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Foreword

This paper introduces a series of problems on state estimation for parabolic systems on the basis
of measurements generated by sensors in the presence of unknown but bounded disturbances.
Observability issues, guaranteed filtering schemes for distributed processes and their relation to
similar stochastic problems are discussed. The respective problems arise from applied motiva-
tions that come, particularly, from ecological and technological issues.
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An Observation Theory for
Distributed-Parameter Systems

A.B. Kurzhansk:
and
A.Yu. Khapalov

Introduction

This paper deals with the problem of state estimation for parabolic systems on the basis of
observations generated by sensors. The issues treated here are the observability problem (what
types of sensors ensure observability?) and the construction of observers for systems subjected
to disturbances (in the inputs, in the boundary values and in the measurements). 1t is indicated
that for finite-dimensional measurement outputs the observability property may be ensured
through nonstationary (“scanning”) observations (a respective duality relation for problems of
control is also given). In the state estimation problem the approach discussed here is related
to a deterministic model of uncertainty with disturbances taken to be unknown but bounded.
This approach (also known as the process of “guaranteed estimation”) leads to an observer in the
form of an evolution equation with set-valued solutions and particularly, in the case of geometric
constraints on the unknowns, to an estimator in the form of a partial differential inclusion. The
set-valued estimate for a finite dimensional projection of the state of the system may then
be reached through optimization problems for multiple integrals. An alternative solution may
be achieved through stochastic filtering approximations when the set-valued estimate is given

through the integration of appropriate stochastic filtering equations with variable variance terms.

1. The Guaranteed Estimation Problem

In a bounded domain Q of an n-dimensional Euclidean space consider a distributed field de-
scribed as the solution to the mixed problem
Ou(z,t)

T:Au(-,t)+f(z,t), (1-1)



teT =(0,0),ze QC R, Q=QxT,

u(:r,O) = ‘uo(it),

PUEL) 4 o ©ule ) = o(6rt), €€ 09,5 =00xT. (42

Here 8Q is a piecew1se-smooth boundary of Q,

A=Y o (s(0)50) - olo)

.Jl

is a symmetric elliptic operator with given coefficients a,;(z),a(z) that satisfies almost every-

where in Q the condition of coercitivity

”Z €2< Z a;; (z)€:;,
=1

1,7=1

v = const > 0,

and

a;;(z),a(z) € Loo(R),¢c(§) € Lo(09),

o) = 3y (0T eon (na(6), ), £ € 02

BnA Q=1 j
where cos (n4(£),z;) = i-th direction cosine of n4,n4 being the normal at point £ € 9§ ex-
terior 10 Q; Loo(R2), Loo(0S2) are spaces of measurable functions that are defined on Q2 and 9Q

respectively and essentially bounded.

Assuming f(-,-) € L2(@Q), uo(-) € L2(R), v(-,-) € Ly(X) we will consider u(z,t) to be a gener-
alized solution (Sobolev, 1982; Ladyzhenskaya and others, 1968; Lions, 1968) from the Banach
space VQI'O(Q), consisting of all elements of H19(Q), that are continuous in t in the norm of

L,(), with the norm

| ul= gmax 11 u(1) llzacy + [ () linogay

The symbols Ly(2), L2(Q), L2(X) stand for the spaces of function square integrable on Q,Q, T

respectively.



We will further use the following notations for the Sobolev spaces (Sobolev, 1982; Ladyzhenskaya
and others, 1968; Lions, 1968):

H(Q) = {go|<p€L2(Q) O eLg(Q) ., D% € L2(R2),Va
la|<la={a,...,an},| @ |= a1 + ...+ on},
H)(Q) = {p| v € H(Q), D*¢=00n09,|a|<I-1},
Q) ={¢lve Lz(Q) e Ly(Q),..., D% € Ly(Q),
Va,| a|< 1},

Hy%(Q) = {plp € H'Q), ¢z =0},
H'NQ) = {y | " € L(Q)w € HYQ)),

HNQ) = {e| e € HYQ), ple=0},1=1,2.

Thus the initial boundary value problem (1.1), (1.2) is treated as the following identity

//(—u( 8go(zt 4 Z": ai; (2 )Bu;i,t)ago(x,t)_*_ (1.3)

Ry 0z;

+a(z)u(z,1) — f(2,1))p(e,1)dedi+

6
+{ é4(C(E)u(f,t)-v(E,t))so()E,t)al{dt= /ug(x)gp(x,())dz —/u(z,01)¢(1,01)d1,

Q2 Q

for any ¢(z,t) € H'(Q) and almost all 6; from [0, 4].

It is further assumed that the input function f(z,t), the boundary condition v(£,t) and the initial
distribution ug(z) are taken to be unknown in advance. However, it is presumed that they satisfy

some preassigned constraints which will be specified below.



It is supposed that all the available dynamic information on the solution u(z,t) of the problem

(1.1)-(1.2) is given through a finite-dimensional measurement equation

y(t) = G(t)u('at) + Tl(t), te [E$0] =T, (1-4)

where y(t) is a measurement data, y(t) € R™, y(-) € L7(T.); G(t) is a linear (nonstationary)
observation operator (a “sensor” ) with its range in R™ ; (t) is the measurement “noise”; € is a
given positive parameter which defines the interval of observations. The operator (the “sensor”)

G (t) describes the structure of the observations.

We will suppose that the restriction on the uncertainties u,(-), f(-,-), v(:,-),n(:) can in general

be described as

w(-) e W, (1.5)

w() = {uO(’)v f(a ')7 v(" ')v 77()}

with W being a given convex set in L(Q) X L2(Q) x Lo(X) x LJ(T,).

The guaranteed estimation problem is to estimate the solution u(z,8) at instant @ - the terminal
point for a trajectory u(-,t) with values in the Hilbert space L;(§2), continuous in t on the
interval [0, 6] - on the basis of the measurement data y(t)(t € T,) and the available information

(1.5) on the uncertainties f(z,t), uo(z), v(€,t),n(t).

The estimation problem (1.1) - (1.5) is a deterministic inverse problem (Tikhonov, Arsenin.
1979; Lavrentiev and others, 1980) that, in general, obviously has a nonunique solution. This
leads us to the following (Kurzhanski, 1977)

Definition 1.1. The informational domain U(0,y(-)) of states u(z,0) of system (1.1), (1.2)
that are consistent with measurement data y(t) of (1.4) and with restrictions (1.5), is the set
of all those functions u(z,8) for each of which there ezists a quadruple w*(-) = {ud(:), f*(-),
v*(+,:),€*(-)} that satisfies (1.5), and generates a pair {u*(-,0), y*(t)} ( due to (1.1), (1.2),
(1.4)) that satisfies the equalities u*(z,0) = u(z,0),y*(t) = y(t),t € T,.

The linearity of the system (1.1), (1.2), (1.4) and the convexity of W imply that the domain
U(6,y(-)) is a convex subset of the space L2(2), that always includes the unknown actual state

u(z, 9).

The estimation problem is to specify the set U(8,y(-)) and its evolution in time.



Remark 1-a. The domain U(6, y(-)) may be described by means of its support function (Kurzhan-
ski, 1977):

p(e(-} 1 U(6,y(-))) = sup{< (), u(:,0) >| u(-,0) € U(6,y(-))}

for any element () of the set & C L,(2) that defines the generalized solution to the problem
(1.1), (1.2) at the instant 6.

Here and below the symbols < (-),(-) > and || (+) || stand for the standard scalar product and
norm in the respective Hilbert space H which will be clearly specified from the context (in the

more complicated cases we will mark the latter by subscripts).

In the sequel, we will pursue the solution to this problem for some specific types of sensors G(1)

and constraints (1.5).

2. Sensors
An observation operator G (“a sensor”) could in general be defined as a map
y() = G"’(" )

from V;°(Q) into LP(T.). Particularly, the map Gu(-,-) could be defined through a nonsta-
tionary operator G(t) (G = G(+)):

G(t)u(-,t) = y(t)
from LT'(Q) into R™ with continuous, piecewise continuous or measuralbe realizations y(t).
t € T,, as indicated in (1.4).
Some typical examples of observation operators are as follows

A. Spatially averaged observations:

G(t)u(-,t):/h(z,t)u(z,t)dx, (2.1)
0
with h(z,t) € L2(Q) given.

B. A special subclass of observation operators G(t) of type A:

G(t)u(-1) = /x(z,:i(t))u(z,t)dx, (2.2)
Q



where

_ _ 1, fzeld,
x(z,2(1)) = B(t) 6(z | Qury(2(2)) N Q), §(z]5) = i
0, if z€S,
@n(t)(Z(t)) is the Euclidean neighborhood (in R™ ) of radius A(t) of point Z(t); Z(t) is a trajectory

in the domain §2; the function §(t) € Ly(T.) is given.

The output of the operator (2.2) is the spatial average of the quantity u(z,t) over the sensing

region Qy¢)(Z(t)), if B71(t) is the volume of the later, taken along the measurement trajectory

%(t).

C. Pointwise (stationary or dynamic) observations:

G(t)u(-,t) = col [u(z}(t),t),...,u(z™(t),1)], (2.3)

where the measurements are taken at some spatial points or along specified measurement tra-
jectories z*(t) in the domain €. It is clear that this type of sensors requires a corresponding
smoothness of the solution u(z,t) to the problem (1.1), (1.2) which is supposed to be assumed
below (for example, we will assume that u(z,t) € H?1(2 x T.) under n < 3, see (Ladyzhenskaya

and others, 1968; Lions, 1968) ).

The mapping G(t) should be applied throughout the interval T,, so that the pointwise sensor
would be well-defined.

D. Time averaged (discrete-time) observations:

G(t)u(-,t) = G(t,')u(-',-), t e [t,',t,'+1), i=1,...,k,

E=t1<...<tLi <. ..t <ty =8,

t

G(t)u(-, )= 'rl / col [u(z,¢t),...,u(z™,t)]dt,

=
ti—Te

where the measurement data are quantities of the solution u(z,t), taken at spatial points z’, j =

1,...,m and time averaged over intervals [t; — 7., %] (i = 1,..., k), 7. is given (sufficiently small).
E. The observation operator may also be a combination of all of the above types of measurements.

As it is clear from the above, the outputs of the sensorsintroduced here are all finite-dimensional

whereas the system under observation is tnfinite-dimensional.



In this paper we focus on spatially averaged and dynamic pointwise observations.

Before introducing the notations and definitions and giving the respective proofs, let us turn at

first to the finite-dimensional case.

3. Observability in Finite Dimensions

As it is well known, a time-variant finite dimensional system

z = A(t)z, (3.1)
y=G(t)z,
T<t<8,z€ R",y€e R™ (3.2)

is said to be observable on the interval [r, ] once condition y(t) = 0,t € [, 6], implies z(6) = 0,

(or, in other words, if two different states z(1)(8) # z(2)() generate two different measurements

y(t) # y@O(1)).

The necessary and sufficient condition for observability is that the symmetric matrix

6
W@@:/yamamammmm
T
would be positive definite:
(LW(r,0h) > a|l]? Ve R (3.3)
for some a > 0 (Krasovski, 1968), symbol (-, -) stands for the scalar product in R".
Here S(t,6) is the matrix solution to the equation

85(1,0)
ot

where I, is an identity matrix.

= A(1)S(t,0), S(6,6) = I,

Another formulation for the necessary and sufficient condition of observability (in finite dimen-

sions) may be specified in terms of respective “informational domains”.

Consider the system (3.1) subjected to an observation



y(1) = G()z(t) + (1), T <1 <6 (34)

with an unknown but bounded error 7(t), so that

<n()n(-)>< 1, (3.5)

with no bounds whatever on the vectors z(7) or z(6) being presumed.

The informational domain X (0) for system (3.1), (3.4), (3.5) will be defined here as the cross-
section at time ¢t = @ of the bundle of trajectories {z(¢)} consistent with system (3.1), (3.4) and

also with the constraint

g
[ () = 6= (w(t) - Gt)e(e))ae < 1.

In our case, by substituting z(t) = S(t,8)z(6), we may observe that X (6) is an ellipsoid in R™
defined by the inequality

(2, W(r,8)) - 2(p,2) + ¢ < 1,
where
[

p=+ / Y(1)G(1)S(t, 8)dL,

T

]
? = /y'(t)y(t)df--

It is clear that X(6) is bounded for any measurement y(t) if and only if det W(7,8) # 0 which

is equivalent to (3.3). Therefore the following assertion is true.

Lemma 3.1 The informational set X (0) (for the problem (3.1) (8.4) (3.5)) is bounded for any

measurement y(t) if and only if the system (3.1), (3.2) is observable on the interval [, ).

With det W(r,0) # 0 the support function for the set X (6) can be calculated as follows
p(1] X(8)) = sup{(l,2) | z € X(8)} = (1, W™'(7,8)p) + (1 - )5 (1, W™ (7, 8)I)3,

h? =% - (p, W"l(‘r,ﬁ)p).

It is possible to check that



0<h?<1.

It follows from Lemma 3.1 that the property of X(6) being bounded could as well be taken as
the definition of observability for system (3.1), (3.2).

While being of no special significance in the finite-dimensional case, this “alternative” definition

proves, as we shall see, to be useful in infinite dimensions (see also Remark 4-b in the sequel).

Remark $-a. The equivalence of the property of observability for (3.1), (3.2) and of the bound-
edness of X (8) for (3.1), (3.4), (3.5) is true with the bounds on 7(t) being taken not only in the

form of (3.5) but also for any constraint of type

n(-) € Q(), (n(-) =n(t),r <t L9),

provided the set Q(-) = {¢(:)} of functions ¢(-) is such that

of)(0) C Q(-) € o2(0),

for some ¢ > 0,p € [2,00] and for r sufficiently large. Here a&p)(O) is a ball of radius a in the

space L,[r,d].

Prior to the treatment of the infinite dimensional case, however, let us deal with the dual
controllability problem (in finite dimensions). Although this problem is well known, in the sense

that the observability of system (3.1), (3.2) is equivalent to the controllability of system

§= —sA(t) + w(t)G(t), T<t<8 (3.6)

(the ability to steer s(t) from s(f) = 0 to any preassigned state s(7) = s by a selection of w(t), s
being a vector-row), let us formulate the controllability property also in some alternative terms

that would be dual to the property that the set X(6) should be bounded.

Once X (0) is defined for the observed system (3.1}, (3.4), (3.5), what would be its equivalent
for the controlled system (3.6)?

Calculating the support function p(¢ | X(8)) we notice that

y(t) = G(1)S(t,8)z(6) + n(t), < n(-), n(-)>< 1.

From here it follows



p(1] X(6)) = inf{< w(-),y() > + | w(:) [| | w(-) € W()},

where W (l) consists of all the functions w(-) of L}*(7,#) that satisfy

6
/ w' ()G(1)S(1, 6)dt = 1.

Since w(-) € W(I) implies —w(-) € W(-1I), we observe that the diameter of X(8) = X(6,y(-))
(i.e. the diameter of the smallest ball that contains X (8) ) is given by

d(X(6,y())) = P, {p(1] X(8,5(-)N) + p(—1] X(8,5(-)))} =

= e { max {(I,z) |z € X(6,y(-))} - min {(I,z) |z € X(8,9())}}.

This yields

d(X(6,y()) = max { inf {<w(-),3() >+ | wC) |l | w() € W()}+ (3.7)

+inf{— <w(-),y(-) > + (| w(:) || | w(-) € W()}} < 2|r|ﬂ|85§ inf {J] w() || w(-) € W()}.
Since, obviously,

d(X(6,{0})) = 2 max inf {|| w() ||| w(-) € W(D)},

formula (3.7) implies
a(X (8,y(-))) < d(X(6,{0}))
for any y(-) generated by system (3.1), (3.2).
As a consequence we come to the following propositions.
Lemma 3.2. The set X(8,y(-)) is bounded for any y(t) if and only if X(8,{0}) is bounded.

Lemma 3.3. The set X(6,{0}) is bounded if and only if the minimum norm (|| w2(-) ||= min)

controls w(-) for the two-point boundary-value problem
§= -SA(i) + w(t)G(t), 3(0) =0, S(T) =1,

10



are bounded in the norm || w(-) || uniformly over alll : || 1| < 1.

The latter property is obviously true if and only if again | W(7,6) |# 0. Hence rather than
checking that | W(r,8) |# 0, it may sometimes be simpler to check that the domain X (4, {0})

is bounded.

Further on we propagate this scheme to parabolic systems. Among the early solutions to the

observability problem in infinite dimensions is the one given in (Krasovski, Kurzhanski, 1966).

4. Observability in Infinite Dimensions

In this paragraph we will substitute (1.2) by the boundary-value problem

u(§,t) =0,(&,t) € . (4.1)

Consider the initial boundary value problem (1.1), (4.1) assuming that the input f(z,t) = 0 and
that the initial state uo(z) is unconstrained. Moreover, suppose that the measurement y(t) is

exact so that we may write

up(z) € L(Q), f(z,t)=0, 2€Q,teT, (4.2)

n(t)=0, teT.. (4.3)

Let us start with a traditional notion:

Definition 4.1. We will say that the systerﬁ (1.1), (1.4), (4.1), (4.2), (4.3) is observable with
sensor G(t) if the measurement y(t) =0, t € T,, yields u(z,8) = 0.

Definition 4.1 is equivalent to the fact that in the absence of errors (7(-) = 0) the linear mapping

Tu(-,8) = y()

is such that KerT = {0}.

From this definition it obviously follows that two different states u(!)(z,8) # w(3)(z,8) yield
two different measurements y(1)(t) # y(?(t), t € T.. However, definition 4.1 is nonconstructive,
whereas the main issue here is to reconstruct the state u(z,#) from the measurement y(t). We

will therefore introduce another definition:

11



Definition 4.2 We will say that the system (1.1), (1.4), (4.1)-(4.3), is strongly observable with
sensor G(t) if the informational domain U(6,y(+)) for the estimation problem (1.1), (4.1), (4.2).
(1.4) under unknown but bounded error 1(t),

<n(-),n(:) >Ly1)< 1 (4.4)

is a bounded set in L,(Q?), whatever is the measurement y(-) .

Remark {-a. The inequality (4.4) for error 5(t) can be replaced by any restriction of the type

I 7()lle < 1,

where B is some Banach space (see also Remark 3-a), particularly with B = C(T,) or Loo(7T,).

It is clear that Definition 4.2 implies Definition 4.1. Indeed, suppose Def. 4.2 holds but Def. 4.1
is false. Then KerT # {0} and there exists such an element u*(, ) # 0, that Tau*(-,6) = 0 for
any o € R. Taking the informational domain U(#, {0}), we now observe that it consists of all

the states u(6, -) that satisfy the equation

Tu(8,-) = —n(-), under < n(-),n(-) >< 1. (4.5)

Clearly, with u(-,0) = au*(-,8),7(:) = n*(-) = 0 we have y*(:) = aTu*(-,0) + () = 0 for any
a. With u*(-,6) # 0 and o arbitrary this indicates that U(6,{0}) is unbounded in L,(9).

To compare the “sizes” of various bounded domains U(#,y(-)), we need the notion of an appro-

priate “diameter” for these sets.

The diameter of U(8, y(-)) is defined as

d(U(8,y(-))) = sup{p(e(-) | U(8,y(-))) + p(—(-) | UG, y())) | | () 1€ 1,0 € B}.

Similar to the finite dimensional case it is possible to prove that

whatever is the measurement generated due to the system (1.1), (4.1), (4.2), (1.4), (4.4) (the

nature of the restriction (4.4) does not affect this result). This can be summarized in

Lemma 4.1. The system (1.1), (4.1), (1.4), (4.2), (4.3) is strongly observable if and only if the
set U(8,{0}) for the estimation problem (1.1), (4.1), (1.4), (4.2), (4.4) is bounded.

12



We will further use the latter Lemma to investigate the property of strong observability for dif-
ferent types of sensors G(¢). This property however may turn to be a rather strong requirement

on G(t). It seems reasonable, therefore, to introduce a weaker notion.

Let X;, w;(-) (i =1,2,3,...) be the sequence of eigenvalues and respective eigenfunctions for

the problem

Aw;(-) = =dwi(+), wi(-) € Hp(9), (4.6)
< wi(+),wi(+) >= &ij,
so that

1, =73,
0, i#j.

Aig1 > AisAi = +00, 1o 405 b =

Let X,(Q) = Span{w;,(-)}}=, stands for an r-dimensional linear subspace generated by w; (-),j =

1,...,7 and U,(6, y(-)) for the orthogonal projection of U(8, y(-)) on X,(f2), so that

Ur(8,9()) = UL Bi(y(), u())wi (1)}
=1

over all the values 83;(y(-), u(-)) that satisfy

Bi(y(-),u(-)) =< u(-),wi;(-) >, u(-) € U(6,y())-

Definition 4.3 We will say that the system (1.1), (4.1) - (4.3), (1.4) is weakly observable with
sensor G(t) if the projection U.(8,y(-)) of the set U(6,y(-)) of Definition 4.2 on any finite-

dimensional subspace X,(Q2) = Span{w;;(-)}j=; is bounded, whatever is the measurement y(-).

Def. 4.3 then again implies Def. 4.1, since Ker {T'} # {0} leads to the existence of an element
u*(-) # 0, Tu*(-) = 0, and as the system {w;(-)}{2, is complete, to the existence of an element
wi, (+) € {wi(-)}32, such that afy, (0,u*(-)) =< au*(-),w;,(-) ># 0, Va € R. This indicates that
both the “line” au*(:) € U(4,{0}),Va, and its projection aB; (0, u*(-))w;,(-) € U1(6, {0}), Ve,

are unbounded.

It is also clear that Definition 4.2 implies Definition 4.3.

13



Remark 4-b. The definitions of the above could also be interpreted as follows: given a unit ball
01(0) in B, the system (1.1), (1.4), (4.1) - (4.3) is strongly observable, once the preimage U of
01(0) due to the mapping

TU = 0’1(0)

is bounded in Ly(2). The latter system is weakly observable if any finite-dimensional projection
U, of the set U is bounded. The given definitions are thus clearly related to the invertibility

properties of the mapping T'.

The forthcoming examples demonstrate that the definitions of the above are nonredundant.

5. Examples

Ezample 1. Consider a one-dimensional heat equation

du(z,t)  0%u(z,1)
ot —  0z?

0O<z<l1, teT, (5.1)

u(t,0) = u(¢,1) =0, u(z,0)= uo(z)
under a stationary pointwise observation operator (with measurement at point z = Z)
y(t) =u(Z, )+ (1), teT.. (5.2)

It is well-known that the eigenvalues and the (orthonormalized) eigenfunctions for problem (5.1)

are given by
M= —(7k) wp(z) = V2 Sin tkz, k=1,2,....
Expanding the output of system (5.1), (5.2) in a series of exponents we come to
ad 2
y(t) = V2 3 e Bt ugrwn(2) + n(t), teT, (5.3)
k=1
where

1
Ugk = \/5/ u(z,0) Sin mkz dz.
[}
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Due to Lemma 4.1 we will restrict ourselves to the case of y(t) = 0,t € T,.

As it follows from the Miintz-Szacz type theorems (Luxemburg, Korevaar, 1971; Fattorini.

Russell, 1974) the distance dy between an arbitrary function e~("6)t and the closed span
L* = Span{e=(")*t | i = 1,2,...,i # k} when taken in the space B = C[¢,0] or L(T:)(p > 1)

is non-zero so that

di = inf{|| e=CFt (1) |lg | v() € L*} #£0, k=1,2,... . (5.4)

Assume that a solution u(z,?) of the problem (5.1) does satisfy the observation equation (5.2)

under y(¢) = 0 and under the constraint

In(:) B < 1.
Then, for any integer k we have
2 had 2
V2 || uok Sin 7 ki e~ (7Rt 4 Z ug; Sin 73 e (™)t |p < 1. (5.5)
J=1
J#k

Taking into account (5.4) we obtain for an arbitrary coefficient ugx # 0 and an irrational Z the

chain of inequalities

oo
. 1
ok |- | Sin 7 k2 | -ds <[ uox | -| Sin 7 k2 | - [| =" = 37 &= ay |l < 5,
=1
i#k
where
ug; Sin 7 jZ
aJ = T Ae 3 — -
uox Sin 7k T
This leads to estimates
1
| wok |< forany k =1,2,.... (5.6)

V2dy | Sin 7k Z |

The boundedness of u,x clearly implies the same property for e=(mk)?0y0,. The system (5.1),
(5.2) will thus be weakly observable at an initial instant of time as well as at time 6 if and only
if the coordinate for the location point of the sensor is an irrational number (Sin © kZ # 0 for

any k= 1,2,...).
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Moreover if Z is an irrational number of a special type such that the series Y 22, 6‘2(”*')20/

(| Sin 7 kz | dx)? does converge, then the system (5.1), (5.2) will be strongly observable.
The measure of the points of the latter type on the interval [0,1] is equal to 1. This follows
from asymptotic estimates for the values of d; (Luxemburg, Korevaar, 1971; Fattorini, Russell,
1974). For instance, this occurs if one substitutes the point Z in (5.2) for an arbitrary number

of “constant type” (Sakawa, 1975), for example

T = a+bye,

where a,b are arbitrary rational numbers, c is a positive integer which is not a square, and all

these are such that z € (0,1).

Remark here that due to (5.3), under Sinrkz = 0, Z being rational, the coefficient ug; will be
unobservable and as it further follows from (5.5), the system (5.1), (5.2) will not be even weakly

observable.

We further proceed by introducing a class of dynamic pointwise operators (“scanning observers”)
that ensure a strong observability for (5.1), (5.2) and such that in the case of a one-dimensional
heat equation it would be possible to construct a broad class of appropriate measurement tra-

jectories ezplicitly.

Consider the observation equation

wn
-1

y(t) = y(2(1),1) + (1), teT.. (5.

For any value § we will consider a class of dynamic pointwise observation operators under

measurement trajectories of the following type

k(t—€), e<t<b,
5(t) = (t=¢) ¢ (5.8)
1, O, <t<4,

where 8 = k™1 + €.

The above class is nonempty if £ > 1/(8 — €).

Indeed, modifying the classical maximum principle for the solution to the mixed problem (5.1)

for the region {(z,t)| 0 < z < Z(t),t € T, } one can obtain the estimate
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max{| u(z,8) | | z € [0,1]} < max { | u(Z(),t) |, t € [¢,6]}. (5.9)

The latter estimate yields strong observability of the system, (5.1), (5.7), (5.8) under

[n(t)I<1, teT..

It is important to stress that the set of continuous curves (5.8) is stable with respect to possible
perturbations in the space C|e, 6], and it may be extended to the set of all continuous curves

defined on the interval 7, with values running through the whole spatial interval [0, 1].

Applying Green’s formula to (5.1) and taking into account estimate (5.9) one may obtain strong
observability for the system (5.1), (5.7), (5.8) under restriction on 7(t) taken in the space Ly(7).
A theorem in Section 7 will point out that the transition to nonstationary observation operators

may ensure obseravability also in the general case.

Fzample 2. Consider the heat equation in a rectangle

du(z,t)  0%u(z,t) + ?u(z,1)

I—
o - o ' oag 0 Tl tel (5-10)

1
Q:{z|0<zl<1,0<zz<a‘}a

u(z,1) [z= 0
with the observation equation
y(t) = w(Z(2),t), t € T.. (5.11)

For this example {A}§2; = {S‘Im}?,om=1a {wi(z)}32) = {Dim(2)}5n=1s Where

Mim = 72(12 + a®*m?), Wym(z) = 2sin wlz, - sin mamzy, I, m=1,2,....

It is known that the series 322, Ay diverges. Therefore, in this case, all of the values d,
taken for the exponents {e=*m'} and defined similar to the values di of (5.4) are equal to zero.
due to (Luxemburg, Karevaar, 1971; Fattorini, Russell, 1974). Hence there does not exist any
stationary observation operator with one dimensional output that can ensure the system (5.10)

to be either strongly or even weakly observable under B = Cle, 8], L,(T), p > 1.
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The introduction of dynamic pointwise measurements allows to construct the measurement tra-
jectory so that the system (5.10), (5.11) would be strongly and, therefore also weakly observable.
The corresponding class of measurement trajecotries is, in general, unstable with respect to pos-
sible perturbations. The way out here can be found in increasing the spatial dimension of the

measurements.

For example, instead of the pointwise measurements we may consider a “zone” sensor (El Jai

and Pritchard, 1988):

u(z,t), z € Q(z(1)),teT,,

y(z,t) = )
0, z€Qz(2(1)),

where the measurements are taken at each instant ¢ over the domain Q3(z(t)) = {z | z € Q,
|z - 2(t) |lp2 < 6}, 6 > 0.

It is clear that if Z(t) is a trajectory that ensures the system (5.10), (5.11) to be strongly ob-
servable under B = Cle, 0], the system (5.10), (5.12) will be also strongly observable. Moreover,

this property will be stable with respect to perturbations of the curve z(¢).

Remark 5-a The latter was an example of an observable system, where G(¢) is a “zone” sensor
and z € R? . Here the measurement is therefore infinite-dimensional. Further in Section 7 it will
be shown that observability could be attained for the same system with a pointwise observation
along a scanning trajectory z(t) = (Z1(t),Z2(1))’, where Z,(t) = Z7 is a given point and (1) is

constructed along the lines of example 1.

6. Duality in Infinite Dimensions

Let us now formulate the problems of control that are dual to those of observation as given in

Section 4.

Assume Ty, S(-) to denote the linear bounded maps

Touo(-) = 9(-), S(t)uo(*) = u(-,1), t€T

so that U(6,y(:)) = S(8)U(0,y(-)), To = GS(-),U(8,y(-)) C H(), S(2) is continuous in .

Here the respective mappings are defined as

To : H(Q) - Hy(T,),
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S(t) : H(Q) — H(Q), teT,

S(-) : H(Q) — Hy(Q),

G : Hy(Q) — H:(T.),

where H, H,, H, are Hilbert spaces. In particular, when dealing with the problems of Sections
1,2 we may put H = L, Hy = Ly, H; = H',

The set U(6,{0}) of states u(-,8) consistent with system

Touo(-) = y(-) = n(-), <n(-),n(-)> <1

will have the following support function

p(() 1 U(8,{0})) = sup{< ¢(-),u(-) >| u(-) € U(6,{0})} = p(S™(8)#(-) | U(0,{0})) = f(#(-)),

fle() = inf {< A(),A() >M?| TEAC) = S™(8) ()} (6.1)

Here according to (Rockafellar, 1970), one should also allow the value f(o(:)) = +o0.
In order that the primal system

du(z,t)

TR Au(-,t), (z,t) € Q, y(t) = Gu(-,t), t € T,, (6.2)

u(z,0) = uo(z), u(,t)=0,(£,t)€X

would be strongly observable it is necessary and sufficient that the function p(¢(-) | U(6,{0}))
would be bounded uniformly in ¢(-) € Z(0),

Z(0) = {e(-) : < @(-),e(-) >< 1}

This means that the minimum-norm solution AY(-) to problem (6.1) should be bounded uniformly

in (-) € £(0). From the properties of Hilbert space it follows that

19



A9(+) = Towg(+),
where

T Towy(-) = S*(8)w(-), wi(-) € La()

and the uniform boundedness does hold if and only if there exists a constant 7 > 0 that ensures

< w(-), TgTow(:) > 2 v < S(O)w(-), S(O)w(-) >, w(-) € L2(2).

Then obviously (T§To)™" exists, so that w3(-) = (T§To)~1S*(8)¢(:) and

<AQ()sAg()) > = < 9(+), S(O)(T5To) ™' S*(8)p(-) > <|I S(B)(T5To)~" S7(8) |,

whenever o(-) € Z(0).
Problem (6.1) may be interpreted as a control problem for the system

dv (1)
at

= —Av(,, 1)+ G™A(), (2,1) € @, v(§,1) =0, (1) € £,

v(-,0) =0, v(-,0)=S"(0)e(),

(6.3)

(6.4)

(6.5)

where the control A(t) is to be selected so as to solve a two-point boundary value problem

(v(-,8) = {0}, v(-,0) = S*(8)¢(-)) with minimum-norm.

Definition 6.1. We will say that the system (6.4) is strongly controllable if the two point

boundary-value problem (6.5) is solvable for any ¢(-) € L2(R2) and if the minimum-norm so-

lution AJ(-) to (6.5) is bounded uniformly in o(-) € Z(0).

The property of strong observability is thus equivalent to the one that the minimum-norm

solution A(-) to the control problem (6.4), (6.5) would be bounded uniformly in ¢(-) € Z(0).

The latter is precisely the property of strong controllability for system (6.4), (6.5). As indicated

in Section 5 the class of such systems is nonvoid for dim z = 1. However, as we shall see in

the sequel, this property does hold for parabolic systems with dim of z > 2 only if the sensors

A, B,C are described by a nonstationary operator G(t). (Particularly if G*A(-) = f(-), f(t) =
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A(t)b(z — z*(t),t € T,; f(t) =0, t € [0,¢) is a dynamic actuator along a certain continuous
or piecewise continuous spatial curve z*(t). The existence of a curve z*(t) that would ensure

strong controllability will be proved in Section 7).

Specifying equation (6.4) we remind that according to the definition of adjoint operators we
observe that operator G* maps H;(7,) into the dual space for Hy(Q) (particularly, L2(7,) into
the dual space for H19(Q) for the specific problems of Sections 1 and 2). More explicitly, taking
the sensors A, B of Section 2 and calculating the respective relation G*A(-) = f(-, ), we have:

A. f(2,8) = h(z,)A(t), t € Ty; f(t) = 0,t € [0,e),
B. f(z,t) = B()A)é(z | Quy(2(1)) N Q), t € Te; f(2) =0,t € [0,¢),
so that here f(z,t) € L2(Q).

A separate issue arises for case C where Gu(-,-) is a mapping from either C(Q) or H*'(Q) (for

n < 3) into L2(7T,) so that (m = 1)

f(z,t) = 8(z — (t))A(t), t € T.; f(z,t)=0,t€[0,¢)

should be interpreted along the conventional lines of the theories of Sobolev spaces and gener-

alized functions (Sobolev, 1982; Ladyzhenskaya and others, 1968; Lions, 1968).

Theorem 6.1. The property of strong observability for system (6.2) is equivalent to the property
of strong controllability of system (6.4), (6.5). ( The uniform boundedness of the minimum-norm
solution A(-) to (6.4), (6.5) over all p(-) € Z(0)).

If we now refer to the property of weak observability then obviously, for any finite-dimensional
subspace X,(Q2) the projection U,(8,{0}) on X, () will be bounded if and only if the function
p(¢(+) | U({0})) will be bounded uniformly in ¢(-) € Z()(0) where Z(I(0) = {p(:) : ¢(-) €

X (), < @(-),p(c) >< 1} (for o(-) € X,(R) clearly < @(-),¢(") > = < ¢(-),p(:) >, =
< @r(+),¢r(+) >, where @,(:) is the projection of ¢(-) on X,(2) and < -,- >, is the scalar
product in X,(2)).

For a given ¢(-) € X,(2) and a given 4 > 0 the problem

<AC)LA) >< P, THAC) = S*(B)e(-),

will be solvable if and only if the inequality
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pll Tow(:) || = < w(-),8%(0)e(-) > 20

does hold for any w(-) € Ly(§?). In order that problem (6.1) would be solvable uniformly in

@(+) € Z(')(0), it is necessary and sufficient that there would exist a number g, > 0 such that
pr | Tow(-) || 2 < S(8)w(-), S(8)w(-) >}/
or in other words, that
pr < w(-), TogTow(:) > > < w(-),S*(8)S(O)w(-) >,, (6.6)

whatever is w(:) that belongs to € Ly(Q2) .

Lemma 6.1. In order that system (6.2) would be weakly observable it is necessary and sufficien!
that for any finite-dimensional subspace X,(§1) there would ezist a number yu, > 0, such that

(6.6) would be true.
(Note that strong observability yields the existence of a number u that does not depend on 7).
The dual property of weak controllability for system (6.4), (6.5) now sounds as follows

Definition 6.2. The system (6.4), (6.5) is said to be weakly controllable if for any finite dimen-
sional subspace X,(Q) C Ly(Q) the minimum norm solution A3(-) to problem (6.4), (6.5) is
bounded uniformly in ¢(-) € Z()(0).

Lemma 6.2. In order that (6.4), (6.5) would be weakly controllable, it is necessary and sufficient
that for any given X,() the relation (6.6) would hold for some p, > 0.

Since both strong and weak observability imply that Ker To = {0}, we will now demonstrate

that the latter property is equivalent to the property of e-controllability of the dual system.

Definition 6.3. The system (6.4) is said to be e-controllable if for any ¢(-) € L2(2) and any

€ > 0 there exists a number p,. > 0 such that the problem

ToA(-) € S7(8)(-) + Z(0), || A() (1€ & (6.7)

is solvable for p > po..
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Lemma 6.3. The system (6.4), (6.5) is e-controllable iff Ker To = {0}.
Once (6.7) is solvable, we obviously have Ker To = {0}. Indeed, if Tgw™(-) = {0} for somec

w*(-) # 0 and if A*(+) is a solution to (6.7), then one should have

0 =< Tow* (1), A"() > € < w*(),S°(O)e() > +¢ || w' ().

However, one could always chose ¢(-), ¢ so that < w*(-), S*(8)e(-) > < —3 || w*(-) ||, € < 1/2.

The previous inequality will then turn to be false.

On the opposite, suppose Ker To = {0}. Let us prove that (6.7) is solvable. The following part

of the proof gives a constructive estimate for u = p,.
Pressuming
h(-) = 87(6)¢(-), h(:) € H() = L2(9),

we observe that h(-) allows an expansion along the complete system of orthonormalized functions

{wi(-)}22,, so that

= Z awi(+),

and for a given ¢ > 0 we may find r = r(¢) > 0 that yields A(-) = h,(-) + hi(-), where

=Y awi(), i ()= Y awil),
i=1 i=r+41

1RO 1= S o < e

i=r+1

It now suffices to prove the solvability of the inclusion

TEA() € hi () +62(0), 6 = ¢,

where h,(-) is a finite-dimensional element that depends on parameters

ai, 1=1,...,r(¢) (h(+) € X, (Q)).

For h,(-) € Lo(2), h.(*) # {0}, 4 > 0 the problem (6.7) is solvable iff (Kurzhanski, 1977)

# Al Tow() | +6 | w() | + < w(-), he(-) > 20 (6.8)

23



holds for any w(-) € L2(€2). We will prove the existence of a number p = u, that depends on

h.(:),6 and ensures (6.8) to be true for any w(-).

Instead of (6.8) we may consider the condition that the inequality

# |l Tow(-) [[ +6 [ w(-) | 2 1 (6.9)

should be true for any w(-) such that
< w(-), he(") >= —1. (6.10)

Obviously the latter are equivalent to (6.8). Without loss of generality we may also assume
< hy(+),h(-) > = 1 (as the equation (6.7) is linear in A(:) ).

Further on we come to

b < w(), TETow() 5177 + 6 < w(), w() >/7

> < w(-), (R*TETo + 621) w(-) >'/? .
Therefore, in order to ensure (6.9), (6.10) for any w(-), we may first secure
x° = min {< w(), K sw(:) >? | < w(-),he(-) > = =1} > 1, (6.11)

where K5 = u?*T5To+ 621 is an invertible map with bounded inverse K}. A direct calculation

of (6.11) by Hilbert space techniques gives
O =< b (), K2R () >7F
Therefore the problem (6.9), (6.10) is solvable once
(X°)7? =< he(), Kf be() > < 1. (6.12)
The latter relation is obviously ensured if

max <z.’K—1z'>Sl.
li2()ll=1, 2(-)E X~ (R2) Q) 46 2()
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However, we have

2(+), K;gz() >)™! 2(+), Kusz(+) > .

( max < = min
lz(-)I=1, 2(-)eXr(R2) [I2(:)I=1, 2(-)€X-(2)

Therefore (6.12) will be ensured if

min < 2(-),Kusz(:)> >1
flz()=1.2(-)€ X+ () (+), Kus2(+)

or, in more detail, if

piy+ 6 > 1, (6.13)

where

= min <z',T*TZ-> >0 614
! [12()]|=1, 2(-)€ X+ () (+), ToToz(+) ( )

(since Ker To = {0} and X,(Q) is finite-dimensional).
Inequality (6.13) yields g > v~1/2(1 — 62)1/2. We thus come to

Lemma 6.4 For the solvability of (6.7) it suffices to select u > 7'%, where v is given by (6.14)
with dimension r = r(¢) of X, (Q) being dependent on «.

We will now prove the property of observability under scanning observers starting with

pointwise sensors.

7. Observability Under Pointwise Dynamic Observations.

The examples of Section 5 give us a hint as to how to prove the existence of a measurement

trajectory Z(t) that would ensure observability for the system (6.2) where
y(t) = G (Hu(-,t) = u(2(t),t), t€T.. (7.1)

We further assume that system (6.2) under ug(z) € Ly(Q) is such (either classical on T, or
u(-,-) € H21(Q x T,) with n < 3) that its arbitrary solution is a continuous function on [¢. f]
satisfying the mazimum principle (Ladyzhenskaya and others, 1968):

max {| u(z,t) ||z € Q} 2 [u(z,t"), V2 €Q, t">1' >e. (7.2)
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As it was demonstrated earlier in Section 4, the system (6.2), (7.1) will be strongly observablc

if the informational domain U(#, {0}) for the system (6.2) under “noisy” observation

y(t) = w(Z(®),) + n(t), | 7()llcen< 1 (7.3)

with unknown but bounded “noise” 7(-) will be bounded (see Remark 4-a). We therefore have
to prove the existence of a measurement trajectory z(t) that would ensure this property. We
will start to seek for the function Z(t) in the class X|e, 6] of piecewise-continuous functions on

the interval [¢, 6].

Let U, stand for the set of all the solutions to the initial boundary value problem (6.2) generated
by all the possible functions ug(z), with U,[t] standing for the crossection of U, at instant /.

Since the set

U. CC(Q x [g,8)),

and since the space C(f x [, 0]) is separable, it is possible for any v > 0 to indicate a countable

~-net for U,

U: = {ui('v')}?;l’ ui('?') € U..

Any crossection UJ[t] at instant t of the y-net U2 will hence be a y-net in U,[t].

In other words, for any element u*(-,-) € U, there exists an integer ¢ = 7, such that
I w*(5 ) = i) llo@xieap < 7
This yields

” u*('7t) - uio('7t) “C(Q)S Y vt € Te-

We will now indicate a possible measurement trajectory z(t) that would ensure the set U(6, {0})

to be bounded.

Consider a monotone sequence of points ¢;,i = 1,2,... such that

E<ti <lg< ... <<ty <...< 8.
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Clearly there exists a limit
lim t; = a <8.

1=+ 00

Denote z(") to be the lexicographic minimum for the set X (), where
X® = arg {max | ui(z,t;) | |z € Q}.
The function Z(t) will now be constructed in the form of a spline-function

(t) = z*(t), te€le,b]

21

such that
() =29i=1,2,...

with z*(t) being continuous for t € [¢,a), 1 € [a,].

Clearly z*(t) is continuous at all the points ¢t € [¢,6], except for point t = a. Therefore.

z*(-) € X|e,0]. Let us show that this function satisfies the necessary requirements.

Take any element @(-) € U(6,{0}) generated by a solution @(z,t) to (6.2) and (7.3), y(t) = 0.
so that @(z,0) = @(z). For a given v > 0 select an element uk(-,-) € U so that
800 = ) lo@ngeayS 7 (74)
Then, due to (7.3), taking y(¢t) = 0, we have
| ue(2™(2), 1) llcle.1< 1+ -
The latter inequality indicates, in particular, that
uk(z,6) € Uy(6,{0}), (7.5)

where U, (8, y(+)) is the informational domain for problem (6.2), (7.3) with constraint

Il () lcte.s< 1+ 7,
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so that Up(8,y(-)) = U(8,y(-))-

Applying the maximum principle (7.2), we now come to the relations

| uk(z,0) |< i | u(z,te) |=| we(z®), 1) |=

=] uk(z" (), ) [S 1+
for any z € . The later inequality, taken together with (7.4), gives us the final estimate:
| u(z,0)|<1+2y, Vzefl (7.6)
The bound (7.6) is uniform in all u(-,8) € U(6,{0}), so that

U(ov {0}) c E§+2’y(0)

which proves strong observability under the pointwise observation G(t)u(-,t) = u(z(¢),t) gener-

ated by the trajectory Z(t) = z*(t). The symbol Z£(0) stands for the ball

Z7(0) = {u():l u() llo@w)< r}-

Theorem 7.1 There exists a pointwise observation trajectory Z(t) (a “scanning observer”) selecled
in the class X|e, 0] of piecewise-continuous functions with a finite number of discontinuities that

ensures strong observability for the system (1.1), (4.1), (4.2), (1.3).
Remark 7-a

(i) From the proof of Theorem 7.1 it follows that the function Z(t) could also be selected as

piecewise-constant, so that

:E(t) = :c,-(t;), if t; <t < tiy,

Z(t)=0, ife<t<ty, a<t<é.
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Function Z(t) is measurable, it has but a countable set of discontinuities at points t;, a.

(ii) The result of Theorem 7.1 does not depend on the dimension of the space variable z and

on the stationarity of the elliptic operator A.

(iii) The property of strong observability is unstable with respect to pertubation of the function

Z(t) (the measurement curve) when taken in the metric of Cle, 8] or L,[e,8],p > 0.

(iv) Since the solution u(z,t) is continuous in {z,t} (z € Q, t € T,) while (1) € Q is
measureable and bounded, the superposition y(t) = u(Z(t),t) will be measurable and

bounded and therefore Lesbesgue-integrable on [e, 6] (Sansone, 1949).

Ezample 3. Consider again the system (5.10), (5.11)

The techniques applied in the ezample I allow us to obtain the estimate

-1
I
~—

” ﬁ(xl')xl’,e) ”Lz(ﬂ)s M ma.x_ l ﬁ(fl)x2’t) l ( .
IzG[O,a 1]
tele,6]

for an arbitrary solution to (5.10). Here M is a constant, Z, is an irrational number of “constant

type”, u(z,t) = 4(z1, z2,1).

Indeed, put

max | u(Zy,22,t) |=c.
2‘26[0,0.- ]
tele,6]
Then we have
O -
| 2 E e Mmtugnsin iz, sintame, lle(o.a-1ixe.0p) < €
I,m=1
where
1 1/a
Ugim = 2 / / u(z,0) sinwlz, sin ramz,dzodz;.
0o o
The latter inequality yields
oo o -
[ 3" 40> e~ sin mlz ugm)? | < ¢ a7,V € [e, 6],
m=1 |[=1
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from where it follows

o

max |2) e
t€[e,¢9] =1

~Ximt sin 711 Uoim | < e(1/a)'/?

for any integer m = 1,2, ....

Since the series Y j2, 1/Mim converges, one can obtain (along the lines of (5.4) - (5.6)) the

following sequence of estimates for the values ug;m under an arbitrary irrational z;:

[

< Im=1,2,..., 7.8
|"°’”|-2¢E|Sinwlfl|d,m”m e (7.8)

where

dj, = inf {” e_:\'"‘t - v(1) “C[e,@] , v(-) € le} %0,

L'™ = Span {e"\""'t |i=1,2,...,t #1}.

As in the example 1 the latter leads to (7.7).

The estimate (7.7) gives an idea as to how to construct a dynamic pointwise observation operator

in the form

G(t)u(-,1) = u(Z(t),1) = @(Z1, T2(t), 1) (7.9)
that ensures system (5.10), (5.11) to be strongly observable under B = C(7,).
Let coordinate z1(t) of the measurement trajectory z'(t) = (Z;(t), z2(t)) be fixed so

jl(t) =nn,tec Te,

where Z, is an irrational number of a “constant type” (see Section 5). The problem is to find
the function Z,(t) for the second coordinate so that the domain U(8,{0}) for the system (5.10)

under the measurements

0 = @&(Z1,Z2(2),t) + n(t), t €T,

and the constraints

In@) <1, teT, (7.10)
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would be bounded in L2(f2).

Let UY C U, be a countable y-net in C(Q x T;) for the set of all the possible solutions to the
problem (5.10) taken on the time interval T, so that

U2 = {ulz,)}2y, i) =w(,,7) € C(AxTo).

Denote by (zgi), t;) an arbitrary solution to the optimization problem

| ﬁ’(il’z%t) | — max
zz €[0,a7,

teT,.

Suppose at the beginning that all of the instants t; are different. In this case, an arbitrary curve

Z,(t) = z~(t), piecewise-continuous on [¢, ], and such that

z=(t;) = zgi), 1=1,2,3,...

ensures strong observability of the system (5.10), (7.9), (7.10).

Indeed, taking any element @*(zq,z2,0) € U(6,{0}) generated due to (5.10) and selecting

%;,(Z1,22,t) as an element of the y-net UY we observe

| ﬁ‘(zl’z%t) - ﬁic(zlaz%t) |S 7, T1 € [07 1]7 I € [07 a-l], te Te- (7'11)
The estimate (7.7) applied for 4;,(z1,Z2,t) then leads to

—x ~ 1
I %*(21,22,6) l|lLo() £ | ©iu(Z1,22,0) llL,0) + 7077 <

< M| (21,207,8,) | 47077 < M(| @ (&1,2°(4.), ) | +7) +7a77 <

™

<SM(A4+79)+ a2,

In the case of coinciding points t; it is again possible to obtain the same property of strong

observability. Instead of the values t; we may take some other values close to those but such
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that all the new #;’s will be different. The necessary property then follows from the countability

of the pairs {:c(;),t,-} and the continuity of the solutions to the system (5.10).

8. Observability under Spatially Averaged Observations.

Consider the Dirichlet problem

Ou(z,1)

5 = Au(,), z€Q €T, (8.1)

u(z,0)=0, wu(§t)=0, £€oN

and the measurement equation (1.4) under a spatialy averaged observation operator G of the

type B
y(t) = ﬁ(t)/é(:v | Quy (1)) N Q)uz, t)dz + 7(2), L € T.. (8.2)
0

The observability problem for such a sensor is to specify a curve z(t), a neighborhood Q) (Z(1))
of radius A(t) and with a volume 371(2) so that system (8.1), (8.2) would be either strongly or

weakly observable.

It is known that for an arbitrary generalized solution u(z,t) € Vzl’o(Q) to problem (8.1) the
following estimate does hold (Ladyzhenskaya and others, 1968 , p. 193):

vra.iQmax | u(z,t) | £ L(&) || (-5 ) llLz(Q)> (8.3)

where Q. =  x (¢g,0), L(¢) is a positive function.

Moreover u(z,t) satisfies the generalized mazimum principle (Ladyzhenskaya and others, 1968)

vrai max | u(z,t')| > ¢ vrai max |u(z,t") [, 1" >t > ¢, (8.4)
z€EN z€N

¢ = const.

Let U be the set of all generalized solutions taken for the time-interval 7. Since
U cv°Q)
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it is possible to indicate for U a countable y-net U} (y > 0,7 given) so that
U; = {ui('a')}?;lv ui("') el.
Hence for any solution u(z,t) there exists an element (solution) u;(z,¢) such that

max || u(-,1) = w1 L) < 7, (8.5)

| u(ss) = wile ) o)< -

Consider again an arbitrary monotone sequence of points {¢;}%2, such that

E<th <...<; <...<¥8

and

ea= lim ¢, e <8.

11— 00

Due to the properties of Lebesque points for each (square integrable) element u,(-,¢) of U, there
exists a point () € int  such that for some neighborhood Q4 (z(*)) of the latter the following

estimate is true

vra.ier(x;ax | wiz, ti) | ~¢ / Biui(z,t))dz | < v, (8.6)
Qh,‘(z('.))

where

5 1, if vraimaxceq |ui(z,t)| = vrai max.eq u(z,?),
" =

-1, if vraimingeq |ui(z,t)| = — vrai mingeq u(z,t;);

v is positive (given in advance); 87" and h; are the volume and the radius of the ball Q. (z(*)
(Qr;(z)) C Q) respectively; i = 1,2,3,.. ..
Thus we obtain a sequence {tg,m(‘),h;,ﬂi};?;l that allows to construct spline-functions Z(¢) =

z*(t), h(t) = h*(1), B(t) = B*(1) such that

(1) =20, k() = by, 7)) =6 (i=1,2,3,...), Qne((z™(1)) C Q.

Let us show that the weight function
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x(z,27(t)) = B7(1)8(z | Que(ry(27(1))), z € O, t € T,

generated by the above parameters ensures strong observability for the system (8.1), (8.2) under

max {|n(¢)||te T.} < 1. (8.7)

Consider any element u*(-) € U(6, {0}) generated by a solution u*(z,t) so that u*(z,8) = u™(z).
Select u;,(-,-) € U) such that estimates (8.5) do hold.

Note that fori =1,2,3,...

vrai minwv(z) < / Biv(z)dz < vrai max v(z), Yu(-) € Lo (D).
€N ) €N
Qh.‘(zl

Therefore one can obtain

| /X'(Iaz'(t-‘.))(ui.(z,ti.) —u’(z,t;,))dz | < Vraiefgax | ui(z,t:,) = u(z,8,) |
0

Then, due to (8.3)
| [ )@t )de | <] [x @ e s +LEy.  (58)
Q Q

Due to the generalized maximum principle (8.4) and also (8.3), (8.5) - (8.8) we come to the

estimate

vrai max | u”(2,8) | < evral max | v’(z,4:,) | <

< e(vrai max | u;,(z,4,) | +L(e)) < (1 + 2L(e)y +v).
x
Theorem 8.1. There exists a spatially averaged nonstationary observation operator (a “scanning”

sensor) of type (2.2) that ensures strong observability for the system (8.1), (8.2), (8.7). The

respective weight function x*(z,z*(t)) may be chosen continuous ezcluding the only point of T-.
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9. The Informational Domain: An Ellipsoidal Case

Assume the set W to be defined by a quadratic inequality

W = {(uo(-), £(+;+)s v(, ), n(-)) 1< to(+) = @o(+), To(uo(-) — @a(-)) > +

+ < fC) = £ ) TG ) = £C4)) > + < () = 9 ), Ba(v(5 ) = B, ) > +

+ < n() - 2(-), N(n(-) - 7(-)) >< 1}, (9.1)

where the operators I; and the scalar products in the respective Hilbert spaces L2(€), Lo(Q), Lo(X)

are defined as

< ¢1(0), TIowz() >= /9501(3)”7(3)992(3?)(156,
< Bi() Ly ) >= /Q¢1(:r,t)k(:r,t)¢2(x,t)d:c dt,
< ’D](', ')’ 12 v2("‘) >= L’D](f,t)n(f,t)vg(f,t)dfdt,

6
<m() Nna() >= [ a N On() .

with continuous functions m(z), k(z,?), n(£,t) and the symmetric matrix N(t) being given in

advance and such that

min {m(z),k(z,t),n(&,t)} > 0, min NI > ||,
xeﬂ,tef[ze.o] t€[e,f]
£eod

¢ = const > 0,forany [ € R™.

The set W is convex and weakly compact in the Hilbert space H = Ly(Q) x Ly(Q) x Lg(Z) x
L7 (T,). Therefore the respective informational domain U(#,y(-)) will be convex and weakly

compact in Lo(2).

It is well-known that the solution to the problem (1.1), (1.2) allows a unique representation as
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u(-,t) = So(t)uo(-) + S1() (-, ) + Sa(t)v(-, ), (9.2)

where the operator Sp(t) coinsides with S(t) from Section 6,

So(t) : La(2) — La(R), So(t)ue = i e Nt < uo(+), wi(+) > wi(z),

1=1

Si1(t) = La(Q) — La(R), Si()f ()= /0 "N < 5 7)) > drw(e),
=1

Sa(t) : La(E) — La(9), S2()o(-,-) = i /Ot e M=) <o, 7),wi() > drwi(z),
i=1

and {);}2,, {wi(z)}$2, are here the eigenvalues and the eigenfunctions for the elliptic operator

A under the homogeneous boundary condition of type (1.2).

For simplicity we will restrict ourselves below to the case of the observation operators A, B. In
the case of pointwise operator C adjout operators should be interpreted along the conventional

lines of the theory of respective Sobolev spaces.

Due to (9.2) the measurement equation (1.4) could be written as
y(t) = G(2) So(t) uo(-) + G(1) S1(1) (-, ) + G(1)S2(t) (-, ) + (1), t € T, (9.3)

G(t) : Lo(Q) = R™, G(*) : L2(Q) — L3(Te)-

Therefore the informational domain U(#, y(-)) is the reachable set at time # for the system (9.2)

under constraints (9.3) and (9.1).

Theorem 9.1. The informational domain U(6,y(-)) for the estimation problem (1.1), (1.2), (1.4).
(9.1) is an ellipsoid in the space L,(S2) :

U(8,3(-) = {u(z) [< u(-) = u®(,0), P7H(8)(u(:) - u*(-,8)) >< 1 = h*(6)}, (9.4)

where
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P(0) : L(2) — La(9), P(B)e(") = 3 Si(O)I7'S;(8)e(-), (9.5)
B(6) : L2(Q) — L2(9), B(6)¢(-) = F*(O)L'F(8)p(), (9:6)
uo‘('vo) = ﬁ("o) + uo('vo)» uo("a) = F-(G)g()’ (97)

ﬁ('vt) = SO(t)ﬂO(') + Sl(t)f_('v ) + S2(t)7—’('v ')’ teT,

9(1) = y(t) - GWa(-, 1) - (1), teT,

2
F(6) : L*(Q) — LT (Te), F(0)e(") = 3_ G()S:()I;" Si(6)« (), (9.8)

1=0

2
K: L}(T.) - L3(Te), KX()) = ) G()Si()I'S; ()G ()A(),

=0

§(-)=L7'§(:), L: L}NT.) —» L}(T.), L=N"' 4+ K,
h*(8) =< §(-), %(-) > . (9.9)

Proof. The brief scheme of the proof of Theorem 9.1 can be done as follows.

Due to criterion of the consistency of the system of inequalities (Kurzhanski, 1977) the set of

the operator equations (9.2), (9.3) is consistent with constraint (9.1) iff the inequality

mv%,'x L(“O(')a f(v ')vv('v ')977(')”\(')7 ‘P('))— < u('vo)v 99() >>0 (9'10)

does hold for any A(-) € L}*(T.), ¢(-) € &, where

L(uO(')v f(a ')a ‘U(-, ')777(')”\(')"/’(')) =< ’\()91/() >+

+ < So(8)e(-) — So(1)G™()A(-) uo(+) > + < ST(O)¢(+) = ST()G™()A(), f(,) > +
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+ < 83(0)p(-) = S3(-)GT(HA(), v(+5) > = < A(),0(0) >

Calculating the maximum in (9.10), after a number of transformations we come to the formula

of support function for the set U(4,y(-)) :

p(e(-) 1 U(8,y(-))) = ){< AC), () > + < (), w(-,0) > + (9.11)

inf
AC)eLP(T.

+(< M), N"I()> +

+ <AC)LKA() > =2 <AC)LFO)p(-) > + < ¢(-), P(O)o() >)'/3},

for an arbitrary element ¢(-) € &.
The calculation of the infimum in the latter relation leads to Theorem 9.1.

From above it follows that a consequence of Theorem 9.1 is that F(6) and B(8) are integral

operators and that h2(6) € [0, 1].

Lemma 9.1. The support function p(o(-) | U(0,y(+))) = sup{< ¢(:),u(-,8) >| u(-,8) € U(6,y(-))}

is given by

p(e() | U(B,5())) = (1 = K62 < o(-), B(8)p(-) >/ + < (), (-, 6) >

being defined for any element p(-) € ® C Lo(R).

A specific question that arises here is how to describe the best and the worst measurements y(-)
which could be defined as such that the domain U(8, y(-)) would be either the “smallest™ or the
“largest” possible. Observing that operator P(8) does not depend upon y(-), one may reduce
the problem to finding the measurements y(-) for which the parameter h2(6) would be equal
either to 1 (the case when U(8, y(-)) is a singleton) or to zero (this gives the “largest” U(6, y(-))

with respect to the inclusion).
The answer to the problem is given by the following two propositions:

Lemma 9.2. The “worst case” measurement y(t) = 3(t),t € T, is the one generated by thc sct
() = {ao(-), f(-,+), B(-,+), 7(-)} due to equations (1.1), (1.2), (1.4). This ensures the eristence
for any feasible y(t) of an element @*(-,y(-)) € Ly(Q) such that
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ple(-) 1 U6,5(-))) 2< @(-), " (-, y(+)) > +p(p(-) | U(8,3(-))),¥Yeo(-) € .

In other words the “worst case” §(-) is such that for any other y(-) the domain U(#, y(-)) could
be shifted (by ¢*(-,y(-))) so that it would lie entirely within U(8, %(-)).

An example of the best measurement where U(8, y(-)) reduces to a singleton could be as follows.

Suppose that the initial value ug(z) is the only uncertainty in the system (1.1), (1.2) and that the
inputs for f(z,t) and v(£,t) are given and such that f(z,t) = f(z,t), v(£,t) = 9(€,1). Therefore

we can put
lD() = {uO(')v j(l?, t)a i.)({s t)v ﬂ(t)}
and denote
Y = {y(-) | y(t) = G(1) So(t)uo(-), t € Te, uo(-) € L2(Q)}.
An arbitrary element of LT*(T,) could be represented as
y(-) =y () + y()",
where
Yy() €Y and < w(-),Ny*(:) >=0.
Lemma 9.3 Assume that the avatlable observation y(-) = §(-) is such that
< g#L(_)’ Ng..L() >= 11
where
7°() = () - GC)S1()f(-, ) = G(-)Sa (-, ).

Then the set U(0,§(+)) is a singleton.

In other words, here the whole “resource” assigned to the error 7(t) is completely “spent™ on

producing #**(-) which is orthogonal to Y.

39



Remark 9-a. Assume now that the set W is unbounded with respect to the initial value ug(:)

and that

W= {(UO()’ f(’ ')’v("')’ 77()) l uO(') € LZ(Q)'I < f(a )) - f_(v ')vll(f('v ) - f(a )) >+

+ < v(-y) = (-, ), La(v(+, ) = (-, -)) > + < () = 7(-), N(n(-) = 4(-)) >< 1}, (9.12)

Under constraint (9.12) the informational domain U(6, y(-)) is a convex, but in general, a non-
closed unbounded set in Lo(§2). Nevertheless, the relations given by Theorem 9.1 allow to derive

some formulae for its approximating.

10. Evolution Equations: The Ellipsoidal Case

In this section we consider the dynamic guaranteed estimation problem (1.1), (1.2), (1.4), (9.1)
with dependence on the measurement interval. From the theorem 9.1 it follows that the domain
U(8,y(-)) can be completely described by its parameters h2(8), P(6), B(6), u°*(-,8). We therefore

proceed to specify the evolution of these parameters in time.

Denote ¢(z,t,6) and b(z,y,8) to be the kernels of the operators F(8) and B(f) respectively. so

that
F6)() = [ alz,1,0)p(2)dz,
h
B(8)(") / b(z,y,0)p(y)dy.
Then

oz, = e | (z:e-*f*(c (s (Oei(2)) M @i(2)dzwi(2)+ (101

=1

+3 / (3 e MG (0w ())wi(2)e k=Y (2, 7 )wi(2))dzdT Jwi( z)

=1 Q. =1

+3( / (3 e MGt )w; () w; (€)™ M= =Y (€, 7 )wi(€))dEdT )wi(2),

=1 T, j=l
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Qe=0xT,, E, =00 xT,,
[
bz, .0) = [ ¢(a,1,0)d(v,,0)dt, (102)
-4

6
u**(z,8) = (z,8) + / §'(z,1,0)F(t)dt, (10.3)
£
where the function §(z,t,8) is a unique solution to the following integral equation
6 .
N'l(t)é(z,t,0)+/ R(t,7)i(z, T, 0)dr = g(z,1,8), (10.4)
-4

K(t,7) is a non-negative kernel of the operator K.

Using the Schwarz inequality and the equivalence (Sobolev, 1982; Ladyzhenskaya and others.
1968; Lions, 1968) of the usual norm in the Sobolev space H!(£2) and the norm (for simplicity
we can put a(z) > 0,¢(§) #0)

o) = (f (3 o) 5 2O 1 a@paae + [ e(ereie)ae) ™

§,7=1 I

one can observe

u**(z,0) € HYO(Q x (£, 0)),

b(z,y,8) € B x Q x (¢, 0))

for arbitrary interval (£,©) (where the parameters used in (1.1), (1.4), (9.1) can be defined).

© > ¢, where

HI9@ x 2 (2,0) = {0, 52, 52 € L@ x A x (2,0).
Formulae (10.2), (10.3) lead us to the following system of partial differential equations for func-

tions u%*(z, ) and b(z,y,0) :

0u%*(z,0) _

oo = AU(,0) + X O)(y(6) = GO)u(-,8) - 7(B))'N(6)x (10.5)
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X(Q(I»o,o) - G(B)b(z,-, 0))+ f(I,e), TE€ Q» RS (0’6)7

811(;‘(61 )+C(£) 0-(6, )_ 1—)(6,0), é’ € aQ’
uo‘(z,O) = ﬁo(z),
AV — Ab(,0) + xe(O)(a(z,9,0) ~ G(O)B(z, ) x (10.6)

08

XN(o)(q(y,a, 0) - G(a)b(, y90))’ z,y€ Q, S (0, O),

b(2,2,0) = 0, 251D 4 c(Eyp(e, v,60) = 0,
9¥(z.£,6) +c(€)b(z,£,60) =0, &€ 09,
6nA

where

A=y - o (ai() a)+a%(a.-j(y)a—f/;)—a(r)—a(y>,

{ J—l b

0, 0O0<f<e,
X(0) =
1, e<0<0.

We give here the brief formal scheme for the derivaiton of equations (10.5) (which may be strictly

justified on the basis of Galerkir’s method).
Differentiating formally the relation (9.7) for u%(-,8) with respect to @ one can obtain

0. #
aua(e’ 2 = %(/5 91(1,0)q(z, 1, 6)dt) =

9 -
= §1(6,0)N~'(8)i(z, 6, 8) + / gf(t,o)N-l(t)aL";;’—e)dt+

6 1 ) 5 4 o
+/ / ﬁl(t,ﬂ)K(t,r)Wdrdt-k/ %N'l(tﬁ(z,t,e)dﬁ
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6 % 8y1(t,0) - ) . o »
+/e /e ET) K(t,7)§(z,T,0)drdt + yl(0,0)/€ K(0,7)j(z,7,0)dr+

0 -~
+ / #(t, 0)K (1,0)d(=, 0, 0)d1,

where

0.
N‘l(t)g(t,0)+/€ E(t,m)i(r,0)dr = §(2). (10.7)

Then taking into account that K(8,t) is a kernel of the integral operator F(8)G*(8), formula
(10.3) and

3(6,6) = N(6)(3(6) - G(6)u°(-,8)), (10.8)

ﬁ($,0,0) = N(H)(q(x,0,0) - G(o)b(x”e))’ (109)

we come to the mixed problem (10.5).

From (10.9) there follows an ordinary differential equation for A%(8)

2
dhdgo) = (y(8) — G(8)u®(-,8) — 7i(8))' N (8)(u(8)- (10.10)

~G(8)u”(-,8) - 7(6)), 6 € (c,0),

h*(e) = 0.

The operator P(8) does not depend upon any measurements and as it follows from (9.5) it
describes the structure of the reachable set of the system (1.1), (1.2), (9.1) in the absence of
the measurement equation (and measurement “noise” n(t) in (9.1) in particular). The operator

B(#) and scalar h%(#) describe the correction of the latter set due to the estimation process.

Theorem 10.1. The evolution in @ of the informational domain U(8,y(:)) for the estimation
problem (1.1), (1.2), (1.4), (9.1) is given by the joint system for the initial boundary value
problems (10.5), (10.6), the ordinary differential equation (10.10) and the formula (9.5).

Remark 10-a. The solutions to the initial boundary value problems (10.5) and (10.6) are treated

as generalized solutions in the sense of the corresponding integral identities (see (1.3)).
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In the case of the integral quadratic constraint of general (operator) type the mixed problem

(10.6) should be modified in the form of a respective differential equation for the operator B(#).

11. The Informational Domain: Finite-Dimensional Outputs
In this paragraph we will consider a particular case of the problem (1.1), (1.2), (1.4), (9.1) when
the aim is to estimate a finite-dimensional output of the system.

We therefore introduce the estimation problem in finite-dimensional outputs which is-to deter-

mine the set of all elements

2(-) = Hu(-,6)

that are defined at instant 6 being consistent with the system (1.1), (1.2), the measurement data

y(t),t € T, and the constraint (9.1), the linear operator H being given:

H : 1,(Q) — R(H),dimR(H) < c.

The informational domain Z(6,y(-)) for the latter problem is the projection of the respective
set U(6,y(+)) on the subspace R(H) :

Z(6,y(-)) = HU(8,y())-

Therefore, due to Lemma 9.1, we come to

p(e() | Z(8,y())) = (1= B2(8))/% < (), P(8)(-) >'/? + < (), u(-,0) > (11.1)
for any ¢(-) € R(H).

Consider H to be the operator II, of orthogonal projection on an arbitrary subspace X,():

0, : Ly(Q) — X, (),

o) = w(),0(z) = 3 < o), () > wi2).

The respective set Z(8,y(-)) will then be denoted as Z, (8, y(-)).
Assume that the boundary value v(&,1t) is given:
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v(€,t) = 9(€,1),(E,t) € £, (11.2)

and that the operators I;( = 0,1) in the constraint (9.1) are identities.

Along the scheme of (9.2) - (9.11), (10.1) - (10.4) one can obtain the following formulae for

[ )

the parameters of Z,(#,y(-)) which are all further marked by a lower index “r” and which arc

represented through the parameters and functions specified in (9.5) - (9.9) and (10.1) - (10.4):

P,(9) = II,P(6)I1,, II; = I1,,
2
P.(6) = Z II, S;(6)S;(6)II, (), (11.3)
B,(6) = II,B(4)I1,, F.(8) = F(O)IL,,
B, (0)e() = [ br(z,v,0)0(w)d,
Q
7°(0) = Iu” (-, 0), §(4,8) = T,4(-¢,0),

hf(o) = hz(o)a qr('7t70) = HT‘]("t’o)‘

Moreover, (10.8) and (10.9) could be modified for values §,(6,8), ¢.(z,8,6) so as to yield

§-(6,6) = N(6)(3:(6) — G(6)27(-,9)), (11.4)

(jr(l', 8, 0) = N(@)(q:(z,e,e) - G(e)b.,.(l', 70)) (1]'5)

Here
(-,0) = / !(=,1,0) §(1)dt
be(2,3,0) = [ ¢ (2,4,0) dr(,1,0)dt,
7:(6) = §(0) - 5.(6,0), 7(,0) = K,i(-,0),
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Q:(zaoaa) = qr(xaaae) - cj,(x,0,0), QT('» 70) = Kr‘j('» '10)7

K, = 3" GOTIES,()S(IEG(),
i=1
IT;* is the operator of orthogonal projection on X () (IT}v(:) = v(-) — I v(-)).
On the basis of relations (11.1) - (11.5), similarly the proofs of the theorems 9.1, 10.1 we obtain
Theorem 11.1. The informational domain Z.(0,y(-)) ts an ellipsoid in the ﬁnite-dimensional

subspace X,(2) of the space L2(Q):

Z:(6,4(-)) = {2(z) | 2(2) € X, (),

< 2() = 27, 8), P7H(O)(2(-) - 2°(-, 0)) > < 1 — h*(6))

with support function (11.1).

The evolution in 8 of the parameters of the domain U,(8, y(-)) under condition (11.2) and iden-
tical operators I;(i = 0,1) can be described for any r by formula (11.3) and by the following
joint system of partial differential equations for initial-boundary value problems in the finite-

dimensional subspace X, () and of an ordinary differential equation for the value h*(§):

920*(z,0)
06

= Az)*(-,8) + x<(6)(v-(8) — G(0)22"(-,8) — 7(6))' N (8)x (11.6)
x(g:(z,8,0) — G(0)b.(z,-,0)) + f(z,0), z€Q, 6€(0,0),

O=
P80y doae =0, ceon,

Z?‘(',O) = 207‘(') = HrﬁO(')a f_'r(ao) = Hrf('ae)a

y-(0) = y(6) — #:(6),

0b,(z,y,0)

90 = A(a ’0) + XE(G)(q,‘(a:,0,0) - G(G)b,(x, ’0))IN(0) X (11~7)
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x (¢7(y,0,8) — G(6)b,(-,9,0)),z,y € , 6 € (0,0),

B, (2,6.,0
br(2,9,0) = 0, 2280 4 )bz, ,6) =

9b,(¢,y,9)

Ona +c(§) b(,y,0) =0, £ €09,

2
dhdéo) = (v:(6) - G(8)2"(-,0) — 7i(8)) N (8)(v(8) — G*(8)22"(-,8) — (), (11.8)

8 €(c,0), h¥e)=0.

The mixed problems (11.6) - (11.7) are finite-dimensional. Therefore, they may be reformulated

through a system of ordinary differential equations.

Indeed, put

(2,0) = 37 28 (B)i(z), 07[6] = colls83(0), .., 2%(0)),
=1

b,(z,y,0) = Z bijr (0)wi(z)wj(y), B.[6] = {bi;»(6)} isa [r x r] — matrix,

i,7=1
A'r = dla-g {—Ala"',_Ar}a fr[o] = col [< f("o)’wl(‘) >y < f_(’o)’w"() >]’

tlgr = col [< {Lo('),wl(-) >0, < ﬂo(-),wr(') >],
G:[8] = (G(B)wi (), ..., G(B)wr (),

@(2,6,0) = Y a5 (O)wi(z), Q116 = {g}(8)) s a [ x m] - matrix.

=1
Then the problems (11.6), (11.7) generate the system

dB,[6)
df

= A.,B,.[ﬁ] + B [0]Ar + x:(6)(Q;[6] — G:[6]B, [9])I X
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x N (6)(Q:(6] - G-[6]B,[6]), 6 € (0,0),

B,[0] = diag{0,...,0},

dzp*[6]

£ D% = A,2(6] + xe(0)(3:(6) - Gy (8)22°16] - 7(6))'N (6) x

x (Q;[6] - G.[61B.[]) + f:[6], 6 € (0,0),

29‘[0] = 'l_l,o.,-,

which should be treated together with

dh?(6)
de

= (4 () — Gr[0]2,."[6] — 7(6))' N (6) x

x (9+(8) — G.[6]2;"[6] - 7i(9)),

h*(e) =0, 8¢ (¢,0)

and formula (11.3).

Remark 11-a. We have used square brackets above for the description of finite-dimensional
vectors obtained through a truncation of respective infinite-dimensional elements. This type of

notation will also be used below.

12. The Informational Domain: Instantaneous Constraints

Assume now that the unknown inputs uo(-), f(:), #(-,-) in the system (1.1), (4.1), (1.4) satisfy

some preassigned constraints of an instantaneous type, namely

uo(+) € Uo; f(-,1) € F(), t € T;n(t) € A(t),t € T, (12.1)

where U is a given weakly compact convex set in Ly(2); F(t) is a continuous multivalued map
from T into the set of convex weakly compact subsets of L,(2); A(2) is a continuous multivalued

map from 7, into the set conv R™ of convex compact subsets of R™ and int A(t) £ ¢, t € T,;
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€ < 8 < O. We will also restrict the equation (1.4) to the case of spatially averaged sensors A
and B.

Due to formula (9.10), an arbitrary informational domain U(#8, y(-)) for the estimation problem
(1.1),(1.2), (1.4),(12.1) is a closed convex and bounded subset of the space L,(Q2). Its evolution

in time may be described through the techniques of partial differential inclusions in Hilbert space.

The scheme for deriving appropriate inclusions is based on a limit transition along the results
obtained for ordinary linear differential systems in (Kurzhanski, Filippova, 1989) for guaranteed

estimation problems under instantaneous constraints.

Consider a sequence of infinite-dimensional informational domains U(;)(f, y(-)) that are the so-

lutions to estimation problem (1.1), (4.1), (1.4), (12.1) under condition

G(t) = G,(1), G,(t)u(-t) = G(t)TL,u(- 1), (12.2)

where II, stands for the operator of orthogonal projection on an arbitrary subspace X,(Q)
generated by first r eigenfunctions for the problem (4.6). We will investigate a limit transition

for these with r — o0. In order to do that we introduce

Condition 12-a. We will say that the measurement output y*(t),t € T, satisfies the regularity
condition of the constraint qualification type if among all of the triplets that generate y*(1) duc

to (1.1), (4.1), (1.4), (12.1) there exists a triplet {ug(-), f*(-,),77(-)} that ensures

n*(t) € int A(t), t € T..

Lemma 12.1. Assume that the measurement output y*(t),t € T, satisfies Condition 12-a. Then

d(U(8,y7(+)), U»y(8,¥7(+))) = 0 with r — oc. (12.3)

Here d(A,, A2) stands for the Hausdorff metric (Kuratowski, 1966) for the sets Ay, A, C Lo(Q).

Proof. Due to the given assumptions all of the sets U,)(#, y(-)) are nonvoid once r exceeds some

value r* = r*(y*()).

We may split an arbitrary solution u(z,t) to the system (1.1), (4.1) generated by pair {uo(-), f(-,")}

into two terms:

u('at) = U,-(', t) + ur("t)a
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So that

ur (1) € X, (), < u (-, t),u. (1) > = 0.

Here u,(-,t),u"(-,t) are solutions to (1.1), (4.1) generated respectively by the pairs

{uO'r(')s f'r('7 )}7 {“B(), fr('a )}7

so that
uor(+) = Trug(:), uy(+) = Miuo(+),

f'r('vt) = Hrf('7t)7 fr(at) = H,,'.Lf(,t), teT.

Due to formula (9.2) we have
. _ 1
9" 0) Iy < ele™ Nl wo(:) 1 hm) + PWLEASE) 12,9 V>0,

r=1,2,..., c¢= const.

Let i(z,0) be an element of U(8, y*(-)) generated by {dio(-), f(-,-)} together with 7(2) and a(-, 1)
- the respective solution to (1.1), (4.1).

Then
V(1) = GRA( 1) + A1) = Gr ()i, 8) + 7(8) + mr (1), t€ T, (12.4)
where
1e(8) = GO 1) = G (D), 1)
and (see 8.3)

[ 7:C) gy < 8(r); 8(r) = 0, 7 — o0. (12.5)

Relations (12.4), (12.5) mean that

i(-,0) € Ug (6,5°(), (12.0)
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where U(’()r)((), y*(+)) stands for the informational domain of the estimation problem (1.1), (4.1},

r

(12.1), (12.2) and
n(t) € A(t) + s(r)a(0) = A1), teT.,
o(0) is a ball of unit radius in R™.
Conversely, if an element i(z, f) belongs to U, )(6,y*(-)), we can similarly obtain
ﬁ(,O) € U’(T)(oa y.('))a (127)
where the upper index s(r) means the same as in (12.6).

Noticing that the sets of type Ug)((), y*(+)), UP(6,y*(-)) are continuous in B(8 > 0) under
condition 12-a, we observe that inclusions (12.6), (12.7) yield the assertion of Lemma 12.1. The
further results follow those of a paper by (Kurzhanski, Filippova, 1989). The results of this

paper sound as follows.

Denote X[t] = X (t,10,2°), X[to] = X©, to be the solution tube (generated by initial set X9) to

the system

&€ A()z + P(1), 1 >t
G(t)z € Q(t), z(to) = z°,

2% e x°

(A(t),G(t) are continuous matrices; P(t),Q(?) are set-valued maps, convex compact valued.

continuous in t).

Also denote Xp[t] = Xp(2,t0, X?) to be the solution tube (generated by initial set X°) to the

system
z € (A(t) - M(1)G(t))z + M(1)Q() + P(2),

XM[to] = X°.

Theorem. The following relation is true
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ﬂ XM[t] = X[t]v
M()

where the intersection is taken over all continuous matriz valued function M(t) (T — R™*").

Returning to the basic problem of this paragraph, consider the sequence of sets UZ(6,y())

(r=1,2,...) each of which admits the following representation:

r

U7 (8,y(-)) = {u(z)|u(z) = ) wr(B)wi(z),
1=1
4,[0] = col [uy,(0),...,ur(8)) € U7(6,y(-))},

where the sequence (7,"(0,3/(-)) (r = 1,2,...) comes from the solutions to appropriate finite

dimensional guaranteed estimation problems:

di,[1]

o = Ari[t] + fo[t], @[t)e R", te T, (12.8)

ﬂr[o] € (701" f'r[t] € Fr[t]s
y(t) = G[t]u-[t] + n(2), t € T,
n(t) € A°(2),

Uor = {fiy|@r = col [urg, ..., Up],ur(2) = Z wirwi(2), ur(+) € I, Up},

i=1

F,[t] = {fr[t“fr(t) = collfir(2),..., fre(t)]) € L3(T),

f@) = 3 fulwile) fr(1) € I F(D), L€ T).
=1

Lemma 12.2. Assume the set UZ(8,y*(-)) to be generated by measurement y*(t), t € T,, that

satisfies condtion 12-a. Then the following representation is true

U7 (8,y7(-)) = (WU (6, M7 (-, DIMT(-, ) € MT()}, (12.9)

where
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U7 (6, M7 () = {u(-, 61M7(-, )},

over all solutions u(-,0|M7(-,-)) (taken at instant 8) to the initial boundary value problem

du(z,t)

o = (A= X (M (2, G (D)l ) + Sz, 1)+ (12.10)

X (M (2, 1)(y* (1) —n(1)), teT, z€Q,
u(-,0) = uo(-) € IL.Vo, f(-t) €L F(t) (t€T), n(t) € A°(2) (t€T.),
Mr() = {Mr(xvt)er(xvt) = (er(x’t)v s ’Mr;(z’t))’

M;(-,-) € C([0,6]; X-(2))}-

Problem (12.10) is a finite-dimensional problem in X,({2) treated in a generalized sense (see

(1.3) ).

It is also clear that

Uiy(8,97() = {u(=z)| IL,u() € U7(6,37(-)}

Therefore, the relations (12.9), (12.10) are valid for the domain U&(B,y'(-)) with Up. F(1)
substituted by II,Up and II, F(t) respectively.

Let now u*(z,t) be an arbitrary solution to the initial boundary value problem (12.10) generated

by the triplet {ug(-), f*(-,-),7*(-)} with an arbitrary function

M(v) € M() = {M('7t)|M('vt) = (Ml('vt)v-' 'va('ﬁt));

M;(-,t) € C([0,6]; L>(2))}

and with G(t) substituted for G,(t).

Using the method of transposition (Lions, 1968) we can observe that this solution does exsit in

the space C([0,6]; L2(92)) and
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max 4" (5t) o) € Bu(MC5 ) (U uol) za@) + I F7Co) o) + 177 C) g (zy)s (12.11)

where 3;(M(-,-)) depends upon M;(-,-)(i = 1,...,m) continuously in the norm of C(T,; Lo(Q?)).
Denote by “Zr)(‘”’t) the solution of (12.10) generated by the same triplet as above but with
MT(z,t) taken as a truncation of M(z,t). Then for the difference i (z,t) = u*(z,t)— u’('r)(:c, )

we obtain the mixed problem

dul)(z,1)

P = (A= X(OM(2,0G(1)E" (2, 1) + xe(1)(M (2, )G (1)~ (12.12)

— M (2, )G ()72, 1) + Xe(£)(M(3,1) — M7 (2, 1))

X(y™(t) — n°(t)),t € T,z € Q,

ﬂ(r)(I,O) =0, ﬁ(r)(:c,t)|an =0.

Therefore, due to (12.11) we have

| 27, 8) ||Ly(0) < Ba(r, M(-, ), (12.13)

where f35(r, M(+,-)) — 0 when r — oo whatever M(-,-) € M(-).

Taking into account the lemmas 12.1, 12.2, the estimate (12.13) and taking r — oo, 0 — 0 we

come to
Theorem 12.1. Once the measurement y*(t)(t € T,) satisfies condition 12-a, the informational

domain U(0,y*(-)) for the problem (1.1), (4.1), (1.4), (12.1) may be described as

U8, y(-)) = [ U8, M(,-))IM(-,-) € M()}, (12.14)

where U(0, M(-,-)) is the cross-section at instant 8 of the set of all solutions to the partial

differential inclusion

Ou(z,t)

51 € (A—- M(z,t)G(t)u(-,t)+ F(t)+ M(z,t)(y"(t) — A(t)), z € Q, t €]0,0], (12.15)

U(I,O) € UOa u(za t]|an = 0.
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Remark 12-a. The condition for the measurement data y*(t), t € T, in Theorem 12.1 may
be repalced by a more general condition. Indeed the statement of the latter theorem (and of

Lemmas 12.1, 12.2) will be true under the assumption:
Sm  d(U(8, y(-)), U%(8,3(-))) = 0. (12.16)

In particular, (12.16) does hold for an arbitrary measurement y(t), t € T, if the system (1.1),
(4.1), (1.4) is strongly observable.

13. Interrelation Between Guaranteed and Stochastic Estima-
tion

Let (€, B(Q), 1) be a probability space (Curtain, Pritchard, 1978; Sawaragi and others, 1978)
with Q as a topological space, B({}) as the Borel field generated by £, and y as the probability

measure on f).

Suppose that dg(-) € La(Q,p; L2(R)) and is Gausian with zero mean and with covariance
operator Fp ; f(-,t) is @ Wiener process on Ly(f)) with covariance operator Q(?) ; o(-,1) is a
Wiener process on Ly(89) with covariance operator R(t); £(t) is a vector valued Wiener process

on R™ with covariance matrix N(1).

Instead of the deterministic mixed problem (1.1), (1.2) consider a similar problem for a stochastic

partial differential equation

< di(- 1), @(+) > +a(al-, 1), o(-))dt = (13.1)
=< df(-,1),0(-) >
< dv(-,t) - c(-) u(-, 1), ¢(-) laa>,

Ve() e H'(R), 1€ T,

a(u,(.),ug(.))z/( E ai; (2 )6u,(:r) aug(x)
o]

Oz
i,j=1 J
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+ a(z)uy(z)uz(z))dz,

ﬁ('a 0) = ﬁo(')v

where ﬁO(') = ﬁo(')+ﬂ0('), f("t) = f('7t)+f('$t)a 1_)('at) = f)("t)+v("t)v the set {UO(‘), f('vt)7v("1')}

satisfies the restriction (12.1),

v(-,t)CV(t), teT, (13.2)

where V(1) is a continuous multivalued map from T into the set of convex weakly compact sets

of L,(0) and

E[ﬁo()] = uO(')vE[f('at)] = f("t)aE[ﬁ('at)] = v("t)'

The last two terms in the right hand part of (13.1) are interpreted as respective Ito integrals.

Suppose that we can observe the process
dy(t) = G(t)a(-,t)dt + d&(t),t € T., (13.3)
where £(t) = £(t) + n(t), n(-) satisfies (12.1),

E[E(t)] = n(1).

The processes f(, t), (-, t) are assumed to be statistically independent and also independent of
the initial function @o(-). The relations (13.1), (13.3) define a conventional stochastic optimal
filtering problem (Falb, 1967; Bensoussan, 1971). We will denote the respective optimal estimate
for this problem as u°(-,8 | w(-), A(:)), where A(:) is the quadruple

AC) = {Po, Q1), R(2), N(1)}.

Follow the lines of (Kurzhanski, 1988) for the informational domain U(6, y(-)) of the deterministic
inverse problem (1.1) - (1.5), (12.1), (13.2) we then have

Theorem 18.1. The following relations are true
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U(oa y()) g nu {uo('vo | w(), /\()) | w() € Wv/\()} (13‘4)

Therefore the projection of the domain U(6,y(-)) over a prescribed direction () may now be

evaluated as follows

—inf {J(=@ (), ACD [ AC)} < < (), u(-,0) > <

< inf {J(+0(1AC) [ AG) ) Vu(-8) € UG, 3()),

where

J(p(-),A()) = (13.5)

= sup{< (), w’(, 0 | w(-),A()) > | W}

The nature of the relation of (13.4) is such that the substitution of any element A(-) into

J((+), A(+)) gives a guaranteed estimate of the actual state u(z,8).

Remark 13-a. From theorem 13.1 it follows that the support function p(¢(-)| U(6, y(-)) may be
calculated by minimizing a multiple integral of type (13.5) over A(:).

Remark 13-b. A number of important physical processes may well be modeled on the basis of
the theory of guaranteed estimation. As an example we indicate the problem of estimating the
spatial and temporal distributions of air pollution levels (Omatu and others, 1988) where under
natural absence of complete statistical information on the inputs and parameters of the system

the given approach may turn to be rather relevant.
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