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Foreword 

The author shows how to  model imprecision in the decision maker's judgements, within a 
Bayesian context. He provides axioms leading to  work with families of value functions, if the 
problem is under certainty, or probability distributions and utility functions, if the problem is 
under uncertainty, or probability distributions and utility functions, if the problem is under 
uncertainty. Some solution concepts are suggested. On the whole, he provides a robust decision 
theory based on a set of axioms embodying coherence, and essentially implies carrying out a 
family of coherent decision analyses. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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1 Introduction 

The foundations of the Bayesian approach to decision making, see French (1986) 

e.g., require precision in the decision maker's (DM) judgements (preferences, risk 

attitudes, beliefs) which mean precision in the numerical inputs (values, utilities, 

probabilities) to the analysis. The assessment of these inputs imply the encoding 

of the DM'S judgemental inputs in parameters and the association of an evaluation 

function with each alternative. In practice, the DM may not be ready or able to 

provide the information necessary to locate the parameters precisely. Instead, he 

may only give some constraints on his judgements: we have to work with a family 

of values or probabilities and utilities. This clashes with the Bayesian foundations. 

We shall call this decision making under partial information. 

We give axiomatic foundations for this case, according to this principle: the 

Bayesian approach assumes that comparative judgements follow a weak order (plus 

some conditions); this leads us to the codification of judgemental inputs in param- 

eters with some uniqueness properties. We shall see that quasi orders regulating 

comparative judgements (plus some similar conditions) correspond to sets of feasi- 

ble parameters and, consequently, to constraints of our kind. We start by modelling 

general preferences under certainty. Then, we analyse belief models. We conclude 

by analysing preferences under uncertainty. A parametric model is introduced to 

analyse problems under certainty and under uncertainty in parallel. The proper 

solution solution concepts are then suggested. An example illustrates the ideas. 

We study only finite alternative, finite state problems. 

Several authors, see Rios (1975) and the references in Nau (1989), have pro- 

posed to work with families of utilities and probabilities to account for imprecision 

in judgements. However, the general emphasis has been on quantitative proper- 

ties of upper and lower probabilities and/or utilities. Our emphasis will be in 

(axiomatic) qualitative characterisat ions. 

Let (A, R), (A, S) be binary relations. We say that: 

Definition 1 (A, R) is  a quasi order if it is  reflezive and transitive. 

(A, R) is a weak order if it is rejlezive, transitive and complete. 

(A, R) is  a strict partial order if it is irrejlezive and transitive. 



Definition 2 S is a covering of R if a,  b E A, a R b d  aSb. We write it R S. 

From now on, our binary relations shall be written (A, 3). We shall say that 

2 Decision making under certainty 

Suppose a DM has to choose among a finite set A = {al,. . . , a,) of alternatives. 

We model the DM's preferences by a relation 5 interpreted as follows: let a;, a j  E 

A, 'a;5aj' means 'a; is at most as preferred as aj'. Our initial aim is to represent 

it by means of a value function v, see French (1986). Imprecision in the DM's 

preferences lead us to represent 5 by a family of value functions. 

Roubens and Vincke (1985) give a one way representation of quasi orders. 

Roberts (1979) presents a characterisation of strict partial orders. We could give a 

representation of a quasi order by reduction to a strict partial order, but that would 

lead us to order alternatives in a weak Pareto sense. We provide a characterisation 

of quasi orders, which will lead us to a Pareto order, as in the rest of the cases we 

study. 

The result is 

Proposi t ion 1 Let A be a finite set and 5 a relation on A. (A, 5) is a quasi 

order if there are r real functions v l ,  . . . , v, such that 

for a;, a j  E A, for some r E N. 

+ Clearly, (A, 5 ) is reflexive and transitive. 

+ For each a; E A, define 

1 i fa ;5a j  
v;(aj) = { 

0 otherwise 



Suppose that a;daj. If ak5a; then ak5aj ,  thus vk(a;) = vk(aj). If i (ak5a; ) ,  

then vk(a;) = 0 < vk(aj). Thus, vk(a;) < vk(aj),Vk. 

Suppose l (a ;5a j ) .  Then v;(aj) = 0 < 1 = v;(a;). Thus, l(vk(a;) < vk(aj), Vk). 

Observe that given vl, . . . , v, representing 5 we have: 

Corollary 1 For a;, a, E A 

This result might look innocuous at first sight. However, we easily find that with 

our choice of vl, . . . , v,: 

Proposition 2 Let (A, 5,)  be a weak order such that 5, is a covering of 5. There 

is X > 0 such that XI = 1 and 

Therefore, we have a procedure to generate the weak orders covering a quasi order. 

3 Decision making under uncertainty 

The DM has to choose among the set A of alternatives. The consequences of each 

alternative are not known with certainty. Nature adopts one of the states of O = 

(1, . . . , k). We associate the consequence a;, to the alternative a; when the state 

is j. a;, belongs to C = {cl , . . . , c,) , the finite space of consequences. We study 

first the problem of modelling beliefs and, then, that of modelling preferences. 

3.1 Modelling beliefs 

Let O be the set of states of Nature. The DM expresses his beliefs over A, the 

algebra of subsets of O. They are modelled in terms of a relation 5r on A in- 

terpreted as follows: 'B5rCL for B, C E A means that 'B is at most as likely to 

occur as CL. We attempt to represent it by a probability distribution. However, 



we cannot expect the judgemental inputs to be as precise as demanded by the 

Bayesian foundations. We can only hope, at best, to delimit possible values for a 

DM'S subjective probability to a small set. Given this, it is natural, perhaps, that 

theories of upper and lower probabilities have developed as in Koopman (1940), 

Smith (1961), Good (1962), Dempster (1967) or Suppes (1974). See also Walley 

and Fine (1979), Shafer (1976) and Nau (1989). In general, their emphasis is on 

quantitative properties of lower and upper probabilities, though Suppes gives a 

qualitative treatment of the problem, using semiorders, and Nau provides an ax- 

iomatic in terms of betting behaviour. In our opinion, the emphasis should be on 

imprecision in beliefs leading us to work with a family of probabilities. That these 

probabilities have upper and lower probabilities is interesting, but no more. 

We justify this approach axiomatically, characterising probability quasi orders 

by systems of inequalities. Scott (1964) uses systems of inequalities to represent 

probability weak orders; Fishburn (1969, 1985) uses them to represent probability 

semiorders and interval orders. Our result weakens Scott's axioms, giving a simple 

and elegant qualitative treatment of probability quasi orders. Giron and Rios 

(1980) provide a characterisation in a more general setting. 

We shall need the following property (where X B  represents the characteristic 

function of the subset B E A ): 

Definition 3 (Proper ty  P )  Let @,A, Sf be as above. (A, sf) satisfies property 

P if for all integers 1, r 2 1 and for all BI, Cl, . . . , B I + ~  ,CI+~ E A, such that 

BisrC;,i = 1,. . . , l  and 

then CI+I 5 r  

The equation in property P simply states that each i E O appears the same number 

of times in the sets B1,. . . , BI, BI+], . r . ,  Bl+1 than in the sets C1,. . . , CI, .:. 
, We can give a betting interpretation of property P: suppose the DM receives 

a prize of utility 1 for each B; or C; that obtains, i = 1,. . . ,1, and a prize of 

utility r for obtaining B I + ~  or Then, if B;llrC; for i = 1,. . . , I ,  it should be 

Cl+i 5rB1+1. 

The main result of this section is 



Proposition 3 Let O, A, be as above. Then: 

P2. Property P, 

are equivalent to the ezistence of a (nonempty, finite) family P of probabilities p 

such that 

B5!C - p(B) I p(C), VP E P. 

+ Immediate. 

+ We first see that there is a weak order (A, st'), such that A!' is a covering of 

4!, - which may be represented by a probability distribution. The proof is based 

in similar results mentioned above. The assertion is true if there is a probability 

distribution p such that 

Given p, we define pi = p(i), so we can write p = Associate an inequality 

with each comparison B i p C .  Associate the inequality 

with the comparison 0 41 O. Then, we can rewrite the system as 

where the b's are vectors whose elements are in (-1, 0, 1) and b, is a vector of 1's. 

The assertion is true iff S is consistent. Suppose S is inconsistent, then (see, e.g., 

Rockafellar, 1970, p. 198) there are numbers p, 2 0 and p, > 0 such that 

As the b's are vectors of rational components, the p's may be taken rationals, and, 

consequently, integers. Also, at least one of the p,'s has to be positive. As each 

inequality is related to a comparison B,A!C,, we deduce that, for some 1 2 1, 



By property P, OArO, which is a contradiction. So S is consistent: there is a weak 

order (A, At'), such that 5 r '  is a covering of <r, which may be represented by a 

probability distribution. 

Let us call (A, 5,) to the the weak order associated with p. Let P = {p : 

z 5,). We know that P # 0. Let J* = Q,? 5,; clearly, z 5'. Suppose - 
B, C E A are such that B # C, B5*C : Vp E P, it is BJ,C. Thus, writing 

as 

pb 2 0, 

with b E {-1,0,1), this inequality is a consequence of the system 

(Observe that S' adds only to S the equation 

pb, = 0. 

When this happens, p; = 0, Vi, pb 2 0, Vb). 

By Farkas' lemma, see Rockafellar (1970), there are nonnegative numbers p,, p, 

such that 

Cp.b, + p.b. = b 

As b # 0, at least one of the p's has to be positive. As the b's are vectors with 

rational components, the p's may be chosen rational. Thus, there are nonnegative 

integers P,, P,, P, with /3 and at least one of the other p's positive such that 

This implies that there are B;, C; E A, i = 1,. . . , I, with I 2 1, such that B,Jr C;, Vi 

and 

X B ~ + - . . + X B , + P X ~ = X ~ ~ + . . . + X ~ , + P X B  
By property P, B5rC. That is, J* E S f .  



The 5,'s are weak orders in A, which is finite. Thus, we may choose pl , .  . . , p t 

such that 

Clearly, (A, At) is a quasi order. Again, we have: 

Corol lary 2 Let P = . . ,pt), t 2 1, be a family ofprobabilities characterising 

on A.  Then 

Note that if there is no judgement gathered concerning events A and B, then there 

is p E [PI such that p(A) = p(B), as is frequently assumed. Observe also that if 

0 +r D,  there is p E P such that p(D) > 0, a fact which we use in proposition 4. 

To end this section, we study conditional probabilities. Non unicity of P leads 

to problems while defining probabilities of events conditional on different events. 

However, in our context, it is enough to deal with probabilities conditional on the 

same event. BID represents the event B given D. The result, of simple proof, is 

Proposi t ion 4 Let 0, A, 5 r  be as before. Suppose (A, At) verifies PI ,  P 2  and 

P3. For any B, C, D E A, such that 8 +r D, BIDArCID ifl B n D 5 r C  n D. 

Then, there is a family P of probabilities such that for any B,C, D E A, with 

8 +r D, 

BID5rCJD - p(BID) I p(CID),Vp E P : p(D) > 0 

where p(BJD)  = p(B n D)/p(D). 

Therefore, Bayes' theorem holds in this case. 

3.2 Modelling preferences under uncertainty 

The DM may express his preferences over the set Po(C) of probability measures 

over C, the (finite) space of consequences. We model the DM'S preferences over 



Po(C) with the relation 5,' interpreted as follows: 'p5,q' means 'p is at most as 

preferred as q'. We attempt to represent it via expected utility of a utility function. 

Imprecision in the DM'S preferences leads us to the representation 

where U is a family of utility functions. 

Aumman (1962) and Fishburn (1982) provide sufficient conditions for a a one 

way representation. White (1972) gives conditions to represent an order in Rn by 

a finite family of linear value functions, which may be translated to this context. 

The following simple result establishes the necessity of the main conditions we 

shall use to get the representation. 

Proposit ion 5 Suppose that (Po(C), 5,) admits the representation (1). Then, 

Bl. (Po(C), 5,) is a quasi order. 

B3. cxp + (1 - cx)rA,crq + (1 - cr)s,Vcr E (O,l]+r5,s. 

As a first step, we shall look for a one way utility representation as Aumman's 

or Fishburn's. We substitute their continuity condition by a nontriviality condition 

(B4): thus, continuity is not essential for a one way utility representation. 

Proposit ion 6 Let C, Po(C), 5, be as before. Suppose that 5, satisfies Bl, B2. 

Then if: 

there is a real function u on C such that 

Our proof will be based up to a point on Fishburn's (1982) proof, which in turn 

develops Aumman's ideas. Let us call 



We first prove that: 

1. E is convex. 

Let y , z  E E. There are p,q , r ,s  such that q3,p,  r s , s ,  y  = p - q , z  = s  - r .  
Applying B2,  we have 

for cr E ( 0 , l ) .  Thus, 

a ( p  - q )  + ( 1  - cr)(s - r )  = cry + ( 1  - cr)z E E. 

Extending the above argument by induction we may prove that 

2. aj > 0 ,  C crj = 1,  qj5*pj* C a j q j 5 ,  C crjpj. Then: 

3. Q j  > O ,  C crj = 1,  q j 3 * p j , j  = 1, .  . . , n - 1, C a j q j  = C crjpj*pn5*qn. 

Because of 2,  we only have to prove the result for n = 2. If cr E ( 0 ,  I ) ,  

( 1  - ~ ) q z  = crpl + (1  - &)p2 and q15.pl, we have . 9 1  + (1  - cr)pzS.crpl + 
(1  - Q ) P ~  = ~ q i  + (1  - cr)q2, so that pz+ -* q 2 .  

Let S be the minimal convex cone containing E. From 3 ,  we get: 

4. p,q E Po(C),p - q E S*q5*p. 
We have that 

P - q = C ~ n ( p n - q n )  

with an > 0,qn5.pn. Then, 

As qn5*pn, applying 3 ,  we get q 5 - p .  Hence we may write, 

5. P, q  E Po(C),p - q E E - qS*p.  

Then, due to B 4 ,  S # R": as S is a convex cone (see Rockafellar 1970, p. 99)  

there is u # 0 such that x f S+uz 2 0. Let us call u(q )  = u;, i = 1, .  . . , s. We 

have: 

q5.p'~ - 9 E E C S*uq 5 up* C ~ ( q ) ~ ;  5 C 



E(u, 9) s E(u, P). 

To get the two way representation we need to restore continuity, through axiom 

B3. Aumman (1964) provides a related result of more complicated proof and under 

stronger conditions. 

Proposition 7 Let C, Po(C),d, be as bejore. Suppose that 5, satisfies Bl-B3. 
Then, there is a jamily U o j  real junctions u such that 

~ 5 * q  e E(u, p) I E(u, q), Vu E U. 

Let E, S be as in proposition 6. cl(E) is convex (and closed). Let u E cl(E). 

There is uo E E such that 

Define u, = onuo+( l  -on)u, with 1 2 on 1 0. We have un = p, -qn with qn5,pn. 
k k Then, there are convergent subsequences, say pnk -+ p*, qnk + q*. Consequently, 

k 
pnk - qnk = Unk + 21 

k 
Pnk - Qnk  + p* - 9.9 

that is, u = p* - q*. Hence, as uo = po - go, with qo5,po, 

&(PO - 90) + (1 - a)(p* - q*) E E,Vo E ( O , l ]  

therefore 

oqo + (1 - a)q*5*opo + (1 - o)p*,Vo E (0 9 .  11 

By B3, q*d,p* and u E E. Thus, E is closed. Consequently, S is a closed, convex 

set (cone) and it can be characterised by means of its support hyperplanes: there 

is a family W of vectors w such that 

Then 



Defining u,(c;) = w; and U = {u, : w E W) we get 

q5.p w E(u,q) I E(u,p),Vu E U. 

As in the previous models, 

Corollary 3 Let C,Po(C), <,,U be as before. Then 

3.3 Modelling judgements under uncertainty 

We summarise results concerning belief and preference modelling. Imprecision in 

the DM'S beliefs can be modelled with a family 7' of probability distributions p. 

Consequently, we associate a family {p(ai))pEp of lotteries with each alternative 

a;. Alternatives are compared on the basis of the associated lotteries. Impreci- 

sion in preferences between lotteries leads to imprecision in preferences between 

alternatives. We assume a preference relation 5 on A, represented by 'a; 5 aj' for 

a;, a j  E A and interpreted as 'a; is at most as preferred as aj', given by 

Proposition 8 Let A,C, O, A, r ,  5,  be as propositions 3 and 7, and 7', U, the 

corresponding families of probabilities and utilities. Let {p(a;))pEp be the set of 

lotteries associated with each alternative a;. Let 5 be defined as above. Then, 

a; 5 a j  w E(u,p(ai)) < E(u,p(aj)),Vu E U, Vp E 7'. 

The proof is simple. 

4 A parametric model 

The previous results show how to model imprecision in judgements by families of 

values or utilities and probabilities. Problems under certainty and under uncer- 

tainty can be treated in parallel if we introduce a convenient parametric represen- 

tation, as we briefly illustrate. 



4.1 The certainty case 

When (A, 5) is a quasi order, 5 may be modelled by 

For a g i v e n v  E V, let w; = v(a;) and w = (wl ,..., w,). Let S = { w :  w = 

v(A), v E V}. Typically, S is defined by constraints of the kind w; < wj. We can 

define the evaluation of the j-th alternative as \Irj(w) = wj. 

Then, taking into account the results of section 1, we can represent 5 as follows 

4.2 The uncertainty case 

When (A, At) is a probability quasi order, can be modelled by a family P of 

probabilities p: 

C 5 r B  - P(C) I P(B),VP E p. 

1 For a given p E P, let us call w; = p(8,), w1 = (wl,. . . , wk) and S1 = {wl : w = 

p(O), p E P}. S1 is defined by constraints of the kind cwl 2 0, where the c's are 

vectors of -l's, 0's and l's, and a constraint c!=~ w; > 0. 

Imprecision in preferences has been modelled with a family U of utility func- 

tions. For a given u E U, call wk+l = u(cl), w2 = (wk+1, . . . , wk+#) and S2 = {w2 = 

u(C), u E U}. Calling w = (wl, w2), the evaluation of the j-th alternative takes 

the form 
1 Qj(w) = w Bjw 2 

where Bj is a matrix of zeroes and ones. Calling S = S1 x S2, we have 

as a consequence of proposition 8. 

As we see, we can give the same parametric treatment, deduced from the 

axioms, to problems under certainty and under uncertainty. We shall use this 

general parametric model in the following section. An example will be given in 

the last section. 



5 Orders and solution concepts 

The main thrust of the parametric model is to order the alternatives in a Pareto 

sense. 

ak 5 a j  \ Z l k ( ~ )  5 \Zlj(w),Vw E S. 

The solutions of the problem are the nondominated ones. 

Definition 4 a, dominates ak $ak 5 a, and -(aj 5 ak). We write it ak 4 a,. 

Definition 5 a, is nondominated if there is no ak E A such that a j  4 ak. 

It may seem appealing to propose as solutions those a j  that maxirnise \Zlj(w) 

for some w E S. They have received several names in the literature, e.g. quasi- 

Bayesian (Rios, 1975, in a context in which there is uncertainty in the probabilities) 

and potentially optimal (Hazen, 1986, in an uncertain value or utility functions 

context). We adopt the latter term. 

Definition 6 a j  is potentially optimal (p.0.) if \Zlk(w) 5 \Zlj(w),Vak E A, for 

some w E S. 

In principle, there is no reason to introduce p.0. solutions into a decision analysis 

under partial information. The DM needs only consider the nondominated solu- 

tions. However, if we knew w for sure, we should propose those a, maximising 

\Zlj(w); as we know that w E S, our final solution will be among the potentially 

optimal alternatives. 

Some relations between both concepts can be seen in White (1982). Further 

relations, taking into account this parametric representation, can be seen in Rios 

Insua (1990). Those results show that we should look for the nondominated po- 

tentially optimal alternatives, what essentially implies carrying out a family of 

coherent decision analyses and basing conclusions on common grounds, thus em- 

bodying coherence. 

6 A portfolio selection example 

This example is adapted from French (1986). A broker has to decide among six 

investments {al, az, a3, ad, as, a6). Their next year payoffs depend on the future 



financial market which might have very low (el), low (e2), medium (e3) or high 

(84) activity. Each investment pays off after one year. Payoffs are given in the 

table. The broker must choose one and only one of the investments. 

Alternatives are ranked according to their expected utility 

Let us call: 

There are some constraints in the probabilities 



i=l 

(for example, the first one means that the broker believes that a very low to low 

market is at least as likely as a medium to high market). To ensure monotonicity 

in the utilities, we add the constraints 

w8 I w7 

w7 5 W6. 

The bounds of the parameters are: 

6.1 Themodel 

Par 

WI 

w2 

~3 

wq 

w5 

~6 

w7 

ws 

wg 

W ~ O  

W l l  

The uncertainty in this problem is both in the probabilities and the utilities. We 

have 

LB 

.20 

.20 

.10 

.10 

1.0 

.85 

.80 

.75 

.60 

.30 

.oo 

4 

Vj(w) = C wiw,, 
i=l 

UB 

.50 

.40 

.40 

.60 

1.0 

.95 

.90 

.85 

.75 

.60 

.oo 

where wij = u(a i j )  E {ws, . . . , wll). For example, 



which can be written 

with 

and B1 the matrix 
0 0 0 0 1 0 0  

Similarly, we associate bilinear evaluation functions with the rest of the alterna- 

tives. The constraints can be written 

The set of potentially optimal nondominated solutions is 

(a1 a69 a2 a4)- 

See Rios Insua and French (1990) for algorithms to compute these solutions. 

7 Summary 

We have seen a principle allowing us to model imprecision within a Bayesian con- 

text: if the Bayesian foundations require that comparative judgements follow a 

weak order (plus some conditions), comparative judgements regulated by a quasi 

order (plus some similar conditions) lead to modelling judgements by families of 

value functions or by families of probability distributions and utility functions. 

The proper solution concepts are described. In summary, we have a more robust 

decision theory based on a weaker set of axioms, but embodying coherence, since 

it essentially implies carrying out a family of coherent decision analyses and basing 

conclusions on common grounds. The ideas are illustrated with a financial exam- 

ple. Their role in a framework for sensitivity analysis in multiobjective decision 

making can be seen in French and Rios Insua (1989) and Rios Insua and French 

(1 990). 
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