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FOREWORD

This paper is devoted to the study of first-order hyperbolic systems of
partial differential inclusions which are in particular motivated by several
problems of control theory, such as tracking problems.

The existence of contingent single-valued solutions is proved for a certain
class of such systems.

Several comparison and localization results (which replace uniqueness
results in the case of hyperbolic systems of partial differential equations)
allow to derive useful informations on the solutions of these problems.

Alexander B. Kurzhanski
Chairman
System and Decision Science Program



Hyperbolic Systems of Partial Differential
Inclusions

Jean-Pierre Aubin & Héléne Frankowska

Introduction

Let X,Y, Z denote finite dimensional vector-spaces, f : X x Y — X be
a single-valued map, G: X xY ~» Y be a set-valued map and 4 € L(Y,Y)
a linear operator. We set throughout this paper A = min|;z|=1 {4z, 7).

We recall that the contingent cone Tk(z) to a subset K C X at z € K
is defined by

d(z + hv; K) }
— = 0

Tk(z) := {v €X| 1}113(1)2{

and that the contingent derivative DR(z,y) of a set-valued map R: X ~ Y
at (z,y) € Graph(R) is defined by

Graph(DR(:c, y)) = TGra,ph(R)(z» y)

When R = r is single-valued, we set Dr(z) := Dr(z,r(z)). Naturally,
Dr(z)(u) = r'(z)u whenever r is differentiable at z.

Usually, a Lipschitz map 7 is not differentiable, but contingently differ-
entiable in the sense that its contingent derivative has nonempty values. In
this case, it associates to every direction u € X the subset

= O}

See [8, Chapter 5] for more details on differential calculus of set-valued maps.

In this paper, we shall look for single-valued and set-valued contingent
solutions to hyperbolic systems of partial differential inclusions, i.e., single-
valued maps r: X — Y with closed graph satisfying

_ r(z + hu) - r(z)
h

Dr(z)(u) = {v €Y | h}f&éf v

Vz e X, Ar(z) € Dr(z)(f(z,r(z))) - G(=, r(:z:.))
and set-valued maps R : X ~ Y with closed graph satisfying

VzeX, Vye€ R(z), Ay € DR(z,y)(f(z,y)) - G(z,9)
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We observe that when r is differentiable, the contingent differential in-
clusion boils down to a quasi-linear hyperbolic system of first-order partial
differential equations!

' m " Or.
Vi=1...,m, Y din(z) = 3 52 f(z,r(2)) - gz, 7(2))
k=1 i=1 4
Motivations: Tracking Property — Consider the system of differential
inclustons
" { #'(t) = f(=(t), y(t))
V(1) € Au(t) + G(=(t), y(t))

The solutions to the inclusion
Vze X, Ar(z) € Dr(z)(f(z,r(z))) — G(z,r(z))

are the maps r : X — Y, regarded as observation maps, satisfying what is called
the tracking property: for every zo € Dom(r), there exists a solution (z(-),y(-)) to
this system of differential inclusions (1) starting at (zo, yo = r(2¢)) and satisfying

V>0, y(t) = r(z(t))
One can also look for set-valued contingent solutions R : X ~+ Y to the inclusion
(2) V (z,y) € Graph(R), Ay € DR(z,y)(F(z,y)) — G(z,y)

characterizing the tracking property: for every zq € Dom(R) and every yo € R(zo),
there exists a solution (z(-), y(-)) to this system of differential inclusions starting at
(20, ¥0) and satisfying

Vt>0, y(t) € R(z(t)) D

Motivations: Inclusions governing feedback controls — The partial
differential inclusions governing the feedback controls r : K — Y regulating solu-
tions of a control system (U, f):

{ §) Z'(t) = f(z(t),u(t)) for almost all ¢
i) u(t) € U(z(t))

belong to the class studied in this paper, as it was mentioned in [9,10,11]. Here,
U:X ~Y is a closed set-valued map, f : Graph(U) — X a continuous (single-
valued) map with linear growth and ¢ : Graph(U) — R4 a nonnegative continuous
function with linear growth (in the sense that o(z, u) < ¢(||z|| + [|u]| + 1)).

3)

!For several special types of systems of differential equations, the graph of such a map
r (satisfying some additional properties) is called a center manifold.



We look for feedback controls r satisfying the following property: for any zq €
K, there ezists a solution to the differential equation

Z'(t) = f(z(),r(2(1))) & z(0) = =o

such that u(t) := r(z(t)) € U(z(t)) is absolutely continuous and fulfils the growth
condition

llu'(t) = Au(t)l| < o(2(2), u(?))

for almost all t. Such feedback controls r are solutions to the following contingent
differential inclusion

VzeX, Ar(z) € Dr(z)(f(z,7(z))) - p(z,7(z))B
satisfying the constraints

VzeX, r(z) € U(z) O

Outline — We extend in the first section Hadamard’s formula of
solutions to linear hyperbolic differential equations to the set-valued case.
Namely, we shall prove the existence of a set-valued contingent solutions R,
to the decomposable system

V (z,y) € Graph(R.), Ay € DRy(z,y)(&(z)) - ¥(z)

where & : X ~ X and ¥ : X ~ Y are two Peano maps? and 4 € L(Y,Y).

If we denote by Sg(z,-) the set of solutions z(-) to the differential in-
clusion z'(t) € ®(z(t)) starting at z, then the set-valued map R, : X ~ Y
defined by

VaeX, Rua) i= - [ e MU(Sa(a, 1))
0

is the largest contingent solution with linear growth to this partial differential
inclusion when A := minjjz)=1 (AZ,z) > 0 is large enough. We also show that
it is Lipschitz whenever & and ¥ are Lipschitz and compare the solutions
associated with maps ®; and ¥; (i = 1,2).

We then turn our attention in the second section to partial differential
inclusions of the form

VzeX, Ar(z) € Dh(z)(f(z,h(z))) - G(z, h(z))

2A Peano map is an upper semicontinuous set-valued map with nonempty compact
convex images and with linear growth.



when A > 0 is large enough, f : X xY — X is Lipschitz, G : X ~ Y is
Lipschitz with nonempty convex compact values and satisfies®

Vz,y, Gyl <e1+]yl)

When G is single-valued, we obtain a global Center Manifold Theorem,
stating the existence and uniqueness of an invariant manifold for systems of
differential equations with Lipschitz right-hand sides (existence and unique-
ness of a contingent solution r has been proved by viscosity methods in [6,7]
when A4 = Al1.)

We end this paper with comparison theorems between single-valued and
set-valued solutions to such partial differential inclusions, using both the
extension of Hadamard’s formula and some kind of maximum principle.

The authors are gratefully indebted to C. Byrnes for stimulating discus-
sions.

Notations — Ifr: X — Y, we set

Irlloo = sup fIr(@)] € [0,00] & [lrlla := sup L2tE) =W
zeX

€ [0, 00]
S e <

When G is Lipschitz with nonempty closed images, we denote by ||G||a
its Lipschitz constant, the smallest of the constants [ satisfying

V21,22, G(21) C G(22) +1||zy — 22|| B

where B is the unit ball.
When L C X and M C X are two closed subsets of a metric space, we
denote by
A(L,M) := sup inf d(y,2) = supd(y,M)
yeL €M veL
their semi-Hausdorff distance!, and recall that A(L, M) = 0 if and only if
LC M. If®and ¥ are two set-valued maps, we set

A(®,¥)e = sup A(®(z), ¥(z)) := sup sup d(y,¥(z))
r€X T€X yed(x)

We recall that solutions are always understood as set-valued or single-valued
maps with closed graph.

3We set ||K|| := sup,¢x ||z]] when K C X.
*The Hausdorff distance between L and M is max {A(L, M), A(M, L)}, which may be
equal to co.



1 Contingent Solutions to Decomposable Systems

We need first to establish some properties of contingent set-valued solutions

to decomposable systems.

Let K C X be a closed subset and ¢ : K ~ X and ¥ : K ~ Y be two
Peano maps with nonempty values and A € L(Y,Y). We say that K is a
viability domain of & if

Vze K, $(z)nTk(z) # 0
We set A := inf};;|=1(Az, z) and we observe that
Vyey, ety < eyl
We look for a solution R, : K ~ Y to the decomposable system

(4) V (z,y) € Graph(R,), Ay € DR.(z,y)(®(z)) - ¥(2)

Denote by S¢(z,-) the set of solutions z(-) to the differential inclusion
z'(t) € ®(z(t)) starting at z viable in K (in the sense that z(t) € K for all
t > 0), which exist thanks to the Viability Theorem.

We introduce the set-valued map R, : K ~ Y defined® by

(5) VzeK, RJz) i= —/0°° e~ A (Se(z,1))dt

(When A := X1, we have proved in [11] that it is a contingent solution to
inclusion (4) when A > 0 is large enough.)

Theorem 1.1 Assume that ®: K ~ X and ¥ : K ~ Y are Peano maps
and that K s a closed viability domain of ®. If A is large enough, the contin-
gent solution R, : K ~ Y to inclusion ({) defined by (5) is the largest con-
tingent solution with linear growth and is bounded whenever ¥ is bounded.

5By definition of the integral of a set-valued map (see [8, Chapter 8] for instance), this
means that for every y € R.(z), there exist a solution z(-) € S¢(z,-) to the differential
inclusion z’(t) € ®(z(t)) starting at z and z(t) € ¥(z(t)) such that

y = —/ooe-'“z(t)dt € R.(z)

[



More precisely, if there exist positive constants o, 3 and v such that
Vz e K, [|9(z)]] < a(jlz[+1) & [[¥(z)l] £ B+l
and if A > «, then

v
A—a

Moreover, if K := X and &, ¥ are Lipschitz, then R, : X ~ Y 1is also
Lipschitz (with nonempty values) whenever A is large enough:

(K21
A—=lI2]la

(®) Vze K, Rl € 54 5 2=(lell +1)

If A> ||®]la, Ru(z1) C Ru(z2)+ lz1 — z2||B

for every z,, z, € X.

Formula (5) shows also that the graph of R, is convex (respectively a convex
cone) whenever the graphs of the set-valued maps ® and ¥ are convex
(respectively are convex cones).

Proof
1. — Weprovefirst that the graph of R, satisfies contingent inclusion

(4).

Indeed, choose an element y in R.(z). By definition of the integral of
a set-valued map, this means that there exist a solution z(-) € S¢(z,-) to
the differential inclusion z'(¢) € ®(z(t)) starting at z and viable in K and
2(t) € ¥(z(t)) such that

o0
y = —/0 e A2(t)dt € R,(z)
We check that for every 7 > 0
o — At 1 T !
—/ e At 7)dt € Ru(z(r)) = R, (:1:+T (;/ :r(t)dt))
0 0
By observing that
Yo7 e (2(1) - 2(t + 7)) dt
= — €8ISl [0 oAl (1) dt 4 £1 [T e~ Aty(1)dt
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we deduce that

y+7 (— ef7-1 5° e~ Atz(t)dt +

T

eAr
T

;e Atz(t)dt)

€ R, (z +7 (} O’:r’(t)dt))

Since @ is upper semicontinuous, we know that for any £ > 0 and ¢ small
enough, ®(z(t)) C ®(z)+¢B, so that z’(t) € ®(z) + ¢ B for almost all small
t. Therefore, ®(z) being closed and convex, we infer that for 7 > 0 small
enough, 1 f7 z'(t)dt € §(z) + B thanks to the Mean-Value Theorem. This
latter set being compact, there exists a sequence of 7, > 0 converging to 0
such that ;- f™ z'(2)dt converges to some u € §(z).

In the same way, ¥ being upper semicontinuous, ¥(z(t)) C ¥(z) + ¢B
for any € > 0 and ¢ small enough, so that 2(t) € ¥(z) + ¢B for almost all
small . The Mean-Value Theorem implies that

1 [
V>0, zn i= —/ At)dt € ¥(z)+eB
Tn JO
since this set is compact and convex. Furthermore, there exists a subse-

quence of z, converging to some zy € ¥(z). Hence, since

1 OT" (4 - 1) 2(t)dt — 0

Tn

we infer that
Ay+ 20 € DR.(z,y)(u)
so that Ay € DR.(z,y)(®(z)) ~ ¥(z).
2.  — Let us prove now that the graph of R, is closed when A is
large enough. Consider for that purpose a sequence of elements (z,,yn) of
the graph of R, converging to (z,y). There exist solutions z,(-) € S¢(zx,*)

to the differential inclusion z’ € ®(z) starting at z, and viable in K and
measurable selections z,(t) € ¥(z,(t)) such that

o = — / et (1)dt € Ro(zy)
0

The growth of ® being linear, there exists @ > 0 such that the solutions
Z,(-) obey the estimate

2@l < (ll2all + 1)e™ & 2o (D) < e(lizall + 1)

7



By [8, Theorem 10.1.9], we know that there exists a subsequence (again
denoted by) z,(-) converging uniformly on compact intervals to a solution
:t() € S¢($1 )

The growth of ¥ being also linear, we deduce that, setting u,(t) :=
- At
e~ A2, (1),

@l < B+7(lzall + 1)e™ & [lun(t)l] < Be™ + y(llzn] + e

When A > a, Dunford-Pettis’ Theorem implies that a subsequence
(again denoted by) u,(-) converges weakly to some function u(-)in L'(0,00;Y).
This implies that z,(-) converges weakly to some function 2(-) in the space
L'(0,00;Y;e*dt). The Convergence Theorem [8, Theorem 7.2.2] states
that z(t) € ¥(z(t)) for almost every t. Since the integrals y, converge to
— [s° e~ Atz(t)dt, we have proved that

y = — / Y e A (t)dt € Ry(z)

0

3. —  Estimate (6) is obvious since any solution z(:) € S¢(z,-)

satisfies
V>0, [z < (ll=ll+ 1)

so that, if A > a,

Y
A—a

IR < [ (8 + 20lel+ D)t = 24 T T(lfell + 1)

Assume now that M : K ~ Y is any set-valued contingent solution to
inclusion (4) with linear growth: there exists § > 0 such that for all z € X,
IM(z)ll < 6(||z|l + 1). Since M enjoys the tracking property, we know that
for any (z,y) € Graph(M), there exists a solution (z(+), y(-)) to the system
of differential inclusions

i) () € ®(z(2))

i) ¥(t) - Ay(t) € ¥(z(t))

starting at (z,y) such that y(t) € M(z(t)) for all t > 0. We also know that
Izl < (llz]] + 1)e** so that |y(t)]] < 6(1 + (||z|| + 1)e*t). The second
differential inclusion of the above system implies that 2(t) := y'(t) — Ay(t)
is a measurable selection of ¥(z(t)) satisfying the growth condition

lz@ll < B+ 71+ (|2l +1)e™)

(7)

8



Therefore, if A > o, the function e~4*2(t) is integrable. On the other hand,
integrating by parts e~4tz(t) := e~Aty/(1) — e~ 4! Ay(t), we obtain

T
e ATy(T)-y = / e~ At 2(t)dt
0
which implies that
y = — / e~At2(t)dt € R,(z)
0

by letting T — oo. Hence we have proved that® M(z) C R.(z).

4. — Assume now that K = X and that ® and ¥ are Lipschitz, take
any pair of elements z; and z, and choose y; = — [¢° e~ 4tz (t)dt € R.(z1),
where

z1(:) € So(z1,°) & z1(t) € ¥(z1(2))

8 This proof actually implies that any set-valued contingent solution M with polynomial
growth in the sense that for some p > 0,

VzeX, |[M(z)] < &(ll=]|° +1)

is contained in R, whenever A > ap, i.e., that there is no contingent solution with poly-
nomial growth other than with linear growth (and bounded when ¥ = 0.)



By the Filippov Theorem?, there exists a solution z2(-) € S¢(z2,-) such that
V20, [21(t) - z2(t)]| < eli®lat)jz, — 2

We denote by z,(t) the projection of z;(t) onto the closed convex set ¥(z(t)),
which is measurable thanks to [8, Corollary 8.2.13] and which satisfies

V120, la(t) - 2@l < 1¥llallza(®) - za@)l] < [1€lael®Mat||z; — 2]

Therefore, if A > ||®]|a, y2 = — J5° e~ 4*2,(t)dt belongs to R.(z;) and satis-
fies
o0 v
o =3l < [ Nl OOz, — et < ATz, — 2y o
0 A—12]la

Theorem 1.2 Consider now two pairs (®,,¥,) and (®2, ¥,) of Peano maps
defined on X and their associated solutions

VaeX, Ru(e) = - [ e AU(So,(a,0)dt (i=1,2)
0

Tadapted to the case of solutions defined on [0, 00[. Filippov’s Theorem (see [5, Theo-
rem 2.4.1] for instance), yields an estimate on any finite interval [0,T]: If ® is c-Lipschitz
with nonempty closed values, and if an absolutely continuous function y(-) and an initial
state zo are given, then there exists a solution z(-) to the differential inclusion defined on
[0, T] starting at zo satisfying estimate

®) l=(t) - w(OIl < < (Ilzo—u(o)ll + / d(v'(a),¢(v(3)))e"‘d3)

We can extend it to the interval [0, +oco[. Indeed, there exists a solution z(-) to the
differential inclusion defined on [0, T starting at z, satisfying estimate (8) and in particular

T
I=(T) = u(D)ll < (uzo—yw)n + / a(y'(s),a(y(s)))e-“aa)

There also exists a solution z(-) to the differential inclusion starting at z(7T') estimating
the function t — y(t + T') and satisfying

l=(®) -yt + D < & (III(T)-u(T)II + [ d(v'(s+T).¢’(v(8+T)))e'°’da)

Hence we can extend z(-) on the interval [0,27] by concatenating it with the function
t +— z(1) := z(¢t — T) on the interval [T, 2T, we check that the above estimates yield (8)
for ¢ € [0,27] and we reiterate this process. O

See the forthcoming monograph [22].
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If the set-valued maps @2 and ¥, are Lipschitz, and if A > ||®2]|a, then

([¥2]la
A = [|®2][a)

Proof — Choose y; = — [° e~ 4%z (t)dt € R.(z) where
z1() € Sa,(z,-) & z1(t) € ¥1(z1(t))

In order to compare z;(-) with the solution-set S¢,(z,-) via the Filippov
Theorem, we use the estimate

d(z3(1), ®2(z1(1))) < sup d(z,®2(71(1)))) € A(21,P2)e0

2€81(z1(1))

AR Booo € 3A(Y1,¥2)eo + A1, 82)e

Therefore, there exists a solution z2(-) € S¢,(z, -) such that
et“‘b2”A -1
[1®2lla

by Filippov’s Theorem. As before, we denote by z3(t) the projection of z,(t)
onto the closed convex set Wy(z2(t)), which is measurable and satisfies

V20, [|a(t) - 22t)] < A(Y1,¥2)e + || ¥2llallz(t) — z2(2)]l

V20, |z1(t) — z2(0)]] £ A(®1,P2)0

< A(¥1, ¥2)oo + [ a|[AA(@1, @) (€193ln — 1) /[|®2]]a

Therefore, if A > ||®2]la, y2 = — fo° e Azy(t)dt belongs to R.2(z) and
satisfies

lly: — well

< fo° e MA(T1, U2)oodt + || ¥al|AA( @1, 22)e0 Jo %;—le_“dt

IA

Aol 4 i (e 020 ©

When ® := ¢, ¥ := ¢ are single-valued, we obtain:

Proposition 1.3 Assume that ¢ and 1 are Lipschitz and that ¢ is bounded.
Then when A > 0, the map r := [(p, ¢) defined by

r(z) = - /0 ” e Aty (S(, 1))t

11



is the unique bounded single-valued solution to the contingent inclusion

9) Ar(z) € Dr(z)(p(z)) - ¥(z)
and satisfies
1%l oo ll¥lla
(10) Irlleo < 3 & V> [lolla, lirila < 3= lleln
and
l#1 — Y|l ([¥2lla
(LT (21, %1) — T(p2,¥2)lloo < 3 + 3O — ”902”1\)“901 - ¢2]leo

The proof can be derived from Theorems 1.1 and 1.2 or directly from the
properties of linear systems of hyperbolic equations established in [7].

2 Existence of a Lipschitz contingent solution

We shall now prove the existence of a contingent single-valued solution to
inclusion

(12) VzeX, Ar(z) € Dr(z)(f(z,r(z))) - G(z,r(z))

Theorem 2.1 Assume that the map f : X x Y — X is Lipschitz, that
G : X ~ Y 1is Lipschitz with nonempty convezr compact values and that

Vz,y, |Gz, )|l < c(1+yll)

for some ¢ > 0.
Then if A > max(c, 4v||f||allG|la) (where v is the dimension of X ), there
ezists a bounded Lipschitz solution to the contingent inclusion (12).

Proof — Since for every Lipschitz single-valued map s(-), z ~ G(z, s(z))
is Lipschitz (with constant ||G|[, (1 + ||s||)a) and has convex compact val-
ues, [8, Theorem 9.4.1] implies that the subset G, of Lipschitz selections
¥ of the set-valued map z ~» G(z,s(z)) with Lipschitz constant less than
v||Glls (1 + ||8]|a) is not empty (where v denotes the dimension of X). We
denote by ¢, the Lipschitz map defined by ¢,(z) := f(z, s(z)), with Lips-
chitz constant equal to || f|[a(1 + ||s][a)-

12



The solutions r to inclusion (12) are the fixed points to the set-valued
map H : C(X,Y)~ C(X,Y) defined by

(13) H(s) = {T(¢s, ¥)}yea.
Indeed, if r € H(r), there exists a selection ¥ € G, such that
Ar(z) € Dr(z)(f(z,r(z))) - ¥(z) C Dr(z)(f(z,r(z))) - G(z,r(z))
Since ||G(z,y)|| < ¢(1 + ||yl|), we deduce that any selection ¥ € G, satisfies
[¥llo < (14 ]I3]leo)

Therefore, Proposition 1.3 implies that if A is large enough,

vIIGlla(1 + lIslla)
= [ fla(1 + lIslla)

c
VreH(s) e < S0+ lsllo) & Iirlla < 5

We first observe that when A > ¢,

Vs€C(X,Y) suchthat [sfloc < —i_c VreHs), [fllo € —

A T A-c
When A > 4v||f||a ||G||a, we denote by

A= [Iflla = vlIGlla =V A% = 2X([If]la + #lIGlla) + (If]la = v[|GlIa)?
2||flla

p(A) :=
the smallest root of the equation
A = [Iflap® + (Iflla + vIIGlia)e + vIIGlIa
which is positive. We observe that
Jlim Ap(3) = vl[Glla
and infer that
Vs €C(X,Y) such that ||s||a < p(X), Vr € H(s), |Irlla £ p(})

because r being of the form I'(y,,,), satisfies by Proposition 1.3:

Uudls _ vIGIAQ+lslla) _ Gl (1 +p(A) _
Irlla < S e S X TARA+ sla) S X= 710+ ()

p(A)

13



Let us denote by Bl ()) the subset defined by

BL() = {recy) | lirlo S 1 & lirla < p(V)}

which is compact (for the compact convergence topology) thanks to Ascoli’s
Theorem.

We have therefore proved that if A > max(c,4v||f||A]|G|/a), the set-
valued map H sends the compact subset B2 () to itself.

It is obvious that the values of H are convex. Kakutani’s Fixed-Point
Theorem implies the existence of a fixed point r € H(r) if we prove that the
graph of H is closed.

Actually, the graph of H is compact. Indeed, let us consider any se-
quence (8,,7n) € Graph(H). Since Bl (1)) is compact, a subsequence (again
denoted by) (sn,7n) converges to some function

(s,r) € BL())x BL())

But there exist bounded Lipschitz selections ¥, € G,,_, with Lipschitz con-
stant v||G||a(1 + p(A)) such that

Vn20, r, = P(993nv¢n)

Therefore a subsequence (again denoted by) %, converges to some function
Y € G,. Since p,, converges obviously to ¢,, we infer that r, converges to
I'(ps, %) where ¥ € G, i.e., that r € H(s), since T is continuous by formula
(11) of Proposition 1.3. O

3 Comparison Results

The point of this section is to compare two solutions to inclusion (12), or
even, a single-valued solution and a contingent set-valued solution M : X ~
Y.

We first deduce from Theorem 1.2 the following “localization property”:

Theorem 3.1 We posit the assumptions of Theorem 2.1 with A € L(Y,Y)
such that A > max(c,4v|f||AllG|ls) (where v is the dimension of X ). Let
d: X~ X and ¥ : X ~ Y be two Lipschitz and Peano maps with which
we associate the set-valued map R, defined by

VeX, Ria) = - [ " e Ay (Se(z, 1))t
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Then any bounded single-valued contingent solution r(-) to inclusion (12)
satisfies the following estimate

VzeX, dir(z),Riz)) <

}sup.ex A(G(2,7(2)), ¥(2)) + sl supsex d(f(3,(2)), 8(2))

In particular, if we assume that
VyeY, f(z,y) € 2(z) & G(z,y) C ¥(z)

then all bounded single-valued contingent solutions r(-) to inclusion (12) are
selections of R,.

Proof — Let r be any bounded single-valued contingent solution to
inclusion (12). One can show that r can be written in the form

r(z) = ——/Oooe‘mz(t)dt where z(t) € G(z(t),r(z(t)))

by using the same arguments as in the third part of the proof of Theorem 1.1.

We also adapt the proof of Theorem 1.2 with &, := f(z,r(z)), 21(¢) :=
2(t), &2 := & and ¥, := ¥, to show that the estimates stated in the theorem
hold true. O

The next comparison results are consequences of the following kind of
mazimum principle.

We recall that when M is Lipschitz, its adjacent derivative DbM(:c, y) C
DM(z,y) is defined by

v € D*M(z,y)(u) if and only if h13r51+ d (v’ M(z + hu) - y) 4

h

A set-valued map M is said to be derivable at (z,y) if the contingent and
adjacent derivatives coincide at (z,y) and derivable if it is derivable at every
point of its graph. See [8] for more details.

Lemma 3.2 (Maximum Principle) We posit the assumptions of Theo-

rem 2.1 with A € L(Y,Y) such that X > max(c,4v| f||al|G||r). Let M be a
Lipschitz set-valued map such that D' M (z, v)(f(z,y)) is nonempty for every
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(z,y) € Graph(M). Let r be any Lipschitz bounded single-valued solution to
(12). If the supremum

6 = sup lIr(z) = yll
(z.y)eGraph(M)

is finite, then

5 < sup A (Ay+ Gz, r(2)), @D M(z,y)(f(=,7(2)))))

(z,y)eGraph(M)

> =

The same conclusion holds true if we assume that the solution r is deriv-
able and when we replace the adjacent derivative of M by its contingent
derivative.

Proof — It is sufficient to consider the case when the supremum
6 = sup lir(z) = ol = lIr(z) - #ll
(=.y)eGraph(ar)

is achieved® at some (Z, y) of the graph of M and when 6 > 0.

We know that there exist v € Dr(z)(f(z,r(z))) and ¥ € G(Z,7(Z)) such
that Ar(Z) = v — 9. Set u := f(Z,7(Z)). Since r is Lipschitz, there exists a
sequence h, > 0 converging to 0 such that

(Z + hou) — 7(2)
hn

converges to v

Since M is Lipschitz, we deduce that for any w € D®* M(Z, §)(u), there exists
a sequence w, converging to w such that § + h,w, € M(Z + h,u). Thus

r(z + h,;:) ~r(z) wn) ‘

Ir(z) - 9ll >

T‘(.’E) - g + hn (
Therefore,
Vwe DPM(z,3)(u), (r(F)-F,v-w) <0
and we infer that
Vw € (D" M(2,5)(f(2,7(2)))), (r(2)-§,A(r(F) - §)+ AF+¥-w) <0

®If the nonnegative bounded function x(z,y) := ||r(z) — y|| does not achieve its max-
imum, we use a standard argument which can be found in [16,25] for instance. One can
find approximate maxima (zn, yn) such that x(zn, yn) converges to SUP, cGraph(m) x(z,v)

and x’(zq,yn) converges to 0.
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from which we obtain the estimate

Alir(2) -3l < Ay +¢ - w| O

inf
we(D*M(z,5)(f(z:7(£))))

We use this Lemma to compare two solutions to inclusion (12):

Theorem 3.3 We posit the assumptions of Theorem 2.1. Let r; and r;
be two Lipschitz contingent solutions to (12). If r, is differentiable and if
A > |lr2l[all flla, then

|G(z,m(z)) - G(z,r2(2))]|
™M —T < su
I =rellee < S0 = A T

When f does not depend on y, we can take ||f||s» = O in the above estimate.
When G does not depend on y, we deduce that

Diam(G(z))
™M —7T < suaup ——m————"———
Iy = ralleo < 848 S AITA IR

More generally, let us consider a set-valued contingent solution M : X ~
Y to the inclusion

(14) VY (z,y) € Graph(M), Ay € DM(z,y)(f(z,y)) - G(z,¥y)

Theorem 3.4 We posit the assumptions of Theorem 2.1. Let r be a Lip-
schitz contingent solution to (12) and M be a Lipschitz set-valued contin-
gent solution to inclusion (14) in the stronger sense that for every (z,y) €
Graph(M), there ezists a Lipschitz closed convez process E(z,y) C €o(D° M (z,y))
satisfying

Y (z,y) € Graph(M), Ay € E(z,y)(f(z,y)) - G(z,y)

and

IE||a := sup lE(z,y)lla < 400
(z.w)eGraph(mM)

Assume also that the supremum

6 = sup Ir(z) - ll
(z,w)eGraph(M)
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is finite and that A > ||E||a||f||s. Then

G(z,r(z)) - G(z,
wp e -yl < sp GGGl
(zw)eGraph(m) (z4)eGraph(M) = [IENAllfNla

or, equivalently,

V¥ (z,y) € Graph(M), M(z) C r(z)+ sup IG(z,7(2)) = Gz, )l
(z)eGraphry A~ IElAlfla

When f does not depend on y, we can take ||f||x» = O in the above estimates.
When G does not depend on y, we deduce that

V (z,y) € Graph(M), M(z) C r(z)+ sup Diam(G(z)) B

(=,y)eGraph(Mm) A= [E[All £l

Proof — It is sufficient to consider the case when the supremum
§ = sup Ir(2) =9l = [Ir(z) -3l
(z.y)eGraph(M)

is achieved at some (Z,¥) of the graph of M.
By assumption, we know that the norms of the closed convex processes
E(z,y) are bounded by ||E||s and that

{ Ay € E(%,3)(f(3,9)) - G(z,7)
C E(z,9)(f(z,7(2))) + E(z,9)(f(z,9) - f(z,7(2))) - G(z,9)

Then there exist w € E(z,§)(f(Z,r(Z))) C co(D*M(z,5)(f(Z,r(Z)))) and
Y’ € G(Z,9) satisfying

A7 —w+ ¢l < [ENANANAlr(Z) = 9ll = IEllall fllab

Let v € G(Z,r(z)) such that Ar(Z) € Dr(z)(f(Z,r(Z))) — v. We thus
deduce from Lemma 3.2 that

A8 < (lv=9lI+IENfllad < sup IG(z, r(z))~G(z, y)l|HIElAllfliaé
(=.v)eGraph(ar)

from which the conclusion of Theorem 3.4 follows. O
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Uniqueness follows when A is large enough and when we assume the
existence of a set-valued map M the graph of which is an invariance domain
of the set-valued map (z,y) ~ f(z,y) x (Ay + G(z,y)), in the sense that®

Y (z,y) € Graph(M), G(z,y)+ Ay C DM(z,y)(f(z,y))

We need to use the circatangent derivative CM(z,y) of M at (z,y) defined
by

v € CM(z,y)(u) if and only if lim d (v,
(1"-1;:)*'01:_;‘51,”

M(z’+hu)—y’)
h =0

See [8, Chapter 4] for more details.

Theorem 3.5 We posit the assumptions of Theorem 2.1. Assume that the
graph of the Lipschitz set-valued map M is an invariance domain of (z,y) ~»
f(z,y) x (Ay+ G(z,y)) and that there ezists Lipschitz closed convez process
E satisfying

V (z,y) € Graph(M), CM(z,y) C E(z,y) C @(D'M(z,y))

and

IEla = sup |E(z,y)lla < 40
(z,y)eGraph(m)

If X is large enough, then M(z) = {r(z)} for any single-valued contingent

solution t to inclusion (12) such that the supremum

6 := sup lIr(z) — vl
(z,y)eGraph(M)

is finite.

?One can prove that when F is Lipschitz with closed values, Graph(M) is an invariance
domain if and only if it is invariant in the sense that for any (z¢, yo) € Graph(M), every
solution to the system of differential inclusions

{ £'(t) = f(z(t),¥(1)

y'(t) € Ay(?) + G(z(1),%(2)

starting at (zo, yo) satisfies
Ve 0, y(t) € M(z(t))
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Proof — Since f and G are lower semicontinuous, we know from [8,
Theorem 4.1.9] that inclusion

¥ (z,y) € Graph(M), G(z,y)+ Ay C DM(z,y)(f(z,y))

holds true with the circatangent derivative CM(z,y) (which is a closed
convex process), so that

¥ (z,y) € Graph(M), G(z,y)+Ay C CM(z,y)(f(z,y)) C E(z,y)(f(z,v))

Let (Z,%) in the graph of M achieve the supremum

é sup lIr(z) -yl = lir(z) - 3l

(z,v)eGraph(m)

Take ¥ € G(Z,r(Z)) such that Ar(z) € Dr(z)(f(z,7(z)))— 9. Since G
is Lipschitz, we infer that

Y € G(Z,7(2)) C G(7,9) +IGllallr(2) - 9llB = G(2,9) + ||G|IaéB
Therefore,
Aj+vy € Ay+G(Z,9) +(IGllaéB C CM(2,9)(f(Z,9) + [IGl|laéB

and, F(z,y) being a closed convex process with a norm less than or equal
to || E||a,

{ E(z,9)(f(2,9)) C E(%,9)(f(3,7(2)) + E(Z,9)(f(2,9) - f(2,7(2)))
C E(z,9)(f(z,7(2))) + [|Ellall fllaé

We thus deduce from Lemma 3.2 that
A6 < [|Gliaé + |ElIall fliaé

which implies that § = 0 whenever A > ||G||a + ||E||al|flla- O
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