slow for repeated optimization runs in interactive decision 
support; A. Ruszczyliski in the first paper, investigates parallel decomposition methods for 
such problems. Irregular two-dimensional cutting problems result in discrete optimization 
of complexity characterized by strong NP-completeness; J. Blazewicz et al. in the second 
paper, analyze - between other issues - heuristic algorithms that lead to an implemen- 
tation of a decision support system. Large problems of minimizing piece-wise quadratic 
functions with bounds on variables require special, fast computational algorithms, ana- 
lyzed by J. Sosnowski' in the third paper; this class of problems has found applications 
in the multiobjective linear and dynamic programming package HYBRID. Multiobjective 
linear programming problems with fuzzy coefficients and bounds are an especially useful 
way of describing uncertainty in multiobjective decision support; the paper of P. Czyiak 
and R. Slowiliski describes an interactive package for solving such types of problems. 

The second group of methodological papers starts with the contribution of 
E. Nawarecki and G. Dobrowolski towards applications of min/max estimates for de- 
cision making under uncertainty. The next paper, by J. Paczyriski, examines the issue of 
using indexed variables in user-friendly model generators, that is, preprocessors that help 
to define mathematical models of decision situations in a natural, user-friendly format. 
Another paper, by J. Granat, investigates the opposite side of interaction of a user with 
a decision support system - the issue of various graphic tools for representing the results 
of computerized decision analysis to the user. 

Part I1 Ezamples of prototype decision support systems (DSS) and applications con- 
tains five papers on various prototypes of decision support systems together with their ap- 
plications and two papers on special applications of such systems. Three papers give doc- 

'Thb paper was published as the IIASA Collaborative Paper CP-90-003 



umentation for enhanced versions of three prototype DSS developed during the previous 
scientific cooperation documented in IIASA Working Paper WP-88-071 (later published 
as a volume in Springer Verlag) Theory, Software and Testing Ezamples in Decision Sup- 
port System.  These are software packages: IAC-DIDAS-N (for nonlinear multiobjective 
programming models in decision support) by T. Kreglewski et al., DIN AS (for multiobjec- 
tive network analysis) by W. Ogryczak et al., and MCBARG (for multiobjective analysis 
of multi-person bargaining situations) by L. Krus' et al.l. The next two papers concern 
prototype decision support systems for multiobjective project scheduling (which took also 
part in an international comparative study on this subject, organized by IIASA): MPS by 
R. Slowiliski et al. and MIPS by T. Rys' et al. In all these papers, examples of applications 
are also included. The last two papers are directly concerned with applications of DSS: 
multiobjective optimization of water releases from a retention reservoir during a flood 
by A. Karbowski and multiobjective design of a multipurpose batch plant in chemical 
industry by T. Ryi. 

The study was supported partly by IIASA national currency funds in Poland, partly 
by the funds of a research program R.P.I.02 by the Polish Ministry of Education. It is a 
part of a long-term cooperation of the Systems and Decision Sciences Program with the 
Polish scientific community working on problems of optimization and decision support. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program. 

2Thie paper was publiehed as the IIASA Collaborative Paper CP-90-006 
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Parallel Decomposition Methods for Linear 
Multistage Stochastic Programming Problems 

Theory and Computational Results 

Andrzej Ruszczyliski 

Institute of Automatic Control 

Warsaw University of Technology 

00-665 Warsaw, Poland 

Abstract 

A new decomposition method for multistage stochastic linear programming prob- 
lems is proposed. A multistage stochastic problem is represented in a tree-like form 
and with each node of the decision tree of a a certain linear or quadratic sub- 
problem is associated. The subproblems generate proposals for their successors 
and some backward information for their predecessors. The subproblems can be 
solved in parallel and exchange information in an asynchronous way through spe- 
cial buffers. After a finite time the method either finds an optimal solution to the 
problem or discovers its inconsistency. An analytical illustrative example shows that 
parallelization can speed up computation over every sequential method. Computa- 
tional experiments indicate that for large problems we can obtain substantial gains 
in efficiency with moderate numbers of processors. 

Keywonis: Stochastic Programming, Dynamic Programming, Decomposition, 
Parallel Computing. 

1 Introduction 
Parallel computing systems offer increased computing power but require new methods 
that take advantage of their capabilities. The principal objective of this paper is to 
present an algorithm that allows parallel decomposition of a class of particularly difficult 
optimization problems: multistage stochastic linear programming problems. 

Let R be a finite probability space with elementary events w and probabilities p,. Next, 
let D,(t) and H,(t), t = 1,. . . , T be sequences of random mb x m, matrices and b,(t) 
and ~ ( t ) ,  t = 1,. . . , T, be sequences of random vectors in R"'* and PS, respectively. We 
shall call each sequence s,(t) = (Dw(t), H,(t), b , ( t ) , ~ ( t ) )  corresponding to some event 
w E R a scenario. The problem is to find a sequence z,(t), t = 1,. . . ,T, w E R, of 



random vectors in IPS (a policy), which minimizes the linear form 

subject to the constraints 

with x(0) = zo fixed, and an additional nonanticipativity constraint, which can be formu- 
lated as follows: for all wl, w2 E R and any t E (1,. . . , T)  

X,I (t) = xW2(t) if SW1 (7) = S3 (7) for 7 = 1,. . . , t. ( Ie4) 

In other words, decisions corresponding to scenarios which are indistinguishable up to 
time t should be equal (see [23] for an extensive discussion of this issue). 

Two important special cases of (1 .I)-(1.4) are the deteministic control problem (with 
one scenario) and the two-stage stochastic programming problem ( T  = 2, sw(l) identical 
for all w E 0). 

Although in principle (1.1)-(1.4) is a linear programming problem, its size may be 
too large for standard linear programming techniques [19]. For this reason a variety of 
specialized approaches have been developed for the two cases mentioned earlier. 

The first group are special versions of general-purpose LP methods which take advan- 
tage of the structure of the constraint matrix of the problem to improve basis factorization 
techniques and pricing strategies in the simplex method [5, 9, 10, 12, 15, 20, 30, 26, 32) 
or direction-finding in interior point methods [17]. 

The second group are techniques coming down from the decomposition principle of 
Dantzig and Wolfe [3, 6, 7, 14, 31, 32, 331. 

The. third group are nonlinear methods specialized to this particular class of problems: 
the finite generation method [22], the progressive hedging algorithm [23] and the regu- 
larized decomposition method. [24, 25, 27, 281. The last one is of special interest for us, 
because it shares the finite convergence property of pure linear approaches. 

The objective of our paper is twofold. First, we shall extend the regularized decompo- 
sition method to multistage stochastic programs, while retaining properties observed in 
the twestage case. Secondly, we shall show that the subproblems into which (1.1)-(1.4) 
is decomposed can be solved in parallel and can exchange information in an asynchronous 
manner. We hope that this is of interest in its own right and brings new quality even 
to the earlier twestage version of [24]: the subproblems and the master can operate in 
parallel. In the multistage case our approach may mitigate the effort required by nested 
formulations [3, 14, 331 by allowing fast transmission of information between the stages. 
For computers on which true multitasking is not yet possible our results eliminate restric- 
tions on the order in which the subproblems are processed. Similar observations have 
been also made in a recently completed dissertation [8], where parallel decomposition of 
staircase linear programs was discussed. For the progressive hedging algorithm of [23] a 
parallel implementation was described in [18]. 

In section 2 we restate the problem in a tree-like form and give a general outline of the 
method. In section 3 we study in detail fundamental objects of our method: regularized 
subproblems and we describe how they generate information for the other subproblems. 
Section 4 contains a formal description of the method and in section 5 we prove its finite 



convergence. In section 6 we analyse a simple example and illustrate the operation of three 
methods: the nested decomposition method, the optimal serial algorithm and the parallel 
method. Finally, in section 7 we present computational results obtained for a number 
of test problems, both deterministic and stochastic, with synchronous and asynchronous 
versions of our method. 

2 Outline of the method 
More insight into the structure of problem (1.1)-(1.4) can be gained by restating it in 
a tree-like form. Namely, with the set of scenarios s,(t), t = 1, . . . , T, w E 51, we can 
associate a tree 7 = {N, A),  where N is a set of nodes and A is a set of arcs of 7. The 
set of nodes N is divided into subsets (levels) N;, t = 1,. . . , T; the nodes n E Nt at level 
t correspond to different subscenarios {sn(l), . . . , sn(t)). At level 1 there are so many 
nodes as many different realizations of s(1) can occur; at level 2 the nodes correspond to 
different pairs {s(l), s(2)), etc. The number of nodes at level T is equal to the number of 
scenarios 1511. The arcs join nodes from neighboring levels in such a way that a node n at 
level t corresponding to subscenario sn = {sn(l), . . . , sn(t)) is connected with all nodes 
m at level t + 1 whose subscenarios sm = {sm(l), . . . , sm(t + 1)) equal sn up to time t. 
Let us denote by ~ ( n )  the predecessor of node n, i.e. the node at the previous level with 
which n is connected and by S(n) the set of successors of n, S(n)  = {m : n = ~ ( m ) ) .  
Next, let n(n)  = {n, ~ ( n ) ,  ?r(a(n)), ...) be the path from n to level 1. Taking account of 
the fact that for n E Nt we have sn = {sW("), sn(t)), it is sufficient to associate with each 
node n E Nt only the last element of its subscenario, sn = sn(t); the whole subscenario 
can be recovered by backtracking the path n(n). 

A node n at level t corresponds to the bundle 51, of scenarios which are indistinguish- 
able up to time t. By the nonanticipativity condition (1.4) all decisions z,(t), w E 51, 
must be equal. We denote their value by z,. 

To complete the reformulation of the problem, with nodes n E N we shall associate 
probabilities Pn defined as follows: for each terminal node n E n/T we set jn = p,, where 
w E 51 is the event that corresponds to leaf n. For other nodes we define Pn = CmES(,,) pm. 

Using this notation we can rewrite (1 .I)-(1.4) as follows: 

minimize x pnc;zn 
 EN 

where for n E n/l we define z,(,) = zo. We shall assume throughout this paper that 
(2.1)-(2.3) is bounded. 

The tree structure makes it possible to develop a hierarchical method for solving (2.1)- 
(2.3). For each pair of nodes (m, n), m E S(n), we define the conditional probability 
Pmn = $rn/pn and use it for recursive definition of the value junction 

Solving the problem is equivalent to calculating 



Since each component of this sum can be computed independently, with no loss of gen- 
erality we can assume that there is only one node n = 1 at. level 1 and our aim is to 
find fi(zo). This can be done by the nested decomposition method: a recursive procedure 
of dynamic programming type in which problems (2.4) at various levels of recursion are 
solved by a cutting plane method (cf. [3, 14, 331). 

We shall modify the hierarchical approach in two directions. 
First, instead of the pure cutting plane method we admit the use (for some nodes n) of 

its regularized version analysed in the two-stage case in [24,25]. With each node n of the 
tree 7, except for the terminal nodes, we associate the following regularized subproblem 

Here p, 2 0 is a penalty coefficient, tn is a certain regularizing point and fm(.), n E S(n) 
are convex piecewise linear outer approximations of the value functions fm(.): 

If p, = 0 then (2.5)-(2.7) becomes identical with the master problem of the multicut 
method of [4] (a special version of Benders decomposition for stochastic programs) and 
for p, > 0 we get the master problem of the regularized decomposition method of (24, 251. 
The use of proximal terms fp,(Jz, - (,1J2 in (2.5), where (, is the best point found so far, 
stabilizes the sequence of trial points z, generated by (2.5)-(2.7). For larger problems, 
where identification of essential pieces of A(.) takes many tries, regularization may save 
time, especially when a good initial approximation to the solution is available (24, 251. 
Our analysis will treat the general case covering the purely linear Benders decomposition 
and the regularized version. 

With each terminal node n E n/T of 7 we associate the linear problem 

minimize I, = ciz, (2-9) 

In the method we link subproblems (2.5)-(2.7) and (2.9)-(2.11) in the same way in which 
the nodes of 7 are linked. They exchange information along the arcs by passing the 
solutions z, to their successors and receiving some backward information used to correct 
the approximations fm(.). The backward information has the form of cuts, i.e. some 
linear functions used to describe pieces of A(-) or facets of their domains. 

Our principal objective, however, is parallelization. In our method we allow all sub- 
problems to be solved in a parallel asynchronous manner. Their logical dependence, im- 
plied by the tree structure of the problem, is reflected only in the communication structure 
of the distributed method, but does not condition the order in which the subproblems are 
processed. To this end we separate subproblems by buffers which store primal solutions 
passed from antecedent problems and cuts generated by the successors. Each subproblem 
takes some (possibly outdated) information from the buffers, generates its primal solution 
and a cut, passes them to the neighboring buffers, etc., until no new information appears. 



We shall discuss all these issues in sections 3 and 4, but let us at first illustrate the 
structure of the method on two typical examples. 

Example 1. Consider the deterministic dynamic problem 

minimize x c;zt 
t= l  

Graph 7 is in this case a chain and the corresponding network of subproblems and 
buffers takes on the form shown in Figure 1. It corresponds to the nested decomposition 
method, but our subproblems are quadratic and are solved in parallel thus allowing for 
fast exchange of information between the stages (see [I, 21 for another parallel approach 
to dynamic programming). 

Example 2. Consider now the stochastic two-stage problem 

L 
minimize c;zl + xp l c ; z l  

1=2 

Graph 7 is a star with root 1 and leaves 2,. . . , L. The corresponding network of subprob- 
lems and buffers is shown in Figure 2. It is similar to the structure of the Dantzig-Wolfe 
method, but our master is different, and the master and the subproblems are solved in 
parallel, which significantly differs our approach from that of [13]. 

For stochastic dynamic problems the structure of the network of subproblems is a combi- 
nation of these two extreme cases. 

We end this section by stressing that the fact that we distinguish tasks which can be 
solved in a parallel asynchronous manner does not imply that we need different processors 
for different tasks. It simply leaves us full freedom in assigning tasks to processors. 

3 Cuts 
Let am, + gkjzn, j E Jm, be a collection of linear functions such that 

fm(zn) 2 amj +gkjzn, for all z j E JA, (3.1) 

and 
dam fm C {zn : amj +gk j tn  < 0}, j E Ji, (3.2) 

where JA and JA are disjoint subsets of Jm. We shall call (3.1) objective cuts and (3.2) 
feasibility cuts. The cuts can be used to define functions fm in (2.5) as follows: if z, 
satisfies the feasibility cuts we set 



otherwise we set fm(zn) = +oo. It is clear that is convex and piecewise linear and 
satisfies (2.8). 

Using the cuts we can reformulate (2.5)-(2.7) in a more explicit fashion. Let 
us introduce aggregate vectors and matrices: p, = ( P ~ ~ ) ~ ~ ~ ( ~ ) ,  Vn = ( v ~ ~ ) ~ ~ ~ ( ~ ) ,  
a, = (amj)mES(n),je J,,, , G, = (gmj)mrs(n),jE j,,,. With this notation (2.5)-(2.7) can be 
equivalently formulated as follows: 

Here En is a zero-one matrix, whose j-th column has 1 at position corresponding to vmn if 
the j-th cut in (3.4) is an objective cut for the function f,,,(.). The columns corresponding 
to feasibility cuts are zero. For simplicity we include direct constraints (2.7) into (3.4) 
as feasibility cuts. We assume that there is at least one cut for each fm(.), m E S(n) ,  
among (3.4), so that En has full row rank. 

To describe the way in which cuts for the predecessor can be generated let us fix our 
attention on a specific class of methods for solving (3.3)-(3.5): the active set methods 
which proved useful for linear quadratic problems of similar structure (cf. [16, 24, 25)). 
Their main idea is to choose a subset of linearly independent constraints from (3.4)-(3.5), 
solve the equality constrained subproblem obtained and revise the active set if optimality 
conditions for the whole problem are not satisfied. In case of p, = 0 the methods reduce 
to the dual simplex method. For p, > 0 the algorithms are more involved, because the 
number of active constraints may vary, but the simplicity of the quadratic term in (3.3) 
and the special form of En allow efficient implementation [24, 25). 

Each active set defines some submatrices G, E, H, D of G,, En, H,, D, and subvectors 
a,  b of a,, b,, which are used in equality constraints: 

The necessary and sufficient conditions of optimality for (3.3),(3.6), (3.7) have now the 
form: 

EX = pn , 

is of full We can always choose an active set so that E is of full row rank and [G 
column rank. There can be many specific ways in which the active set can be altered [16, 
24,251, but there are always only two possible situations in which the method terminates: 
optimality with X 2 0 and (z,, u,) satisfying (3.4) and (3.5), or inconsistency of the active 
cuts with a certain inactive cut. These two cases determine the type of information that 
can be passed to the preceding problem. 

Lemma 1 Let (3.3)-(3.5) be solvable for some z,(,) with the final active set (3.6)-(3.7). 
If the system of equations 

EX = pn , (3.8) 



has a solution (A, p) with X 2 0, then 

where 

Proof. Consider the linear problem 

minimize 1, = ciz, + p;v, (3.13) 

G'z~  - Emun 5 -a, (3.14) 

HZ, = b - Dz,(,). (3.15) 

It is a relaxation of (2.4), so the optimal value satisfies for each z,(,) the inequality 

On the other hand X 2 0 and p satisfying (3.8)-(3.9) form a feasible dual solution to 
(3.13)-(3.15). Thus for each z,(,) 

Combining the last two inequalities we obtain the required result. 
Remark If p, = 0 in (3.3) then the system (3.8)-(3.9) is always solvable and (A, p )  are 
the optimal Lagrange multipliers associated with (3.4)-(3.5). 

Lemma 2 For a given set of constraints (3.4)-(3.5) the number of diflerent objective cuts 
(3.10)-(3.12) is finite. 

Proof. Each cut (3.10)-(3.12), if it exists, is uniquely defined by the active set, and there 
can be only finitely many different active sets. 

Lemma 3 If the solution z, to (3.3)-(3.5) at z0,(,) is equal to En, then the cut (3.10)- 
(3.12) ezists and supports the epigraph of the functton 

Proof. At z, = (, the necessary and sufficient conditions of optimality for (3.13)-(3.15) 
and (3.3)-(3.5) are identical, so the cut must exist. Next, the constraints not included 
into the active set are satisfied at (I,, v.). Therefore L(z%,)) = in(=:(,)). Since (9,  a) 

supports in(.) at I:(,) it supports jn(.) at I:(,), tm.  

Lemma 4 Suppose that (3.4)-(3.5) are inconsistent for some I;(,). Then there ezists an 
active set (3.6)-(3.7) such that one of the following conditions holds. 



( i )  There is a feasibility cut a + g'z, I 0 among (3.4) and multipliers X 2 0 and p such 
that 

EX = 0 ,  (3.16) 

g + G X + H 0 p = 0 ,  (3.17) 

a + X'a + p'(~zO,(,) - b) > 0. (3.18) 

( i i )  There is an equation h z ,  = P - dz,(,) among (3.5) and multipliers X 2 0 ,  p and 
e = f 1 such that 

EX = 0 ,  (3.19) 

eh + GX + H'p = 0 ,  (3.20) 

e(dzO,(,) - P )  + + p0(Dtf(,,) - b) > 0. (3.21) 

Proof. Suppose that the cut a + g'z, 5 0 is violated at the solution of the equality 
constrained subproblem and cannot be introduced into the active set. Then (3.16)-(3.18) 
with X 2 0 follow from [21, thm. 22.11. If an equality constraint h z ,  = ,8 - dz,(,) is 
inconsistent with active cuts, in a similar way we get (3.19)-(3.21). 

Using lemma 4 we can obtain cuts which must be satisfied by any z,(,). If case (i) holds, 
multiplying (3.14) by A' and adding (3.15) multiplied by p' we see that 

and, since z,  must satisfy a + g'z, 5 0 ,  

a + X'a + p0(Dz,(,) - b) I 0. 

In case (ii) in a similar fashion we obtain the cut 

The new cut is violated at I:(,). These two cases can be put in one format 

by assigning zero multipliers to inactive cuts and multiplier f 1 to the violated cut. We 
can summarize it in the following lemma. 

Lemma 5 At any zO,(,) for which (3.1)-(3.5) a n  inconsistent we can construct by (3.22) 
a feasibilit y cut 

6 + j'zu(n) I 0,  (3.23) 

3 = D i p ,  
- 

(3.24) 

6 = - b;P. (3.25) 

The number ojsuch cuts possible is finite and they fully describe the set ofz,(,) for which 
(3.4)-(3.5) are consistent. 

Proof. Formulae (3.23)-(3.25) follow directly from (3.22). Each such cut is defined 
uniquely by the active set and the violated constraint, because (3.16)-(3.17) or (3.1 9)- 

E (3.20) define uniquely ( A ,  p)  by the full column rank of [G H.]. The number of possible 
active sets for (3.4)-(3.5) is finite and for each active set there can be only finitely many 
violated constraints. Therefore, one can generate only finitely many cuts (3.23)-(3.25). If 
I:(,) satisfies them, then it must satisfy (3.4)-(3.5), since otherwise we would be able to 
construct a new cut by lemma 4. The proof is complete. 

For problem (2.9)-(2.11) associated with a terminal node the cuts simplify slightly: there 
are no terms a'X and a ~ i  in (3.12) and (3.25). 



4 Tasks 

As we mentioned in section 2, our method for solving (2.1)-(2.3) consists of a number of 
tasks which can be executed in parallel and can exchange information in an asynchronous 
manner. With each node n of the tree 7 we asociate a task SUB(n) whose function is to 
solve the regularized subproblem (3.3)-(3.5) corresponding to node n. The task SUB(n) 
communicates with other tasks through two channels: BOX(n) and PIPE(n). Let us 
describe the channels and the tasks in more detail. 

BOX(n ) 

In BOX(n) the last solution z, of (3.3)-(3.5) is stored. Only SUB(n) may change its 
contents by overwriting z,. The tasks SUB(m) for m E S(n)  may read z, without 
destroying it. If BOX(n) is empty and SUB(m) attempts to read z,, SUB(m) waits until 
there will be new information available. 

Through PIPE(n) cuts generated by the tasks SUB(m), m E S(n)  are transmitted to 
SUB(n). PIPE(n) has a finite capacity which allows for storing at least one cut. When 
SUB(n) takes a cut from PIPE(n), the cut is deleted and new space in PIPE(n) is created. 
If PIPE(n) is full, the tasks SUB(m), m E S(n)  which attempt to put cuts to PIPE(n), 
wait until room for the next cut will be available. 

The tasks SUB(n) have three different forms: for the starting node, for terminal nodes 
n E NT and for intermediate nodes. SUB(n) operates in two modes: 'go' and 'optimal' and 
updates the solution of (3.3)-(3.5) each time new information is available in the buffers. 
To simplify our description we asume that at the beginning every SUB(n), n 4 NT, has 
at least one objective cut for each j,(.), m E S(n)  (e.g. j,(.) 2 -C for a sufficiently 
large C). The tasks start in mode 'go'. 

We start the description of active tasks from the first task which is responsible for 
detecting optimality or infeasibility and terminating the whole method. 

Step 1. Get a cut from PIPE(1). If PIPE(1) is empty then go to Step 4; otherwise go to 
Step 2. 

Step 2. Solve the subproblem (3.3)-(3.5) and delete from (3.4) the cuts that were inactive 
at the solution. If (3.3)-(3.5) was infeasible then go to Step 7. If (3.3)-(3.5) was 
solvable then go to Step 3. 

Step 9. Write z l  into BOX(1) and go to Step 1. 

Step 4. If the tasks SUB(m) for all m E S(1.) read the last z l  from BOX(1) and are in 
mode 'optimal' and PIPE(1) is still empty, then go to Step 5; otherwise go to Step 
1. 

Step 5. If p, > 0 and zl  # (1 then set (1 + z l  and go to Step 2; otherwise go to Step 6. 

Step 6. Terminate (optimal solution jound). 

Step 7. Terminate (the problem is infeasible). 



Before proceeding to the other cases let us briefly comment on the above algorithm. 
There is only one external source of changes in the solution of (3.3)-(3.5): new cuts. Only 
when no new cuts can be expected, because the sons are in mode 'optimal' (Step 4), we 
update the regularizing point If this is exploited too, SUB(1) terminates. If (3.3)- 
(3.5) has no feasible solutions, the original problem is infeasible, because the fasibility 
cuts approximate the domains of f(m), rn E S( l )  from outside. 

SUB(n) for n # 1 and n 4 NT 

Step 1. Read z,(,) from BOX(n(n)). 

Step 2. Get a cut from PIPE(n). 

Step 3. If z,(,) did not change and PIPE(n) was empty, go to Step 4; otherwise set mode 
to 'go'and go to Step 5. 

Step 4. If mode='optimal' go to Step 1; otherwise go to Step 8. 

Step 5. Solve the subproblem (3.3)-(3.5) and delete from (3.4) the cuts that were inactive 
at the solution. If (3.3)-(3.5) was infeasible then go to Step 6. If (3.3)-(3.5) was 
solvable then go to Step 7. 

Step 6. Clear BOX (n), generate the feasibility cut (3.22), put it into PIPE(n(n)) and go 
to Step 1. 

Step 7. Write z, into BOX (n) and generate the objective cut (3.10)-(3.12), if possible. 
If the objective cut exists then put it into PIPE(n(n)). Go to Step 1. 

Step 8. If the tasks SUB(m) for all rn E S(n) read the last z, from BOX(n) and are in 
mode 'optimal' and PIPE(n) is still empty, then go to Step 9; otherwise go to Step 
1. 

Step 9. If p, > 0 and z, # (, then set (, + z, and go to Step 5; otherwise change mode 
to 'optimal' and go to Step 1. 

Now there are two external sources of changes in the solution of (3.3)-(3.5): changes in 
z,(,) and new cuts. Only if both possibilities are exploited, we update the regularizing 
point (,. If this is exploited too, we change the mode to 'optimal' to let our predecessor 
know that nothing new can be expected from us. 

Each SUB(n) processes many cuts and most of them become soon outdated. However, 
owing to the deletion rule of Step 5 (Step 2 for SUB(l)), the size of (3.3)-(3.5) is bounded. 
The set of cuts that are stored (the committee) need not have more than rn, + (S(n) 1 + 1 
members : no more than rn, + JS(n)l active cuts and one new cut read from PIPE(n). 
A specialized algorithm for updating the solution of (3.3)-(3.5) when a new cut is added 
has been developed in [24, 251. 

The tasks for terminal nodes are simpler: there are no cuts to process and the problem 
is linear. 

SUB(n) for n E NT 

Step 1. Read z,(,) from BOX ( ~ ( n ) ) .  

Step 2. If z,(,) is different from the last z,(,) set mode to 'go' and go to Step 3; otherwise 
set mode to 'optimal' and go to Step 1. 



Step 9. Solve the subproblem (2.9)-(2.11). If (2.9)-(2.11) was solvable then go to Step 4; 
otherwise go to Step 5. 

Step 4 .  Generate the objective cut (3.10)-(3.12)' put it into PIPE(x(n)) and go to Step 
1. 

Step 5. Generate the feasibility cut (3.22)' put it into PIPE(x(n)) and go to Step 1. 

If SUB(1) terminates, all other tasks terminate, too; their last solutions contain then the 
solution to the original problem. 

5 Convergence 

Our aim in this section is to prove that the method after a finite time either discovers 
inconsistency in the problem or finds its optimal solution (recall that we assume through- 
out this paper that the problem is bounded). We shall use T to denote time that passed 
from the start of the method. 

To avoid deadlocks and races we shall need two additional assumptions. 

( A l )  If a new z, is written into BOX(n), then after a finite time each SUB(m), m E S(n) 
will get acess to BOX (n). 

(A21 If SUB(m) for m E S(n) reads z, from BOX(n), then the mode of SUB(m) is 
changed to 'go' before SUB(n) checks it at Step 8. 

Let us introduce two notions concerning asymptotic behavior of our subproblems. 

Definition 1 We say that SUB(n) for n # 1 is stable from above if there ezists a finite 
time 7, such that the contents of BOX(x(n)) does not change for T 2 T,. The task 
SUB(1) is stable from above if it is feasible for all T 2 0. 

Definition 2 We say that SUB(n) is terminally optimal if there ezists a finite time in 
such that SUB(n) stays in mode 'optimal'for all T 2 in. 

We are now ready to carry out our analysis. We shall at first assume that p, > 0 for 
n ~ N T .  

Lemma 6 Suppose that SUB (n) is in mode 'optimal' at time T. Then the tasks SUB(m) 
for m E S(n)  ar in mode 'optimal' at time T. 

Proof. Our msertion is trivial for terminal nodes n E NT. Suppose that it is true for 
all m E S(n). We shall prove it for n. Let SUB(n) be in mode 'optimal' at time T. 
Then at some time Tn 5 T SUB(n) entered Step 8 (Step 4 for n = 1) and the tasks 
SUB(m), m E S(n)  were at mode 'optimal' at time instants Tm E [T,, T]. Each SUB(m) 
can change its mode only after receiving a new z, from BOX(n) or a new cut from 
PIPE(m). In the interval [Tm, T] the solution z, does not change, because SUB(n) stays 
in mode 'optimal'. Next, by our inductive assumption SUB(j), j E S(m)  are in mode 
'optimal', so PIPE(m) remains empty. Consequently, SUB(m), m E S(n)  stay in mode 
'optimal' in the intervals [Tm, 71. 

Lemma 7 Suppose that SUB(n) is in mode 'optimal' at time T. Then L ( z , )  = f,(z,) 
for all m E S(n)  and z, solves the linear problem (2.4). 



Proof. Our assertion is obvious for terminal nodes n E NT. Suppose that it is true 
for all m E S(n). We shall prove it for n. Let T, 5 T be the last time at which z, 
changed. By lemma 6, all SUB(m), m E S(n) are in mode 'optimal' at time T. On the 
other hand, by Step 3 each SUB(m) changed its mode to 'go' at a certain T, E [ r , , ~ ] .  
So, each SUB(m), m E S(n) executed at least once Step 5 in the time interval [r,, r]. 
Let im be the last time in this interval at which Step 5 was executed by SUB(m). Since 
SUB(m) is in mode 'optimai' at T we must have had zm = (, at im. By lemma 3 the last 
objective cut generated by SUB(m) supported fml.) at z,. By our inductive assumption, 
for every I E S(@) we had fi(zm) = fi(zm), 80 fm(zn) = fm(zn). Since fm(.) 5 fm(.), 
the cut supported fm(.) at z,. By (A!?), SUB(n) - did not stop before his successors read 
2,. But z, did not change in [im, T]; hence fm(zn) 2 f,(z,). Since f;, 5 fm we obtain 
fm(zn) = fm(zn) for all m E S(n). Consequently, z, solves (2.4). If m E S(n) is a 
terminal node, the analysis is simpler, because each objective cut is then a supporting 
cut. 

Lemma 8 There are finitely many possible committees for each SUB(n). 

Proof. Our assertion is true for terminal nodes n E NT. Suppose that it is true for all 
m E S(n). We shall prove it for n. Each committee is a set of cuts generated by the tasks 
SUB(m), m E S(n). By our inductive assumption each successor of n may have only 
finitely many committees. By lemmas 2 and 5 each committee may define only finitely 
many cuts. Therefore only finitely many committees for SUB(n) can be formed from 
these cuts. 

Lemma 9 Suppose that SUB(n) is stable from above. Then (, is changed only finitely 
many times. 

Proof. Let z,(,) be fixed for r > TO and let (, be changed at time instants rk 2 TO, k = 
1'2,. . .. Let zk denote the solution to (3.3)-(3.5) at rk. By Step 9, the regularizing point 
in the interval [ rk,  rk+'] is given by (;+' = 2:. It is changed at rk+' , SO z:+' # (;+l. Let 

Consider SUB(m), m E S(n). By Step 8 of SUB(n), each SUB(m) reads zk+' at some 
time instant T; 2 ik, changes mode to 'go', and reaches mode 'optimal' at some time 

k instant am E (T;, rk+']. By Lemma 7, at time a: we have fi(zm) = f l (zm) for all 1 E S($) 
Z k + l  and zm solves (2.4) (with n replaced by m). Thus (zk+l) = fm( , ). Summing up, at 

each time instant rk the following relations hold 

( i) z;+' solves (2.5)-(2.7) with (, = (k; 
(i i) fm(~k+') = fm(zk+') for all m E S(n). 

These two conditions imply that at rk an ezact serious step of the regularized decom- 
position method of [24] for solving the problem 

is executed (z,(,) is fixed). It follows from the theory developed in [24] that after finitely 
many such steps the minimum of F, will be reached and no more steps will be possible. 



Lemma 10 If SUB(n) is stable from above then all its successors SUB(m) for m E S(n) 
are stable from above. 

Proof. By lemma 9, (, can be changed only finitely many times. Hence there is TO such 
that for T 2 TO both z,(,) and (, remain constant. The solution z, to (3.3)-(3.5) does not 
change when inactive cuts are deleted. It is unique for a given committee, owing to the 
existence of the quadratic regularizing term in (3.3). Consequently, z, may change only by 
introduction of a cut which cuts-off the previous solution. In this case the minimum value 
of (3.3)-(3.5) increases. By lemma 8 there can be only finitely many different committees 
at SUB(n), which implies that z, may be changed only finitely many times. The proof 
is complete. 

Lemma 11 If SUB(n) is stable from above then it is terninally optimal. 

Proof. Our assertion is obvious for terminal nodes n E NT. Suppose that it is true for all 
m E S(n). We shall prove it for n. By lemma 10, the successors SUB(m), m E S(n)  are 
stable from above. By our inductive assumption they are terminally optimal. Let TO be 
such a time instant that for T 2 TO z,(,) and z, do not change and SUB(m), m E S(n)  
are in mode 'optimal'. If SUB(n) were in mode 'go' at some time T 2 TO it would have to 
enter Step 8. But z, does not change for T 5 TO, so we would have z, = (,, mode would 
be set to 'optimal' and SUB(n) would start infinite cycling between Steps 1 and 4. 

It is now easy to prove our main result. 

Theorem 1 After a finite time the method either discovers inconsistency in the problem 
and stops at Step 6 of SUB(1) orfinds an optimal solution and stops at Step 5 of SUB(1). 
In the latter case the solution is given by z,, n E N. 

Proof. Suppose that SUB(1) is not stable from above. Then after a finite time it stops 
at Step 6 with inconsistent feasibility cuts. The cuts approximate the domain of f i ( . )  
from outside, so the problem is infeasible in this case. Suppose now that SUB(1) is stable 
from above. By lemma 11 it is terminally optimal and after a finite time it stops at Step 
6. Then by lemmas 6 and 7 all tasks are in mode 'optimal' with z, = (,, n E N solving 
the corresponding problems (2.4). The proof is complete. 

Let us now briefly discuss the case of p, = 0 for some n. Lemmas 6, 7 and 8 remain 
unchanged. Lemma 9 still holds for n with p, > 0 and is inessential for p, = 0. A 
substantial difficulty, however, arises in Lemma 10. With p, = 0 we cannot guarantee that 
the minimum value of (3.3)-(3.5) increases after introducing a new cut and a theoretical 
possibility of cycling occurs, especially when inactive cuts are dropped. To avoid this we 
need an additional indirect assumption: 

(A3) If p, = 0 and z,(,) does not change for T 2 TO then a change of z, for T 2 TO implies 
the increase of the minimum value of (3.3)-(3.5). 

With (A3) Lemma 10 is still valid and Theorem 1 remains true. However, the use 
of p, > 0 for selected n is not a theoretical trick to exclude cycling, but may have a 
stabilizing effect on (3.3)-(3.5) preventing from rapid changes of trial points z,. 



6 Illustrative Example 
Subproblems of our method process many cuts and exchange information in both di- 
rections without waiting till optimality of their descendants. Most of the cuts are thus 
inexact. On the other hand, a true support of f,,(.) at a given point only occurs when all 
subproblems have been optimized (see lemmas 3 and 7). So, in a multistage case doubts 
may arise as to real advantages offered by parallelisation over the nested approach. For 
the two-st age stochastic case of Example 2 advantages are rather clear, because the lower 
level subproblems are independent, but in the other extreme case of the dynamic prob- 
lem of Example 1 the answer is in no way obvious. We shall present a simple analytical 
example which shows that a gain in computation time is possible in this case too. 

Let st denote the state of a linear dynamic system and ut and wt denote control 
variable., t = 1,. . . , T. Both state and controls are scalars and the problem is to 

T 
minimize x ( y u t  - qtwt) 

t=l 

subject to the state equation 

bounds on state variables and controls 

0 5 ut 5 f i t, t = 1, ..., T, 

w t r o ,  t = 1 ,  ..., T, 

with initial state s ( 0 )  and terminal condition 

Numerical values of coefficients are the following 

It is obvious that the above problem can be put into the general format by defining 
zt = (st, ut, wt). The optimal trajectory is clearly ŝ  = (5,5,5,5), but we shall see that it 
is rather difficult to find by the nested decomposition method. 

We shal compare on our example three methods: 

a The nested decomposition method, in which cuts for the predecessor are generated 
only when all successors are optimized. 

a The optimal serial algorithm, where the order of processing the subproblems is best 
possible for a given problem. 



The parallel method in its simplest synchronous version. 

In Figure 3 we illustrate the operation of the nested decomposition method. For each 
cycle of the method we fill-in the box in the column corresponding to the task SUB(t) 
which is solved at a given cycle and we give the current state value and the cut (if any). 
Empty boxes denote problems that do not generate any new information. 

Figure 4 presents in the same way the optimal serial algorithm. It is clearly more 
efficient than the nested method, because the order of subproblems has been determined 
a posteriori. In our case it turned out to be a compressed version of the nested method. All 
heuristic strategies for processing subproblems within the nested decomposition method 
cannot be better than that of Figure 4 (e.g. the fast-forward-fast-back algorithm discussed 
in [3] is quite good here and requires only two cycles more). 

In Figure 5 we show the operation of the parallel method assuming that pt = 0, t = 
1,2,3 and that the method operates synchronously: odd subproblems are processed at 
odd cycles and even subproblems at even cycles. We also assume that at the beginning 
the tasks have artificial cuts ft+l(zt) > -C and that they do not generate cuts for their 
predecessors if the artificial cuts are active. For every cycle we display only the tasks that 
receive or generate new information. In each box we give the information generated at 
a given cycle (empty boxes denote tasks that do not generate anything new) and we use 
arrows to denote the flow of the information. 

We see that for our problem the parallel method is faster than the optimal serial 
algorithm, so a significant novelty is introduced by parallelization. This differs our ap- 
proach from the parallel dynamic programming algorithms of [2] which in fact find the 
best sequence of subproblems by considering in parallel all sequences. The reason is that 
in our method information flows in both directions: forwards in form of trial points and 
backwards in form of cuts. Therefore it is possible that a good trial point and a significant 
cut are generated in parallel and both contribute to the final solution. In our example 
such a situation occured in cycles 6-9 and resulted in a relevant cut f3 > 5 - sz generated 
at cycle 9 (the flow of significant information is indicated in Figure 5 by thick arrows). 
In the .serial algorithm the same cut could be obtained only at the 13th cycle. In our 
example the advantages are not high, but the analysis of this phenomenon indicates that 
the potential of palallelization may grow with the increase of the number of time stages 
and with the increase of the dimensionality of subproblems. 

Clearly, asynchronism and the use of regularization in some subproblems might com- 
plicate the picture considerably, but our aim in this section was not the comparison of 
methods but illustration of the mechanism that can make the parallel method attractive. 

7 Simulation results 

We also carried out a series of simulation tests for both synchronous and asynchronous 
versions of our decomposition method. We used the multitasking facility for PC computers 
of [29]. 

The first series of experiments were carried out for deterministic inventory control 
problems of form (6.1)-(6.6), with T = 5, T = 10, T = 15 and T = 20, and with other 
coefficients generated from the uniform distribution in [O, l  01 . If the problem was infeasible 
(which is easy to test) the generation was repeated. For each T we generated in this way 
40 problems an we compared for them three times: 

TO - the processing time for the serial algorithm in a single-processor computer, 
T, - the processing time for the synchronous method in a multi-processor computer, 



T, - the processing time for the asynchronous method in a multi-processor computer. 
The times T, and T, were computed in the following way: all tasks were processed cyclically 
with a very small time quantum (0.056 s) devoted to each of them at every call; one full 
cycle of this procedure was assumed to take only the time quantum involved. To make the 
quanta negligible with respect to the time needed to solve a subproblem we introduced 
to the subproblems some delays, so the times that we present below have only relative 
meaning. To eliminate the effect of indeterminism in the asynchronous method, for each 
problem the method was run three times, so we made in total 200 runs for every T. 

In Table 1 we present for each T results for three characteristic problems: the best 
one (from the point of view of acceleration introduced by parallelization), a typical one 
and the worst one; we give also average results of all 40 randomly generated problems. 
It follows from Table 1 that parallelization decreases the computation time and that the 
improvement is bigger for longer time horizons T. This is particularly interesting for the 
special class of inventory-type problems that we tested and shows that for larger T the 
phenomenon discussed in our analytical example of the previos section becomes a rule. 
Asynchronism does not significantly change the results with respect to the synchronous 
case. 

More insight into the behavior of the method can be drawn from the optimal state 
trajectories and from relative activities of tasks A($) = 100ra(t)/ra, where ~ , ( t )  is the 
time in which task SUB($) was active. In Table 2 we provide these data for the three 
cases previously selected for T = 20. 

From the optimal state trajectories we see that the advantages of full parallelization 
can be higher for problems where the dynamic structure is substantial (our best case) 
than for easier ones which are in fact composed of a number of short-horizon problems 
(as our worst case). Similar relations were observed in all experiments. 

Another interesting conclusion follows from the analysis of the activity of tasks. Most 
of the time the tasks are suspended, waiting for new information, especially in our worst 
case. There is also a significant correlation of the activity of the tasks and the optimal state 
trajectory: the activity is higher at the end of each period of accumulation. This suggested 
us to analyse how many tasks are simultaneously active in the course of calculation. 

In Table 3 we show for the 12 cases selected earlier the relative time of simultaneous 
activity for each number of tasks. Acceleration is strongly correlated with essential par- 
allelization, i.e. with high percentage of time when many tasks are active. However, the 
load of the tasks is not equal, so a question arises how many processors we really need to 
process these tasks efficiently in a time close to the ideal case studied here. 

Such an analysis has been carried out for our 12 problems with the synchronous 
method: for each cycle of the method we processed the tasks of this cycle by a given 
number of processors and the next cycle was initiated only after completing this cycle's 
work. Two task scheduling schemes were used: the static and the dynamic one. 

In the static method a subset of subproblems was preassigned to each processor. The 
processors solved subproblems in their own queues before reaching the synchronization 
barrier. We have chosen sub-chains of neighboring tasks as the groups allocated to p r e  
cessors to minimize data transfer between them. 

In the dynamic task scheduling method all tasks of a given cycle were ordered in a 
job queue and subsequently assigned to currently idle processors. Each processor after 
solving a subproblem returned for more work until the queue was empty, which initiated 
the next cycle. 

In Tables 4 and 5 we present the speedup factors over the serial method thus obtained. 
Theae factors are defined as r0/7, and r0/7,, respectively, with T, and 7, obtained with 



the given number of processors. 
A number of interesting conclusions can be drawn from these results. First, it is 

obvious that dynamic task scheduling is much better than the static one. Secondly, for 
the dynamic assignment a significant acceleration can be achieved with a modest number 
of processors, especially for larger T. In fact, usually 3 processors provide reasonable 
results. Both these phenomena follow from the fact that at each cycle only a small but 
variable subset of tasks really need be solved again, while the other ones remain optimal. 

Summing up these experiments we can say that in the presence of dynamic structure 
our parallel scheme already has a potential of accelerating the processing over the serial 
method. The speedup is not high but can be achieved with a small number of processors. 
This fully agrees with the results recently obtained in [8]. 

The second series of experiments were carried out with stochastic versions of the 
inventory control problem (6.1)-(6.6): 

subject to the state equation 

bounds on state variables and controls 

with initial state s(0) and terminal condition 

The difference in comparison with (6.1)-(6.6) is that 

is now a finite collection of scenarios and our decisions 

must depend on scenarios in a nonanticipative way. We assume that the tree of scenarios 
(introduced in section 2) has one node at level Nl and that nodes at levels Nt, t = 
1,. . . , T - 1 have L sons each. The total number of nodes (tasks in the decomposition 
method) is then equal to (LT - l)/(L - I), which can be quite large even for moderate T 
and L. 

The following pairs of T and L were tested: (4,2), (4,3), (4,4), (5,3), (6,2) and (8,2), 
with the number of nodes (tasks) ranging from 15 to 255. The coefficients for each scenario 
were generated from the uniform distribution in [0,10] and the probabilities of scenarios 
were generated from [0,1] and normalized afterwards. For each pair (T, L) we generated 
in this way 10 problems and we tested on them the serial decomposition method and 
two versions of the parallel decomposition: the synchronous and the asynchronous one. 



As before, the asynchronous method was run three times for each problem to reduce the 
effects of indeterminism (which in fact turned out to be inessential). 

In Table 6 we present for each (T, L) the speedup factors of the parallel decomposition 
methods over the serial algorithm for three characteristic problems: the best one (in this 
series) a typical one and the worst one; we give also average results of all 10 randomly 
generated problems (only relative times are given because our tricks with multitasking, 
delays and communication made real times completely meaningless). The speedup factors, 
as before, are defined as rO/r, and ro/r,, respectively. 

It follows from Table 6 that the gains from parallelization are much higher than in the 
deterministic case and that they are closely related to the number of nodes of the tree 
(which is quite large in some cases). The asynchronous method is 10-30% better than the 
synchronous one. Presumably, for broader trees the possibility of faster transmission of 
information dong some branches becomes relevant. This effect would probably increase 
for more realis tic problems with differentiated solution times of subproblems. It should 
be stressed, however, that our results have been obtained under an assumption that the 
number of processors is equal to the number of nodes of the scenario tree. 

Therefore, similarly to the deterministic case, we analysed the possibility of processing 
the tasks by a smaller number of processors without losing the advantages of paralleliza- 
tion. To this end we used the synchronous method with dynamic task scheduling with 
an increasing number of processors. The results for the 21 problems selected earlier are 
given in Table 7. For the largest problems they are additionally illustrated in Figure 6 
(the vertical range is equal to the maximum speedup from Table 6). 

If the number of processors P is small in comparison with the number of nodes of the 
tree the speedup is almost linear in P and processor efficiency is high (ca 75%). From 
this point of view the fact that our approach decomposes the problem into a very large 
number of small tasks becomes an advantage. Clearly, our strategy for assigning tasks to 
processors was far from being optimal: we just processed alternately the odd and the even 
levels with task queuing used only within each cycle. Strategies that take advantage of 
the potential of asynchronism could do even better. On the other hand, the subproblems 
at a given level usually exhibit a lot of similarities (see, e.g., [ l l ] ) ,  so advantage can be 
taken of synergies. This creates the need for a reasearch on scheduling strategies in our 
decomposition scheme. 

Summing up, our simulation results indicate that for stochastic problems our parallel 
method can significantly accelerate computation over the serial approach. It is also rather 
flexible allowing for the use of any number of processors. 



8 Conclusions 

Our decomposition approach differs from earlier methods in two ways. 

All subproblems can be solved in parallel and exchange information in an asyn- 
chronous manner. This may speed up the flow of information between stages. 

The method admits the use of regularizing quadratic terms in subproblems to sta- 
bilize their solution and allow deleting inactive cuts. 

In spite of these modifications, the method shares the finite termination property of clas- 
sical approaches. Our simple illustrative example proves that parallelization introduces a 
substantial novelty into decomposition methods and that a parallel version can be faster 
than any serial algorithm. 

The numerical experience gained so far indicates that 

advantages of parallelization increase with the growth of the scenario tree, 

for deterministic problems a small number of processors is sufficient to exploit the 
advantages offered by parallelization, 

for stochastic problems the speedup is close to the number of processors, if it is 
small compared with the number of nodes of the decision tree, 

asynchronism helps when the scenario tree is broad. 

These conclusions suggest that our parallel decomposition scheme can become a powerful 
tool for solving structured problems with replications due to dynamics and stochastics. 
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Table 1 : Execution times of decomposition methods for deterministic problems. 

N 

5 

5 

5 

5 

10 

10 

10 

10 

15 

15 

15 

15 

20 

20 

2 0 1  worst I 2 9 . 1  19.01 

20 average 44.2 19.2 

Problem 

best 

typical 

worst 

average 

best 

typical 

worst 

average 

best 

typical 

worst 

average 

best 

typical 

Serial 

6.2 

8.5 

6.0 

5.4 

19.5 

16.6 

9.5 

15.1 

43.5 

29.2 

16.0 

30.6 

87.3 

36.6 

Synch. 

4.3 

6.5 

6.8 

4.5 

10.0 

12.7 

8.0 

9.6 

14.4 

13.2 

12.6 

14.1 

23.3 

16.6 

Asynch. 

3.6 

7.0 

6.9 

4.4 

8.9 

10.3 

8.0 

9.3 

14.2 

13.0 

12.6 

13.7 

23.2 

15.7 



Table 2: Optimal state trajectories and activity of tasks (N = 20). 

t 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

best 

s(t)  

4.48 

6.08 

14.17 

16.60 

21.46 

25.73 

35.36 

44.19 

52.26 

58.07 

61.70 

71.35 

77.38 

87.11 

87.36 

93.44 

93.44 

98.89 

104.49 

2.79 

A(t) 

3.7 

5.4 

7.2 

9.0 

10.7 

12.5 

14.3 

16.1 

17.7 

19.4 

21.1 

23.0 

24.7 

26.4 

28.1 

29.9 

31.5 

31.7 

32.6 

1.7 

typical 

s(t)  

7.70 

13.91 

0.00 

0.64 

9.42 

17.35 

25.60 

31.20 

38.21 

42.49 

44.69 

48.69 

51.16 

56.50 

0.00 

0.00 

0.00 

0.00 

0.39 

0.39 

worst 

4 )  

2.97 

11.16 

14.45 

15.19 

20.67 

24.92 

32.48 

0.00 

0.00 

8.21 

13.77 

0.00 

0.00 

0.00 

4.94 

4.94 

0.00 

0.00 

2.80 

7.43 

4 )  

9.9 

12.1 

12.0 

9.9 

12.2 

14.7 

16.9 

19.1 

19.1 

21.5 

26.1 

28.2 

30.6 

33.2 

34.4 

9.8 

9.8 

9.9 

14.1 

8.9 

4 )  

4.3 

6.5 

8.4 

10.5 

12.6 

14.6 

16.8 

18.3 

4.3 

4.4 

6.4 

8.3 

4.3 

4.3 

4.4 

6.4 

8.5 

6.5 

6.5 

5.0 



Table 3: Times of simultaneous activity of tasks [%I. 

N 

5 

5 

5 

10 

10 

10 

15 

15 

15 

20 

20 

20 

Table 4: Speedup factors for deterministic problems with static task scheduling. 

33 

Problem 

best 

typical 

worst 

best 

typical 

worst 

best 

typical 

worst 

best 

typical 

worst 

Number of active tasks 

N 

5 

5 

5 

10 

10 

10 

15 

15 

15 

20 

20 

20 

1 

60.1 

60.8 

30.4 

58.6 

48.0 

78.8 

40.2 

60.1 

80.5 

49.3 

44.6 

66.3 

Problem 

best 

typical 

worst 

best 

typical 

worst 

best 

typical 

worst 

best 

typical 

worst 

2 

31.8 

33.9 

49.7 

13.7 

14.3 

21.2 

9.6 

7.9 

13.9 

5.9 

8.1 

18.4 

Number of processors 

1 

0.98 

0.92 

0.51 

0.98 

0.69 

0.99 

0.96 

0.97 

0.98 

0.96 

0.85 

0.97 

3 

8.1 

5.3 

19.9 

15.2 

16.0 

- 
9.5 

7.9 

5.6 

4.4 

15.8 

8.7 

2 

1.32 

1.18 

0.72 

1.26 

0.90 

1.07 

1.30 

1.16 

1.03 

1.30 

1.11 

1.03 

6 7  

- 

- 

- 

9.5 

- 

6.5 

5.1 

4 

- 

- 

- 

12.5 

17.2 

- 

9.6 

10.8 

- 

6.0 

9.3 

6.6 

8 9 1 0  

- 

- 

- 

- 
- 

- 

- 

- 

7.0 

- 

- 

- 

- 
- 

- 
2.6 

- 

7.1 

2.6 

3 

1.43 

1.31 

0.87 

1.37 

1.07 

1.11 

1.51 

1.34 

1.11 

1.65 

1.17 

1.30 

- 

- 

- 

- 

- 

1.9 

5 

- 
- 
- 
- 

4.5 

- 

9.5 

10.7 

5.9 

4.3 

- 
- 
- 
- 
- 

9.5 

2.6 

6.0 

10.2 

- 

4 

1.45 

1.16 

1.27 

1.97 

1.60 

1.17 

1.91 

1.28 

1.16 

5 

- 
- 

1.72 

1.33 

1.28 

1.97 

1.60 

1.17 

2.31 

1.51 

1.20 

6 

- 

- 

- 

2.39 

2.08 

1.17 

2.39 

1.61 

1.24 

7 

2.92 

2.20 

1.28 

2.36 

1.60 

1.40 

8 

- 

- 
3.00 

2.20 

1.32 

2.71 

1.79 

1.40 



Table 5: Speedup factors for deterministic problems with dynamic task scheduling. 

N 

5 

5 

5 

10 

10 

10 

15 

15 

15 

20 

20 

20 

Problem 

best 

typical 

worst 

best 

typical 

worst 

best 

typical 

worst 

best 

typical 

worst 

Number of processors 

8 

- 

- 

3.00 

3.24 

2.25 

1 

0.98 

0.92 

0.51 

0.98 

0.69 

0.99 

0.96 

0.97 

0.98 

0.96 

0.85 

0.97 

6 

- 

- 

- 

- 

- 

2.70 

2.20 

- 
2.88 

2.12 

- 

7 

- 

- 

2.94 

3.05 

2.21 

2 

1.33 

1.25 

0.80 

1.37 

1.00 

1.28 

1.58 

1.47 

1.24 

1.62 

1.34 

1.35 

3 

1.42 

1.30 

0.87 

1.55 

1.15 

2.00 

1.75 

1.32 

2.10 

1.69 

1.48 

4 

- 
- 

1.72 

1.29 

- 

2.32 

1.93 

- 

2.43 

1.90 

1.57 

5 

- 
- 

- 
1.33 

2.50 

2.14 

2.72 

1.98 

- 



Table 6: Maximum speedup factors for stochastic problems. 

35 

N 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 
7 

5 

5 

5 

5 

6 

6 

6 

6 

8 

8 

8 

8 

Asynch 

3.67 

3.74 

3.41 

3.53 

7.62 

6.64 

5.24 

6.67 

11.49 

10.93 

6.44 

8.68 

19.24 

11.86 

7.34 

13.22 

15.14 

16.38 

12.48 

13.97 

8.91 

8.17 

6.77 

8.55 

24.54 

23.74 

22.87 

23.20 

L 

2 

2 

2 

2 

3 

3 

3 

3 

4 

4 

4 

4 

5 

5 

5 

5 

3 

3 

3 

3 

2 

2 

2 

2 

2 

2 

2 

2 

Synch. 

3.48 

2.84 

2.58 

2.89 

5.40 

4.90 

4.04 

4.84 

9.41 

8.18 

6.45 

8.00 

13.89 

11.42 

7.76 

11.41 

12.70 

10.53 

9.97 

10.85 

8.16 

7.09 

5.58 

7.11 

23.80 

20.01 

17.50 

20.24 

Tasks 

15 

15 

15 

15 

40 

40 

40 

40 

85 

85 

85 

85 

156 

156 

156 

156 

121 

121 

121 

121 

63 

63 

63 

63 

255 

255 

255 

255 

Problem 

best 

typical 

worst 

average 

best 

typical 

worst 

average 

best 

typical 

worst 

average 

best 

typical 

worst 

average 

best 

typical 

worst 

average 

best 

typical 

worst 

average 

best 

typical 

worst 

average 



Table 7: Speedup factors for stochastic problems with dynamic task scheduling. 

T 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

5 

5 

5 

6 

6 

6 

8 

8 

8 

Problem 

best 

typical 

worst 

best 

typical 

worst 

best 

typical 

worst 

best 

typical 

worst 

best 

typical 

worst 

best 

typical 

worst 

best 

typical 

worst 

L 

2 

2 

2 

3 

3 

3 

4 

4 

4 

5 

5 

5 

3 

3 

3 

2 

2 

2 

2 

2 

2 

1 

1.05 

0.98 

0.87 

0.97 

0.86 

0.91 

1.02 

0.95 

0.93 

1.00 

0.93 

0.82 

1.00 

0.95 

0.88 

0.87 

0.82 

0.78 

0.95 

0.85 

0.80 

6 

3.33 

2.84 

2.50 

4.18 

3.65 

3.58 

5.08 

4.60 

4.37 

5.65 

5.01 

4.37 

5.34 

5.09 

4.56 

4.42 

3.92 

3.49 

5.37 

4.84 

4.52 

7 

3.33 

2.84 

2.50 

4.73 

3.97 

3.90 

5.66 

4.89 

4.89 

6.41 

5.73 

5.00 

6.14 

5.72 

5.15 

4.86 

4.42 

3.83 

6.21 

5.55 

5.14 

processors 

5 

3.28 

2.84 

2.48 

3.64 

3.27 

3.19 

4.52 

3.87 

3.76 

4.75 

4.32 

3.73 

4.58 

4.28 

3.99 

3.79 

3.48 

3.10 

4.55 

4.10 

3.82 

2 

1.80 

1.74 

1.57 

1.84 

1.63 

1.74 

2.00 

1.82 

1.78 

1.98 

1.82 

1.61 

1.97 

1.88 

1.73 

1.70 

1.59 

1.49 

1.89 

1.70 

1.60 

8 

3.33 

2.84 

2.50 

4.91 

4.26 

4.01 

6.04 

5.45 

5.17 

7.06 

6.30 

5.46 

6.79 

6.27 

5.67 

5.18 

4.74 

4.20 

6.96 

6.24 

5.76 

Number 

3 

2.38 

2.28 

1.99 

2.66 

2.33 

2.37 

2.84 

2.57 

2.52 

2.90 

2.66 

2.34 

2.89 

2.76 

2.51 

2.42 

2.29 

2.11 

2.80 

2.52 

2.37 

of 

4 

2.59 

2.64 

2.33 

3.26 

2.86 

2.84 

3.66 

3.33 

3.24 

3.85 

3.46 

3.09 

3.80 

3.60 

3.30 

3.10 

2.94 

2.66 

3.70 

3.34 

3.12 



Figure 6: Speedup versus processors for (T, L)=(4,5) (top), (T, L)=(5,3) (center) and 
(T, L)=(8,2) (bottom). 
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Poznan', Poland 

This paper deals with two-dimensional cutting problems. Firstly the complexity 
of the problem in question is estimated. Then, several known approaches for the 
regular (rectangular) and irregular (not necessarily rectangular) cutting problems 
are described. In the second part, a decision support system for cutting a rectangular 
sheet of material into pieces of arbitrary shapes, is presented. The system uses two 
erlier described methods which prefer different types of data and the user may decide 
which one is more suitable for the problem in question. After brief description of 
system data files and its manual, some experimental results are presented. 

Part I 

Basic Complexity Results and 
Algorithms for Irregular Shapes 

1 Introduction 

In this work we present basic results for two-dimensional cutting problem. This problem 
consists in cutting a set of pieces from a sheet of material in order to minimize a waste. 
The problem arises in various production processes, such as the glass, steel, wooden, paper 
or textile industries. The problem is of combinatorial nature and, thus, can be analyzed 
along the lines appropriate for this class of problems. The basis of such an analysis is 
always computational complexity. Following it, one may design an appropriate algorithm 
for solving the problem in question. Unfortunately, majority of cutting problems are 
strongly NP-hard, thus, unlikely to admit even pseudopolynomial-time algorithms. Hence, 
they must be solved by approximation algorithms. One-dimensional and regular two- 
dimensional cutting problems allow for the application of approximation algorithms with 
a given accuracy (worst case behaviour). Unfortunately, no such method is known for 
irregular shapes, thus, heuristic approaches must be used. The above issues are presented 
in the following Chapters. 

The organization of the paper is as follow. Chapter 2 contains problem formulation and 
a short introduction into the theory of computational complexity. Then, basic results for 
the one-dimensional version of the problem, are presented. In Chapter 3 two-dimensional 
regular (rectangular) problem is analyzed. A reference to several known algorithms is 



made here. Chapter 4 deals with irregular (not necessarily rectangular) case and sev- 
eral methods solving this problem are presented. Then, some hints for the use the two 
algorithms described in a decision support system are given. 

2 Basic Concepts, Definitions and Results for One- 
Dimensional Case 

2.1 Problem Formulation 
One-dimensional cutt ing problem is the easiest version of the problem. It can be 
stated in the following way: given rods of unit lengths cut them into the set of elements 
a;, 0 < a; < 1, i = 1, . . . , n, in order to minimize the number of rods used. This problem 
has the same nature as memory allocation or nonpreemptive task scheduling problems 
for computer systems. References to this problem can be found in [7, 10, 181. This is the 
same as bin-packing problem. 

Two-dimensional regular problem can be formulated as follows: given a set of 
rectangles with dimensions yi and zi , i = 1,. . . ,n,  distribute them into the minimal 
number of rectangular areas dimensioned Y and X. There are variants of this formulation. 
For example rectangular area to be filled with elements may have only one dimension 
limited while the other is to be minimized, rotation may be allowed or not, elements may 
appear once or more times. References to this problem may be found in [4, 5, 6, 8, 9, 11, 
13, 16, 17, 21, 261 . 

Two-dimensional irregular problem definition differs from the above formulation 
in the fact that any shapes of elements are admitted. The problem has been discussed in 
[I, 2, 3, 151. 

2.2 Computational Complexity Issues 
As wai mentioned the complexity analysis is the basis for further studying problem. Thus, 
we will recall basic complexity definitions mainly with respect to decision problems, i.e. 
those requiring an answer of the "yes"-"no" type. Bin-packing (cutting) problem may be 
formulated in this way by asking a question if packing elements into the known number of 
bins is possible. On the other hand, plenty of optimization problems where some function 
is to be minimized (maximized), are known. Bin-packing in the original formulation is the 
optimization problem. There exists a close relation between decision and the optimization 
problems. If the optimization problem is easy to solve, then corresponding decision version 
is easy too. If decision version is difficult, then optimization problem is also difficult. We 
are going to use this relation further on. We consider only time complexity since space 
limitations are not of the great importance and may be avoided. Now we present basic 
definitions. 

Decision problem ll is a set of parameters (sets, graphs, numbers) with values not 
necessarily assigned and a question with an "yes" or "no" answer. Assigning values to 
parameters creates instance I of problem ll. Dn is a set of all instances. Data of I are 
encoded as a limited string z(I)  of symbols from known alphabet C according to some 
encoding rules. By an input size N(I) we understand here the length of string z(I) .  
Only compact and precise encoding rules are allowed - redundant symbols are excluded, 
numbers are encoded with a base greater than 1. In practice N(I) is assumed to be a 
number of the most important objects of the instance (tasks, polygons, nodes in a graph). 



Computational complexity of algorithm A solving problem ll one defines as a 
function fA(n) = maz{t : t is a number of elementary computer steps needed to solve the 
problem for I E Dn and n = N(I)). 

Polynomial algori thm has computational complexity function (or complexity for 
short) O(p(k)) on deterministic Turing machine - DTM (or RAM model), where p(k) is 
a polynomial, k is a size of the instance. Now we define classes of decision problems. 

Class P consists of all problems solvable on DTM in polynomial time. (Hence, this 
class contains all problems solvable in polynomial time in practice). 

Class NP consists of all problems solvable in polynomial time by nondeterministic 
Turing machine (NDTM). (In practice it is equivalent to the existence of a polynomial 
height branching tree in a branch and bound algorithm eolving the problem) By the 
definition P C NP.  

Polynomial transformation of problem 112 to lll (we denote 112 a ll1 ) is the 
function f : Dn2 4 Dnl, satisfying: 

1. for every I 2  E Dn2 answer is "yes" if for f(12) answer is "yes" too; 

2. for every I2 E Dn, time of computing f on DTM is bounded by polynomial in 
N(I2). 

Decision problem lll belongs to the class of NP-complete problems if lll E N P  and 
for every 112 E N P ,  112 a ill. From the definition we conclude that if there is a polynomial 
algorithm for any NP-complete problem then any problem from NP may be solved by 
polynomial algorithm. This class contains such a problems as 3-dimensional matching, 
vertex cover, clique, Hamiltonian cycle, set partition, graph coloring. Despite many trials, 
no polynomial algorithm solving any NP-complete problem is known. Thus, we expect 
these problems to be solvable only by exponential algorithms (and then P # NP-complete 
class of problems). 

On the other hand, certain NP-complete problems may be solved (quite efficiently, 
e.g. by dynamic programming) for the data appearing in the practice. Complexity of 
these algorithms is bounded by a polynomial of two variables - instance size N( I )  and 
maximum number value (appearing in the instance) maz(I). We call them pseudo- 
polynomial algorithm. Such an algorithm may only be constructed for a number  
decision problem which does not have maz(I) constrained by polynomial function of 
N(I) .  We say that problem is NP-complete in t h e  strong sense if it is in the class 
NP and there is polynomial p such that for Dn limited to these instances only for which 
maz(I) 5 p(N(I)), the problem remains NP-complete. From the above we see that 
no pseudepolynomial algorithm is possible for the problem being NP-complete in the 
strong sense. To prove strong NP-completeness one applies strong pseudo-polynomial 
transformation (in which time bound for construction of function f is allowed to be 
pseudepolynomial and some additional constraints on N( I )  and maz(I)  are imposed) 
and some known strongly NP-complete problem. 

Now, let us consider again optimization problems. If a decision version of the problem 
is NP-complete, then an exact optimization algorithm for the original (optimization) 
version must be exponential. In such a case one applies polynomial approximation 
algori thms to obtain approximate solution. It is desired to know how far from the 
optimum is the solution generated by such an approximation algorithm, i.e. how precise 
i t  is. 

For the approximation algorithm A and instance I we define ratio SA = & (for 
maximization problem), where A(I) is the value of the objective function obtained by A 
and OPT(I )  is the optimal value. 



Abrolute performance rat io SA for the algorithm A is 

SA = i n j { r  2 1 : SA(I) 5 r). 
Z E D n  

Asymptotical performance ratio ST is 

The closer SA, ST are to the 1 the better algorithm ia. 
For some combinatorial problems it can be proved that there is no hope of finding an 

approximation algorithm of certain accuracy (i.e. this question is as hard as finding a 
polynomial-time algorithm for any NP-complete problem). 

Analyaia of the worst case behaviour of an approximation algorithm may be comple- 
mented by an analysis of its mean behaviour. This can be done in two ways . The first 
consists in assuming that the parameters of the instances of the considered problem ll 
are drawn from certain distribution D and then one analyzes the mean performance 
of algorithm A. One may distinguish between absolute er ror  of an approximation algo- 
rithm, which is the difference between the approximate and optimal solution values and 
relative er ror  which is the ratio of the two. Asymptotic optimality results in stronger 
(absolute) sense is quite rare. On the other hand asymptotic optimality in the relative 
sense is often easier to establish [19, 21, 241. 

It is rather obvious that the mean performance can be much better than the worst case 
behaviour, thus justifying the use of given approximation algorithm. A main obstacle is 
difficulty of proofs of the mean performance for realistic distribution functions. Thus, the 
second way of evaluating the mean behaviour of approximation algorithms, consisting of 
simulation studies, is still used very often. In the later approach one compares solutions, in 
the sense of the values of a criterion, constructed by a given approximation algorithm and 
by optimization algorithm. This comparison should be made for a large representative 
sample of instances. There are some practical problems which follow from the above 
statement and they are discussed in [23]. 
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Fig.1. An analyeie of cutting problem - schematic view. 



The third and last way of dealing with hard cutting problems is to use exact enumer- 
ative algorithms whose worst-case complexity function is exponential in the input length. 
However, sometimes, when the analyzed problem is not NP-hard in the strong sense, it 
is possible to solve it by a pseudepolynomial optimization algorithm whose worst-case 
complexity function is bounded from above by the polynomial in the input length and 
in the maximum number appearing in the instance of problem. For reasonably small 
numbers such an algorithm may behave quite well in practice and it can be used in com- 
puters applications. On the other hand "pure" exponential algorithms have probably be 
excluded from application, but they may be used sometimes for other cutting problems 
which may be solved by off-line algorithms. 

The above discussion is summarized in a schematic way in Fig.1. 
Definitions from this Section are base for further analysis of our problem. 

2.3 One-Dimensional Problem Analysis 
One-dimensional problem is the easiest version of the problem considered. From its anal- 
ysis we can draw conclusions as to the general problem complexity. 

One-dimensional cutting problem as stated in Section 2.1 is the same as bin-packing 
problem so we will refer here to the results for the latter. This problem is NP-complete 
in the strong sense for the decision version, this comes from pseudepolynomial transfor- 
mation of Spartition problem (121. 

3-partition problem is: 
Parameters: 

limit B E Z+, set A, (A1 = 3q,q E Z+ , value s(ai) E Z+ for every a; E 
A, B/4 < s(ai) < B/2, z:il ~ ( a i )  = Bq. 

Question: 

does there exist a partition of A into q disjoint subsets sl, s2, . . . , s, satisfying 
zo,E,, = B f o r i = l ,  ..., q ?  

Proof is easy we see that Spartition is a special case of bin-packing problem. 
Now we know that the problem will not be solved by a polynomial algorithm (if P # 

NP), yet for the fixed number of element sizes there exists linear time solution [7]. 
Assume p is integer such that sizes of elements are from the set { l lp, 2/p,. . . , (p - 

l)/p, 1) and we pack them into unit size box. Elementary instance E is a set of elements 
satisfying EL, s(a;) 5 1. Data of the instance may be written as a p-dimensional vector - v = [v1,. ..,up] where v, is a number of elements of size ilp. Thus every solution is 
a set of elementary instances and the problem can be stated as a partition of a set of 
elements into the minimal number of elementary instances. We see that the number K of - - - 
elementary instances is fixed. We will denote them as  p-dimensional vectors bl, b, . . . , bK 
called elementary vectors. Now our problem can be formulated as an integer linear 
programming: 

K find al, a 2 , .  . . , a k  that minimize Qi, 

subject to c;K,~ a;$; = 5 and ai 2 0. 



A general version of integer linear programming is strongly NP-complete, but for a fixed 
number of variables K it can be solved in polynomial time [20]. Using the above trans- 
formation of the input data one may solve-the problem in question in linear time. This 
is rather a theoretical result since a number of variables for practical situations may be 
great. Then complexity function though linear in the number of elements has a large 
constant before it. This constant grows exponentially with K. 

There exists a number of approximation algorithms for bin-packing problem (thus for 
one-dimensional cutting). We are going to mention only most important. 

First fit (FF) algorithm - assigns element to the box with the lowest possible number. 
Beet fit (BF) algorithm - assigns element to the box with the minimum remaining 

capacity. 
Let SFF, SBF denote the absolute performance ratio for the FF and BF algorithms 

respectively and C' - a number of boxes used by an optimal mlution. Then it can be 
shown (251 that 

First fit decreasing (FFD) algorithm is a FF algorithm with elements assigned in 
nonincreasing order of their sizes. 

Best fit decreasing (BFD) algorithm is a BF algorithm for elements scheduled in 
nonincreasing order of their sizes. 

From [14, 181 the asymptotic performance ratios for FFD and BFD are known (here 
sizes of the elements a are drawn from the interval (0, a] ) : 
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(The last line of SB"FD{a} is a proposition only). 
Some other approximation algorithms are surveyed e.g. in [lo]. 
In this Section we have shown that one-dimensional cutting problem in general case is 

NP-complete in the strong sense and we should not expect polynomial algorithms. Best 
approximation algorithms generate solutions worse about 20% than optimum in the worst 
case, in practice an average difference is less than 10%. 



3 Two-Dimensional Regular Cutting Problem 

3.1 Introduction 
The problem of two-dimensional regular cutting defined in 2.1 has several variants. For 
all the cases the common assumptions are 

- pieces can not overlap each other or the edges of material 

- pieces can not be inverted (as in the mirror). 

For some cases a raw material may consist of rectangular sheets of material then the 
objective is to minimize its number. Sometimes the ribbon of material is given then one 
has to minimize a length while a width is constant. On the other hand, if the area of 
the material is one rectangle then the aim is to pack elements that minimize a waste. 
Rotations of elements are rather not considered and if any then 90 degrees rotations are 
assumed. In some cases only guillotine cuts are allowed, i.e. from edge to edge parallel to 
the other pair of edges. 

We know that one-dimensional version has been already NP-complete in the strong 
sense. Thus in such a situation one can construct exponential and optimal algorithms or 
polynomial approximation ones. In the following sections we describe two optimal algo- 
rithms and several approximation ones adjusted to the different versions of the problem. 

3.2 Iterative Combinatorial Algorithms 
Christofides and Whitelock's branch and bound algorithm [8] .  

This algorithm solves a single sheet problem and it is based on a tree - search procedure. 
It limits the number of nodes imposing necessary conditions on the optimality of patterns 
to be cut. This is done by means of transportation routine and dynamic programming 
routine. 

Assume & = (Lo, Wo) is a sheet of material with dimensions Lo (length) and Wo 
(width). R is a set of rectangles R = {(al, bl), . . . , (a,, b,)). Every rectangle has value 
v; and maximal number of appearances in the resulting pattern 1; . Every number in 
the problem is integer, cuts are of a guillotine type, and rotations are not allowed. The 
problem is to 

maximize z = t iV i  

subject to 0 5 ti 5 Zi, i = 1,. . . , m, ti E Z+ and there exists a sequence of 
cuts of & resulting in ti rectangles of the i'th type. 

The algorithm has two steps - generating the tree of all possible cuts and scanning it for 
the best solution. 

Every node of the tree represents a possible cut. During the generation phase symmet- 
rical cuts are excluded. For example cutting of rectangle (p,q) in the point e is symmetrical 
with the cutting in the point p-e. Such a symmetries are excluded by analyzing in the 
rectangle (p,q) only points with z 5 lp/2J and y 5 [q/2J (where laJ is the greatest 
integer not greater than a). Repetitious cuts are eliminated by imposing succession of 
cuts - for example if we cut at point z = cr then every succeeding cut has to be done at 
z 2 cr. Only normalized cuts are considered (cf. fig. 2) that is in points which are 
linear combinations of sizes of elements. This exclude cutting with waste inside a pattern. 



Fig.2. a) Not normalized cut. b) Normalized cut. 

Possible cuts of rectangle (p,q) resulting in the elements of set R are entries of set SQ 
for cutting in Y direction and TP for X direction. Now we describe how to find SQ , TP 
is found in the same way. We use function f,,,(x) to generate S* . This function can be 
computed recursively as follow (rectangles are ordered according to nonincreasing value 
o f b ; ) :  f o r i = l ,  ..., m , x = O  ,..., Lo 

f i ( ~ )  = min{ f;-1 (x), mg.x{b,, f;-l(x - ja;))) j = I , .  . . , min(li, Lx/a,]) 
I 

State of a node in the tree is described by the list L of rectangles cut on the path 
from the root. Rectangle is represented on that list by vector (p, q, x, y), (p, q)  being 
sizes of a current rectangle and x, y are describing the following cuts if the rectangle is 
chosen. In order to  find an optimal solution, for every node, an upper bound estimation 
of the objective function is computed. This estimation is computed in two ways. Suppose 
Ho L is a list of rectangles that will not be cut any more. Estimation z may be 
computed as a total flow in a special transportation problem that assigns elements from 
the set R to Ho . Upper bound estimation for nodes with still possible cuts can be 
computed by dynamic programming procedure for relaxed version of the problem - not 
considering limits 1; [13]. If computed value z' is better than previously found T, then 
one substitutes previous solution with the current one and the algorithm proceeds to the 
next node. 

Wang's combinatorial algorithm [26, 211. 

This algorithm is a combinatorial one that generates guillotine cutting patterns by 
successive adding pieces or groups of pieces to each other. These cut patterns are nor- 
malized in the sense of the previous algorithm. To avoid explosive growth of number of 
partial solutions the algorithm rejects solutions with a waste exceeding some percentage 
of stock sheet area or for the second version with a waste exceeding a percentage of the 
area of a partial solution. 

Let us denote by Sk a partial solution generated at iteration k, by Fk - a list of 
all partial solutions generated during iteration k, by Lk - a list of all partial solutions 
generated until iteration k and by P - rejection parameter 0 5 B 5 1. Wang's algorithm 
can be formulated as follows 



ch= B; 
Lo, Fo := R; 
k := 0; 
while Fk not empty do 

k := k + 1; 
Fk := {); 
generate all partial solutions Sk adding elements of F k - ]  

to all elements of Lk-I ; 
for each Sk do 

if Sk fits in the stock sheet 
and the number element i appears in Sk is not greater than 1, 
and the waste in Sk is not greater than BLOWo 

then Fk := Fk U Sk; 
Lk := Lk,l U Fk; 

M := k; 
choose the element of LM with the least total waste. 

It is shown in [26] that if the waste of the best pattern is not greater than BLOWo then 
this pattern is optimal (there is no pattern with a smaller waste). A modification of the 
above algorithm (described in [21] is done by means of dynamic programming algorithm 
for unconstrained number of elements [14] and it improves the way expected waste for 
partial solution is computed. Thus, worse solutions are rejected earlier. 

3.3 Approximat ion Algorithms 

There are many approximation algorithms. We describe only some, which, in our opinion, 
are the most important. If not stated otherwise the unit width of the stock sheet is 
assumed, a length is to be minimized, and rotations are not allowed. For a given list L of 
rectangles an approximation algorithm generates solution with stock sheet length A(L) 
while optimum is OPT(L). We use the absolute performance ratio 

and an asymptotic one 
A(L) S aOPT(L) + B 

Let us pass now to the algorithms. 
Bottom left decreasing (BLD) algorithm. Rectangles given on the list L are 

ordered according to nonincreasing sizes. Put the next element from L as low and as 
much to the left as possible. 

For every L : BLD(L) 5 2OPT(L), thus algorithm BLD generates worst case solutions 
100% worse than an optimal one. 

The following two algorithms [ll] are so called level oriented algorithms. The 
level-oriented name comes from the fact that pieces are located in layers. The first layer 
bottom is a bottom of the stock sheet, the following are marked by the top of the first 
(that is highest) element in the preceding layer. Elements on L are ordered according to 
nonincreasing height. 

Next fit decreasing height algorithm (NFDH) -if there is not enough room at 
the current (top) level to place a rectangle considered, then create a new level (fig. 3). 



First  fit decreasing height algorithm (FFDH) - puts rectangles at the lowest 
possible level and if it is not possible creates new one (fig. 4). 

Fig.3. An example solution by NFDH algorithm Fig.4. An example solution by FFDH algorithm 

Asymptotic performance ratio for NFDH is 

for FFDH 
FFDH(L)  5 1.70PT(L) + 7.3 

and for sizes of elements not exceeding cr 

1 1 
FFDH(L)  5 (1 + -)OPT(L) + (2 + -) where m = Ll/a~' 

m m 

for squares 
q 

Split fit algori thm (SF) [ll]. Let m 2 1 be the greatest integer such that all 
rectangles have widths not greater than l /m. The list of pieces is ordered according to 
the nonincreasing heights. Split L into two lists L1 , Lz. L1 consists of elements of widths 
greater than l / (m+l ), Lz contains the remaining elements. First, put L1 rectangles with 
FFDH algorithm then move the layers wider than (m + l ) / (m + 2) to the bottom of the 
pattern down under layers thinner than (m + l ) /(m + 2). Thus, there is a free rectangular 
area l / (m + 2) wide. Put into this area Lz elements using FFDH algorithm. Place 
remaining Lz rectangles above the pattern for L1 (fig. 5). 

Asymptotical performance ratio for SF algorithm is 

Fig.5. SF algorithm layout. 

50 



Up down algorithm (UD) [4]. This algorithm is equivalent to NFDH algorithm for 
rectangles thinner than 115; for the wider several strategies are mixed. This algorithm is 
a bit more sophisticated than previously mentioned and we will only give its brief outline. 
The algorithm splits the stock into the five regions numbered from the bottom of the 
stock to its upper part. In the regions 1 5 i 5 4 rectangles being wide l / ( i  + 1) through 
l / i  are packed according to BL (bottom left) algorithm. Thus, there remains some free 
area in the right top corner. Thus more rectangles can be placed in the column from the 
top down. When all elements wider than 115 are placed in regions 1 5 i 5 4, then the 
remaining rectangles are put into the slot between elements located by BL and column 
algorithm (cf. fig. 6). This is done by means of generalized next fit decreasing algorithm 
(GNFDH). Asymptotic worst case behaviour for rectangles not exceeding height H is 

I l l 1  

I 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 ~  

I 

BL 
algorithm 

Fig.6. UD algorithm allocation layout. 

Algorithms described above have to work "off line" since it is necessary to know the 
set of rectangles before the start, and more over these pieces have to be sorted. For certain 
applications however this is not possible to wait until all parts are known to sort them. 
For example we can not wait for the arrival of all parts to compute their allocations in 
the warehouse area. There are certain secalled shelf algorithms predestined to work 
"on line" without initial sorting of elements or even knowing them. These algorithms are 
modifications of NFDH and FFDH algorithms. Additional free space is created to handle 
the elements of bigger size expected to come later. The parameter r is a measure of that 
additional space. Every created shelf has value r k  (for some k), and an element of height 
h, rk+l 5 h 5 r k  has to be packed into the shelf of rk  height. 

Next fit rhelf algorithm with parameter r (NFS?) - puts rectangle as far to the 
left on the highest (last) shelf as possible, and if this is not possible, a new shelf is created. 

First fit shelf algorithm with parameter r (FFS?) - puts rectangle at the lowest 
possible shelf as far to the left as possible, and if this is not possible, a new shelf is created. 

It can be shown [5] that for 0 < r < 1 and rectangles not higher than H 



For the case with multiple stock sheets of the same limited sizes the objective is to 
minimize a number of sheets used. There exists (91 HFF algorithm for this purpose. 
HFF is a mixture of FFDH and FFD. First, according to FFDH a pattern with levels 
in the unlimited height stock is constructed, then levels are assigned to the stock sheets 
according to FFD algorithm. Asymptotic performance ratio for HFF is 

In this section a very short insight into the group of the algorithms dealing with two- 
dimensional regular cutting has been presented. There are two main groups of algorithms 
- optimal exponential combinatorial ones and those based on approximation approaches 
with the worst case bounds known. Due to the progress in the computer hardware speed 
the sizes of problems that can be solve by optimal algorithms are growing (211. On the 
other hand average behaviour for realistic cases of approximation algorithms is much 
better than the worst case estimates suggest. 

Irregular Two-Dimensional Cutting Problem 

4.1 Introduction 

This problem admits any shapes of elements. Strong NP-completeness of decision version 
of the problem implies the lack of the polynomial optimization algorithm. Worse still, as 
far as we know, there are neither algorithms with known worst case behaviour bounds nor 
algorithms computing optimal solution in any way. In practice, only experimental evalua- 
tion and comparison on the base of some objective function (waste, time), is possible. The 
only method optimal in some sense has been proposed by Adamowicz [I]. This method 
involves iterative solution of an integer programming problem followed by an adjusting 
procedure, which generate new constraints for the next iteration until an optimal solution 
is constructed. However, this approach is so complex that experimental program is either 
not completely usable or implements very simplified version of the method. 

The other methods known for the problem in question are heuristics using different 
approaches to the problem. These algorithms though polynomial and approximate con- 
sume a lot of time involving hard numerical computations. From this fact we can draw 
conclusions: there is a trade-off between the solution time and quality of the solution. In 
this context the importance of hybrid - semiautomatic methods increases, where tenta- 
tive solution is automatically generated and the interactive improvements are allowed by 
conversational display unit. 

We outline below ideas of four methods: by Adamowicz and three heuristics (2, 3, 151. 
The first and the second heuristics have been implemented in the program described in 
second part of this report. 

4.2 Algorithm by Albano-Sapuppo 

This algorithm (21 is based on the search method for optimal solution in the directed 
graph of all partial solutions using several heuristic techniques that increase the search 
power. Pieces are assumed to be irregular polygons without holes, the sheet is a rectangle. 
Discretized step rotations are allowed. The goal is to minimize the waste or (better) the 
length of produced packing. 



Many problems in artificial intelligence and operations research are solved by a tech- 
nique based on searching through a "space" of candidate solutions. The above approach 
utilizes this technique. The set of states reachable from the initial state can be seen as 
a directed graph with nodes - states of allocation and arcs - allocation operations. The 
solution is a search process for a path from the initial state to the member of the set of 
final nodes. Search process can be organized in the following way: 

1. Put the start node on the list GENERATED. 

2. If GENERATED is empty exit with failure 

3. Select a node from GENERATED according to some rule R and put it on a list 
EXPANDED, call it n. 

4. If n is a final node exit with a solution path. 

5. Expand n, that is generate all its successors. If there are no successor go to 2, otherwise 
put them on GENERATED and go to 2. 

Usually rule R selects a node with the smallest evaluation function which is a sum 
of an estimate of the cost of the path from the starting starting to the current one and 
estimate of the cost of the path from the current node to the final one. 

Let us consider & - an initial allocation containing no elements. A; is a final allocation 
if there are no more elements to allocate. Added waste for the allocation A; of piece p, 
is defined as follows 

added-waste(A;) = ~pace(A;-~) - (space(A;) + areaaf  (p)) 

where space(A;) is the area on the right side of the profile (rightmost borders of rightmost 
pieces), i.e. the area which may be used to allocate piece p, (Fig. 7). 

The wasteA; is recursively defined as 

wa~te(A,-~)  + added-waste(A,) if A, is not final 
waste(A,) = 

wl - xi areaaf  (p,) otherwise 

Fig.7. Partial solution pattern. 

In order to transform the optimal allocation problem into the search of an optimal 
path in a state space, an initial state corresponds to & , the cost of an arc from S; to 
S;+l is the added waste produced by allocation A;+1 . The procedure to implement the 
heuristic search method can be stated as follow: 



begin 
initial conditions; 
input pieces and stock sheet descriptions; 
let the CURRENTBODE be the initial state; 

while CURRENTBODE # final node do 
for all pieces left to be allocated do 

for all orientations do 
apply placement policy; {waste computation) 
apply evaluation function and 
append successor to the list GENERATED 

end 
end; 

set the CURRENTBODE EXPANDED; 
let the CURRENTBODE be the 'bestn successor in GENERATED; 
end; 

plot solution; 
end 

There are some techniques to increase heuristic search power because the above pro- 
cedure can not be applied to any realistic applications without rejecting numerous "badn 
nodes. 

Evaluation function - the problem is how to evaluate cost from the current to final 
node. It should always be lower than the waste that would result in the optimal 
solution if the piece in question were to be included. A possibility is 0, but it 
has been preferred to drop the admissible property because the optimality of the 
solution is not critical and "good" will be enough. Thus the authors suggest a 
constant percentage of unplaced elements as an estimation of the cost. 

Successor limitation - since the step of evaluations for all pieces and orientations is 
one consuming the most of the time, several limitations have been added. 

1. From unplaced pieces only the one which produces the leftmost lowest alloca- 
tion will be considered in step 2. 

2. Only the fixed number of leftmost allocated pieces are preserved for step 3. 

3. For allocation from 2 only the fixed number of successors will be generated. 

4. When the list of generated nodes becomes full, the tree is pruned by erasing 
the node with the highest evaluation function. 

Evaluation function discretization - continuation of the search along paths with 
small differences is allowed only within some precision. 

Expansion band - when the search is at the k-th level, the next node to be expanded 
has to be at level at most k-t where t is given threshold. 

Termination condition - at the end of the routine after the first final node is found 
the procedure develops all the possible search trees within the expansion band and 
the final solution will be the best one. 

Profile simplifications - at each step the profile is simplified in order to exclude all 
the areas on the left side of the vertical line through the leftmost point of the last 
allocation pieces. 



There are eeveral notions related to this algorithm important especially in finding piece 
allocations. 

No-fit-polygon (NFP)  for a pair A,B of pieces - completely describes all those 
positions where the reference point of B may be placed in order to have B touching A 
without overlapping (fig.8). 

reference 
pant of B 

Fig.8. NFP for A and B. 

Allocation region for a given resource and piece - the area in which the reference point 
of the piece can validly fall (fig.9). 
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allocation I 
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Fig.9. Allocation region. 

This algorithm has been tested thoroughly and its performance and reliability indicates 
that it favourably compares with some others. 

4.3 Algotithm by Art 
This algorithm [3] is very similar to the Albano-Sapuppo algorithm in the way of handling 
geometrical entities. It was the base to create previous algorithm. Here, more stress is put 
to geometrical problems while before mainly heuristic search organization has been con- 
sidered. This Section may be both description of independent algorithm and supplement 
for AlbaneSapuppo algorithm. There are the following assumptions made 

1. There is distinguished piece direction (orientation) parallel to the distinguished di- 
rection of the material let us say X axis. Thus rotations are not allowed. 

2. Flipping of pieces is not allowed (mirror symmetry). 

3. The stock sheet is a rectangle with given width, and its length is to be minimized. 

Every piece is defined by the sequence of line sections approximating its edge with 
a precision required. We exclude here any curve edges because of the growth of com- 
putational complexity. Distinguished element direction is parallel to X axis. There is 
a distinguished point in the sequence of vertices called reference point and its location 
defines uniquely the element position. Both concave and convex polygons are admit- 
ted but because of higher computational complexity concave objects are excluded and 
approximated to the convex equivalent. 



Important notion is the envelope - it is a sequence of line sections defined for every 
piece type. This is a trace of reference points created during moving element around 
allocation region in contact with its border. At the start of algorithm envelope is a 
rectangle but successively after allocation of any element it is modified with the nefit- 
polygons (NFP - Section 4.2) (fig. 10). Envelope can be understood as a border of an 
allocation region. 

point 0 
NFP of 0 around A Initial envelope for B 

allocution 
region 

envelope - 

Fig.10. Modification of element B envelope after allocation of element A. 

Process of allocation is deterministic and sequential. Reference point defining element 
location is to be placed on the envelope - this guarantees contact with other elements 
without overlap. In order to minimize total waste, elements are allocated from the left 
side to the right according to the following heuristic rules: 

1. Place element with the minimal envelope X dimension value first. 

2. Place element in a certain place with minimal added waste. 

3. Split big groups of elements into the smaller one or into the separate elements to 
put in certain places separately. 

4. Place element with greater area first. 

5. Place element minimizing stock sheet length first. 

Position on this list do not reflect importance of rules, it should be rather experimentally 
adjusted to typical problem instances. 



4.4 Optimal Algorithm by Adamowicz 
This algorithm [I] allows the most general version of the problem to be solved. Various 
elements and stock sheets as well as multiple linear, logical and geometrical constraints 
associated with them are considered. Solution is obtained by iterative application of a two- 
stage procedure. The first stage is a linear programming problem; its solution minimizes 
linear objective function subject to linear constraints. The second, geometrical, stage 
checks if the set of elements can be allocated feasibly satisfying geometrical constraints. 
If the aolution does not exist, then new linear constraints resulting from the information 
obtained in the second step are generated for the new iteration. 

This method allows elements and stock to be holed, irregular and even not continu- 
ous. There are geometrical constraints of the two types: absolute - that bound locations 
on the stock area and relative - defined in relation to the other elements. Logical and 
linear constraints are for example number of elements of certain type required, a maximal 
number of types of elements, a ratio of quantities in which two types of elements are cut 
and others. The algorithm can be stated as an iterative application of the three following 
procedures. 

1. A solution of a linear programming problem with rejection of redundant constraints. 

2. Checking if the linear programming solution satisfies geometrical constraints and if 
not saving an information about feasible allocations. 

3. Creating new linear constraints, including information gained in step 2. 

Elements and material area are defined by sequence of vertices on its polygonal border. If 
the element is not compact (i.e. includes holes) it has to be defined as a group of compact 
elements with an additional relative location constraint. A location of an element is 
given by three parameters: x, y and rotation angle from an initial orientation. During 
the processing phase of geometrical constraint an envelope (see Section 4.3) for absolute 
constraints and NFP (Section 4.2) for relative constraints, are computed. 

Linear programming phase gets into the consideration: 

linear constraints of the number of types of elements; 

logical constraints on the presence of types of elements, this can be converted into 
linear constraint as well; 

geometrical constraints on the relative location of certain types of elements - since 
this is inherently nonlinear mainly geometrical phase of algorithm deals with this 
kind of constraints; 

linear objective function maximizing income or number of elements allocated, den- 
sity of allocation and/or minimizing the cost, waste etc. 

As a result of linear programming phase solution one gets a set of elements to be allocated. 
Geometrical phase checks if allocation of elements chosen in the previous phase is pos- 

sible. The elements are considered according to their nonincreasing areas. This procedure 
searches in the space of all possible locations of elements maximizing number of elements 
allocated . 

As we can see this algorithm is very complex and rather difficult to handle in practice. 
Experimental programs are either completely inoperable or are simplified versions of the 
method. Let us note that the computational complexity of the geometrical phase grows 



exponentially in the number of objects and orientations due to the search of candidate 
allocations, thus this method is rather a theoretical one. 

4.5 Algorithm by Gurel 
Every element is represented in this method [15] as a node in the graph. There is an arc 
between nodes if the corresponding elements are touching each other (or in other words 
are in contact). Rectangular area of the stock is represented as a disk called marker disk. 
Nodes corresponding to pieces in contact with the stock border are on the circle of marker 
disk, while nodes inside it correspond to elements without common points with edges of 
the raw material. In this way, a graph reflecting elements allocation inside the marker 
disk, has been created. There are vertical paths (strings of nodes) inside marker disk with 
at least one node on the border of that disk. The first string of that type corresponds 
to pieces in contact with the left border of material; we denote it boundary break - 
BB1 for short. The second string of that type consists of nodes in contact with the 
right border of the stock area and will be denoted BB2. All other vertical strings of 
nodes between BB1 and BB2 we name intermediate breaks (IBn -for short, n being 
IB number). Interesting feature of the solution is that in the final layout there must 
be at least one horizontal string of pieces forming horizontal break. This will be called 
cobreak. Cobreaks as well as breaks may either lay along the boundary of marker circle 
or cross the marker disk by joining BB1 and BB2. Therefore there are boundary cobreaks 
or intermediate cobreaks. During the implementation of the method it has been observed 
that the biggest waste is created at the (right side) end of the layout. Therefore IBs are 
allocated according to minimal waste starting from both ends of the layout to the center 
of area. Thus, the method by Gurel can be formulated as follows 

1. Initial computations. 

2. Create boundary break BB1 and then BB2. 

3. While not allocated elements exist, create an internal break IB and move it to the 
right or left group of breaks. 

4. Join left and right groups of breaks. 

The algorithm requires some additional parameters a, b, c, s. Coefficients a, b, c are used 
to create four groups of elements relative to their areas. Let us denote by Pmaz area of 
the largest element and by P an area of an element considered. There are the following 
groups of pieces (depending on the areas): 

Elements from L1 are preferred in BB1, from L2 and L1 - in BB2, M - in IBs. Elements 
from S are not allocated by this algorithm and should be placed interactively by an 
operator. This follows an observation that big differences of element sizes reduce quality 
of the solution. In practical cases a,b,c are set to a - 40-85%, b - 25-60%, c - 0-25%. The 
bigger the differences in area sizes are, the greater a,b,c should be. 

This method admits rotations of elements with a given step. 
Now, in the short outline we describe some procedures of the algorithm. 



During the initial phase, for every element and every orientation the following param- 
eters are computed: 

a area, 

a reference point, 

a coordinates of boundary points BPI,.  . . , BPS (fig. 1 I), 

a waste areas 61, . . . ,be, 

a waste 7 ~ 1 , .  . . , 7 ~ 4  for appropriate sweeping directions 

During the initial phase elements are assigned to groups L1 , L2 , M , S. 

BP7 1 4  element 

Fig.11. Object's boundary points and waete areas in Gurel'a algorithm. 

In order to create BB1 and BB2 we choose groups of elements minimizing waste 
between the borders of stock and element. ' ~ i ~ ~ e r  pieces from BB1, BB2 are considered 
first. In order to check if the element fits into the BB1 or BB2 we evaluate how deeply 
the element in question may coincide with elements previously allocated in the string and 
compare the result with the width of element and width of a "slot" in the string. Internal 
breaks (IBs) are created a little bit easier only with comparisons of wastes rc3, rc, . The 
components of IB are moved to each other in the vertical direction. In order to minimize 
the waste inside IB, pieces are moved horizontally within some band with a given stepts. 

This method seems to be faster than previously described due to its graph theoretic 
approach and good heuristic methods to carry on computations. This is done with a 
little reduction of efficiency in area usage. There are several factors influencing efficiency 
of algorithm, for instance number of elements, number of types of elements, parameters 
a, b, c, s, width of the stock sheet etc. This method seems to fit well into semiautomatic 
approach requirements. 



5 Conclusions 

In this paper, after preliminary complexity investigations, we have described four meth- 
ods for irregular two-dimensional cutting. The first three of them are a bit similar in 
the geometrical notions used. We think that Adamowicz approach though difficult to 
handle in practice, shows interesting directions to create more general systems for cutting 
problem. The three remaining methods are applicable in practice and broadly described 
in references. In the next part a decision support system, using the two of the described 
methods, will be described. 



Part I1 

Decision Support System for 
Cutting Irregular Shapes - 
Implement at ion and Experiment a1 
Comparison 

6 Introduction 
This part contains a description of the decision support system (DSS) for cutting irreg- 
ular shapes. The basis of this system are two methods described in the previous part 
seriously changed and adjusted for solving the problem in question. This system has been 
implemented on an IBM PC working under DOS operating system. 

Given a set of elements and a sheet of rectangular material with a constant width, 
find an allocation of elements in the sheet minimizing waste, that is a length of material 
required. Additionally we have assumed 

1. Every element must lay entirely in the stock sheet. 

2. No overlap of elements is admitted. 

3. Flipping the element from "left" to the "right" side (mirror symmetry) is not al- 
lowed. 

4. Edges of element are either sections of line or sections of a circle. Element can be 
concave or convex (Holes in elements must be treated separately). 

5. Rotations with some step depending on the algorithm, are allowed. 

As we already mentioned two modified approaches have been implemented in the Decision 
Support System presented. 

The Albano-Sapuppo's approach [2] deals with hard irregular cases minimizing waste 
generated during allocation of every element. Elements are allocated at the left end of 
the stock sheet and then placed on the right side of the elements already allocated. At 
the current stage of computations an element minimizing waste is chosen. 

Gurel's approach [15] is well defined for elements of similar size and allowing for their 
clustering into columns. Therefore the smallest elements are eliminated from automatic 
allocation. This set of small elements can be allocated interactively or with other method. 
It is also possible to force allocation of all elements. 

Thus, the user himself is able to choose the solution or method that fits his needs best. 
In general we can say that Gurel's method seem to be faster while Albano-Sapuppo's 
generate solutions with a lower waste. Gurel's algorithm deals with a class of elements 
well defined to cluster, Albano-Sapuppo's algorithm does not have such a preference. 

In the following Sectione we describe how to use the DSS for irregular cutting, data 
files formats, some operational conditions, and some test results. 



How to Use DSS ROZKROJ 
On the distribution disc there are folloing files: 

ROZKRO J.EXE - DSS program; 
ROZKRO J.TXT - short help file for the ROZKRO J.EXE; 
TEST1 .IN - TEST1O.IN - examples, input data files; 
TESTl.IN1 - TESTIO.IN1, TESTl.IN2 - TESTlO.IN2 

- examples, intermediate solution files. 

To start the program simply write ROZKROJ. Please be aware that any data file, 
solution file or auxiliary file is to be fetched from or written to the current disk and 
directory. Thus, there should be enough free space. 

After the start of program execution the first screen is displayed. Next the main menu 
screen appears. We have several options here. Any of them can be chosen in the two ways 

pressing the digit key corresponding to the option number in the menu; 

moving lit up bar, up and down with cursor keys we select option and by pressing 
ENTER key confirm choice. 

ESC key breaks program execution at this point. There are the following options in 
the main menu. 

1. Quit the program. 

2. Gurel's method. 

3. AlbaneSapuppo's method. 

4. Display solutions. 

5. Program help. 

Now, every option will be described. 
Option 1. Quit the  program - immediately breaks program execution and exits 

to DOS. 
Option 2. Gurel's method - during execution of this part of the program new 

solutions are computed. First of all we have to give some data to the program. All file 
names with extension "IN* in the current directory contain different data sets. They are 
displayed name after name. In order to choose any file we can do two things: 

1. press first letter of the name - be aware that only the first file beginning with this 
letter is chosen (without any additional confirmation); 

2. move the lit up bar up, down, left and right to the required file and press ENTER 
to start computations. 

ESC key breaks execution of this part of program and returns to the main menu. 
Data in the file must correspond to the format described in the next section. Data from 

the file is preprocessed to find out some kind of errors and to approximate sections of circle 
with segments of lines. If any error appears then special message is issued and program 
breaks the execution. If there was no error new file with extension "INl* is created, it 
is an intermediate data file used by the Gurel algorithm procedure. Then program starts 



computations. Gurel algorithm routine displays line of twenty "*" with "-" after the 
initial and final phase is finished. Allocation of any element in a boundary break or an 
intermediate break is certified by one "*" sign. After filling a certain column of elements, 
previously issued "*" signs are followed by space and stars again up to twenty characters 
in the line. An allocation of boundary break one and boundary break two is certified 
with "BBI" and "BB2", respectively. An allocation of an intermediate break is certified 
by "IB". After all parts are allocated the new solution file is generated with the same 
name but with automatically added extension "IN2". This is a new intermediate format 
file with elements still in approximated form. Then program abandons Gurel method 
procedure and starts displaying solution in the graphical form. At this point program 
switches to the option 4 where current solution is processed. 

Option 3. Albano-Sapuppo's method - during execution of this procedure new 
solutions according to the Albano- Sapuppo's algorithm are computed. The way this 
routine is handled is identical to Gurel's method described above. The only difference 
comes from the fact that during computations of a new solution only numbers of allocated 
elements are displayed. 

Option 4. Display solutions - this procedure deals mainly with graphics but not 
only. In order to display any solution from certain file one has to choose it in the same way 
input data files have been chosen. Now, all files in the current directory with extension 
"IN2" are considered. 

When solution is displayed we can save it as the final solution or print it. If we save 
the solution then it is converted from approximated format back to the initial format with 
sections of circles. Program displays new file name and waits for pressing any key. Then 
the new file is stored with an "OUT" extension. 

Option 5. Program Help - this routine displays help text file in pages. In the 
current directory "ROZKROJ.TXTn file must exist otherwise program issues appropriate 
message and continues. We can swap pages with PGUP and PGDN keys. ESC returns 
program to the main menu. 

8 Data File Format 
The DSS uses files with extension "IN" as an input, with extension 'OUT" as an output. 
It generates also two intermediate type files with extensions 'INln, "IN2". Figure 1 
explains which module of the DSS utilizes and generates appropriate types of file. 

Initial preprocessing .IN1 

.IN 1 
Al ban0 - Sapuppds method 

Display -(output) 'OUT - 
Fig.12. DSS ROZKROJ data file name extensions. 

Now we describe input and output data file format. Let us denote by fl - floating point 



number with at most ten characters (sign, at most five digit integer part, decimal point, 
at most three digits fraction), and by int - integer in the range 0 to 32767. 

Input file format. Input file is a text file named with extension "IN". It must have 
a structure as follows 

1. Width of the stock sheet (fl). 

2. Number of different element shape types (int) 

3. Parameters to the algorithms (all fl): 

rotation step for the AlbaneSapuppo routine; 

percentage parameters for the Gurel'e routine; 

etep length - both routines. 

4. Structure of elements. For every type of element shape one has to define: 

number of elements of this kind (int); 

number of vertices of the shape (int); 

description of vertices in the clockwise order (fl) 

- x coordinate; 
- y coordinate; 
- radius of the circle if the current vertex starts a section of a circle as a part 

of element's edge. If the radius is negative then this section of circle causes 
element to be concave (line section from the beginning of circle section to 
the end is outside the element). Zero if it is a section of line. 

- x , y coordinates of the center of that circle, if the edge is a segment of 
line then components of the normal to this line vector. 

Every entry of this specification is obligatory. Numbers should be separated by space 
or CR character. 

Input file is a text file and can be prepared with any text editor. Specialized program 
for generation of input data files is described in other paper. 

Output file format. 
Output file has a name with an "OUT" extension. It has the following structure 

1. Width of the stock sheet (fl). 

2. Required length of the stock sheet (fl). 

3. Total number of allocated elements of all types (int). 

4. Description of elements allocation. Elements in this file are ordered according to 
the order of different shape types in the input file. For every allocated element 

o number of vertices (int); 

description of vertices in the clockwise order (fl) 

- x coordinate; 
- y coordinate; 



- radius of the circle if the current vertex starts a section of a circle as a 
part of element's edge. If the radius is negative then this section of a circle 
causes element to be concave (line section from the beginning of circle 
section to the end is outside the element). Zero if it is a section of line. 

- x, y coordinates of the center of that circle, if edge is a segment of line 
then components of the normal to this line vector. 

9 Operational Conditions 
This DSS can operate on the IBM PC and compatible computers. Suggested minimal 
hardware configuration is 640 kB of RAM; CGA, HGC or VGA graphic card; floppy disc 
drive. Optionally hard disc drive and printer. Hard disc device simplifies data operations 
because all disc operations are executed in the current (where the DSS was started) 
directory. 

10 Experimental Results 
Results from several tests are presented in table 1. In that table description of a set of ele- 
ments, quality of solution (percentage waste), time of computations, are given. Printouts 
from several example allocations are attached at the end of the paper. 

Table 1. Results of automatic element allocation with DDS ROZKROJ V.2.0. 
- 

'G standa for Gurel'e method. 
=A etanda for Albandapuppo'e method. 

Sheet 
length 
20.00 

18.15 
20.00 
19.80 
11.00 
9.61 

- 

19.65 

17.90 
22.87 
20.60 
23.17 

21.78 

Test file 
name 

TESTlG 

TESTlA 
TEST2G 
TEST2A 
TEST3G 
TEST3A 
TEST4G 

TEST4A 
TEST5G 
TEST5A 
TEST6G 

TEST6A 

Description of 
element set 

8 convex 
heksagons 
as above 
10 circles 
as above 
10 triangles 
as above 
10 concave elem. 
(3 arcs,line) 
as above 
12 various elem. 
as above 
10 concave elem. 
(6 vertices, 
2 arcs, 4 lines) 
as above 

Precentage 
waste 

36% 

29.5 % 
36.3% 
35.7% 
45.5% 
37.6% 
25.8% 

18.6% 
35.3% 
28.2% 
59 -6% 

57.0% 

Computations 
time 

< lmin 

c l m i n  
1 min 
1 min 

< 1 min 
3 min 
1 min 

1 min 
1 min 
2 min 
l m i n  

< 1 min 



Table 1. continued 

TESTllA 
TESTl5G 
TEST15A 
TEST24G 

TEST24A 
TEST25G 

TEST25A 
TEST26G 

TEST26A 
TEST30G 

TEST30A 
TEST3lG 

TEST3lA 
TEST35G 

TEST35A 
TEST36G 

TEST36A 

as above 
30 triangles 
as above 
4 elem. no arcs 
normal angles 
as above 
twice elements 
from TEST24AIG 
as above ---- 
4 times elements 
from TEST24G/A 
as above 
TEST25G/A other 
sheet width 
as above 
twice TEST3OA/G 
elements 
as above 
TEST25A/G other 
sheet width 
as above 
TEST26A/G other 
sheet width 
as above 

37.1% 
37.5% 
6.3% 
0.7% 

0.7% 
3.1 % 

< 1 min 
2 min 
2 min 

< 1 min 

< 1 min 
< 1 min 

14.58 
60.00 
40.00 
20.00 

20.00 
41.00 

1 45.00 
82.00 

85.00 
40.00 

35.00 
66.67 

65.00 
31.67 

30.00 
50.3 

55.00 

11.7% 
3.1% 

6.5% 
25.5% 

14.7% 
10.5% 

8.2% 
24.5% 

20.3% 
5.0% 

13.1% 

< 1 min 
3 min 

1 min 
< 1 min 

< 1 min 
3 min 

l m i n  
< 1 min 

< 1 min 
9 min 

2 min 



Length : 31 .478  Uidth : 15 .000  U a s t e :  36 .1% 

F i g . 1 3 .  TESTliIi Gurel's method. 

Length : 33 .313  Width : 15 .888  Waste : 39 .6% 

F i g .  14. TESTlC) A 1  bano-Sapuppo" method. 



Length : 20 .808  Width : 

Fig.15.  TEST21 G u r e l ' s  method. 

Length : 2 7 . 8 7 7  Midth : 

Waste : 4 6 . 5 2  

Waste : 6 0 . 5 2  

Fig.16. TEST21 Albano-Sapuppo's method. 



Length : 58 .308  Width : 25.100  Haste : 4 . 9 2  

Fig.17. T E S T 3 6  Gurel's method. 

Length : 55 .000  Uidth : 25.100  Haste : 13 .1% 

Fig. 18. TEST36 A 1  bano-Sapc~ppo' s method. 
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Abstract 

The paper describes methods of minimization of piecewise quadratic convex 
functions subject to lower and upper bounds. The presented approach may be 
used for solving linear and quadratic programming problems while the multiplier, 
proximal multiplier or penalty methods are applied to original problem. 

An active set algorithm which takes into account the form of the objective func- 
tion and bounds is developed. For solving a sequence of quadratic subproblems 
generated by the active set algorithm a numerically stable method of updating R- 
factors in QR factorization is adopted. 

1 Introduction 

The paper describes a numerically stable method of minimization of piecewise quadratic 
convex functions subject to lower and upper bounds. The presented approach may be 
used for solving linear and quadratic programming problems while the multiplier, proximal 
multiplier or penalty methods are applied to original problem. An active set algorithm 
which takes into account the form of the objective function and bounds is developed. 
For solving a sequence of quadratic subproblems generated by the active set algorithm a 
numerically stable method of updating R- factors in QR factorization is adopted. 

In the paper we will deal with the following problem: 

min f (z)  (1) 

f (2) = = + (112)JJAlz - h1I2 + (1/2)JI(A2z - &)+!I2 (2) 
l < z < u  (3) 

where: Al E RXn, A2 E RaXn, bl E Rk, & E R', c E R", and I, u E R" are given lower and 
upper bounds z E R" 

The following notation will be used: 

a - denotes the i-th rows of matrix Ak 

b!*) - denotes the i-th components of the vector bk 

z j  - denotes j-th component of z 

llzll - denotes L2-norm of z 



(u)+ - denotes the vector composed of components max(0, u;) 

A: - denotes the transposition of matrix Ak. 

The above formulation generalizes the problems of minimization faced in ordinary 
multiplier method for linear programming problems. It also covers subproblems in the 
regularized or proximal multiplier method (Rockafellar, 1976). Note that if we introduce 
the following notation 

A1 = ($1 bl = 

then the minimized function will take the form 

The minimized function (2) is convex, piecewise quadratic, and twice differentiable beyond 
the set: 

(2) { z  a z - 0 ,  i =  l,...,s) 

In the active set algorithm applied to the problem (1) - (3), we solve a sequence of 
minimization quadratic functions without constraints. After a finite number of steps, a 
set of indices of constraints which are active at the solution is found. That is based on the 
observation that at the optimal solution a certain subset of constraints is satisfied with 
equality. Let 

J' = {j : z j  = lj or z3 = uj) 

where z' - denotes solution of the problem (1) - (3). 
Additionally we introduce the following set of indices 

I* = { i  : ay)z0 - bj2) > 0) 

If the sets J' and I' were known, then the variables zj,  j E J* could be eliminated 
and the problem reduced to the following unconstrained optimization problem 

min j'-(z) (4) 
(2) 2 j ~ . ( z )  = a! + (1/2)11Alz - bl)12 + (112) ~ ( a ! ~ ) z  - b, ) 

i € Z 0  
( 5 )  

If we solve the above problem with respect to the free variables z j ,  j E {1,2,. . . , n) \ J', 
then we will reach a solution of the problem (1)-(3). The solution meets the Kuhn-Tucker 
conditions, which can be formulated in the following way. 

Let A; be a matrix composed of rows with indices from the set I*, and b; be the 
corresponding vector. 

The gradient of j in point z* is defined by 

From the Kuhn-Tucker optimality condition, the following relations hold for the min- 
imum point z* 

and 

In the active set algorithm a sequence of unconstrained quadratic problems are solved 
to predict the correct sets J* and I*. 



2 An active set algorithm 

Our algorithm differs from the active set algorithm described in (Fletcher,l981) and (Gill, 
Murray and Wright, 1981), because beside upper and lower bounds, we also take into 
account the piecewise quadratic form of the minimized function. 

We define two types of working sets. At the k-th iteration of the active set algorithm, 
Ik will be a working set of the function f .  That set defines a quadratic function as follows: 

The second working set defines those variables which are fixed at bounds. 

J k  = { j  : z j  = Ij or z j  = uj) ( 5 )  

For given point z ,  it is also useful to define the following set of indices 

J ( z ) = { j : z j = l j  and a f ( z ) / a z j > 0 ) u { j : z j = u j  and af (z) /az,<O} (6) 

and 
(2) (2) I ( z )  = { i :  a, z -  b, > 0) 

For the last set the following relation holds 

Additionally, the complements of the working sets will be defined as follows 

Using the notation defined above, for given working sets Ik and Jk ,  the following 
minimization subproblem can be formulated 

where 

- if fixed lower bound 
z j  = 

if fixed upper bound 

The active set algorithm, in the form described below, solves a sequence of the sub- 
problems. For given working sets Ik and Jk,  we minimize the quadratic function fIk in 
respect to variables z j  which indices j belong to the set j k .  This variable will be free. 
The variables which indices belong to the set Jk are fixed on their bounds. This is an 
unconstrained quadratic subproblem. Its solution defines a search direction. The step 
length is determined to provide feasibility. The piecewise quadratic form of the function 
f is also taken into account while the step length is computed. 



2.1 Algorithm 

0. (Initialization ) For the given initial feasible point zO determine lo, Jo as follows 

lo = I(z0), Jo = J(zO). 

Set k := 0. 

1. (Subproblem optimality test). If 

a j,,(zk)/azj = 0, * E I k  

then minimum of the subproblen is found, go to step 2. 

Otherwise do to step 4. 

2. (Optimality test). If 
Ik = l (zk)  i Jk = J (zk )  

then assume z k  as an optimal solution and stop. Otherwise, continue. 

3. (Working sets reduction). From the sets of indices which are defined as the workings 
sets delete an index for which holds 

4. (Search direction computing). Solve the unconstrained optimization subproblem 
(10)-(12) and let Z~ be a minimizer. Set 

pk = zk - z k 

as the search direction. 

5. (Step length computation). Find ii - an upper bound for the step length 

a. Where iil is chosen in such way that zk  + iilpk remains feasible: 

iil = min{al, a2) 

b. Where ti2 is maximal value which provides 

Thus 



For found 6 compute: 

6. (Test for working set augmentation). If ak < 6 then: 

Set k := k + 1 and go to step 1. 

7. (Working sets augmentation). 

a. If ak = and 1 is the index of the variables which bounded step length, then: 

b. If ak = b2 and r is the index of the rows in the matrix A2 which bounded step 
length, then: 

Iktl = Ik u { r )  , Jk+1 = Jk 

Set k := k + 1 and go to step 1. 

Remark: We note that working sets reduction in step 3 based on the observation 
that the Lagrange multiplier X j  for the constraints: 

are 

If optimality conditions are fulfilled then we have found the optimal point. If not, the 
objective function can be decreased by deleting corresponding bound or row of the matrix 
which defined function (4). 

For the sake of simplicity we will drop the index k in the description of the working 
sets. Let A: and b i  be a submatrix and a subvector composed of rows and coordinates 
corresponded to indices i E I .  

Using the above notation, the problem (10)-(12) can be rewritten as follows 

jx(z) = a+ (1/2)11~'z - bxJ(2 (14) 

z j = Z j  j E J  (15) 

We divide the vector z into two vectors corresponding to the working set J and its 
complement: 



z J - vector free variables 

z J - vector fixed variables 

We have 
z = (ZJ ZJ) 

Then we divide the matrix A' into two submatrices which rows correspond to the fix 
and free variables respectively. 

A' = (A; A:) 

So we have: 
fz(z) = cJzJ + cJzJ + (1/2)((A;zJ + A;zJ - b'l12 (16) 

Let us consider the problem of finding free variables zJ as a result of minimization (16) 
without constraints. We assume that the matrix A; has full column rank. In this case 
the problem of minimizing function (16) has an unique solution. Such a situation takes 
place when the considered subproblem is defined for the proximal or for the regularized 
multiplier method. The minimum of the function (16) can be obtained by solving the 
following system of equations: 

The classical approach to solving this problem is via the system of normal equations 

where B is the symmetric positive definite matrix in the form: 

and 

In a discussion of methods which can be useful for solving the system ( la ) ,  one should take 
into account such features as numerical stability of algorithms, density and the dimension 
of matrices (Golub and Van Loan, 1983) (Heath, 1984). 

Equation (18) can be solved via the conjugate gradient algorithm or by the precon- 
ditioned conjugate gradient algorithm. Those methods can be especially useful for large 
and sparse problems, but unfortunately the algorithms converge slowly when the problem 
is ill-conditioned. 

Another approach for solving the normal equation based on factorization of the matrix 
B using Cholesky's method: 

B =  R ~ R  (21 

where R  is upper triangular, and then zJ is computed by solving the two triangular 
systems 

R~~ = 6 

Despite many useful features of the normal equation method, the method with direct 
application of Cholesky's partition to the normal equations also has several drawbacks. 
We mention some of them 

Necessity of explicitly forming and processing B according to (19) 

The condition number of B is the square of the condition number of A:. 



3 Application the QR decomposition 
To simplify the discussion we write (16) in the following form: 

where 
h: = bz - 

J J  g : = c  2 

In the orthogonal factorization approach a matrix Q is used to reduce A$ to the form 

where RJ is upper triangular. We have 

The application of the orthogonal matrix Q does not change L2-norm and an advan- 
tage of such a transformation is that we do not need to save the matrix Q. It can be 
discarded after it has been applied to the vector h j .  Moreover, the matrix RJ is the same 
as the Cholesky's factor of B (19) apart from possible sign differences in some rows. 

The above Q-R transformation can be carried out by using of Givens rotations which 
are very attractive for our case (see George and Heath,1980). In our implementation we 
do not store the orthogonal matrix Q and the obtained matrix R: is used for solution 
(22)-(23)) where the vector b is given by (20). 

3.1 Update of Q-R decomposition 
As we have shown in the description of the active set algorithm, the working sets were 
changed during sequential steps (compare steps 3, 7). Changes of working sets result in 
changes of the matrix A$, but only one row or one column can be added or removed 
from that matrix at a time. This means that the matrix AS which defined the Hessian 
of minimizing function (24) is changed. Consequently we should update Q-R factor- 

- 

ization whenever an index is added to or deleted from the working set. Computing a 
new factorization ab initio would be much too expensive so we adopted numerically sta- 
ble methods for updating the Q-R decomposition (e.g. see Golub and Van Loan, 1983, 
Lawson, Hanson,1974). 

To simplify the description we split up the initial matrix A in a way which corresponds 
to the definition of the working sets (see the Figure below). The contents of matrix AS 
changes along computation. 

We now describe the way of updating in step 7 when an index is added to the working 
set. 



1. If the following holds 
I k + i  = I k  u { r ) ,  Jk+l = Jk 

then the column r is deleted from A: and it is added to the matrix A:. 

2. If the following holds 
Jk+l = J k ~ { l ) ,  I k + l  = I k  

then the row I is added to A; and it is deleted from A$. 

Similarly, let us consider changes of the matrix A5 when the working sets are reduced 
in step 3. 

1. If the following holds 
Jk+1 = J k  \ { I ) ,  I k + l  = I k  

then the column I is deleted from A: and it is added to A:. 

2. If the following holds 
k + \  Jk+i = J k  

then the row r is removed from A: and it is added to A:. 

We have just seen that to modify Q-R decomposition of the matrix A5 the following cases 
should be considered: 

1. Adding a column 

2. Deleting a column 

3. Adding a row 

4. Deleting a row 

In sequel we shortly describe the above four modifications of the Q-R factorization. 
Assume that we have the upper triangular matrix R' which has been obtained after 

2' application of the Q-R decomposition to the matrix A J. 

3.2 Adding a column 
Assume that the column a\ is to be added to the matrix A:. 

(4, a:) 

We want to obtain a new decomposition with the upper triangular matrix in the form: 

Where the column vector u is obtained by solving the triangular system of equations 

I T 1  
(R:ITu = (AJ) .I 

and the scalar y is calculated in the form 

7 = (ll.;l12 - I I u I I ~ ) ~ ' ~  



3.3 Deleting a column 
Deleting the column I from the matrix A: corresponds to deleting the column 1 from 
the matrix R:. Note that the matrix H obtained from R$ after deleting I is an upper 
Hessenberg matrix. This matrix contains some of subdiagonals elements not equal zero. 
Clearly, the nonzero subdiagonal elements can be zeroed by sequence Givens rotations 
(Golub and Van Loan, 1983). 

3.4 Adding a row 
Suppose that we have the upper triangular matrix R5 and we wish to obtain an upper 
triangular of 

* = (2) 
It corresponds to the following Hessenberg matrix 

After application a sequence of Gives rotation to the matrix H the nonzero subdiagonal 
elements can be zeroed. 

3.5 Deleting a row 
This type of modification of Q-R decomposition is possible in the case when the matrix 
after removing a row is positive define. Suppose that for an orthogonal matrix Q we have 

Note that the matrix Q is not stored. For the deleting row a! we wish to find an upper 
triangular matrix R:, for which we have 

We should determine an orthogonal matrix U as the product of Givens rotations, that - 

the following holds 

Note that due to uTU = I the equation (25) holds. 
The matrix U is chosen in such a way, that 

where u and cr are determined as the solution of the system 

and 
2 1/2 

= (1 - IIuII 
If the Givens rotations which defines U are then used as in (26), the desired matrix R: 
will be found. 



4 Final remarks 

We have developed a stable numerical method for minimization of the piecewise quadratic 
function with lower and upper bounds. Such problems arise, for example, in application 
of the multiplier method to linear programming problems. The presented approach can 
be also useful for problems in which the matrices Al and A2 are large and sparse. In those 
cases, the methods for symbolic generation of sparse structure for storing the factors Ri  
can be adopted in the similar way as in (BjGrck, 1988). 
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Abstract 

FLIP (Fuzzy Lhear Programming) is a package designed to help in analysis of 
multiobjective linear programming (MOLP) problems in an uncertain environment. 
The uncertainty of data is modeled by L-R type fuzzy numbers. They can appear 
in the objective functions as well as on the both sides of the constraints. 

The input data to the FLIP package include the characteristics of the analyzed 
fuzzy MOLP problem, i.e., the number of criteria, constraints and decision variables, 
fuzzy cost coefficients for every objective and fuzzy coefficients of LHS and RHS for 
all constraints. The data loading is supported by a graphical presentation of fuzzy 
coefficients. The calculation is preceeded by a transformation of the fuzzy MOLP 
problem into a multiobjective linear fractional program. It is then solved with an 
interactive method using a linear programming procedure as the only optimiser. h 
every iteration, one gets a series of solutions that are presented very clearly in a 
graphical and numerical form. 

Ln FLIP, interaction with the user takes place at two levels: first, when safety 
parameters have to  be defined in the transformation phase, and second, when the 
associate deterministic problem is solved. 

The package is written in TURBO-Pascal and can be used on microcomputers 
compatible with IBM-PC XT/AT with hard disc and a graphic card. 

Part I 

Methodological guide 

1 Formulation of the problem 
FLIP solves the following MOLP problem with fuzzy coefficients: 

z; = E1g 

(PI) minimize. [ ] 
Zk = ckz 



k g  5 6, - i = I, ..., ml ( A )  
~ . t .  2 b i = ml + 1, ..., m (B) 

z 2 Q  
where g is a column vector of n decision variables, z1 ,...,& are row vectors of fuzzy 

cost coefficients corresponding to the objective functions i1 ,...,& , & is the i-th row of 
the matrix of fuzzy coefficients, and &; is its corresponding fuzzy right-hand-side. The 
equality constraints are excluded from the above formulation since they can be obviously 
represented by pairs of inequality constraints. It is assumed, moreover, that for the 
particular objectives, the decision maker (DM) is in a position to define fuzzy aspiration 
levels, thought of as goals, denoted by $1, ...,ak . All fuzzy coefficients are given as fuzzy 
numbers, i.e. normal and convex fuzzy subsets of the real line. 

FLIP has been proposed to solve a water supply planning problem under uncertainty. 
Its presentation in [ I l l  has been preceded by a brief survey of approaches to fuzzy math- 
ematical programming proposed before 1984. The survey has shown that there was no 
method which would deal with a multiobjective linear programming problem with fuzzy 
coefficients in the objective functions and on the both sides of the constraints. Since then, 
a lot of new work has been done; a short updated review has been made in [12], together 
with some refinements of FLIP. More comprehensive surveys have been done recently by 
Dubois [6], Luhandjula (81, and Inuiguchi, Ichihashi and Tanaka [7]. Others, like Delgado, 
Verdegay and Vila [5], Itommelfanger [9], and Sakawa and Yano [lo], presented their new 
methods on the background of existing ones. 

The idea of FLIP relies on an observation that for a given 2, the main question to 
be answered consists in the comparison of'the left- and right-hand-sides in objectives and 
constraints which are fuzzy numbers. Assuming an L-R representation of fuzzy coeffi- 
cients, a comparison principle has been proposed ([ll]), which allows a transformation 
of the fuzzy MOLP problem into a multiobjective linear fractional programming prob- 
lem. The best compromise solution of the latter problem ensures the "best consistencyn 
between the goals and the objective functions, and satisfies the constraints with a given 
"safety". 

In the next section, we present the comparison principle of fuzzy numbers which is 
used in the transformation of the fuzzy MOLP problem into a deterministic mathematical 
program. The transformation is described in chapter 3, and in chapter 4, the way of 
solving the associate deterministic problem is outlined. In chapter 5, the steps of FLIP 
are summarized with a special emphasis on interactive steps. 

2 Comparison of L-R fuzzy numbers 

A convenient representation of a fuzzy number & is a triple of parameters (a,&, p )  of its 
membership function 

where a is an interval of the "most possible" values, cr and @ are nonnegative left and 
right "spreads" of 6, respectively, and L, R are symmetric bell-shaped reference functions 
that are decreasing in (-00, oo) and L(O)=R(O)=l, L(l)=R(l)=O; d is said to be an L-R 
fuzzy number. When the spreads are zero, then ii is a nonfuzzy (crisp) number equal to 
a. 



Let 1 = ( a , ~ ,  and 6 = (b, 7, 6)LtRt be fuzzy numbers. In order to evaluate the 
possibility for b to be greater than h,  we use two different indices: a and A , called 
optimistic and pessimistic, respectively. 

(a )Opt imis t ic  i ndex  a 
Let us suppose a situation presented in Fig.1. Optimistic index u (I >ti) is defined 

as an ordinate of the intersection point of R' and L, i.e. the right slope of b with the left 
slope of 6: 

u(6 > 6 )  = R((d - b)/6) = L((a - d ) / a )  = w (1) 

where d is an abscissa of the intersection point. The smaller a(& > 5 )  is, the less true is 
the assertion that 6 is greater than 6. 

Let us observe that (2.1) is equivalent to 

b + 6R'-'(w) = a - aL" (w)  (2) 

and 
6R'-' (w )  + a L-I ( w )  = a - b 

Fig.1. Comparison of fuzzy numbers h and & 

For F(w)  = (6R- ' (w)  + aL-'(w))-' , we have 

which implies 
a(& > 6 )  = w = F(a - b) 

Similarly, o ( h  > 8 )  is defined as an ordinate of the intersection point of R and L', i.e. the 
right slope of h with the left slope of 6: 

u(G > a )  = + = ~ ( b  - 

where G($) = (y L'-I($) + PR-'($))-' . 



If L=R' and L'=R then (2.5) and (2.6) take the form 

In order to say that & > 6, we need both u(6 > &) and u(& > 6). If for instance 
u(& > 1) > 1, we know that either & is greater than 1, or both fuzzy numbers are too 
close to be separated. Then we may choose a threshold 0 < r 5 1 and admit that & is 
greater than 6 at level r as soon as u(6 > &) < T. If min{u(6 > &),u(& > 6)) > r, we say 
that 6 and & are approximately equal. 

In the case of weak inequality & > 6, we only need u(& > 6). Indeed, for u(& > 1)  > 1 
the weak inequality is satisfied for any value of u(6 > &). Then we may choose a credibility 
constant 0 < r < 1 and admit that & 2 6 at credibility level r as soon as u(& > I) 2 r. 

The comparison index u can be seen as optimistic because even for a high value of 
u(& > 6), the possibility for z E 72, fuzzily restricted to belong to 6, to be greater than 
y E 72, fuzzily restricted to belong to &, may be quite big. As a measure of this possibility 
one can consider the hatched area marked in Fig.1. Thus, in order to make the comparison 
more credible, we should use u conjointly with the pessimistic index r. 

(b) Pessimistic index r 
The pessimistic index follows from the comparison of the right slopes of 6 and & at 

some level 0 < q < 1: 

For q = 0 we have 
b + 6 - a - ~  

Thus, a joint use of u(& > 6) and r ( &  >, 6) consists in the comparison of both slopes of a 
which is supposed to be smaller with the right slope of & which is supposed to be greater. 

Now, we can admit that & 2 6 at credibility levels r and q if and only if 

and 
*(& >, 6) 2 e 

where r, q E [0,1] and 8 E (-w, w). 8 > 0 means that for any pair (x,y) such that z > a 
, y > b  and 0 < ph(z) = pa(p) ,< q, inequality y>x is true. A negative value of 8 makes 
possible that inequality y2x is not true. 

The constants r,q and 8 are called "safety parameters" because they are responsible 
for the safety of the assertion that & is greater than 6. Instead of safety, we could speak 
of course about risk which is a complementary term. Let us remark that using r,q and 8 
one can control the surface of the hatched area marked in Fig.1 which corresponds to the 
risk of the above assertion. 



3 The associate deterministic problem 
Conditions (2.13) and (2.14) can be used directly to transform the fuzzy MOLP problem 
into an associate deterministic one. Let us separately analyze the constraints and the 
objective functions of the fuzzy MOLP problem. 

Let us suppose that fuzzy coefficients of the constraints are given as L-R fuzzy numbers: 

For the sake of clarity, we assume that the reference functions of all fuzzy coefficients are 
of two kinds only: L and R. It can be seen from the preceding considerations that this 
assumption is not necessary for the calculation of a and T (cf. [5], [6] and [9], [lo]). 

It should be specified that all arithmetic operations on fuzzy numbers taking place in 
(PI)  are extended operations in the sense of Zadeh's principle. For any z 2 Q, the left 
side of the i-th constraint can be summarized to the fuzzy number: 

&z = ( a ~ ,  SZ, &Z)LR, i=I, ..., m. 

It is easy to verify that for i= l ,  ..., ml 

and for i = ml + 1, ..., m 

For given values of safety parameters r,, 9; and 8, , i=l ,  ..., m, the constraints (A) and (B) 
of (PI)  may be transformed to: 

Basing on the property of strict monotonicity of reference functions, one can transform 
(3.1) and (3.2) into the following equivalent conditions: 

In the case of fuzzy objective functions, u can be used to evaluate the degree of consistency 
between fuzzy objectives and fuzzy goals. Let the fuzzy cost coefficients and fuzzy goals 
be: 



where the left spread of ir , l=l ,  ..., k, is equal to zero because it is immaterial for the 
evaluation of consistency between goals and objectives. Here again, the equality of the 
reference functions is not a necessary assumption. For any z, the components of the 
1-th objective function can be summarized with the extension principle to the flat fuzzy 
number: 

On the basis of (2.7), we can write for l=l, ..., k 

In order to ensure the best consistency between goals and objectives, a ( i l  > &g), l=l ,  ..., k 
should be maximized. In consequence, we arrive to the following deterministic mathe- 
matical programming problem equivalent to problem (PI): 

j l ( ~ )  = L((E~z - gl)/(rlz + Y)) 
(P2) mazimire 

f k ( ~ )  = L((Qz - gk)/(bZ + vk)) 1 
0.2  - bi 5 L - ' ( T ; ) ( ~ ~  + bi) -I- i=l ,  ..., ml (A1 ) 
bi - sz 5 R- ' ( r i ) (&~ + 7,) i=m1+l, ..., m (B l )  

s.t .  b; + 6;L-'(q;) - gjg - &.zR-1(9i) 3 6, i=l,  ..., ml 
sz + &zR-' (9;) - bi - 6; L-' (vi) 2 6, 

(4 
i=ml+l, ..., m (B2) 

z L Q  (c) 
If reference function L of fuzzy cost coefficients is linear, i.e. L(y)=l-y, than problem (P2) 
becomes a multiobjective linear fractional programming (MLFP) problem: 

f l ( ~ )  = 1 - ( h z -  gi)/( f lz 4- Vl) 
(P3) mazimire 

f k ( d  = - (QZ - g k ) / ( ~ g  + ~ k )  1 
sat. (Al), (Bl) ,  (A2), (B2), (C). 

In order to be sure that the denominators of jl (z), ..., jk(z) are greater than zero for 
any feasible z, we may admit that v, > 0, l=l ,  ..., k, which is quite natural. 

4 Interactive steps 

FLIP can be summarized in the following steps: 

1. Formulation of problem (Pl )  and definition of fuzzy coefficients. 

2. Definition of fuzzy aspiration levels (l=l ,..., k) on objectives. 

3. Definition of safety parameters Ti, Ti and (i=l ,..., m) for fuzzy constraints. 

4. Form.ulation of the associate multiobjective deterministic problem (P2) or (P3). 

5. Application of an interactive method for solving the associate deterministic problem 
formulated in step 4. 



6. If a best compromise solution has been found then stop, otherwise return to step 
3 for revision of safety parameters. Retraction to steps 1 and 2 for redefinition of 
fuzzy coefficients and/or aspiration levels is also possible. 

Our experience indicates that an interaction with the DM in searching of the best com- 
promise solution is very beneficial for the final decision. So, in step 5, in order to solve the 
associate multiobjective deterministic problem, we propose to use an interactive method 
(cf. [16]). If the associate deterministic problem has the form of the MLFP problem (P3), 
a very convenient interactive procedure is that of Choo and Atkins (1980). 

Let us recall its general idea informally. 
In order to find a starting efficient point of the MLFP problem, the objective functions 

jl, ..., jk are aggregated by the Chebyshev norm which is the maximum weighted deviation 
from the ideal point $ : 

(P4) minimize max{q$(u; - j , ( ~ ) ) )  
I 

f 2  j I 1st itemtion-, 

Fig.2. An idea of the interactive procedure by Choo and Atkins (1980) 

where 9 = (a1, ..., a k )  is a weighting vector defining a "direction" of the Chebyshev 
norm, i.e. a line passing through an ideal and a nadir point, 2' and , respectively (cf. 
Fig.2). 

The Chebyshev norm minimization chooses the "cornern closest to 2' and still in 
contact with the feasible region. This final point of contact ensures weak efficiency. In the 
case of the MLFP, (P4) can be transformed to a linear program with a single parameter. 
One can thus use any convenient univariate search method over this parameter to find 
point yb as close to efficient as we like. The "closeness" here is not critical and even a 
rough approximation will be quite sufficient. This point is taken as starting point for 
the interactive part of the algorithm. This part crucially involves the DM. The search 
direction from 2' to yb is then extended to include several more points y,, b, ..., t$ . Next, 



taking each criterion in turn, say fl first, fl is maximized subject to all other criteria being 
at least equal to their values at b , then ll , all the way to . This gives a sequence 
of (weakly) efficient points bl, gll, ..., b1 for criterion 1 and L,~ ,  , etc. for criterion 
2, and so on for all the criteria. The minimization of fi(z) for l= l ,  ..., k is of a linear 
fractional subject to linear constraints, so the Charnes and Cooper transformation into 
a linear program can be used. Thus, at each step a single-objective linear programming 
problem has to be solved. The calculated sample of the efficient border is then presented 
to the DM who is asked to select the one that best fits his needs. The selected point 
becomes the new starting point and the procedure is repeated, but now the search space 
is focused on a part of the efficient border of most interest. The interactive process ceases 
when the most satisfactory efficient point is reached. 

An important advantage of the above algorithm is that the only optimization procedure 
to be used is a linear programming one. Moreover, it has a simple scheme and allows 
retractions to the points which have been found uninteresting in previous iterations. 

In a microcomputer implementation of FLIP, the efficient points proposed to the DM 
are presented both numerically, in terms of z and middle values of &(z), l=l, ..., k, and 
graphically, in terms of mutual positions of fuzzy numbers corresponding to objectives 
and aspiration levels on the one hand, and to left- and right-hand-sides of constraints, on 
the other hand (cf. [3], [4],[14]). In this way, the DM gets quite a complete idea about 
the quality of each proposed solution. The quality is evaluated taking into account: 

scores of fuzzy objectives in relation to the goals, 

dispersion of values of the fuzzy objectives due to uncertainty, 

safety of the solution or, using a complementary term, the risk of violation of the 
constraints (cf. the hatched areas in Fig.1). 

So, the definition of the best compromise involves an analysis of the compromise among 
criteria and an evaluation of the safety of the corresponding solution. 

It steems from the above considerations that the DM intervenes in two steps of FLIP. 
First, when fixing the safety parameters (step 3), and then in the course of the guided 
generation and evaluation of the efficient points of the associate deterministic problem 
(step 5). Thus, the interaction with the DM takes place at two levels. As to the first one 
(step 3), it is worth noting that there are two practical ways of controlling the safety of 
solutions using parameters T; , 7; and 8; : 

(a) fix 7; = 0, i=l, ..., m, and control the optimistic safety with T; , and the pessimistic 
safety with 8; , i=l ,  ..., m, or 

(b) fix Oi = 0, i=l, ..., m, and control the optimistic safety with s; , and the pessimistic 
safety with 7; , i=l, ..., m. 

The safety parameters are defined taking into account their interval of variation and the 
knowledge acquired in preceding iterations about the dependency between safety and the 
quality of the compromise among criteria. 

If way (a) is chosen, an (approximate) interval of variation of 8; at level 7, = 0, 
i=l ,  ..., m, can be calculated in the following way. Let the interval be denoted by [Of,  By ] ,  
and the set of feasible solutions by D. 

It is clear that 
~ : = ~ + 6 , .  for i= l ,  ... ml (22) 



and 
8y = max{az + B.2) 

+€ D 4- 
for i=ml+l, ..., m (23) 

which corresponds to a perfect safety of solutions. The lower bound of the interval is 
defined as: 

8; = min{b, + 6, - vg - &g} for i=l,  ... ml 
+EO 

(24) 

and 
8; = min{a.z + &g - b, - 6;) for i=ml+l, ..., m 

+ED (25) 

In practice, an exact calculation of [Of, 8?], i=l, ..., m, may lead to too large intervals with 
very low utility. The following procedure permits "killing two birds with one stone". One 
substitutes all fuzzy coefficients of problem (PI) by their middle values and calculate the 
pay-off table of the multiobjective deterministic problem obtained from (PI). It needs 
solving k single-objective linear programming problems. In this way, a set S of k solutions 
is obtained. The result can be used in two ways. First, one can substitute D by S in 
formulas (4.2),(4.3),(4.4). Then [Of, 8v], i=l ,..., m, become approximate intervals having 
often a greater practical utility than exact ones. Second, the individual optima from the 
diagonal of the pay-off table may serve as suggestions for middle values of fuzzy goals. 
The columns of the pay-off table may also give an idea about the right spreads of the 
goals. This option is useful when the DM has no his own definition of the aspiration 
levels. 

To conclude, let us remark that since its appearance, FLIP has been successfully 
applied to several real-world problems from the field of water supply systems ([15], [12]) 
and agriculture ([2], [4], [3] ). 

Part I1 

User's manual 

5 Executive summary 

The FLIP package supports the following general functions: 

a the definition and edition of a source model in the form of a multiobjective linear 
programming problem with fuzzy coefficients; in this phase, particular at tention is 
paid to modeling of fuzzy coefficients and their graphical representation. 

a interactive analysis of the problem, with user-friendly graphical and numerical rep- 
resentation of generated solutions, and various facilities for comparison of those 
eolutions in the process of searching for the best compromise. 

The FLIP package is recorded on one diskette in a compiled code. After installing it in 
the user's directory, it can be activated by the command FLIP < CR >. 



6 User's reference manual 

6.1 Installing and activating the program 
There are two main versions of FLIP package. One veraion requires a math coprocessor 
(8087,80287,80387) while another one does not. Each version is recorded on one diskette 
that should be installed on an IBM-PC XT/AT or a compatible computer preferably 
with a hard disc and with Hercules or color graphic card (CGA,EGA,VGA). The diskette 
contains the compiled code of FLIP with a test example. 

While it is possible to use the program from floppy disc it is preferable to install it on 
a hard disc. 

If we run the program from a floppy disc we must remember that on the distribution 
disc there is no room for big problems and for saving partial or final results. If you need 
more free space you can use another disc for data (change disc before the problem is 
created). System starts with command FLIP < CR >. 

To install FLIP package on the hard disc make the following steps: 

a. create a new user directory (e.g. md FLIP); 

b. copy the contents of a distribution disc to this directory; 

c. run FLIP program by the command: FLIP < CR >. 

A moment after giving a starting command for FLIP package, the invitation screen is 
displayed (see fig.3 ). Pressing any key we pass to main menu of the FLIP program. 
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Fig.3 Invitation screen. 

6.2 Main menu 

Main menu (fig.4 ) provides the following functions: 

Exit FLIP to leave the program and return to the operating system; 

Data Input to create a new problem and save it into a disc file; 
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Fig.4 Main menu of the FLIP program. 

Calculations after activating this function, the fuzzy problem is transformed into a de- 
terministic one and an interactive procedure starts to search for the best compromise 
solution; 

Retrieving Previous Solutions one can retrieve from disc files some series of previ- 
ously got solutions; 

Data Edit with this function we can review and/or change both source model and defi- 
nition of fuzzy aspiration levels; 

Printing the Data this function allows to get a copy of data file on a printer; 

Choose an Active File we can choose from directory a data file for further considera- 
t ion; 

Help offers the information about FLIP method and how to make use of the FLIP 
program. 

Selection of any of these functions is made by moving a highlighted window to the 
required function and acceptance with < CR > key. 

Moving of the highlighted window can be performed in one of three ways: 



using arrow keys; 

pressing space bar or backspace; 

pressing appropriate number keys e.g. 0 for "Exit FLIP", 1 - for "Data Inputn, 2 
for "Calculationn and so on. 

6.3 Data Input 
This function allows to create a new disc file containing a new problem formulation. 
At the beginning, we enter the name of data file we create. Then, we define sizes of a 
new problem, that are: number of criteria, number of decision variables and number of 
constraints. We accept this values pressing function key - F10. 

Now we paas to the definition of criterion number one. First, we choose a type of cost 
coefficients we want to use in this criterion. There are three alternatives: 

real numbers if we want to have nonfuzzy coefficients; 

linear fuzzy numbers if we want to define simple fuzzy numbers, giving only the middle 
value and left and right ranges of fuzzy number (see fig.5a); 

piecewise linear fuzzy numbers similarily to linear fuzzy numbers we have to define 
the middle value, left and right ranges and additionally to construct left and right 
reference functions consisting of maximum three linear pieces each (fig.5b). 

Fig.5 Definition of a fuzzy number. 

In the next step, we declare if we want to maximize or to minimize the considered 
criterion. 

When choosing the type of coefficient and maximization or minimization, we move a 
highlighted window using Space or Backspace keys and then we accept our choice with 
function key F10. 

Before explaining in detail how to built two types of fuzzy numbers, we must make 
some important remarks. 

In the definition of the fuzzy number (chapter 2), we spoke about left and right 
"spreads" of the fuzzy number, the left "spread" means a distance between the middle 
value and the left range of the fuzzy number and the right "spread" means a distance 



between the middle value and the right range of the fuzzy number. In our implementation 
of FLIP, we don't use the values that express the "distance", but we give directly the real 
values of the left and right ranges of the fuzzy number. It means that we give values of 
abscissae of the appropriate points. 

Next, we start defining of successive coefficients. At this moment, on the monitor 
screen we have: 

general form of the considered criterion with a highlighted coefficient which can be 
introduced or changed now; 

two windows containing an information about the highlighted coefficient: in the 
left window, numerical representation of the coefficient is displayed and in the right 
window, the graphical representation, i.e. the shape of the membership function. 

Def i ~ i  t ion of fuzzy number n 

I t f t  n l t f t l  n l t f t 2  middle u i j h t l  W i g h t 2  r i j h l  

- exit m- Go to topic 

Fig.6 Definition of piecwise linear fuzzy number (Help). 

The menu is displayed in the right bottom corner of the screen, offering the following 
functions: 

number < ENTER > data input; 
if we define coefficient of type: 

real number, we type a value of the coefficient and press ENTER; 

linear fuzzy number, we type first the middle value of the coefficient, i.e. the 
"most possible" and press ENTER; then, we type values of left an right ranges 
of the fuzzy number; We must remember that: 
left range < middle value < right range. 

piecewise linear fuzzy number (Fig.6), we first type the middle value, left and 
right ranges such that again: 
left range < middle value < right range. 
If the left range < the middle value, we define the left reference function in the 
following steps: 



a. We are asked about the value of Xleftl. This is the abscissa of the point 
ending the first linear piece and beginning the second. If we press ENTER 
without any number, we resign from construction of the left reference func- 
tion, otherwise, we type value for XLeftl such that: 
left range 5 XLeftl 5 middle value 
and then, we define YLeftl in [0,1], that is value of the ordinate of the 
first breakpoint. 

b. In the same way, we define the second breakpoint [XLeft2,Yleft2] ending 
the second linear piece and beginning the third such that: 
XLeftl 5 XLeft2 5 middle value and YLeftl 5 Y Left2 5 1. 
If we press "ENTER" without any number, the left function will consist 
of two linear pieces only. 

Next, if the middle value < right range, we start definition of the right refer- 
ence function. We have to proceed it in the following steps: 

a. We are asked about the value of XRightl. If we answer by "ENTER", 
we end the definition of the fuzzy number, otherwise, we define the first 
breakpoint [X  Rig ht 1, Y Rig ht I.] such that: 
middle value 5 XRightl 5 right range 
and YRightl in [0,1]. 

b. We define the second breakpoint [XRight2,YRight2] of the right reference 
function. If we don't type any value for XRight2 and press "ENTER", 
we have the second linear piece between points [XRightl,YRightl] and 
[right range,O]. 

next  coefficient pressing right arrow key we can move to the next coefficient (right 
from presently highlighted coefficient), if the last coefficient is presently pointed we 
moved back to the first coefficient of the criterion or to the RHS coefficient of the 
constraints; 

previous coefficient pressing left arrow key we can move to the previous coefficient 
(left from presently highlighted coefficient); if we are at the first coefficient, then 
we go back to the last coefficient of the criterion or to the RHS coefficient of the 
constraint; 

Choose coefficient this function allows to jump to a selected coefficient; after pressing 
"Cn we are asked about the number of the coefficient we want to consider; this 
function can be very useful for problems with a great number of decision variables 
and a low density of the matrix coefficients. 

F1 (help) in particular, we can see a general definition of a fuzzy number; it can be 
helpful to understand how to define fuzzy numbers; 

F10 next criterion or 

F10 next constraint with this function we end definition of the presently displayed 
criterion or constraint, and we go to the next criterion or constraint; if it was 
already the last constraint, we pass to the definition of fuzzy aspiration levels. 



The procedure described above is just the same for criteria and constraints, with an 
obvious exception that for constraints we don't have maximization or minimization. 

middle-value: -48.888 

lef t-side: 58 .888  
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Data OK ? (Y/H)  

Fig.7 Definition of an aspiration level. 

"Input Data" procedure ends with definition of a fuzzy aspiration level for every 
criterion. To support the decision maker the individual optima are calculated for every 
criterion under assumption, that fuzzy coefficients becomes crisp ones, equal to middle 
values of the corresponding fuzzy numbers. The calculated optimum is displayed on the 
screen as a suggestion. The decision maker chooses the type of an aspiration level (real 
number or fuzzy number - with linear or piecewise linear membership function) and then 
defines the d u e  of the aspiration level (fig.7). 

6.4 Data edit 
This function gives a possibility of reviewing and changing a problem created using func- 
tion "Data Input". 

If an active file has been already choosen (with function "Choose an Active File" or 
other functions, e.g. "Data Input", "Calculations"), then, the active file will be edited, 
otherwise, the directory with data files will be displayed and we have to choose a data file 
we want to edit. 

Then, an edit menu is displayed on the screen, which consists of ten functions (fig.8). 
At the bottom of the screen the sizes of the analyzed problem are given. 

Now we have at our disposal the following menu: 



Return t o  main menu With this function we can go back to the main menu of the 
FLIP program. If we have performed any edit function on an active file we are 
asked if we want to save the problem. If we don't save the changes they are lost 
and the source active file remains with no change. 

Write the  current problem t o  disc storage This function allows, 
at any moment, to save the currently edited problem with all changes we have made 
up to now. It is of course possible to change the name of the data file storing the 
changed problem and; if we do so, the source data file remains unchanged. 

Add more criteria t o  the  current problem Using this function, we can add new cri- 
terion to the current problem. The procedure of defining a new criterion is just the 
same as in "Data Input" function. So we define consequently: type of coefficients, 
maximization or minirnizat ion and nonzero coefficients. After accepting definition 
of the new criterion by pressing F10 we are asked if we want to define next criterion; 
if not, we return to edit menu. 

Add more constraints t o  the  current problem With this function we can add new 
constraints to the current problem. The way of entering new constraints is the same 
as for criteria. 

Add more variables t o  t he  current problem It allows to increase the number of de- 
cision variables in the current problem. First, we are asked "How many variables do 
you want to add ?". If we answer "On, we return to edit menu, otherwise, the new 
variables are added to the problem and we can define coefficients corresponding to 



the new variables. New variables are added as the last variables. 
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Fig.8 Edit menu. 

Delete some criterion from the current problem With this function we can re- 
move some criterion from the current problem. If we choose this function, we 
examine all criterion and point the criteria which we want to delete. 

Delete nome constraints from the current problem It allows to delete any con- 
straint in a similar way to the previous function; 

Delete nome variables from current problem We are asked about 
the number of variable we want to delete. If we answer "On then no variable is 
deleted. 

Examine and/or change the current problem It is very useful function that allows 
reviewing and changing the current problem. We have at our disposal the same 
menu as when entering the data (see chapt.2). Our reviewinglchanging procedure 
starts from the first criterion. We can move along the coefficients using left and right 
m o w  keys or with function "Choose coefficient". We can change any coefficient. 
Pressing F10 we skip to the next criterion or constraint. 



Examine and/or change aspiration levels This function gives the possibility of 
changing or reviewing aspiration levels. Numerical and graphical presentation of 
the current state of aspiration levels starts from the first criterion. The DM is 
asked, if he wants to change the value of the aspiration level. If answer is "No" 
then procedure goes to the next aspiration level of the next criterion, otherwise, the 
following procedure is realized: 

a. individual optimization problem is solved for the considered criterion with all 
fuzzy coefficients fixed on their middle value and a suggestion about possible 
value of the aspiration level is displayed, 

b. the DM choose the type of the aspiration level: real number or fuzzy number 
(linear or piecewise linear membership function), 

c. the DM types a new value of the aspiration level and program goes to the next 
criterion. 

6.5 Calculation 
Calculation procedure we can divide into three parts: 

a transformation of the fuzzy problem into an associate deterministic fractional linear 
programming problem; 

a searching for a starting point of an interactive procedure; 

interactive search for the best compromise solution. 

If active file isn't defined till now, the calculation procedure starts from choosing a data 
file from a directory. 

6.5.1 . Transformation of t h e  fuzzy problem 

Transformation of the fuzzy problem into an associate deterministic fractional linear pro- 
gramming problem is based on conception of comparison of fuzzy numbers proposed by 
Slowiliski [I 11. 

At the beginning, we have to define safety parameters: T;, q; and 8; (i=l, ..., m) for 
fuzzy constraints. In our implementation of FLIP, in order to support the DM, standard 
values are proposed for safety parameters: T; =0.6, q; =0, and 8; equal to the middle 
value of an approximated range of variation for i=l ,..., m. 

The DM is asked if he accept this proposal or not. If not these values can be changed 
in two ways: 

a simultaneously for all fuzzy constraints; 

a independently for each fuzzy constraint. 

After fixing the final value for safety parameters the fuzzy problem is transformed as it 



was shown in chapt.3. 
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Fig.9 Search for a starting point. 

6.5.2 Searching for t h e  start ing point 

The second step of calculation procedure consist in searching for a starting point of the 
interactive method by Choo and Atkin's. First, utopia and nadir points are calculated, 
(the following information is displayed on the screen: "Pay-Off table is calculatedn) and 
then the procedure looks for a point lying in the proximity of an efficient border on 
the line connecting utopia and nadir points. This search consist in solving a series of 
LP problems and it can take some time, particularly, for big problems. During this 
calculation information about the distance between current solution and the efficient 
border is displayed. 

It may happen that certain LP problems are contradictory (ERROR 2). In this situ- 
ation, we should try to change safety parameters or, eventually, reformulate the analyzed 
problem. When the starting point will be found, an appropriate information will be dis- 
played on the screen, together with the order "press any keyn (fig.9). After pressing a key 
we pass to the most important, interactive phase of searching for the best compromise 
solution. 



6.5.3 Interact ive phase 

This phase starts with a question to the DM how many compromise solution he wants 
to get. At this moment possible numbers of solutions appear on the screen; that are, 
obviously, multiples of the number of criteria. The DM choose the number of compromise 
solution by moving a highlighted window (using arrow keys) and accepting the choice by 
ENTER. Then, we can see, that single objective optimizations are performed and, finally, 
we get required number of efficient solutions (points) to be analyzed. 

So, we can pass to the stage of comparison of compromise solutions and searching 
for the best one. The obtained solutions are presented both graphically and numerically. 
We have on the screen four windows with graphical representation of fuzzy criterion, 
constraints and values of decision variables (Fig.10). 

In this moment, the DM has at his disposal the following menu: 

arrow key8 change active window (highlighted) - functions F1 to  F4 can be performed 
in the active window; 

F1 next display; 

F2 previous display; 

F3 setting display in the active window; allows to see selected criterion or constraint or 
variables for a given solution (point); 

F4 enlargelreduce the active window; 

~ W C  next Prc~ ioas  
19 End Ig Print Sol. Iktdcopy 

Fig.10 Comparison of compromise solutions. 
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F5 numerical display of middle values of criteria; it gives to the DM the first impression 
about the generated compromise solutions (fig. 11); 

F7 gives the options: 

C ontinue to restart review of the generated set of compromise solutions. 

N ew rtarting point to point the most intereating solution at the current stage 
which becomes a new starting point for the next iteration. In the next iteration, 
a new set of compromise solutions is generated from the neghbourhood of the 
starting point. 

P reviourr solution to come back to review of solutions generated in the previous 
iteration. 

S ave solution to save the currently generated set of compromise solution in a disc 
file. Using function "Retrieving previous solutions" from Main Menu, we can 
restore these solutions and continue their review. 

E nd of survey to return to Main Menu. 

Hiddle values of criteria #: 

Fig. 11 Middle values of compromise solutions. 

F8 print selected solution we can get on a printer numerical information - values of criteria 
and decision variables - for selected solution. 

F9 screen copy on the printer this function gives a hardcopy with a present contents of 
the monitor screen. 

6.6 Retrieving previous solutions 

This function displays previously saved solutions for a selected problem. We can examine 
a chosen set of solutions and, possibly, start generation of a new set of solutions. So, we 
pass to the interactive phase (described above) where a number of options is offered. 



6.7 Printing a data 
If no file is active we have to choose an active file. Then the DM is aaked about the state 
of a printer. If the printer is ready then, after pressing any key, we get a copy of source 
data file on a printer. 

7 User's training manual 

7.1 General form of solving problem 
FLIP package allows solving the MOLP problem with fuzzy coefficients which can be 
written in the following general form: 

where 6 (I=l, ..., k) is a row vector of fuzzy cost coefficients of objective 1, & is the i-th 
row of the matrix of fuzzy left-hand-side coefficients and &, is a right-hand-side coefficient 
of the i-th constraint (i=l, ..., m). 

To complete the above problem formulation, the decision maker must be able to define 
fuzzy aspiration levels thought of as goals, denoted by j1 to jk . 

All coefficients, denoted with -, and aspiration levels can be defined in one of three 
following ways: 

as real numbers; 

as linear fuzzy numbers - defined by three real numbers: middle value, left and right 
range; 

as piecewise linear fuzzy numbers - defined by maximum 11 real numbers:middle 
value, left and right range and, eventually, [Xle f t 1, Yle f t l], [Xle f t2, Yle f t2], 
[Xrightl, Yrightl], (Xright2, Yright21. 

7.2 Illustrative example 
Let us consider the following simple MOLP problem with fuzzy coefficients: 
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Fig.12 Definition of coefficient E l l .  

where &1=(-4,-4.5,-3.5)LR, Z12=(l,l,l.5)LR, &1=(2,2,2.5)LR, & ~ ( - 6 , - 6 . 5 , - 5 . 5 ) ~ ~ ,  
i41=(2,1.5,2)LR , 42=(3,2.8,3.5)LR , &=(33,32,36)LR and function L, R are linear. 

The above problem is introduced to the program using the "Data Input" function. In 
criteria no.1 and 2 and in constraint 110.4, we use fuzzy numbers with their linear form 
(Fig.12). 
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Fig.13 Definition of aspiration level ijl . 

Then aspiration levels are defined. On the monitor screen the suggestion is displayed: 
'-28' for criterion no.1 and '-48' for criterion no.2. The decision maker takes as aspiration 
levels the following fuzzy numbers (fig.13): 

At this moment the data input is completed and the new problem is saved into a disc file. 
After returning to the Main Menu of FLIP we choose the function "Calculation". 

At the beginning we define safety coefficients that allow to transform fuzzy problem 
into deterministic one. The program makes a proposal: r=0.6, q=0 and 8=0.85. The 
value proposed for 8 is a middle value of approximated range of variability for 8, that is 
[-1.5,3]. The decision maker accepts this values without any changes. 

Next, the fuzzy problem is transformed into a deterministic problem according to the 
rules explained in part I. Then an appropriate pay-off table is calculated and the search 
for a starting point begins. When it is completed, we can pass to the interactive part of 
looking for the best compromise solution. Let lj denote the 1-th solution obtained in the 
j-th iteration and S, the number of compromise solution required. 

Let's take S=8. In the first iteration, we have got a series of 8 compromise solution 
for which middle values of criteria are presented in Tab.1. 



TABLE 1. 

When comparing them, we come to conclusion that the most interesting solutions are 
solutions l1 , 21 and 41, because they are not far from aspiration levels. 

Fig.14 shows a mutual position of particular criteria and their aspiration levels for 
solution 41 - upper windows - and for mlution 21 -lower windows. Let's suppose that we 
want to improve the value of criterion 1 (left windows). We choose solution 21 as a new 
starting point for the second iteration. 

Point q Bin Crit. 1 Ina lys t  C r i t .  1 
c 

-11.67 

Fig.14 Values of criteria for solutions 41 and 21 . 
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For S=10 we obtain solutions listed in Tab. 2. 
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TABLE 2. 
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As we see, the most interesting solutions from the viewpoint of criterion 1 are solutions 
32, s2, T2 and g2. Among those four solutions only solution 32 has a satisfactory value of 



criterion 2 (see Fig.15, upper windows). 
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Fig.15 Solution 32 

To accept this solution as the best compromise solution, we must analyze the state 
of fuzzy constraint for this solution. By the state we mean information about a risk of 
violation of the constraint. 

In the lower, left window in fig.15, we present the state of constraint no. 4. As we can 
seen, there is no risk of violation of this constraint. 

So finally, we choose solution 32 as the best compromise solution with following values 
of decision variables (Fig.15): 

x = 6.42 and x = 5.75. 

Part I11 

Solution of a real farm structure 
optimization problem 
Let us consider a real-life problem of searching for the best structure of a typical Polish 
private farm. The considered farm has 20 hectares (ha) of arable land and 4 ha of 
permanent grassland. The farmer possesses 6 sows and 4 cows. We take into account 26 
activities which can be divided into 5 groups: 



plant production for sale: winter wheat, winter barley, triticale, spring wheat, spring 
barley, rape, pea, potato, sugar beet; 

plant production for fodders consumed in the farm: winter barley, spring barley, 
triticale, spring wheat, pot atoe., fodder beet, lucerne, clover, corn; 

permanent grassland cultivation; 

purchase of fertilizers: phosphorus, nitrogen, potassium; 

purchase of a nutritive fodder; 

manpower hire: in the spring, summa and autumnal period. 

All these activities correspond to decision variables zl,zl,  ..., zw defining their dimension, 
e.g. number of hectares of winter barley for sale, number of kilograms of phosphorus to 
be bought, number of hours of manpower hire in the spring period. 

We take into consideration the following constraints: 

balance of arable land; 

2 balances of crop succession: for spring crops and for rape; 

3 constraints on the area of group of plants: for crops, for winter crops and for root 
crops; 

3 balances of manpower: for spring, summer and autumnal periods of extend man- 
power demand; 

3 balances of artificial fertilizers: for phosphorus, nitrogen and potassium; 

4 balances of fodders: for green fodder, for potatoes, for fodder beet and for nutritive 
fodder; 

balance of permanent grassland. 

The matrix of constraints is presented in Tab.1. Definition of fuzzy coefficients is given 
in Tab.2. 



TABLE 1. Set of constraints. 



TABLE 2. Fuzzy coefficients of constraints. 

TABLE 3. Fuzzy cost coefficients. 

E i  = (ci, X i ,  pi), s= l  for iilO, s=2 for i 2 10 
i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

c? 
500 
400 
380 
350 
405 
565 
500 
1400 
600 
180 
170 
180 
175 

0 
0 
0 
0 
0 
0 
0 
0 
0 
20 
10 
10 
10 

pi 
20 
20 
16 
20 
20 
25 
30 
50 
30 
0 
0 
0 
0 

i 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

cf 
780 
300 
140 
150 
250 
100 
0.1 
0.75 
0.04 
13 
0.8 
0.9 
1 

X i  
30 
20 
5 
10 
10 
5 
0.01 
0.25 
0.02 
2 
0.1 
0.2 
0.2 

pf 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 



Three criteria are used to evaluate solutions: 
- groee profit 

where fuzzy cost coefficients are presented in Tab.3 and constant c:=, h. is equal to 
(22000,0,0). 

- structure-forming plants area 

where 4 = 0.5, 4 = 6s = 47 = 1. 
- manpower hire 

where 4, = 4, = 4s = 1. After entering the data we get individual optima for the 
criteria that are calculated with fuzzy coefficients of the problem fixed on their middle 
values: 

Max fi = 20716, 

Max fz = 17.580, 

Min fJ = 180.52. 

According to the farmer suggestion, we take the following aspiration levels1: 

for fz - G2 = (4, 0.5, 0.5), 

for & - i 3  = (500, 50, 50), 

Now we must define safety coefficients. Let's take them in conformity with program 
suggestion T; = 0.6 ,~ ;  = 0 and 6; = 16.7 for i=l, ...., m. Approximate ranges of variation 
of 8; are: 87 E [-20.1,50],B8 E [-47.7,20] and 80 E [13.4,90]. 

Then, the fuzzy problem is transformed into the deterministic one. For this new 
problem the pay-off table is calculated and a darting point of the Ch-Atkin's method 
is searched for. The first starting point is yo=(-2.64,13.65,-0.72). 

Now we start with examination of the efficient border of the transformed problem 
looking for the best compromise solution. In each iteration, the number of compromise 
solution S to be compared must be a multiple of the number of criteria. Let's lj denote 
the 1-th solution obtained in the j-th iteration. 

Iteration 1. 
S=15. We obtain 15 solutions listed in Tab.4. In this table, only middle values of criteria 
for particular efficient points are shown. We have got a wide range of criteria values. 

'Although we w e  here a reprentation off fuzzy numbers consistent with their definition, in FLIP we 
introduce directly the valuea of left and right rangea insted of left and right spreads 



After first short analysis we can point out solutions that are not attractive because of too 
high deviation of values of particular objectives kom their aspiration levels, e.g for gross 
profit - solutions 11,21,31,51,61,81,91,111, 121,141,151 . 

From among solutions 41, 71, lo1, , solution lo1 is chosen as a new starting point 
for the next iteration. Now we are looking for a solution with a lower value of criterion 
23. 

TABLE 4. 

Iteration 2. 
Let's take S=12. We have got 8 solutions (Tab.5) and 4 of generated problems are 
contradictory. When we are searching through the feasible region, we make successive 
reductions of it and it can lead, in some cases, to contradictory problems. 

In this iteration we have got three very interesting solutions: 12, 72 and 10 2. For our 
DM, solution 7 2 is the best (Fig.16). 

TABLE 5. 



Figure 16. Values of criteria for solution 72. 

As we can see, for solution 72, the value of the gross profit and the structure-forming 
plants area are within the range of the fuzzy aspiration levels. To get full evaluation 
of solution 72, let us also analyze the state of fuzzy constraints. In the upper windows 
of Fig.17, we have constraints corresponding to the demand of manpower in the spring 
and summer periods. As we can see, this demand has been satisfied with some surplus 
and no risk of violation of these constraints. For a constraint in the lower window that 
corresponds to the demand of manpower in the autumnal period, the risk of violation is 
very small. So, we can try to relax constraints 7, 8, 9 by changing safety coefficients. 

h i n t  7 nrr W i t .  1 
U~RMBLES v n u  

X 1 0 .00 

X 2 10.20 

X 3 0.00 

X 't 0.00 

. , - 
Print 7 Irr C r i t .  1 nnalyre c r i t .  3 

J 
c 

I \ 

- - - - - - - - - - - - a -  

575.31 



Let's assume = 0.6,qi = 0 and Oi = 0 for all i. 

Poin t  7 IIan W i t .  1 ~ e n s t . 9  =( 

e a - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Poin t  7 N a n c r i t .  1 Cons? . 7  :( 
a 
8 - - - - - - - - - - - - - -  

S t * .  55 

600.00 

Figure 17. Fuzzy constraints for solution 72. 

Point  7 R a n c r i t .  1 const .t :( 
a - - - - - - - - - - - - -  

531.99 

580 .OO 

Iteration 1'. 
For S=15 we obtain solutions listed in Tab.6. 

TABLE 6. 



Iteration 2'. 
Taking solution 101t as a starting point and S=12, we get 8 new solutions (Tab.7). 

Figure 18. Fuzzy constraints for solution 421  . 

TABLE 7. 

For solution 421  the middle values of all objectives are within the range of their fuzzy 
aspiration levels. Fig.18 shows the state of fuzzy constraints for this solution. As we can 
see, there is no risk of violation of constraints 7 and 8 (lower windows) and a little bigger 



risk for constraint 9, then in solution 7 ~ .  

Figure 19. Values of criteria for solution 4 2 1  . 

207 15.00 

Finally, the DM has accepted solution 42: as the best compromise. The values of 
corresponding criteria are presented in Fig.19. 

So, 'we have got the following definition of the best-compromise farm structure: 

P r i n t  9 I a n  cr  i t .  1 fins l y re  cr  i t  . 2 

5 - - - - - - - - - - - - -  

5 .OP 

9 . O O  

a) plant production for sale: 

a 0.80 ha of winter wheat, 

a 9.20 ha of winter barley, 

a 0.67 ha of spring barley, 

a 2.75 ha of potatoes; 

- 
P o i n t  9 I a n  nit. 1 Lnalyrc cr i t .  3 

9 
C 

b) plant production for fodder consumed in the farm: 

1 -  

I 

\ 

a 1.92 ha of potatoes, 

a 0.5 ha of fooder beat, 

a 4 ha of lucerne; 

""""-""" 

c) 4 ha of permanent grassland under cultivation; 

S t 1  . I 9  

500.00 

d) purchase of fertilizers: 

a 3267 kg of phosphorus, 

a 2866 kg of nitrogen, 



2397 kg of potassium; 

e) manpower hire: 

281 hour's in the spring period, 

260 hour's in the summer period. 
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