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Foreword 

The deposition of heavy metals and the resulting risk of toxification of the environment is a 

problem which has only recently received attention. For the past two years, the Transboundary 

Air Pollution Project has been developing models for the long range atmospheric transport 

of heavy metals. The models involve the use of meteorological input and parameters along 

trajectories. This paper addresses the important question as t o  whether i t  is justifiable to use 

temporally and spatially averaged input data in the application of these models in producing 

long term average concentrations and deposition, and what kind of errors result from the use 

of mean values. This type of analysis is a necessary step in the development of heavy metals 

models. 

Bo R. Doos 

Leader, Environment Program 

Roderick W. Shaw 

Leader, Transboundary Air Pollution Project 
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Abstract 

The effect of applying mean (i.e. temporally and spatially averaged) input data (removal co- 

efficients, wind velocity, travel distance between source and receptor) in a long-term model of 

the transport of heavy metals (especially As) in Europe's atmosphere has been investigated by 

running modified versions of this model. At 5 receptors considered in this study, the application 

of mean removal coefficients in the model resulted in an underprediction of concentration values 

and dry deposition, being approximately 0.75 times the original values, and an overestimation 

of wet deposition by a factor of approximately 1.5. The assumption of a straight travel of pollu- 

tants between a source and some receptor brings about an overestimation of concentration and 

deposition by a factor of approximately 1.2. The application of a mean wind velocity changed 

results only slightly. All occurring effects have also been investigated theoretically, so that as- 

sertions and formulae which are independent of the special model under consideratiorl have been 

obtained. 
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On the Effect of Applying Mean 

Input Data in Long-Term Air 

Pollution Transport Models 

Ralph Lehmann 

1 Introduction 

In order t o  simulate the transport of air pollutants, a large variety of models has been devel- 

oped in recent years. They cover a wide range of spatial and temporal scales (from the local 

scale of hundreds of metres t o  the global scale; from hourly values t o  long-term, e.g. yearly, 

averages) and represent very different scales of model complexity (from highly simplified linear 

models t o  nonlinear models with a rather detailed description of physical and chemical pro- 

cesses). In particular, if a first estimate for the long-term spatial distributioil of certain air 

pollutants is required, simple models, often called "climatologic models", are applied (e.g. Ii lug 

and Erbshauiler, 1988, for SOz;  Derwent, 1987, for NO,; Alcamo et  al., 1990, for heavy metals). 

They need only a limited meteorological input.  Usual assumptions involved in such models are: 

1. The transport from some source t o  a certain receptor occurs on a straight tra.jectory by a 

mean value of the wind speed. The frequency of the occurrence of the corresponding wind 

direction is obtained from so-called 'wind roses'. 

2. The  pollutant is perfectly vertically mixed within the planetary boundary layer, for which 

a mean mixing height is assumed. Horizontal diffusion is neglected. 

3. The  chemical conversion and physical removal processes are assumed t o  be linear, i.e. the 

conversion or removal (per t ime unit) is proportional t o  the actual concentration, so that  

i t  can be described by linear differential equations. 

4. Mean (temporally and spatially averaged) coefficients are applied for chemical rea.ctions 

and for dry and wet deposition (i.e. "constant drizzle"). 

As a consequence of 3) and 4), the pollutant concentration along the trajectory can be 

described by exponential functions. If oilly decay and removal processes occur, one exponen- 

tial expression per pollutant is sufficient; an example which includes also the production of a 

secondary pollutant can be found, e.g., in Derwent (1987). 



Generally, i t  is believed that  the application of mean input data. (wind speed, removal coef- 

ficients etc.) is justified, a t  least t o  a certain extent, because effects produced by variations of 

these da ta  "average out" in the long term. In the present pa.per we investigate how efficiently 

this "averaging out" works and which systematic errors can occur. Some theoretical results 

(Section 4) are accompanied by a "real model" example (Section 5): A trajectory model of the 

transport of arsenic in Europe's atmosphere (Alcamo et al., 1990) is applied to  assess the effects 

of the simplifications involved in the development of a simple climatological model, especially 

the effect of averaged removal coefficients. The corresponding model is introduced in Section 2; 

a discussion of the basic effects resulting from averaged input da ta  is contained in Section 3. 

2 Model Description 

Let us first consider the vertically and cross-wind integrated pollutant concentration (in g nz-') 

along a trajectory that  starts a t  a point source of emission intensity Q [g s-'1 (a t  a t ime 2 = 0).  

Suppose that  the pollutant under consideration undergoes linear removal processes, described 

by a removal coefficient I<(t), which may vary with the travel t ime t along the trajectory. Then 

its concentration along the trajectory (i.e. in a Lagrangian sense) is given by 

where K( t )  = it I l ( r ) d r ,  

u(t)  = wind speed on the trajectory a.t travel t ime t. 

This formula reflects the exponential decay of the concentration as well as the dilution of the 

pollutant parallel t o  the trajectory, which is indirectly proportional to  the actual wind speed; 

for a derivation see Appendix A. 

If u(t)  is constant (= u),  we can simplify ( I )  by setting eo := $ : 

Usually, A' includes the removal by dry and wet deposition and chemical transformations: 

Vd where IiWdry = -, 
hmix 
W - P  - - - 
hmix ' 

vd = dry deposition velocity, 

h i  = mixing height, 



W = scavenging ratio (ratio of the pollutant concentration in precipitation 

versus its concentration in air), 

P = precipitation intensity (in mm s-I). 

In the present paper we omit the consideration of chemical transformations since arsenic in 

the atmosphere is assumed to be chemically stable. 

Dry and wet deposition are obtained from 

The trajectory model under consideration (Alcamo et al., 1990) is based on equations of the 

form (1). (The factor is not explicitly included in the trajectory model; but a correspoildiilg 
u t )  

factor appears "automatically", because the time that an air parcel stays over a certain emitter 

region [and during which it can take up pollutants] is indirectly proportional to the velocity 

u(0)  of that air parcel. A subsequent "compressing" and "stretching" of an air parcel due to 

changes in the wind speed, which is reflected in the appearance of --& in (1) instead of &, is 

not included in the model.) 

The model is a version of the EMEP-MSC/W model (Eliassen and Saltbones, 1983; Eliassen 

et al., 1988) adapted to the transport of heavy metals (As, Pb, Cd, Zn). Here we consider only 

the As version. For a receptor of interest, 96 - h back trajectories arriving every 6 h (i.e. 4 per 

day) are determined (using the 925 h P a  wind speed and time steps of 2 h). In order to obtain 

long-term concentration and deposition values, the results of several trajectory runs are used to 

compute mean concentrations and depositions, e.g. all trajectories arriving at  a receptor within 

one year are evaluated in order to  calculate the yearly mean concentration and deposition at 

that receptor. 

3 Basic Effects 

3.1 Concentration 

It can be seen from the short model descriptions in Sections 1 and 2 that one of the main 

differences between a climatologic and a trajectory model consists in the averaging operation that 

is applied to obtain mean climatologic concentration and deposition values: In the trajectory 

model, first computations with the "real" meteorological input are carried out, and then the 

results of several runs are averaged. On the other hand, in the climatologic model, first the 

meteorological input data are averaged, and then a model run is performed (cf. Fig. 1). Clearly, 



the second variant requires a smaller amount of computational time and less detailed input data. 

We are going to investigate, which "price" in terms of accuracy of the results we have to pay 

for this. To be more specific: Will the climatologic model yield results with a systematic error 

("bias"), or can errors be expected to  "average out"? 

As a first illustration, let us consider a pollutant source and a receptor which are separated 

by a fixed travel time i. We are going to  investiga.te the effect of the application of an averaged 

removal coefficient K, which, for simplicity, is assumed to  be constant along each single trajectory 

and may assume only two values: Kl  for half of all trajectories and K2 for the remaining 

trajectories. (Emission Q and wind speed u are assumed to be constant.) Then the trajectory 

and climatologic model would yield the following results (cf. (3)): 

Cclim = co . e- $(Ki+Kz)F 

It follows directly from the convexity of the exponential function that 

Cclim < Ctraj  

(cf. Fig. 2). That  means: 

The application of an averaged removal coeficient in the clinzatologic model always re- 

sults in an underestimation of the concentration. Thus, errors in the computation of the 

concentrations of pollutants coming from different sources to a certain receptor cannot 

"average out ". 
A slightly different interpretation of (4) and (5) is the following: After rewriting (5) in the form 

we easily observe that the trajectory model computes the arithmetic mean of the concentrations 

(corresponding to  different trajectories), whereas the clima.tologic model yields the geonzctric 

mean of these concentrations, which is known to  be smaller than the arithmetic mean. This 

effect will therefore be important a t  receptors where concentrations have a significant temporal 

variability, and less important where this variability is relatively small (i.e. arithmetic mean 

concentration z geometric mean). 

3.2 Deposition 

Now let us consider the deposition a t  a certain receptor. The (local) removal coefficient at 

that receptor may vary with time, e.g. the wet removal coefficient depends on the intensity 

of precipitation. Concerning the effect of the applica.tion of averaged input data, the following 

question arises: 



Knowing the mean concentration a t  a receptor, can we compute the mean deposition 

at that receptor simply by multiplying the mean concentra.tion by the mean removal 

coefficient? 
In order to simplify the subsequent discussion, let us consider only one removal process (wet 

deposition). We observe the following effect: If there is intense precipitation (i.e. a large removal 

coefficient) a t  the receptor, then it probably has been raining also along the trajectory prior to  

arriving a t  the receptor, i.e. a large portion of the pollutant has already been deposited along 

the trajectory and only a small concentration arrives a t  the receptor. If we interpret deposition 

d = El K(1) . c(l) (I = number of trajectory) as a weighted average (average of Ii weighted by 

c or average of c weighted by K), then large values of K are associated with small "weights" c 

(i.e. large values of K are under-represented in the weighted average in comparison to  the usual 

arithmetic average), whereas small values of K are associated with large "weights" c. That is 

why, the weighted average is lower than the product of the mean Ii and the mean c .  In other 

words: 

Multiplying the mean concentration by the mean (local) removal cwficient, ure overesti- 

mate the deposition. As, however, the mean concentration is underestimated by applying 

averaged removal cwficients, it is not clear at this stage, whether the deposition will 

finally be overestimated or underestimated. 

The verbal reasoning of the preceding paragraph can be put on a stronger mathematical ba.sis. 

Keeping in mind that we consider frequency distributions of input data (e.g. the frequency of the 

occurrence of a certain precipitation intensity in a certain year or in the "climatologic mean") 

rather than probability distributions, let us adopt the "language" of proba.bility theory: The 

mean value of some variable X (e.g. concentration or removal coefficient) corresponds to  its 

expected value E(X) ;  the coincidence of large or small values of some variable X (e.g. removal 

coefficient) with large or small values of a variable y (e.g. concentration) is expressed by the 

covariance Cov(X, y ) .  

From the definition of the covariance 

Cov(X,y)  = E ( X  . y )  - ( E X ) .  ( E y )  

it is only one step to  the equation 

( E X )  ( E y )  = E ( X  . y )  - Cov(X ,y )  

or, for our special application, 

( E K )  . (Ec)  = E(Ir' . c) - Cov(I i ,  c) (7) 

As larger (local) removal coefficients Ii usually coincide with a smaller pollutant concentration 

arriving (cf. reasoning above), Ii and c are negatively correlated. Thus, it follows immediately 

from (7) that 



( E K )  . (Ec )  > E ( K  . c), 

i.e the multiplication of the mean concentration by the mean removal coefficient results in an 

overestimation of the mean deposition. 

Analogous arguments are applicable for dry deposition: The (local) dry deposition coefficient 

a t  a certain receptor is expected to  be positively correlated with the dry removal in the vicinity 

of the receptor (when dry deposition is small due to  increased atmospheric stability a t  night, it 

is also night-time in the vicinity of the receptor; surface properties like, for instance, snow cover 

are positively correlated within the surroundings of a receptor). As a result, the (local) dry 

removal coefficient and the arriving concentration can be expected t o  be negatively correlated. 

Therefore, (7)  is also applicable to  dry deposition. 

Until now, we have dealt with wet and dry deposition separately, in order t o  simplify the 

problem under consideration. For answering the question, whether such separate investigation 

of processes would be correct even for quantative estimations, Equation (6) is helpful again. 

After introducing the abbreviations 

t  

w e t  t )  = I i w e t  ( r ) d r ,  

we obtain from (3)  

If K d r y  and Kwet (and thus also e - K d r ~  and ) can be assumed t o  be statistically inde- 

pendent (which is not unrealistic, even though smaller effects like an enhanced dry deposition 

of soluble pollutants on wet surfaces occur), then we obtain from (6): 

For the mean coefficients Edry  and Ewet we obtain 

e - E d r u + K w e t  - - e - K d r y  e K w e t  

and thus from (8) 

i .e. the simultaneous effect of applying avera.ged values for dry and wet removal coefficients can 

be estimated by simply multiplying their individual effects. For a,n illustra.tion see Ta.ble 5 (which, 

however, includes the effect of applying an averaged mixing height sepxately): The product of 



the numbers in the first three rows (application of single averaged parameters) differs from the 

corresponding elements in the fourth row (application of simultaneously averaged parameters) 

by less than 10%. 

3.3 The Effect of Averaging Wind Speed and Travel Distance 

If ( I ) ,  (2) are applied within a climatologic model, averaged values are used not only for the 

removal coefficient I i ,  but also for the wind speed u(t) a t  the receptor and the travel time t .  The 

variance of the travel time t results from two effects: Variation of the travel distance between a 

(fixed) source and receptor (caused by the varying curvature of the trajectories) and variation 

of the (mean) wind speed along different trajectories. 

Let us first consider the effect of an averaged travel distance between some source and a 

certain receptor. In order t o  separate effects, we assume that u and K are consta.nt. Then we 

obtain from (1)-(2) after expressing the travel time t by the travel distance s: 

We observe that s enters this formula "in the same way" as I< does. That is why all consid- 

erations concerning Ii are also applicable to  s, i.e. the application of a mean travel distance 

will produce an underestimation of concentrations, and of depositions as well (because of the 

proportionality d = Ii . c, which is independent of s). 

If, however, instead of the mean travel distance, the straight-line travel distance s,,, between 

source and receptor is applied (what is usually done), then s is underestimated (or, a t  least. 

not overestimated) for each trajectory, which results in an overestimation of the concentration 

arriving (and deposition, too). 

Now let us consider the effect of applying an averaged wind speed. In order to  separate 

effects, we assume that Ii and the travel distance s are constant, so that we obtain from (1)-(2) 

analogously to  (9): 

Here $ enters the formula in the same way as the removal coefficient Ii enters the formula for 

the deposition 

- 

(with the only difference that,  when averaging u, we apply 6 instead of (i) , where the bar 

- denotes averaging over several arriving trajectories). We are going to  explain this in more 

detail: As can be seen from ( lo),  u influences the concentration c a t  the receptor in two ways: 

It determines the travel time and thus the removal of the pollutant along the tra.jectory; and 

it influences the spreading of an air parcel parallel to  the trajectory (which is reflected by tlie 

factor & ). The application of the mea,n value (i) instead of J: l d p  would result in an 
u( P )  



underestimation of the averaged (long-term) value of c(s) ( the reasoning from Section 3.1 ca.n 

be applied directly in this case). However, this underestimation is partly compensated because 

of the use of i instead of ( 5 )  (because of - i > - (i) , which follows from the fact that the 
- 

harmonic mean l /  (i) is less than the arithmetic mean u ) . 
Moreover, the factor & in front of the exponential expression results in a further com- 

pensation of the underestimation (or even in an overestimation). In order to  explain this, we 

can argue in total analogy t o  Section 3.2: The wind speed u(s) a t  the receptor is positively 

correlated with the wind speed in the vicinity of the receptor (at least). That  is why & will 

be positively correlated to  i in the vicinity of the receptor (at least) and, as a consequence, 

also with &dp . That means that a rather strong removal along the trajectory (resulting 

from a small wind speed and thus a large travel time) will most probably be associated with a 

weak spreading parallel to  the trajectory (resulting from a small wind speed u(s) ) . In total 

analogy t o  the reasoning in Section 3.2, this negative correlation between removal along the 

trajetory and spreading (or dilution) parallel to it results in a compei~sation of underestimation 

(or even overestimation) of the mean concentration (and also deposition, which is proportional 

to  c, independently of u). 

4 Analytical Formulae 

4.1 Concent rat ion 

Let us consider a certain receptor and some (fixed) pollutant source a.gain. The concentration 

along one trajectory connecting these two points ca.n be computed by (3) (omitting the argument 

t here): 

where 

co = concentration a t  the source 

(we have implicitely assumed a constant wind speed), 

c = concentration a t  the receptor, 

K: = integrated (along the trajectory) removal coefficient. 

Now assume that K: can assume not only two discrete values like in Section 3.1, but a 

continuous distribution of the frequency of the occurrence of K: values is given. Thus, the factor 

of the underestimation of the mean concentration E co e-  by applying a. mea.11 removal ( "1 
coefficient E(K)  in the computations depends on the form of the frequency distributioi~ for K 

(as well as on the variance of K:). The varia.nce of 



K = J ~ ~ + E ~ ~  
o hmix hmix 

is caused by variations in the dry deposition velocity vd,  the precipitation intensity P, the mixing 

height h,;,, and the travel time t (variations from one trajectory to  another). 

Analytical results for three simple, but frequently used, distributions are given in Table 1. 

They have been obtained by straight-forward integration. 

The result for the normal distribution should be applied carefully (i.e. only for small a2 ) ,  

since the assumption of normally distributed K values is unrealistic in the sense that negative 

K are allowed to occur, which correspond to an exponential increase of the concentration in 
K c = c0.e- . 

The gamma distribution is rather realistic, for instance, for describing the frequency of 

precipitation amounts, especially if integrated (along trajectories) amounts are considered (cf. 

Fig. 3). 

In order to  give an example for the application of the theoretical formulae, let us assume 

that we are interested in estimating the effect of the application of averaged precipitation data. 

Then K represents wet removal. (Remember that, according to  Section 3.2, wet and dry removal 

can be treated separately). In order to exclude the effect of varying mixing heights h,;, and 

travel times t ,  we assume a fixed mixing height (900 m) and consider concentration versus 

travel time t rather than versus travel distance. If we want to  apply a formula from Table 1, 

we have to  estimate the variance a2 of the integrated (along trajectories) removal coefficient 

K = Ji K ( r ) d r .  This is rather difficult, because a2 depends on the covariance between the 

coefficients K (T )  which are met on the trajectory: 

a2 = E ( K - E ) 2  with iC = E ( K )  
2 

= E (l ~ ( r ) d r  - lt B ~ T )  with 6 = E ( I i )  

2 

= E ( L ( K ( ~ )  - ~ ) d r )  

In the following we shall present results for two extreme cases: 

1 .  "Full information on a2 ": Here this information is obtained by analysing the precipitatioll 

data on the 1460 trajectories arriving a t  the receptors under consideration during one 



year (1985). However, in usual circumstances, such information would probably not be 

available. 

2. "No information on a2 ": Suppose that we know only the mean value E and do not have 

any information about the variance a2 of K. The only additional information we have 

is that K is non-negative, i.e. may range in the interval [O,oo). If one wants t o  select a 

frequency distribution "using all information which one has, but avoiding any information 

that one does not have" (Theil and Fiebig, 1984), i t  is often recommended to  apply the 

"maximum entropy principle" (Tiwari and Hobbie, 1976; Theil and Fiebig, 1984). The 

essential idea consists in maximizing the entropy of the frequency distribution subject to  

the constraints expressing the whole information that we have . In the present situation 

(K E [0, oo), E (K)  = E )  this results in the exponential distribution (frequency distribution 

function f (K)  = E-e-KIR)  (Kagan et al., 1973; Theil and Fiebig, 1984), which fortunately 

happens t o  be a special case of the gamma distribution (with u = E) .  

We have applied the formula in Table 1 for both assumptions on u2 and compared the results 

to  the concentration computed by applying a mean wet removal coefficient as well as the "real" 

mean concentration obtained from calculations along 1460 separate trajectories. The results are 

contained in Table 2. 

It can be seen that the assumption of exponentially distributed wet removal coefficients 

yields results which are superior to  results calculated for "mean drizzle". Even if one would 

reject them as not being totally exact, a comparison between them and the "mean drizzle" case 

provides good information about the order of the deviation of the "mean drizzle" case from the 

"real" case, i.e. the magnitude of the effect (error) of applying an averaged removal coefficient. 

If no information about the form of the frequency distribution function for K is available, one 

might again exploit the maximum entropy principle or apply an approximation of the following 

form, which is valid for arbitrary distribution functions: 

1 
x e-" - E (1 + (K - I )  + I(K - El2) (truncated Taylor series) 

-' lo? x e . e2 (truncated Taylor series), 

which coincides with the result for the normal distribution. It is equivalent to  



i.e. by applying an averaged (integrated) removal coefficient h', we underestimate the mean 

concentration by a factor of approximately e - fu2 ,  where u is the standard deviation of K (i.e. 

a measure of the variability of K from one trajectory t o  another). 

4.2 Deposition 

I t  has been explained in Section 3.2 tha t  the factor of over- or underestimation of the deposition 

depends on the correlation (or covariance) between the (local) removal coefficient a t  the receptor 

and the integrated removal coefficient along the trajectories. It is extremely difficult both to  

compute this correlation for "real world" cases and t o  include i t  in analytical formulae. That  

is why we present analytical results only for the most simple case: We assume the removal 

coefficient li t o  be constant along each trajectory (i.e. "perfect correlation"; i t  follows K(t)  = 

1 i . t ) ;  but i t  may vary from trajectory t o  tra.jectory. Results for this case are contained in Table 

3. Here li may represent either wet or dry or wet + dry removal. 

Analogously t o  Section 4.1, we can derive an approximation t o  E (X . e-"') which is valid 

for an arbitrary frequency distribution function: 

E (P . e-"l) 

= E (I< . e-"' . e 

- - ,-fit . (I< . e 
-(,-,)') 

(I? + d) ( l  - dt + where d := K - I? 

I;. + (1  - Kt )d  + ( l I? t2  - t)d2 + 
2 

- - .e-'' 
+ ( i u 2 t 2  - $)) 

u2 1 2 2  -- , x . e - ' t . e ~ u t  . e  K ' ,  

Tha t  means tha t ,  based on the concentration computed with a mean removal coefficient, the 
u2 

deposition is overstimated by a factor of approximately e k t .  The combination of both effects 

(underestimation of concentration, overestimation of deposition based on tha t  concentration) 

results in an overestimation of the deposition when (approximately) 



and in an underestimation of the deposition when (approximately) Kt > 2. It is interesting to  

note that the (perhaps difficult to  obtain) variance u2 does not appear in this estimate so that 

the latter one can be applied easily. However, one should keep in mind the assumptions and 

approximations involved in its derivation. In the case of wet deposition at Haapasaari (Finland) 

(W = 350000 for As, R = 0.3 mm/6 h on trajectories to Haapasaari, h,;, assumed to  be 900 m) 

we obtain that the deposition is overestimated for travel times 

which is, a t  least, not in contradiction with the results of Table 4. 

The data in Table 4 indicate that ,  by applying a mean wet removal coefficient, we may 

overestimate the wet deposition a t  some receptor originating from emissions of a certain source 

by a factor of more than 2. The reason is the rather strong negative correlation between the 

removal coefficient a t  the receptor and the arriving pollutant concentration (cf. Equa.tion (7)), 

which may be explained in words as follows (cf. also Section 3.2): If wet removal occurs at the 

receptor, then only a rather small concentration arrives because of the wet removal along the 

way to  the receptor. This arriving concentration (in the case of precipitation a t  the receptor) 

is overestimated if a "constant drizzle" removal coefficient (which is relatively small because 

it distributes the precipitation uniformly over dry and wet periods) is applied. That  is, even 

though for "real" precipitation as well as "constant drizzle" the same precipitation amounts are 

assumed, the wet deposition differs considerably, since rain falling in the "constant drizzle" case 

encounters a higher pollutant concentration a t  the receptor. 

4.3 Possible Applications 

Analytic formulae of the type presented in the Sections 4.1 and 4.2 may be applied to  estimate 

the effect of averaged removal parameters in a simple air pollution transport model. Ifa.ccura.te 

information about the frequency distribution of the removal parameters is available (including 

rather exact knowledge of the standard deviation), they can even be applied to  correct results 

obtained by a simple model. 

If one is forced to  draw the conclusion that the application of an averaged removal parameter 

does not yield sufficiently accurate results, one may prefer the following approach: The range 

of possible values of that parameter is divided into several subranges. Then model runs are 

performed for one parameter value out of each subrange, and, finally, the model results a,re 

superimposed (in the sense of a weighted average) according to  the frequency of occurrence of 

each subrange. In this case error estimates as presented in Sections 4.1 and 4.2 can provide a 

tool for determining the necessary number of subranges. Concerning the form of the frequency 

distribution, i t  would be rather "natural" to assume a uniformly distributed para.meter within 

each subrange, since, given only lower and upper bounds of a. random variable, the maximum 



entropy distribution coincides with the uniform distribution (Kaga.n et al., 1973; Theil and 

Fiebig, 1984). 

5 Model Results 

In order t o  estimate the magnitude of the effects of applying averaged input data (removal 

coefficients, wind speed, travel distance), we simulated these effects by running the trajectory 

model (cf. Section 2) with averaged input data and comparing the results to  the original output 

of the trajectory model. This was done for all trajectories arriving a t  5 receptors (Haapasaari, 

Finland; Arup, Sweden; Aspervatn, Sweden; Kiel, F.R.G.; Kecskemet, Hungary) in 1985. We 

are going to  report mean (= average of the results for the 5 receptors) factors of over- or 

underestimation of the computational results. 

In practice, there are (at  least) three levels of averaging input data: 

1. Temporal averaging (T): Suppose we know long-term averages of input data for all grid 

elements. Then we can apply them immediately in the model calculations (without any 

spatial averaging). The theoretical investigations in Section 4 refer to  this case. 

2. Temporal and partially spatial averaging (T/pS): Suppose we are interested in computing 

concentrations and depositions a t  a certain receptor, for which we know long-term averages 

of input data; but for the rest of the model area only one (temporal and spatial) average is 

known. Then we have to  apply the latter average to  calculate the removal along trajecto- 

ries, but we can use the "local" informa.tion at the receptor under consideration to coilvert 

the arriving concentration into deposition values, thus taking into account local fea.t ures 

like, e.g., orographically induced precipitation. This level of averaging of input data ha.s 

been applied in the climatologic model of Alcamo et al. (1990). It does not guarantee a 

strict mass conservation, since the local deposition (Ii'(s) - c(s)) does not coincide wi tll the 

local removal computed with a mean removal coefficient (I;' c(s)). For example, the local 

wet removal a t  a receptor with large precipitation amounts may be rather high, wherea.~ 

the concentration along the trajectory after passing that "wet" receptor is not affected 

by it (in the computations), because the mean removal coefficient is applied. However, 

the kind of averaging input data considered here does not introduce a systematic bias (if 

applied to  several sources and receptors), cf. Appendix B. 

3. Tempoml and spatial averaging (T/S): Suppose we know only one (temporal and spatial) 

average of the input data. Then we have to  apply this throughout the model calculations. 

In this case, the effects of temporal averaging combine with the effects of spatial averaging. 

so that a t  a certain receptor either a.n underestimation or overestimation of the concen- 

tration and deposition can occur. If, however, we are interested in the spa.tially (and 



temporally) averaged model output, e.g. the total deposition within the model region, 

then the results of Section 4 can be applied directly (after replacing temporal averages 

by temporal and spatial averages). This can be reformulated in another way: If we are 

interested in the expected value of over- or underestimation a t  receptors within the model 

region, then the results of Section 4 can be employed again. 

In the present study, we used only the input data corresponding to  the 5 .  1460 trajectories 

mentioned above, so that ,  e.g., temporal averaging means computing the average of the input 

data a t  a certain grid element over all time periods in which it is met by one of those trajectories. 

This kind of "limited averaging" excludes the introduction of a bias resulting from the use of 

data corresponding to  grid elements (or time periods) which are not covered by the trajectories 

under consideration; in other words: The "averaged-input" trajectory model and the original 

one operate with exactly the same input, which is then treated differently (cf. Fig. 1). 

The simulation results for different input parameters as well as for different levels of averaging 

are displayed in Table 5. In each run the parameters indicated have been averaged, whereas the 

remaining were applied in their original form. The effects (of the temporal averaging) predicted 

in Section 3 (underestimation of concentration, possible overestimation of dWet for averaged 

precipitation intensity and of dd,, for averaged dry deposition velocity) are correctly reflected 

by the results in Table 5. The cases "T/pSW and "T/SV, though including also spa.tia1 averaging, 

yielded rather similar outcomes. The only major difference occurs for an averaged dry deposition 

velocity, for which the spatial averaging results in an underestimation of the deposition over 

land (and hence increased concentration), but a severe overestimation of deposition over sea (at 

the grid elements of two of the five stations under consideration, Arup and Aspervatn, a dry 

deposition velocity corresponding to  the sea surface has been a.pplied in the present model!). 

In order t o  simulate the effect of applying an averaged or straight-line travel distance between 

a source and a receptor, we "stretched" or "shortened" all trajectories linking a source-receptor 

pair, so that they had the prescribed (averaged or straight-line) length (which is equivalent to  

applying the original length of the trajectories with an altered travel time). The simula.tion 

results are contained in Table 6. They confirm the effects predicted in Section 3.3: Underesti- 

mation of concentration and deposition in the case of the application of a mean travel distance 

(i.e. mean length of all curved trajectories linking a source and a receptor) and overestimation 

in the case of the application of the straight line distance. 

The estimation of the effect of averaged input parameters on so-called transfer coefficients, 

i.e. the pollutant concentration (or deposition) a t  a certain receptor coming from one specified 

source, remained outside the scope of the present simulation (though the theoretical results of 

Section 4 are directly applicable t o  this case). However, as the deposition (or concentration) at 

a receptor is equal to  the emission-weighted mean of transfer coefficients, e.g. 



where dk = deposition a t  receptor k, 

e; = emission at source i, 

c;k = transfer coefficient from source i to  receptor k, 

the results presented can be interpreted as being the weighted mean of results obtained for 

transfer coeffients. 

6 Conclusions 

For the heavy metals transport model and the 5 European receptors under consideration, we can 

conclude that the averaging of input data describing removal processes (precipitation intensity 

P, dry deposition velocity v d ,  mixing height h,,,) results in an underestimation of concentration 

and dry deposition by a factor of approximately 0.75 (i.e. the prediction amounts to  75% of the 

original value) and an overestimation of the wet deposition by a factor of approximately 1.5. 

In the application of an averaged wind speed, there are overestimating as well as underesti- 

mating effects, which nearly cancel out. 

The use of a mean (curved) travel distance between a source and a receptor brings about an 

underestimation of concentration and deposition by a factor of z 0.9; whereas using the straight 

line distance, we overestimate concentration and deposition by a factor of z 1.2. 

(For a theoretical explanation of all effects see Section 3.) 

These results indicate that the errors introduced by applying averaged input data in a long- 

term air pollution transport model are within the error bounds that are generally accepted 

(e.g. deviation from measurements within a factor of 2) and comparable to  the errors due to 

uncertainties in the input parameters (e.g., doubling the dry deposition velocity and the washout 

ratio in our present example would decrease concentrations by a factor of 0.67). However, if 

one attempts to  include more sophisticated descriptions of physical and chemical processes in 

a simple long-term model, one should keep in mind that errors of the order of a factor o i  

1.5 are already implicit in the simple model structure (i.e. the application of averaged input 

parameters). A possible remedy could consist in dividing the range of each parameter into 

several subranges and running the model for one parameter value per subrange. However, this 

procedure would require information about the frequency of the occurrence of each subrange 

and about correlations between different parameters, which may be difficult to  obtain. 



Appendix A: Derivation of the Basic Transport Equation 

In this appendix the basic transport equation (1) will be derived. We consider the vertically and 

cross-wind integrated pollutant concentration (in g m-') along a trajectory. If this trajectory 

starts a t  a point source of emission intensity Q [g s-'I, the initial concentration Eo is obtained by 

setting the pollutant flux (through a plane which is perpendicular to  the trajectory and situated 

in the immediate vicinity of the source) F = uo . C0 equal to  the emission intensity Q: 

where uo is the wind speed a t  the source. 

Assume, for simplicity, that the wind field is temporally constant, so that the form of the 

the trajectory does not change with time. Then we can define a (perhaps curved) coordinate 

system along the trajectory and describe the fate of the pollutant along the trajectory by the 

Eulerian equation 

where 

s = path length along the trajectory, 

c(s, t) = pollutant concentration, 

U(S) = wind speed along the trajectory, 

K (s )  = removal coefficient. 

If we follow a certain air parcel on its way along the trajectory, we have to  consider the 

pollutant concentration and the input data in a La.grangian sense (indicated by - over the 

variables): 

E(t) := c(S(t), t), 

G(t) := u(S(t)), 

~ ( t )  := K(S(t)), 

where S(t) is the position of the air parcel a.t time t,  which is determind by 



Remark: The  assumption of a temporally costant form of the trajectory can be relaxed if we 

consider (11) only on a domain {(s, t ) ls E (9(t) - c, B(t) + c), t E [to, tmax]) with an arbitrarily 

small c, (instead of {(s, t) ls E [s,;,, s,,,], t E [to, t,,,]}), which is sufficient for "following" the 

air parcel under consideration. 

In order to  simplify the notation, in the following we omit the arguments of the temporally 

or spatially dependent variables, which are (S(t) , t )  for c, B(t) for u  and K, and t for 2, ii, and 

I?. 

Differentiating (12), we obtain 

because of (11) (after differentiating the product term on the left-hand side). 

Taking into account tha t  

dii - - - d9 du - . -  
d t dt ds  

- - du. - u . -  
d s 

(because of (13) and (15)), we obtain from (16) together with (12) - (14): 

1 dZ - 1 dii --- - - . - -  I?, 
2 dt ii dt 

which yields after integration 

and finally 

which we wanted t o  prove (the tilde - for indicating variables in the Lagrangian sense has been 

omitted in Section 1). 



Appendix B: The Problem of Mass Conservation in the Case of 

a Temporal and Partially Spatial Averaging of Input Data 

Let us consider the deposition along a straight trajectory, assuming a mean wind speed ii and a 

mean removal coefficient I?. Then the concentration of a pollutant along this trajectory can be 

described by 

(cf. (9)). 

If the local deposition is computed by applying the local (non-averaged) removal coefficient 

K(s) ,  it is given by 

The total deposition along the trajectory amounts to 
03 

D := 1 d(s) ds. 

Strict mass conservation would be satisfied if 

As different removal coefficients have been applied for computing the decay of the concentra.tion 

along the trajectory (I?) and the local removal (li '(s)), we cannot expect Equ. (17) to be strictly 

fulfilled. However, a weaker form of "mass conservation" can be proved: If we assume that the 

local removal coefficient li'(s) is a result of random fluctuations of the removal coefficient around 

its mean value I? (i.e. E(li '(s)) = I;'), then we obtain for the expected value of D: 

E ( D )  = E (Im d(s) ds) 
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(calcutation of mean wind speed, 

mean removal coefficients etc.) L 
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Climatologic mean concentra,tion and deposition 

Figure 1: Schematic representation of the data flow for the trajectory model and the climatologic 

model. 



Figure 2: The effect of the application of a mean removal coefficient I;' (in the case of two 

possible values K l  and K2 for K): 

Full circle: Concentration computed by applying the mean removal coefficient = i(~i-1 + 6 ' 2 ) ;  

Blank circle: Average of the concentrations computed by applying the removal coefficients 

and K2 separately. 
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Figure 3: Frequency of the occurrence of precipitation amounts: measured values (solid boxes) 

versus gamma distribution (with the same mean value and standard deviation; dotted boxes) 

for integrated precipitation on 48 h-back trajectories arriving a t  Haapasaari, Finland. 



Table 1: Factor 4 of the underestimation of the mean concentration in the case of the application 

of a mean removal coefficient (for three assumptions on the frequency distribution of the removal 

coefficient). 

Range 

Mean 

Variance 

Frequency distribution 

function f (h') 

E (e-K) 

4 = e-'/~(e-') 

Table 2: Mean pollutant mass (in % of the emission) arriving a t  Haapasaari (Finland) from 

sources which are 12 ... 96 h up-wind (Wet deposition has been considered as the only removal 

process here). 

Normal 

distribution 

( - m , m )  

K 

a 

1 K - R  
k e - 5 ( ? )  

0 2  
e - K .  e~ 

2 -- e 2 

Uniform 

distribution 

[ E - A , R + A ]  

K 

a = &A 

1 
2.A 

e-R . eA -e-A 
2  A  

2A 
eA-e-A 

Travel 

Travel 

time 

(h) 

12 

24 

48 

72 

96 

Gamma 

distribution 

00) 

K: = ap 

a = &I 

K 

- par(0) 1 
KO-1 e -7 

O 

(*) 

e - ~ .  + s)“ 

Computations 

along 1460 

trajectories 

81.2 

70.4 

55.4 

47.2 

40.1 

Computa.tions 

with meail 

precipitation 

7 1.6 

53.1 

3 1.9 

21.2 

15.3 

Theoretical formulae 

Precipitation 

gamma- 

distributed 

80.8 

69.5 

56.0 

49.3 

43.3 

Precipitation 

exponentially 

distributed 

74.9 

61.3 

46.7 

39.2 

34.8 



Table 3: Factor 4 of the over- or underestimation of the mean deposition in the case of the 

application of a mean removal coefficient (with perfect correlation along each trajectory, cf. 

Section 4.2). 

Range of K 

Mean 

Variance 

Frequency distribution 

function f ( I < )  

E(Ii '  e-"') 

4 = E .  e - K t / ~ ( ~ { .  e-"t) 

Uniform 

distribution 

[ R - A , K + A ]  

I? 

a = &A 
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2.A 

A 

L3 
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distribution 

( - 0 0 ~ 4  

I? 

a 
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e-X.t 22 -& . e  2 e  h' 
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distribution 
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Table 4: Mean pollutant mass (in % of the emission / h of travel time) deposited near Haapasaari 

(Finland) from sources which are 12 ... 96 h up-wind (Wet deposition has been considered as the 

only removal process here). 

Computations 

with mean 

precipitation 

2.46 

1.82 

1.40 

1.10 

0.89 

0.73 

0.62 

0.53 

Travel 

time 

(h) 

12 

24 

36 

4 8 

6 0 

7 2 

84 

9 6 

Table 5: The effect of applying averaged input data: R.atio of model results for averaged input 

data and standard model results (for concentra.tion c, dry deposition ddT,, and wet deposition 

dwet), for more details see Section 5. 

Computations 

along 1460 

trajectories 

1.19 

0.87 

0.72 

0.64 

0.57 

0.53 

0.50 

0.44 

Parameter 

Precipitationintensity 

Dry deposition velocity 

Mixing height 

A11 ( P ,  vd, hmiz) 

Wind speed 

Type of Avera.ging 

Temporal + 
spatial 

(TS) 

c ddry dwet 

0.77 0.76 1.29 

1.13 3.17 1.09 

0.83 0.83 0.93 

0.76 2.05 1.30 

0.93 0.93 1.00 

Temporal 

(T)  

C ddry dwet 

0.80 0.79 1.74 

0.97 1.06 0.98 

0.84 0.85 0.94 

0.72 0.79 1.56 

0.97 0.97 0.97 

Temporal + 
partially spatial 

(TIPS) 

c ddry dwet 

0.77 0.76 1.67 

1.13 1.23 1.09 

0.83 0.84 0.93 

0.76 0.83 1.65 

1.15 1.17 1.23 



Table 6: The effect of applying a modified travel distance of pollutants: Ratio of model results for 

mean or straight travel distance and standard model results (for concentration c ,  dry deposition 

d d r y ,  and wet deposition d w e t ) ,  for more details see Section 5. 

Mean 

travel dista.nce 

d d r y  d w e t  

0.90 0.89 0.86 

Straight 

travel distance 

c d d r y  d w e t  

1.20 1.22 1.24 


