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FOREWORD 

Some of the most exciting current work in the environmental sciences involves 
simplified but analytically tractable versions of a few basic equations. IIASA's Environ- 
ment Program has developed such an approach in its analysis of forest systems. A 
number of previous papers (WP-87-70, and WP-87-92) have demonstrated the progress 
that has been made. In this new work some of the ideas contained in those papers have 
been further developed. 

In particular a simple aged-structure forest model is considered to  prove that a forest 
can exhibit periodic behaviour even in the case the insect pest is adapted only to  mature 
trees. The insect pest assumed to have a very fast dynamics with respect to  trees and the 
analysis is carried out through singular perturbation arguments. The method is based 
only upon simple geometric characteristics of the equilibrium manifolds of the fast, inter- 
mediate and slow variables of the system and allows one to  derive explicit conditions on 
the parameters that  guarantee the existence of a limit cycle in the extreme case of very 
fast-very slow dynamics. 

Bo R. Doos 
Leader 

Environment Program 



LIMIT CYCLES IN SLOW-FAST 
FOREST-PEST MODELS 

S.  Muratori and S .  Rinaldi 



1. INTRODUCTION 

In a recent paper, Antonovsky et al. (1990) have presented two simple age-structured forest 

models in which the insect pest attacks either young or old trees. The analysis of their three- 

dimensional models, mainly based on the existence of eteroclinic and Hopf bifurcations, shows 

that a stable limit cycle can exist for suitable values of the parameters if the insect pest feeds 

upon young trees. On the contrary, if the insect pest is adapted only to  old trees, then periodic 

oscillations cannot occur. This means that age-dependent predation has a very sharp and 

strategic role in determining forest dynamics. 

Although we believe that stability of ecosystems may be (as pointed out by Hasting 1983, 1984 ) 

sensitive t o  age-dependent predation, we also believe that the result of Antonovsky et al. (1990) 

is definitely too crude. Indeed, the result is in contrast with the conclusions that Ludwig et al. 

(1978) have obtained with a somehow similar three-dimensional forest model in which foliage 

and wood were considered as state variables. Moreover, and this is possibly more important, 

the conclusion of Antonovsky et al. (1990) is also in contrast with the evidence in the data 

of the forest they analyze, namely the balsam fir forest of Eastern North America which has 

experienced periodic outbreaks of spruce budworms although such a pest is mainly feeding on 

the foliage of adult trees. We suspect that this is due to the oversimplified dynamics of the 

insect pest (constant mortality and linear functional response). For this reason we present in 

this paper a modified model in which we assume that insect pest is subjected to  predation and 

intraspecific competition and has a saturating functional response (i.e. limited gut capacity) (see 

Holling, 1965). Our model can therefore be viewed as the most natural extension of classical 

prey-predator models (May, 1981) to  the case of age-structured predators. 

In contrast with the result pointed out by Antonovsky et al. (1990), our model can display 

limit cycles for suitable values of the parameters even if the insect pest attacks only old trees. 

This shows that there are no structural discrepancies between even and non-even-aged forests 

provided the insect pest is modelled with some realism. Of course, this does not overshadow the 

neat contribution of Antonovsky et al. (1990) which has the merit of proving that in the case 

of extremely simple predation mechanisms the stability of the model is dominated by the way 

age structure is incorporated. 

From a methodological point of view, our analysis is quite interesting because i t  is based on 

a very simple but rather effective geometrical technique (Muratori and Rinaldi, 1990a) that 

can be applied to  detect limit cycles in dynamical systems with slow-fast dynamics. Such a 

method is of great potential in the analysis of ecological systems when different populatioils 

can be hierarchically ordered from the point of view of their time responses. The method, used 



for decades to  analyze relaxation oscillations in second order systems (see Guckenheimer and 

Holmes, 1983), has been extended and successfully applied to  three-dimensional prey-predator 

systems by Muratori and Rinaldi (1989a, 1990b) and is applied here under the assumption 

(certainly satisfied t o  a good extent) that old trees have slow dynamics and insect pests have 

fast dynamics. The method proceeds as follows. First the dynamics of the fast component of 

the system is studied and the existence of multiple equilibria and catastrophic bifurcations is 

ascertained. Then, it is shown that for suitable values of the parameters the equilibrium manifold 

of the slow variable separates the above bifurcations. This separation condition allows us to 

prove, through singular perturbation analysis, that a limit cycle exists and that  it is composed by 

the alternate concatenation of two slow and two fast transitions. This has interesting biological 

interpretations and is in agreement with the data on balsam fir forests. 

2. DESCRIPTION OF THE MODEL 

The model we consider is the following 

where z and y are densities of old and young trees, a is the insect pest density, a;, i = 1, . . .13, 

are positive constant parameters and E and 6 are small positive parameters. The biological 

interpretation of the parameters is the following. 

a1 is the aging rate (namely the rate a t  which young trees become mature (old) ). 

a2 is the natural death rate of old trees. 

a3 is the maximum harvest rate of old trees per unit of insect pest. 

a4 is the half saturation constant for the insect pest (namely the prey density a t  which the 

functional response a3z/(a4 + x)  of the predator is half maximal). 

a5 is the fertility rate of mature (old) trees. 

a6,a7 and as are parameters that specify the mortality rate of young trees ( a  unimodal function 

of old tree density). 



a9 is the basic mortality rate of the insect pest. 

a1o.z is the surplus of mortality rate of the insect pest due to  intraspecific competition. 

a l l  and a12 are parameters that  specify the surplus of mortality rate of the insect pest due to  

predation ( al l  t / (a12 + z)  is the functional response of the predators of the insect pest). 

a ls  is a conversion factor proportional to  the efficiency of the insect pest (i.e. the number of 

newly born predators for each unit of captured prey). 

On the contrary, E and 6 are two small dimensionless positive parameters which hierarchically 

scale the dynamics of the three components of the system. Thus, the growth of mature trees 

is slower than the growth of young trees, and the insect pest has, in comparison, a very fast 

dynamics. The second assumption is obviously satisfied while the first might be doubtful, in 

particular because i t  is often difficult to  rigorously distinguish between old and young trees. 

Nevertheless, the analysis we develop shows that the limit cycles of model (1) are composed 

only by very fast and very slow transitions so that the assumption that old and young trees have 

a differentiated dynamics does not play any substantial role. 

Equations ( l a ,  b) are structurally similar to  those used by Antonovsky et al. (1990) t o  model 

old and young trees (notice that x and y are interchanged). Nevertheless, the forest-insect 

interaction is different, because it is modelled by a saturating functional response, while in 

Antonovsky et al. (1990) a linear functional response is used. This means that  in our model the 

insect pest has a finite growth rate per capita (212) even in the most favorable case of infinitely 

abundant resource (x + oo). The second difference is that our predator has a density dependent 

mortality due to  intraspecific competition and predation by insectivores. For suitable values of 

the parameters alo,al l  and a12 the mortality of the pest can be decreasing and then increasing 

with density. Very often these nonlinearities are disregarded because they play an important 

role only a t  extremely low and a t  extremely high densities. But this is exactly what happens 

in periodically infested forests where the insect is either almost absent or present a t  very high 

numbers. 

3. SINGULAR PERTURBATION ANALYSIS AND LIMIT 

CYCLES 

Let us rewrite model (1) in the form 



where a is the vector of constant parameters, and notice that g and h depend only upon twoof the 

three state variables. For small values of E and 6 the solution of (2) for given initial conditions can 

be approximately found by means of singular perturbation analysis (see Hoppensteadt, 1974). 

First, the slow (2) and intermediate (y) variables are frozen a t  their initial values x(0) and y(O), 

and the evolution of the fast component of the system is determined by solving the LLfast system" 

Figure 1. The equilibrium manifold h = 0 of the fast variable and the fast transients (triple 

arrow). 

Thus, z(t) tends asymptotically to  one of the stable equilibria of the fast system (in general, 

characterized by ahla2 < 0). Figure 1 shows the geometry of the equilibrium manifold h = 0 of 

the fast system and its trajectories for suitable values of the parameters. The points denoted by 



S are stable ( a h l a z  < 0) while those denoted by U are unstable ( a h l a z  > 0). For low values 

of z(0), 2 = 0 is the unique and stable equilibrium, i.e. when the density of the old trees is 

below a certain threshold (point A in Figure I ) ,  the insect pest very quickly goes extinct. On 

the contrary, for intermediate values of z(0) (segment AB in Figure 1)  there are three equilibria, 

two of which are stable. In this case z(2) approaches very quickly a positive equilibrium if i ts 

initial value is sufficiently high, and goes t o  zero otherwise. Finally, if z (0)  is large, z(t)  tends 

t o  a positive equilibrium in any case. 

Once the state of the system has reached (actually approached) the fast manifold h = 0, the t ime 

scale of the evolution changes and the variable with intermediate dynamics, namely y, becomes 

of interest. This is equivalent of saying that  one can consider the "intermediate system" 

Figure 2. The fast (h  = 0) and intermediate (g = 0) manifolds and the corresponding fast 

(triple arrow) and intermediate (double arrow) transients. 

determine its solution with initial condition y(O), and then concatenate the corresponding tra- 

jectory with the one previously found by analyzing the fast system. (Notice tha t  in the most 

general case in which g depends upon all s tate variables one has t o  integrate the equation y = g 

with the constraint h = 0, tha t  is t o  say that  the intermediate variable drives the fast one). 

As before, the variable y(2) tends t o  a stable point of its equilibrium manifold g = 0. Figure 2 



shows such a manifold in the case of equation ( l b )  for a suitable value of the parameter vector 

a. The trajectories start from a stable point S of the fast manifold and tend toward a stable 

point T of the intermediate manifold. The result is that after two transients, the first at high 

speed and the second at intermediate speed, the state of the system has reached either line OB 

(absence of insect pest) or line D P (presence of insect pest). 

At this point a slow transient governed by the dynamics of the old trees develops. Such a 

transient is obviously described by equation (2a) subject to the constraints 

0 Y 

Figure 3. The three manifolds f = 0, g = 0, and h = 0. The slow manifold f = 0 separates 

line OB from line PD. 

Therefore the trajectory coincides either with line OB or with line DP of Figure 2 where insect 

pests and young trees smoothly vary a t  the same speed than old trees do. In order to detect in 

which direction the state of the system moves along these lines one has simply to look a t  the 

sign of 5 ,  namely of f .  Thus, let us assume that for suitable values of the parameters the slow 

manifold f = 0 separates line OB from line DP as sketched in Figure 3 and that f is positive 

below the manifold and negative above it. Under this condition the system moves toward point 

D along line PD (see Figure 4) and when D is reached we have a saddle-node bifurcation of the 

fast system : the variable z at  point D is not a t  a stable equilibrium anymore and a catastrophic 

transition from D to  A (extinction of the insect pest) takes place a t  a very high speed as shown 



in Figure 4. Once the system is in A, a slow motion develops from A toward B because f is 

positive along line OB. Thus, old (and young) trees slowly grow until point B in Figure 4 is 

reached. But this point corresponds to the threshold at which the trivial equilibrium of the fast 

system becomes unstable. Again we have a bifurcation and a catastrophic high speed transient 

brings the state of the system back on line P D  (point C of the figure). Thus, a cycle ABCD 

has been closed. 

Figure 4. The cycle ABCD. Transitions AB and C D  are slow while transitions DA and B C  

are fast. 

Comment 1 

Let us now interpret the cycle we have found starting from point A. In the absence (actually 

endhemic presence) of the insect pest the old (and young) trees grow slowly (the transition 

from A to B takes from 20 - 30 years in balsam fir forests of Eastern North America) until 

they reach a biomass (point B )  a t  which the mechanisms that keep the pest under control are 

overcome. Thus, the insect pest population becomes unstable and a demographic explosion of 

the insect pest occurs (transition BC). For a long period to follow (6 - 15 years in the above 

mentioned forest) the insect density is high in stands of mature trees and the biomass of trees 

slowly decays. As a consequence the insect pest population also decreases smoothly and finally 

reaches a density (point D )  a t  which its mortality mechanisms destabilise i t ,  so that the pest 

population collapses to  zero, thus closing the cycle. 



Comment 2 

This comment has to  do with some technicalities of singular perturbation analysis (Hoppen- 

steadt, 1974). Usually the singular perturbation argument is presented with reference to  the 

case in which the fast system has a unique stable equilibrium 2(x, y) for each frozen value of 

(x, y). This condition implies that for a finite t and an initial condition (x, y, z) with z in the 

domain of attraction of 2(x, y) of the fast system, the solution of system (1) can be approxi- 

mated by a fast transition from (x, y, z) to (x, y, 2)  followed by a trajectory with intermediate 

speed along the equilibrium manifold h = 0 and, finally, by a slow-motion trajectory along the 

manifold g = h = 0. Moreover, if the slow-motion system is uniformly stable, then the above 

approximation also holds in the limit for t -+ oo. In the present case, in which we are inter- 

ested in the asymptotic behavior of the solution, the fast-time system has two stable equilibria, 

but the slow-motion system cannot evolve indefinitely on one of the two equilibrium manifolds 

but must recursively commute from one to  the other. Therefore, since the system remains on 

each manifold only for a finite interval of time, the approximation guaranteed by the standard 

singular perturbation conditions holds also asymptotically. The formal proof of this fact is not 

given because i t  is long and trivial, and because this argument has already been discussed and 

extensively used in the literature (see, for example, Guckenheimer and Holmes (1983) pp. 68-69 

for the analysis of a similar case and May (1977) and Muratori and Rinaldi (1989a, 1990b) for 

applications in predator-prey systems). The conclusion is that,  strictly speaking, we do not 

prove the existence of a limit cycle, but the existence of stable solutions that lie in an &-tube 

around the closed line A B C D .  Nevertheless, in the following we will take the liberty to say 

that a limit cycle exists because for our aims the two situations are practically and conceptually 

indistinguishable. 

Comment 3 

The geometry of the three manifolds f = 0, g = 0, and h = 0 can be analyzed and explicit 

inequalities on the parameters a; can be found that guarantee the existence of the catastrophic 

bifurcations of the fast variable and the satisfaction of the separation condition required by the 

method (actually only the line segments AB and C D  must be separated by the manifold f = 0 

in order t o  guarantee the existence of a cycle). The detailed analysis is reported in the Appendix 

and the result is the following. 

Existence of a limit cycle. If E and 6 are sufficiently small and 



where 

and 

YA YB 9 = a1 min {- , -} 
X A  ZB 

a limit cycle exists for system (1). 0 

I t  is worthwhile noticing that conditions (3), (4) as well as *, do not depend upon a2, so that 

(5) can always be satisfied. Similarly, (3), (4), (5) and x do not depend upon a3 so that (6) can 

be easily satisfied. Conditions (3-12) are therefore very useful to construct sets of parameter 

values that guarantee the existence of a limit cycle. For example, if we fix a priori 

then (4) is satisfied if 



so that (3) is satisfied if 

a13 = 5. 

Thus, computing !4!, a value of a2 that satisfies (5) can be found, for example 

Figure 5. Example of limit cycle. All parameters are equal to  1 with the exception of a2 = 0.4, 

a l l  = 2, a13 = 5, E = 6 = 0.5. 

Finally, be means of (8) one can compute x and give to  a3 a sufficiently high value (a3 = 1 in 

the present case) in order to  satisfy (6). Thus, with a few simulation trials one can find values 

for E and 6 such that the system oscillates, as shown in Figure 5 for E = 6 = 0.5. 

Comment 4 

The conditions we have pointed out for the existence of a limit cycle unfortunately require that 

the two time-scale parameters E and 6 are small. This could be a rather unpleasant requirement. 

In fact,, if the limit cycle of a system satisfying conditions (3-12) would exist only for extremely 

small values of E and 6, our result would only be a futile curiosity because the typical time-scale 

of old trees growth is the decade while demographic explosions of pest insects can take place in a 

few months. In order to prove that our result is sound, we should therefore show that conditions 



(3-12) imply that a cycle exists also for values of the product €6 ranging in the interval 0.01 - 

0.05. Moreover, we should also show that the cycle can exist for relatively high values of E since, 

as already pointed out, the assumption that old and young trees have a strongly differentiated 

dynamics is certainly not acceptable. 

A formal proof of these properties would require to  analyze the mechanisms by which the limit 

cycle eventually shrinks and disappears when E and 6 increase. An analysis of this type is easy to  

be performed for the classical two-dimensional predator-prey model with saturating functional 

response since the conditions on the parameters a; that one obtains by means of the singular 

perturbation method (Muratori and Rinaldi, 1989a) coincide with the necessary and sufficient 

conditions for the existence (and actually uniqueness) of the cycle. This means that in such a 

case the time scale factor E is completely irrelevant. 

For third order predator-prey systems an analysis of this kind has only been performed by 

means of extensive simulations. In particular, in the one prey-two predators system considered 

by Hsu et al. (1978), the time scale parameter seems to  be uninfluencial for the existence of 

the limit cycle (Muratori and Rinaldi, 1989a), while for a three-dimensional food chain system 

Muratori and Rinaldi (1990b) have proved that for increasing values of E the cycle disappears 

through a Hopf bifurcation. This is not a surprise, since Hopf bifurcations are quite frequent in 

predator-prey models of any type (see, for instance, Butler and Waltman (1981) and Muratori 

and Rinaldi (1989b, c, d )  ). 

Figure 6. Family of limit cycles for different values of E = 6. Parameters a; are as in Figure 5. 



Figure 7. Families of parameter values that give rise to  Hopf bifurcations in system (1). The 

value identifying each curve is that a l l .  All other parameters are as in Figure 5. 

In the present case, the simulations have clearly indicated that limit cycles are sensitive to  E and 

6 and that they disappear through a Hopf bifurcation when these parameters increase. Figure 

6 reports a typical example: the projection on the (z, t) plane of the cycle of system (1) for the 

numerical values of the parameters indicated above (see also caption of Figure 5) and for four 

different values of E = 6. The Hopf bifurcation is obtained for E = 6 = 0.68 so that cycles exist 

in this system for €6 < 0.46, a very satisfactory result. Moreover, the numerical analysis of the 

Hopf bifurcations has produced the graphs of Figure 7 where on each curve we have reported 

the numerical value of a l l  ( the value all = 2 is the one used for producing Figures 5 and 6). All 

values of E and 6 below a curve associated to  a particular value of a l l  guarantee the existence 

of the limit cycle for that value of a l l .  From the figure one can immediately check that the 

condition that ~6 is in the range 0.01 - 0.05 is definitely satisfied. Moreover, the curves of Figure 

7 are (or are very similar to) hyperbola ~6 = const. This means that the value of E is actually 

irrelevant and that the only important parameter is ~6 which is the time scale factor of insect 

pest with respect to old trees. 



4. CONCLUDING REMARKS 

In this paper we have proved that  age-structured forest-pest models can exhibit limit cycles 

even when the insect pest is adapted only to  old trees. This is in contrast with the recent 

findings of Antonovsky et al.  (1990), but it is in agreement with the evidence in the da ta  on 

balsam fir forests of Eastern North America which have experienced periodic outbreaks of spruce 

budworms. Our model and analysis have a number of common features with the study of Ludwig 

et al. (1978): the insect pest has a density dependent mortality and is kept under control by 

insectivores (birds in the case of spruce budworms) and the growth of trees is assumed t o  be 

much slower than tha t  of the insect pest. On the contrary, the structure of our model is much 

more similar t o  that  of Antonovsky et al. (1990) because we use young and old trees as state 

variables as  opposed t o  foliage and wood as done by Ludwig et al. (1978). 

The method of analysis is purely geometric and based on singular perturbation arguments. It is 

an extension of a known method used t o  study relaxation oscillations in second order systems 

and has already been applied by the authors t o  detect limit cycles in predator-prey models 

(Muratori and Rinaldi, 1989a, 1990b). The method allows one t o  determine explicit conditions 

on the parameters (see (3- 12) ) tha t  guarantee the existence of a limit cycle in the case the insect 

pest has an infinitely faster dynamics than that of the trees. Nevertheless, extensive simulation 

has proved that  the limit cycle is preserved under reasonable perturbations of the t ime scaling 

factors. 

An interesting feature of our analysis, which perfectly fits with the observations on balsam fir 

forests, is that the limit cycle is composed by two slow and two fast alternate transitions. When 

insect pests are only endhemically present in the forest, old and young trees grow slowly for 

a long period until they reach a biomass a t  which the mechanisms that  keep the pest under 

control are overcome. Thus, in a very short time, we have an insect outbreak, followed by a 

second long period during which tree biomass slowly decays. As a consequence, pest population 

also decreases smoothly until i t  reaches a density a t  which its mortality mechanisms destabilise 

it.  Then, the pest populat io~l  very quickly collapses to  zero. 

Finally, i t  is worthwhile noticing that  conditions (3-12) can be given interesting biological inter- 

pretations. Inequality (3), for example, says that  the efficiency a13 of the insect pest must by 

high as i t  is usually the case in second-order oscillatory prey-predator models with saturating 

functional response. Condition (4) ,  on the contrary, says that  a t  low insect density z  the surplus 

aloz of mortality due t o  intraspecific competition must be smaller than the decrease of mortality 

a l l z / a i 2  due t o  predation by birds, a condition which is often satisfied in pra.ctice and gives rise 



to multiple stable equilbria in the insect-pest dynamics. Therefore, the analysis carried out in 

this paper proves, once more, that the saturating functional response of the predators (insect 

pests and birds) is a key feature for the existence of limit cycles in complex communities. 



APPENDIX 

Aim of this Appendix is to  prove that inequalities (3), (4), (5) and (6) in the text guarantee 

that the geometry of the manifolds f = 0, g = 0, and h = 0 is like in Figures 1 - 4. 

Manifold h = 0. 

Let us first prove that (3) and (4) imply that the manifold h = 0 is like in Figures 1-4. For this, 

let us first considier the non-trivial part of the manifold h = 0 (see ( lc)),  i.e. 

Equation (13) defines a surface z = ~ ( z )  parallel to the y axis that intersects the (z,  y) plane at 

(see also (11)) 

" .  

2 B  = ~ ( 0 )  = a1 2 
al l  a4 a13 - a9 - - 
a12 

Therefore, condition (3)  implies z g  > 0 as in Figure 1. On the other hand, letting z = p(z) in 

(13) and derivating with respect to  t one obtains 

so that condition (4) implies d ~ l d z  < 0 for z = 0. Thus, the manifold h = 0 is shaped as in 

Figure 1, i.e. the function z = ~ ( z )  has a minimum a t  point A'. The coordinate of this point is 

therefore given by 

while its z coordinate is (see also (9)) 

Manifold g = 0. 

The manifold g = 0 is a surface parallel to  the z axis given by (see ( l b )  ) 

a52 
= a1 + a6(z - a7)2 + ag (15) 

Thus, y > 0 for z > 0 and a y l a z  > 0 for z = 0 so that the manifold is like in Figure 2-4. 

Moreover, a g l a y  < 0 for all positive values of z and of the parameters, so that the equilibria of 

the L'intermediate system" ((2b)) with z frozen) are always stable. 



The intersection of the manifold g = 0 with the manifold h = 0 (see line B D C P  of Figure 2) is 

therefore characterized by values of y~ and yg as in (10) and (12). 

Manifold f = 0. 

The manifold f = 0 is given by (see ( la))  

Since p(x, z) is increasing with x and z, and y increases from D to  C along line D P  of Figure 

2, the manifold y = p(x, z) is certainly below the line segment C D  of Figure 2 if 

P(XD,ZD) > YG. (16) 

But yc = yg, XD = XA, and ZD = ZA,, so that from (12), (9), and (14) it follows that (16) is 

equivalent to  (6) and (8). 

On the other hand, we can prove that (5) and (7) imply that the manifold f = 0 is above the 

line segment A B of Figure 2. In fact, the ratio y/x along line OB is given by (see (15) ) 

and is therefore a unimodal function of x with maximum at x = a7. But the intersection of the 

manifold f = 0 with the (x, y) plane is given by the straight line 

a z y = p(x, 0) = -x 
a 1 

(18) 

so that (5) and (7) imply that the straight line (18) in the plane (x, y) is below the two points 

(xA, yA), (xg,  yg) and hence below the line segment AB because of the above unimodality 

property. 

Thus, the manifold y = p(x, z) separates the line segment AB from the line segment C D .  
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