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FOREWORD 

The author studies where and how solutions associated to a differential 
inclusion can or cannot enter a given target. For this purpose, he associates 
partitions of the target boundary with the dynamics of the system. 

He qualitatively describes the behaviour of these solutions in terms of 
viability and invariance kernels of sets. These kernels determine points such 
that there exist (respectively all) solutions starting at these point remain in 
a given set of constraints. 

He also studies the sets which are reached in finite time by viable solutions 
to the system. 

Finally, he provides some applications to control systems with one target 
and he generalizes the concept of semipermeable barrier. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Science Program 
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Differential inclusions and target problems 

Marc Quincampoix 

1 Introduction 

We consider an open set C and a system whose evolution is described by the 
following differential inclusion1: 

We assume, throughout this paper, that the set valued map F has nonempty 
values2. 

A first question is: 
On what part of the boundary can the state of the system reach the target 

C?  
For that purpose, we define three areas Ce, Cb, Ci of aC such that: 

no solution can enter C crossing Ce 

if a solution enters C ,  then this solution crosses C' 

if a solution remains in aC, then this solution belongs to Cb. 

'This allows to incorporate a lack of exact knowledge of dynamica or to represent a 
control system with state-dependent control map U(z): 

through a differential inclusion, by setting: F(z)  := f (z ,  U(z)). 
21f it is not the case, we can study the differential inclusion in the interior of the domain 

of F. 



For answering the above question, we prove a new result about the tangent 
cone to an intersection. Thanks to this, the three sets Ce, Cb, Ci  form a 
partition of the boundary of C. 

Another question is: From what initial conditions can the system reach 
C? 

Let us consider a differential inclusion with constraints: 

where K is a given closed set (we shall use K := X\C).  
We need some definitions and properties concerning differential inclusions 

with constraints (see [ 5 ] ,  [6 ] ) :  
We shall say that a solution x(.) of the differential inclusion (1) is viable 

in K if and only if: 
V t 2 0, x(t) E K 

The solution x(.) is locally viable in K if and only if: 

3 T > 0, such that Vt 5 T, x(t) E K 

A set K has the viability property if and only if for any point xo of K ,  
there exists at least one solution to (1) starting at this point which is viable 
in K .  

A set K has the invariance property if and only if for any point xo of K ,  
all solutions to (1) starting at this point are viable in K.  

A closed set K is a viability domain if and only if: 

The set K is an invariance domain if and only if: 

where TK(x) denotes the contingent cone3 to K at x. 

3Recall that: 

T K ( z )  := { v  E X I liminf d(z  + hv, K ) / h  = 0 ). 
h-O+ 



If K is closed, if F is an upper semi-continuous4 set-valued map with 
nonempty closed convex compact values and linear growth5 , then, thanks 
to Haddad's viability theorem (see [15], [5]), K is a viability domain if and 
only if the viability property holds for K. 

When K is not a viability domain, the question arises to find closed 
subsets in which it is possible to solve (1) in K.  With these assumptions it 
is possible to define the viability kernel: 

Definition 1.1 The viability kernel of a closed set K is the largest closed 
viability domain contained in K .  

We have some examples of computation of viability kernels in [7] and [14]. 
In a similar way, thanks to the invariance theorem (see [5]), if K is closed 

and if F is lipschitzean6 with compact convex values and linear growth, then 
K is an invariance domain if and only if the invariance property holds for K.  

Under these assumptions it is possible to define (see [5]) the invariance 
kernel: 

Definition 1.2 The invariance kernel of a closed set K is the largest closed 
invariance domain contained in K .  

In this paper, we prove some properties of the boundaries of viability and 
invariance kernels. In fact, under adequate assumptions, the boundaries of 
ViabF(K) and InvF( K )  are viability domains. 

'Let us recall that a set valued map F  is upper semi continuous at zo if and only if: 

V c > 0 ,  3 a  > 0 ,  F ( z o + a B ) ~  F(zo)+cB 

&We say that a map F  has a linear growth if there exists c  > 0  such that: 

V E X, F(z) c c(1 + 11z11)B 

%et us recall (see [S]), [6] that a set valued F  is lipschitzean if and only if there exists 
a positive real k such that: 

v (2, y) E X x X, F(z) C F(y) + kilt - VIP. 



We shall also try to answer another question: is it possible to find a 
solution to the differential inclusion with constraints which reaches a given 
point? To investigate this question, we shall introduce and study kernels for 
- F which yields backward trajectories. 

In the last section, results concerning the boundaries of the kernels of a 
differential inclusion will be used to study the following control system with 
one target C: 

~ ' ( t )  = f (x(t), u(t)) u(t) E U(x(t)) 
We shall generalize the concept of semi permeable barrier (introduced by 
Isaacs in [17] for differential games). Recall that a barrier allows to separe 
the areas from which it is possible to reach C and the areas from which it 
is not possible. (see also [lo], [9], [ll]). Recall that a C1-surface is semi 
permeable when it is satisfying an equation such that: max, f (3, u).n 5 0 
or min, f (x, u).n 2 0 (where n is the normal vector of the surface). It 
means that the solutions of (4) are able to cross the surface in "only one 
directionn. In fact, we prove that the solutions of a control system can cross 
the boundaries of viability and invariance kernels only from the exterior of the 
kernel to the interior the kernel. In this sense the boundaries of invariance 
and viability kernels are semi permeable. 

I am indebted to Halina Frankowska for her help and advice. 

2 The target boundary and the dynamics 
We study a system whose dynamics are described by the differential inclusion: 

where F is the set valued map, whose values are nonempty convex and corn- 
pact, from a finite dimensional vector space X into itself. We also consider 
a set C (the target) which is open nonempty and different from X.  

Let us define two closed sets K := X \ C  and R := X \ K  = c. 
The Haddad's viability theorem [15] provides conditions such that the state 
never reaches C. Here we study how it is possible to reach C. 

We first state our results; their proofs will be given in section 2.4. 



2.1 A geometrical result 

We need a result concerning the contingent cone to an intersection of two 
closed sets. 

Definit ion 2.1 Let K be a closed set. The Dubovitsky-Milliutin tangent 
cone is defined by: 

or equivalently: DK(x) = X \ T d x ) .  

Theo rem 2.2 Let K1 and K2 be two closed sets o j X  a normed vector vector 
space. Then, for any x: 

This result allows to characterize the intersection of contingent cones, without 
assumptions on the regularity of these cones7. 

Corol lary 2.3 Let K1 and K2 be two closed sets o j x .  
I j x  E Kl n K2 n Int(Kl U K2), then 

We recall that the same conclusion can be obtained if X is a finite dimen- 
sional vector space, when we assume the following transversality condition: 

where CK(x) denotes the Clarke's cone8to K at  x. 

R e m a r k  - These two results allow to  express the contingent cone to  
an intersection in different cases: 

7 ~ t  is a pleasure for me to thank Halina F'rankoweka who suggested to improve corollary 
2.3 into theorem 2.2 by using Duboviteky-Milliutin tangent cones. 

8Recall the definition of the Clarke's tangent cone (see for instance [6] chapter 4): 

C K ( Z )  = { v  1 liminf d ( y  + hv, K ) / h  = 0 ) 
A-O+, y-r, yc K 



In R2, we can compute the tangent cone at (0,O) to the intersection of 

KI : = { ( x , y ) ( x  50) and K2:= { ( x , y ) ( x > _ O }  

thanks to Corollary 2.3, but not from the transversality condition. It is the 
contrary in the case of 

K1:={(x,y)Ix=y} and K2:={(x,y)Ix=-y) 0 

We can deduce the very useful corollary: 

Corollary 2.4 Let x belong to  X. 

and 
DK(x) = TK(x)\T~K(x). 

This Corollary was be used in the study of the qualitative behaviour of 
replicator systems in the simplex (see [12]), or to study the fluctuations of 
solutions around the boundary of a given set (see [18]). Corollary 2.3 can 
be generalized to compute the contingent cone to an intersection of a finite 
number of closed sets: 

Corollary 2.5 Let K1, K2,. . . Kp be p closed subsets of a metr ic vector space 
X and let x belong to n:f; Ki. If there ezists an open set 0 which contains 
x such that: 

i=j-1 

VjSp, O C K , U (  n Ki) 
i = l  

then 
P 

T ~ ,  K,(x) = i= n 1 TK,(X) 
2.2 First partition of the target boundary 

Let us introduce three subsets of the boundary which are depending on the 
dynamic of the system. 



Proposition 2.6 If F : X H X is an upper semi continuow set valued 
map with nonempty convez compact values, if K is closed nonempty then, 
(Kc,  K', Kb) form a partition of the boundary a K  (in the sense that a K  = 
Ki  U K b  U Ke and these three sets are disjoint). 

If so belongs to K', then all solutions starting at so enter Int(K) and stay 
in the interior on time interval 10, T[ (with T > 0). 

If so belongs to Kc, then all solutions starting at so enter Int(X\K) and 
stay outside K on 10, T[ (with T > 0). 

If so belongs9to IntaKKb, then there ezists a solution starting at so which 
stays on the boundary a K  on 10, T[ ( with T > 0). 

Remark - We can notice that, when a K  is a C1 surface, the subset 
K b  u Ki is often called the boundary usable part and Ke  the boundary non 
usable part. 

For a set A, we set Â  := X\A and we denote by Int(A) its interior. We 
can introduce the same type of partition for the closed set C = z, i.e., the 

A .  d 
three sets 3 = K', C = 2, F = which form a partition of az. A 

A. A h 

natural question arises: how can we compare K', Kb,  K c  and (Kc,  Ki,  Kb)? 

Proposition 2.7 Let K be a closed set and F a set valued map with nonempty 
convez values. 

K i = ? ,  K c c f f ,  xbczb 
Equalities hold true i f  and only i f  Int(K) = K .  

The first statement and the inclusions are obvious. If the equalities Kc  = zi, 
K b  = 2 hold, then necessarily a K  = az i.e. Int(K) = K. It is easy to 

A 

show that this condition is sufficient (in this case z = K).  
We can improve this partition to have a more precise one. 

2.3 Second partition of the target boundary 

Let us consider the following differential inclusion: 

9Here, we denote by 1 n t s K ~ '  the interior of Kb in the apace 8K.  

7 



We can regard the solutions of (3) as solutions of (1) but in the reverse 
direction (i.e. if x(.) is a solution of (1) on [0, TI, then y(t) := x(T - t) is 
solution of (3) on [O,T]). In this way, we get the backward trajectories of 

(1). 

We introduce the subsets: 

These three sets also form a partition of aK .  Consequently, these two 
partitions yield a new partition of the boundary made of nine subsets. 

We can describe the qualitative behaviour of solution, as in the previous 
section, in the following proposition in which we shall denote by Int(Kb) the 
interior of K b  in the space aK .  

Proposition 2.8 Let K be a closed nonempty set. 

8 



2.4 Proofs 

xo is an element of 
K' n K'- 

K' n K'- 

Ki  n Int(Kb-) 

K' n K'- 

K' n K'- 

K e  n Int(Kb-) 

Int(Kb) n Int(Kb-) 

Int(Kb) n K'- 

Int(Kb) n Ke- 

Proof of theorem 2.2 - Let u be in TK1 ( 5 )  n TK2(x)  n D K , u K 2 ( ~ ) .  
According to the definitions of these sets, there exist sequences hk, h i  of 
nonnegative reals converging to 0, sequences u:, ui converging to u and a 
real a such that: 

Properties of solutions which start at xo 
all solutions enter K at so 
no solution come from the ezterior of K 
all solutions enter K at so 
no solution come from the interior of K 
all solutions enter K at so 
there ezisib at least one trujectoy locally viable on 
the bounday which come into Int(K) at so 
all solutions go outside K 
no solution come from the interior of K 
all solutions go outside K 
no solution come from the ezterior of K 
all solutions go outside K 
there ezists at least one solution locally viable on 
the boundary which comes into Int(K) at xo 
there ezists a solution passing through xo 
(i.e. 3 T > 0, X ( T )  = x0 ) 
and locally viable (for F and - F )  on the boundary 
no solution come from the ezterior of K 
there ezists a solution locally viable on a K  
which comes from the interior of K 
no solution come from the interior of K 
there ezists a solution locally viable on a K  
which comes from the ezterior of K 

Clearly there exists N such that: 

V n > N ,  z + h h ~ : E  x+ [O ,a [ (u+aB)  for i = 1 , 2  



Since for all n > N, the two points x + hAvA and x + hKvK belong to the 
convex set x + [0, a] (x + a B), 

[x + hAvA, x + htv:] c x + [0, a](x + aB) c Kl U K2 

On the other hand: 

We cannot form a partition of a connected set made of two nonempty closed 
sets. Hence the intersection of the two closed sets in the left-hand side of the 
above equality is nonempty. Consequently, there exists An in [O,1] such that: 

(if one of these sets is empty, we obtain the same conclusion by setting A, := 0 
or 1). By setting: 

We see that v, --t v, h, --, 0 and xn + hnvn E K1 n K2.  The proof is 
completed. 

Corollaries 2.3 and 2.4 are obvious consequences of theorem 2.2 if we 
notice that: 

DKlUK2(x) = X by assumption of Corollary 2.3 

DKuk(x) = X trivially. 

Proof of corollary 2.5 - Thanks to corollary 2.3, we have: 

T ~ p ( x )  Tn.=~-lKi(x) 1=1 = Tfl=l K,(x) 

But we have (with the assumption in the case j = p - 1): 



Hence according to corollary 2.3: 

An obvious induction argument allows to complete the proof. 0 
Proof of proposition 2.6 - Thanks to corollary 2.4, we can divide 

the space X into three sets DK(x), TaK(x), X\TK(x). That provides the 
partition of the boundary. In fact, we observe that Ki  n Ke = 0 and if 
F(x)  n TK(x) # 0 and F(x) n Tk(x) # 0, then using that values of F are 
connected, we deduce that x E Kb. Now, is easy to characterize each area 

(see [51). 

3 Boundaries of invariant and viability ker- 
nels 

In this section, X denotes a finite dimensional vector space. Our purpose is 
to describe the boundary of the set of initial conditions of (1) from which it 
is possible to reach the target C. This set is the complement of the viability 
kernel of K = X \ C  associated with (1 ). We shall, now, characterize the 
boundary of these two kernels: 

Theorem 3.1 Let F : X I+ X be a lipchitzean set valued map with nonempty 
convex compact values and with linear growth, and K be a closed nonempty 
set. 

If xo belongs to aViabF(K)\aK, then there exists a solution viable in K, 
starting at xo which stays in the boundary of ViabF(K) as long as it does not 
cross a K .  Furthermore, every viable solution starting at xo has the same 
behauiour. 

Proof - We prove that there exists a viable solution starting at xo 
which stays on the boundary of the viability kernel until it reaches aK .  

In fact, let be x(-) a viable solution starting at xo which enters the interior 
of ViabF(K) (i.e. 3 T > 0 such that x(T) E Int(ViabF(K)) and x([O, TI) C 
Int(K) n ViabF(K). According to Filippov's Theorem1', there exists 1 > 0 

1°1f F ie l i~chitsean with nonempty values, y(.) E &(yo) (set of solutions of (1) starting 
at yo). There exists I > 0 such that: 



such that, for all y in K,  there exists a solution y(.) starting at yo such that: 

Hence, it is possible to find a > 0 such that, for all yo in (zo+aB)\ViabF(K), 
we have y([O, TI) C K and y(T) E ViabF(K). But there exists a viable 
solution $ ( a )  starting at y(T) (E ViabF(K)). 

Let us define a new trajectory g(.): 

Then y(.) is a solution to (1) viable in K.  We have shown that ViabF(K) U 
{ y(t), t 2 0 ) (which contains strictly ViabF(K)) is a viability domain; this 
is a contradiction. 

Corollary 3.2 If assumptions of theorem 3.1 hold true and if ViabF(K) C 
Int(K), then aViabF(K) is a viability domain and the set X\ViabF(K) is 
an invariance domain 

Proof - If we notice that aViabF(K) n a K  = 0 then, thanks to the 
theorem 3.1, aViabF(K) is a viability domain. Let consider a solution x(-) 
starting at zo E X\ViabF(K), if a solution reaches aViabF(K), thanks to 
theorem 3.1, it can not enter in the interior of the viability kernel. 

Remark and example - If ViabF(K) C Int (K), the sets aViabF(K) 
and 81nvF(K) are viability domains; but generally, they are not invariance 
domains. We can notice that in the following simple examples in the two 
dimensional space R2. 

We consider a constant set valued map and two closed sets: 

Then, it is easy to check that: 

(see [6] chapter 10). 



Here, the boundaries of ViabF(K1) and InvF(K2) are viability domains but 
they are not invariance domains. We can see that all solutions starting at a 
point of { (x,y) I x 5 1, y = x - 2  ) stay in this set until they reach the 
boundary of ViabF(K2) (at (+I, -1) ). 

We are proving now a dual result: 

Proposition 3.3 Let F be a lipchitzean set valued map with nonempty con- 
vex compact values, and K a closed compact nonempty set. 

If InvF(K) C Int(K), then the boundary aInvF(K) is a viability domain. 

Proof of proposition 3.3 - We shall show a more precise result: - - 
X\InvF(K) is a viability domain (so that, if E aInvF(K) <here will exist 
a solution viable in X\InvF(K) which necessarily is also viable InvF(K), 
hence it is viable in the boundary). For doing this, it is sufficient to show 

- 

that there exists a solution starting at any point of X\InvF(K) which never 
crosses InvF(K) so that: X\InvF(K) C ViabF(X\InvF(K)). 

. . 

Since K is a compact set, there exists a nonnegative number a such that: 
InvF(K) + 2 a B  C Int(K). We shall need the following 

Lemma 3.4 Under the assumptions of proposition 3.3, let x(.) be a solution 
to (1) and a > 0 . Then there exists T > 0 such that for all t L t' 2 0: 

Proof of the Lemma 3.4 - Let us define M := supzEK IIF(x)II and 
T := a / M .  AS K is compact and F lipschitzean with compact values, M is 
different from infinity1'. Since x(.) is absolutely continuous, we have: 

5 I l~ ( t )  - ~(t ' ) l l  = 11  f i  xl(s)dsll 5 ~ l t  - t'l 
Hence (t - t'l 2 T The proof of the Lemma is completed. 

Let x E K\InvF(K); let us build a solution starting at x viable in 
K\InvF(K). We know that there exists at least one solution x(-) which goes 

"this ie even true if we assume that F is upper semi continuous with compact values. 



outside K (i.e. 3 TI > 0, z(r l)  E X\K) .  If this solution stays outside 
InvF(K) then the proof is achieved. Otherwise, there exists a time TI > TI 

such that z(Tl) E (InvF(K) + aB)\InvF(K). According to the lemma 3.4, 
because )Jz(Tl) - z(r1))) > a, we have )TI - TI 1 > T. But starting at z(Tl) 
there exists a solution 5(.) which goes outside K (3 72,  5(T2) 4 K).  In a 
similar way than in tl;e proof of theorem 3.1, we obtain a solution to (1) 
starting at zo (again denoted z(.)) such that ?(r2) = z(T1 + 72). If this 
solution stays outside InvF(K), then the proof is achieved, otherwise: 

3 7'2 > Ti, z(T2) E ( I~vF (K)  + aB)\InvF(K) with T2 - Ti > a .  

If there is a finite number of T; the proof is clearly achieved. If there is an 
infinite number of Ti this sequence converges to oo because T,-,+i - T, 2 cr. 
We have obtained a solution of (1) viable in X\InvF(K) 

When K is not compact but only closed, it is possible to prove a similar 
result: 

Proposition 3.5 Let K be a closed set and F a set-valued map satisfying 
the assumptions of proposition 3.3. 

If ViabF(K) C Int(K), then X\InvF(K) and dInvF(K) are viability do- 
mains. 

We then deduce a result which follows from theorem 3.1 and proposi- 
tion 3.3: 

Corollary 3.6 Let F be a lipchitzean set valued map with nonempty convez 
compact values, and K a closed compact nonempty set.  If zo E aInvF(K) fl 
aViabF(K), then all solutions starting at zo stay on  the boundary of ViabF(K), 
as long as they do not cross a K .  

Furthermore if aInvF(K) fl aViabF(K) C Int(K), it is  an invariance 
domain. 

4 Backward trajectories for a differential in- 
clusion 

In previous sections, we were interested in studying solutions starting at a 
given point; now, we shall study solutions reaching a given point. 



We compare in this section kernels associated to (1) and kernels associated 
to (3) . 

Roughly, the concatenation of solutions of (1) and (3) gives us a solution 
of the differential inclusion on ] - m, +m[. 

Let Viab-F(K) (respectively Inv-F(K)) denote the viability kernel of (3) 
(respectively the invariance kernel) of K for the set valued map - F .  Of 
course all results concerning boundaries of these sets are still available. 

Proposition 4.1 Let F be a lipschitzean set valued map with nonempty con- 
vex compact values and linear growth, and K a closed set. 

The set InvF(K) f l  Viab -~ (K )  is an invariance domain for F .  

The set Inv_F(K) f l  ViabF(K) is an invariance domain for - F .  

The set ViabF(K) n Viab -~ (K )  is a viability domain for F and - F .  

The set InvF(K) n Inv_F(K) is a viability domain for F and - F .  

Proof - To prove this, we use a technique similar1* to the proof of 
theorem 3.1. Let us prove, for instance, the first result. 

Let xo belong to InvF(K) nViab-F(K) and x(-) be a solution to (1). Fix 
T > 0. By setting y ( t )  := x(T - t )  ( t  E [O,T]), we obtain a solution to (3) 
such that y(T) = xo E Viab-F(K). Hence, there exists G(.) a solution to 
(3) starting at xo and viable in K with respect to - F .  The concatenation of 
y ([0, TI) and G([T, m[)  provides a solution starting at x(T) viable in K (with 
respect to - F ) .  Hence x(T) E Viab-F(K); since T is arbitrary the proof 
follows. 

Proposition 4.2 If assumptions of proposition 4.1 hold true, then: 

i) ViabF(K) C Int(K) * ViabF(K) C Inv-F(K) 
i i )  Viab-F(K) C Int(K) * Viab-F(K) C InvF(K) 

''Let w recall: 

I ~ v F ( K )  C Viab~(K)  and Inv-F(K) C Viab-F(K) 



It follows by exactly the same arguments that in the previous proof. 
Remark - We can now "mix" all these subsets and kernels to prove 

results of the type: 

and so on ... O 

5 An application to control systems with 
one target: semi permeable barriers. 

A question naturally arises: Why is it useful to study the boundary of via- 
bility or invariance kernels? We give an example of controlled system with 
one target. 

5.1 Certain and possible victory and defeat domains 

We can modelize the controlled system13 

through the differential inclusion (1) by setting F(x)  := f (x, U(x)). We 
shall assume that F is lipschitzean with convex compact nonempty values14. 

Our problem is to drive in finite time the state x inside a given open set 
C starting at a point outside of C. This has a precise mathematical sense 
by using the viability and invariance kernels of K := X\C. Let us introduce 
some definition of victory and defeat domains (see[3]). 

Definition 5.1 We define 

the domain ofcertain defeat by the set InvF(X\C) 

lSResults of this paper can be easily extended to the non autonomous case i.e. 
' ( 1  = f 1 ,  t )  u ( t )  E U ( t ,  4 t ) )  (= 1241) 

"In particular, it is satisfied i f f  is lipschitzean affine with respect to the control and U  
is a lipschitzean set valued map with nonempty convex compact values. 



the domain of possible defeat by  the set ViabF(X\C) 

the domain of certain victory by  the set K\ViabF(X\C) 

the domain of possible victory by  the set K\InvF(X\C). 

Let us make more precise the qualitative behaviour of solutions in these 
domains. 

Proposition 5.2 If xo E InvF(X\C) then, no solution to (4) starting at 
xo, can reach C (certain defeat). 

If xo E ViabF(X\C), there exist solutions of (4) starting at so, which 
never reach C (possible defeat) 

If s o  E X\ViabF(X\C) then, all solutions of (4), starting at s o ,  reach 
C in finite time (certain victory). 

If xo E K\InvF(X\C), there exist solutions to (4) starting at xo, which 
reach C in finite time (possible victory). 

Proof - It is the obvious consequence of definitions 1.2 and 1.1. 

5.2 Semi permeable barrier 

We shall define some subsets of the boundaries of these victory and defeat 
domains. 

Definition 5.3 The barrier is the set: 

The strict barrier is the set: 

We can notice that the barrier is contained in the intersection of the 
certain defeat domain an the possible victory domain. The strict barrier is 
contained in the intersection of the possible defeat domain and the certain 
victory domain. We can translate the results of section 3 and so we have a 
qualitative description of the behaviour of solution on the barriers. 



Proposition 5.4 The strict barrier is a local viability domain15. Further- 
more, all solution starting at any state xo of the strict barrier which are viable 
in X\C, remain in this set until it reaches C (and there ezists such solution). 

The barrier is a viability domain16 as soon as: 

Proof - The first result is a consequence of theorem 3.1, and the second 
one is a consequence of proposition 3.5. O 

This generalizes the concept of semi-permeable barriers (see [9], (1 01). 
Recall that a C1-surface is semi permeable when it is satisfying an equation 
such that: max, f (x,  u).n 5 0 or min,, f (x,  u).n 2 0 (where n is the normal 
vector of the surface). It means that the solutions of (4) are able to cross the 
surface in only one direction. Let us make this idea more precise by using 
the partition of section 2. 

Definition 5.5 Let A be a closed set.  A subset B o f d A ,  is semi permeable 
for A if and only, for any point xo of B ,  any solution x(.) starting at xo is 
locally viable in A .  

Remark - Let us notice that an obvious consequence of this definition 
is B n A e  = 8. 

Thanks to proposition 5.4, we can state the following 

Proposition 5.6 The strict barrier is semi permeable for ViabF(X\C). 

In fact, thanks to proposition 5.4, we know that a solution of (4) cannot 
cross the strict barrier if it comes from the exterior of the viability kernel 
ViabF(X\C), but the converse is possible (i.e it could exist solutions coming 
from the interior of the kernel which cross the strict barrier). 
We can notice that, thanks to corollary 3.6, the intersection of the strict 
barrier and the barrier is a local invariance domain" (if it is nonempty). 

''A set K is a local viability domain if and only if, starting at any point of K ,  there 
exists at least one solution locally viable in K.  

16When we assume that X \ C  is compact, according to proposition 3.3, we have the 
eame conclusion if: 

1nv~(X\C)  n C = 0. 

"A set K is a local invariance domain if and only if all solutions starting at any point 
of K are locally viable in K.  
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