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Foreword 

This paper introduces a series of problems on state estimation for parabolic systems on the basis 
of measurements generated by sensors in the presence of unknown but bounded disturbances. 
Observability issues, guaranteed filtering schemes for distributed processes and their relation to 
similar stochastic problems are discussed. The respective problems arise from applied motiva.- 
tions that come, particularly, from ecological and technological issues. 

Keywords. 
Observers; observability; sensors; state estimation; distributed parameter systems. 

iii 



An Observation Theory for 
Distributed-Parameter Systems 

A. B. Kurzhanski 
and 

A. Yu. Khapalov 

Introduction 

This paper deals with the problem of state estimation for parabolic systems on the ba.sjs of 

observations generated by sensors. The issues treated here are the observability problem ( w h a t  

types of sensors ensure observability?) and the construction of observers for systems subjectetl 

to  disturbances (in the inputs, in the boundary values and in the measurements). It is indica.te(1 

that for finite-dimensional measurement outputs the observability property may be ensured 

through nonstationary ("scanning") observations ( a  respective duality relation for problems of 

control is also given). In the state estimation problem the approach discussed here is rela.tet1 

to a deterministic model of uncertainty with disturbances taken to  be unkrzown but bounded. 

This approach (also known as the process of "guaranteed estimation") leads to an observer in tllr 

form of an evolution equation with set-valued solutions and particularly, in the ca.se of geometric 

constraints on the unknowns, to  an estimator in the form of a partial differential inclusion. Tllc 

set-valued estimate for a finite dimensional projection of the state of the system may then 

be reached through optimization problems for multiple integrals. An alternative solution ma!, 

be achieved through stochastic filtering approximations when the set-valued estimate is given 

through the integration of appropriate stochastic filtering equations with variable variance terms. 

1. The Guaranteed Estimation Problem 

In a bounded domain Q of an n-dimensional Euclidean space consider a distributed field dc- 

scribed as the solution to  the mixed problem 



a.(t ,  t )  + c ( o u ( ~ , ~ )  = ~ ( t , t ) ,  t E a ~ ,  c = an x T 
 an^ 

Here 80 is a piecewise-smooth boundary of R, 

is a symmetric elliptic operator with given coefficients a i j ( x ) ,  a ( z )  that satisfies almost every- 

where in 0 the condition of coercitivity 

and 

where cos ( n A ( t ) ,  x i )  = i-th direction cosine of n ~ ,  n A  being the normal at point t E dR es- 

terior to  0; L,(R), L,(afl) are spaces of measurable functions that are defined on R and BR 

respectively and essentially bounded. 

Assuming f(., .) E L 2 ( Q ) ,  uo ( - )  E L 2 ( 0 ) ,  v ( - ,  .) E L2(C)  we will consider u ( z ,  t )  to be a gener- 

alized solution (Sobolev, 1982; Ladyzhenskaya and others, 1968; Lions, 1968) from the Baiiacli 

space V;"(Q), consisting of all elements of H1lO(Q), that are continuous in t in the norm of 

L 2 ( 0 ) ,  with the norm 

The symbols L 2 ( 0 ) ,  L2 (Q) ,  L2 (C)  stand for the spaces of function square integrable on R, Q, S 

respectively. 



We will further use the following notations for the Sobolev spaces (Sobolev, 1982; Ladyzhenskaya 

and others, 1968; Lions, 1968): 

H,$'(Q) = (9 I cp E H / Y ~ ( Q ) ,  cp j c =  0) ,1= 1,2. 

Thus the initial boundary value problem (1.1), (1.2) is treated as the following identity 

for any cp(z,t) E H1*'(Q) and almost all 8' from [0,8]. 

It is further assumed that the input function f ( z ,  t), the boundary condition v((, t )  and the inilinl 

distribution uo(z) are taken to be unknown in advance. However, it is presumed that they satisfy 

some preassigned constmints which will be specified below. 



It is supposed that all the available dynamic information on the solution u(2, t)  of the problenl 

(1.1)-(1.2) is given through a finite-dimensional measurement equation 

where y(t) is a measurement data, y(t) E Rm, y(.) E LT(Tc); G( t )  is a linear (nonstationary) 

observation operator ( a  "sensor" ) with its range in Rm ; q(t) is the measurement "noise"; E is a 

given positive parameter which defines the interval of observations. The operator (the "sensor" ) 

G ( t )  describes the structure of the observations. 

We will suppose that the restriction on the uncertainties ti,(-), f (-, .), v(., -), q(.) can in general 

be described as 

w(') = {uo('), f (', '), '('7 '), v(')) 

with W being a given convex set in L2(SZ) x L2(Q) x L2(C) x LF(T,). 

The guamnteed estimation problem is to  estimate the solution u(z, 8) a t  instant 8 - the termiilal 

point for a trajectory u(.,t) with values in the Hilbert space L2(Q), continuous in t on the 

interval [O, 81 - on the basis of the measurement data y(t)(t E T,) and the available information 

(1.5) on the uncertainties f (z, t), UO(Z), v([, t), q(t). 

The estimation problem (1.1) - (1.5) is a deterministic inverse problem (Tikhonov, Arse~r i 1 1 .  

1979; Lavrentiev and others, 1980) that,  in general, obviously has a nonunique solution. This 

leads us to  the following (Kurzhanski, 1977) 

Definition 1.1. The informational domain U(8, y(.)) of states u(z,  8) of system (1. I), (1.2) 

that are consistent with measurement data y(t) of (1.4) and with restrictions (1.5), is the se l  

of all those functions u(z,8) for each of which there ezists a quadruple w8(-) = {ui;(.), f * ( . ) ,  

v * ( . ,  a ) ,  [*(-)I that satisfies (1.5), and generates a pair {u*(., O), y8(t)) ( due to (1. I), (1.2). 

(1.4)) that satisfies the equalities u*(z, 8) = u(z,8),  y*(t) = y(t), t E T,. 

The Linearity of the system (1.1), (1.2), (1.4) and the convexity of W imply that the doma.in 

U(8, y(-)) is a convex subset of the space Lz(SZ), that always includes the unknown actual state 

4 2 ,  0). 

The estimation problem is to specify the set U(8, y(.)) and its evolution in time. 



Remark 1-a. The domain U(8, y(.)) may be described by means of its support function (Kurzl~an- 

ski, 1977): 

~(4. )  I U(0, Y(-1)) = sup{< v(.), u(., 8) > I  4 . 7  6) E U(07 ~ ( 4 ) )  

for any element cp(.) of the set @ Lz(fl) that defines the generalized solution to  the problem 

(1.1), (1.2) a t  the instant 8. 

Here and below the symbols < (.), (.) > and I (  (.) ( 1  stand for the standard scalar product and 

norm in the respective Hilbert space H which will be clearly specified from the context (in thc 

more complicated cases we will mark the latter by subscripts). 

In the sequel, we will pursue the solution to this problem for some specific types of sensors G ( t )  

and constraints (1.5). 

2.  Sensors 

An observation operator G ("a sensor") could in general be defined as a map 

Y(.) = G 4 . 9  .) 

from V;"(Q) into Lr(T,). Particularly, the map Gu(., .) could be defined through a nonsta- 

tionary operator G( t )  ( G  = G(.)): 

from LF(f l)  into Rm with continuous, piecewise continuous or measuralbe realizations y ( t ) ,  

t E T,, as indicated in (1.4). 

Some typical examples of observation operators are as follows 

A. Spatially averaged observations: 

with h(z, t )  E L2(Q) given. 

B. A special subclass of observation opemtors G( t )  of type A: 



Qh(*)(Z(t)) is the Euclidean neighborhood (in Rn ) of radius h(t) of point 5(t) ;  ~ ( t )  is a trajector). 

in the domain R; the function P(t) E L2(T,) is given. 

The output of the operator (2.2) is the spatial average of the quantity u(z,  t )  over the sensing 

region Q h ( t ) ( ~ ( t ) ) ,  if P-l(t) is the volume of the later, taken along the measurement trajectory 

z(t). 

C. Pointwise (stationary or  dynamic) observations: 

G(t)u(., t )  = c01 [u(zl(t), t), . . . , u(zm(t), t)], (2.3)  

where the measurements are taken a t  some spatial points or along specified measurement tra- 

jectories zi(t) in the domain 0. I t  is clear that this type of sensors requires a corresponding 

smoothness of the solution u(z , t )  to  the problem (1.1), (1.2) which is supposed to be assulnetl 

below (for example, we will assume that u(z, t)  E H2*' (0 x T,) under n 5 3, see (La.dyzhensliaj.i~ 

and others, 1968; Lions, 1968) ). 

The mapping G( t )  should be applied throughout the interval T,, so that the pointwise sensor 

would be well-defined. 

D. Time averaged (discrete-time) observations: 

c01 [u(zl, t), . . . , u(zm, t)]dt, 

where the measurement data  are quantities of the solution u(z, t) ,  taken at spatial points z J ,  j = 

1, .  . . , m and time averaged over intervals [ti -T., ti] (i = 1, .  . . , k),  T. is given (sufficiently small ) .  

E. The observation operator may also be a combination of all of the above types of measurenzent.s. 

As it is clear from the above, the outputs of the sensors introduced here are all finite-dimensionti1 

whereas the system under observation is infinite-dimensional. 



Ln this paper we focus on spatially averaged and dynamic pointwise observations. 

Before introducing the notations and definitions and giving the respective proofs, let us turn a.t 

first to the finite-dimensional case. 

3. Observability in Finite Dimensions 

As it  is well known, a time-variant finite dimensional system 

is said to be observable on the interval [r,  81 once condition y(t) = 0, t E [r ,  81, implies x(8) = 0, 

(or, in other words, if two different states z(')(e) # x (~ ) (B )  generate two different measurements 

Y("(t) # ~ ( ~ ) ( t ) ) .  

The necessary and sufficient condition for observability is that the symmetric matrix 

would be positive definite: 

(I, w(r ,e) r )  2 a I (  r (12,vr E R, (3 .3 )  

for some a > 0 (Krasovski, 1968), symbol (-, .) stands for the scalar product in Rn. 

Here S(t, 8) is the matrix solution to the equation 

where I,, is an identity matrix. 

Another formulation for the necessary and sufficient condition of observability (in finite dimen- 

sions) may be specified in terms of respective "informational domains". 

Consider the system (3.1) subjected to an observation 



y( t )  = G ( t ) x ( t )  + ~ ( t ) ,  T L t L 0 

with an unknown but bounded error ~ ( t ) ,  so that 

< V ( 9 ,  v(-) >s 1, 

with no bounds whatever on the vectors X ( T )  or z ( 8 )  being presumed. 

The infomational domain X ( 8 )  for system (3.1), (3.4), (3.5) will be defined here as the cross- 

section a t  time t = 8 of the bundle of trajectories { x ( t ) )  consistent with system (3.1), (3.4) and 

also with the constraint 

7 

In our case, by substituting x ( t )  = S ( t ,  O)x(O), we may observe that X ( 0 )  is an ellipsoid in Rn 

defined by the inequality 

('7 W ( r , o ) 5 ) -  2 ( p , ~ ) +  c2 5 1, 

where 

It is clear that X ( 8 )  is bounded for any measurement y ( t )  if and only if det 1Y(r ,  0 )  # 0 wl i ic l~ 

is equivalent to (3.3). Therefore the following assertion is true. 

Lemma 3.1 The infomational set X ( 8 )  (for the problem (3.1) (3.4) (3.5)) is bounded for un!j 

measurement y ( t )  i f  and only if the system (3.1), (3.2) is observable on the interval [ T ,  01. 

With det W(T,  0) # 0 the support function for the set X ( 0 )  can be calculated as follows 

p(l I X ( 8 ) )  = sup{(l, z )  I x E X ( B ) }  = ( I ,  W-'(r, o ) ~ )  + ( 1  - h 2 ) f  ( 1 ,  14'-'(r, O ) l ) f ,  

h2 = c2 - ( p ,  W-'(7, 0)p) .  

It is possible to  check that 



It follows from Lemma 3.1 that  the property of X(8) being bounded could as well be taken as 

the definition of observability for system (3. l ) ,  (3.2). 

While being of no special significance in the finite-dimensional case, this "alternative" definition 

proves, as we shall see, t o  be useful in infinite dimensions (see also Remark 4-b in the sequel). 

Remark $-a. The equivalence of the property of observability for (3.1), (3.2) and of the bound- 

edness of X(8)  for (3.1), (3.4), (3.5) is true with the bounds on ~ ( t )  being taken not only in tllc 

form of (3.5) but also for any constraint of type 

77(.) € Q(-) ,  (77(.) = 77(t),7 I t I 

provided the set Q(.) = {q(-)) of functions q(.) is such that 

for some r > 0 , p  € [2, m] and for r sufficiently large. Here C?)(O) is a ball of radius o in t,lle 

space Lp[r, 81. 

Prior to  the treatment of the infinite dimensional case, however, let us deal with the d u a l  

controllability problem (in finite dimensions). Although this problem is well known, in the sense 

that the observability of system (3.1), (3.2) is equivalent to  the controllability of system 

(the ability t o  steer s(t)  from s(8) = 0 to  any preassigned state S(T) = s by a selectioil of w(t) ,  s 

being a vector-row), let us formulate the controllability property also in some alternative terms 

that would be dual to  the property that the set X(8)  should be bounded. 

Once X(8)  is defined for the observed system (3.1), (3.4), (3.5), what would be its equivalellt. 

for the controlled system (3.6)? 

Calculating the support function p(! I X(8))  we notice that 

~ ( t )  = G( t )S( t ,8 )~ (8 )  + 77(t), < 77(.), 77( .) >5 1. 

From here it follows 



where W(1) consists of all the functions w ( - )  of L T ( r , 8 )  that satisfy 

Since w(.) E W(1) implies -w(. )  E W(-I) ,  we observe that the diameter of X ( 8 )  = X ( 0 ,  y ( . ) )  

(i.e. the diameter of the smallest ball that contains X ( 8 )  ) is given by 

= SUP { max ( ( 1 , ~ )  1 x E X ( e , y ( . ) ) )  - min ( ( 1 , ~ )  l z E X ( 0 ,  Y ( - ) ) ) ) .  
1111111 

This yields 

d ( X ( e , y ( . ) ) )  = max { inf {< w(. ) ,  Y ( . )  > + I 1  4 . 1  1 1  I N.1 E 14'(1))+ ( 3 . 7 )  
1111111 

+inf{- < w(.) ,Y(. )  > + 1 1  w(. )  1 1  I w ( - )  E W ( 1 ) ) )  5 2 max inf ( 1 )  w ( - )  I (  ( w(.) E W ( 1 ) ) .  
I l l l lSl 

Since, obviously, 

d ( X ( 8 ,  ( 0 ) ) )  = 2 max inf {I( w ( - )  1 1  I w ( - )  E W ( l ) ) ,  
1111111 

formula (3.7) implies 

d ( X ( 8 ,  Y ( . ) ) )  5 d ( X ( 8 ,  ( 0 ) ) )  

for any y(.) generated by system (3 .  I ) ,  (3.2). 

As a consequence we come t o  the following propositions. 

Lemma 3.2. The set X ( 8 ,  y( . ) )  is bounded for any y( t )  if and only if X ( 8 ,  ( 0 ) )  is bounded. 

Lemma 3.3. The set X ( 8 ,  ( 0 ) )  is bounded if and only if the minimum norm ( 1 )  w:(.) I ) =  min) 

controls wy(.) for the two-point boundary-value problem 



are bounded in the norm 11 w ( - )  I( uniformly over all 1 : 1 1  1 115 1. 

The latter property is obviously true if and only if again I W(T, 8) I# 0. Hence rather t l ia~i 

checking that 1 W(r ,8)  I #  0, i t  may sometimes be simpler t o  check that the domain X(8, ( 0 ) )  

is bounded. 

Further on we propagate this scheme t o  parabolic systems. Among the early solutions to the 

observability problem in infinite dimensions is the one given in (Krasovski, Kurzhanski, 1966). 

4. Observability in Infinite Dimensions 

Ln this paragraph we will substitute (1.2) by the boundary-value problem 

Consider the initial boundary value problem (1.1), (4.1) assuming that the input j ( x ,  t )  - 0 and 

that the initial state u0(x) is unconstrained. Moreover, suppose that the ineasurement y ( t )  is 

exact so that we may write 

q(t) = 0, t E T,. 

Let us start with a traditional notion: 

Definition 4.1. We will say that the system (1.1), (1.4), (4.1)) (4.2)) (4.3) is observable with 

sensor G(t )  if the measurement y(t) 5 0, t E T,, yields u(z, 8) - 0. 

Definition 4.1 is equivalent t o  the fact that in the absence of errors (q(.) = 0) the linear mapping 

is such that  KerT = (0). 

From this definition i t  obviously follows that two different states u( ')(z, 8) # u ( ~ ) ( x ,  8) yield 

two different measurements y(l)(t) # y(2)(t), t E T,. However, definition 4.1 is nonconstructive. 

whereas the main issue here is t o  reconstruct the state u(x,8) from the measurement y(t). M'e 

will therefore introduce another definition: 



Definition 4.2 We will say that the system (1.1)) (1.4), (4.1)-(4.3), is strongly observable with 

sensor G ( t )  if the informational domain U ( 0 ,  y ( - ) )  for the estimation problenz (I. 1)) (4.1)) (4.2). 

(1.4) under unknown but bounded error ~ ( t ) ,  

< d' ) ,  d.1 > L ~ ( T , ) <  

is a bounded set in L2(R), whatever is the measurement y ( - )  . 

Remark 4-a. The inequality (4 .4 )  for error q ( t )  can be replaced by any restriction of the type 

11 d.1 J I B  5 1, 

where B is some Banach space (see also Remark 3-a), particularly with B = C ( T , )  or L, (T, ) .  

It is clear that Definition 4.2 implies Definition 4.1. Indeed, suppose Def. 4.2 holds but Def. 4 . 1  

is false. Then KerT # ( 0 )  and there exists such an element u * ( . ,  8 )  # 0 ,  that T a u * ( - ,  0 )  r 0  for 

any a E R. Taking the informational domain U ( 0 ,  { 0 ) ) ,  we now observe that it consists of all 

the states u(8 ,  -) that satisfy the equation 

T u ( 0 ,  -) = - q ( . ) ,  under < q( . ) ,  q ( - )  > 5 1 .  ( 4 - 5 )  

Clearly, with u ( . ,  8 )  = a u 8 ( . ,  8 ) ,  ~ ( 9 )  = q * ( - )  = 0  we have y * ( - )  = a T u * ( . ,  8 )  + q-( . )  = 0  for al1.v 

a. With u * ( - ,  8 )  # 0  and a arbitrary this indicates that U ( 0 ,  ( 0 ) )  is unbounded in L 2 ( Q ) .  

To compare the "sizes" of various bounded domains U ( 8 ,  y ( . ) ) ,  we need the notion of an appro- 

priate "diameter" for these sets. 

The diameter of U ( 0 ,  y ( . ) )  is defined as 

Similar t o  the finite dimensional case i t  is possible to  prove that 

d ( U ( 0 ,  Y ( . ) ) )  F d ( U ( 0 ,  ( O ) ) ) ,  

whatever is the measurement generated due to the system ( 1 . 1 ) ,  ( 4 . 1 ) ,  ( 4 . 2 ) ,  ( 1 . 4 ) ,  ( 4 . 4 )  ( the 

nature of the restriction ( 4 . 4 )  does not affect this result). This can be summarized in 

Lemma 4.1. The system (1.1), (4.1), (1.4), (4.2), (4.3) is strongly observable if and only if t h e  

set U ( 8 ,  ( 0 ) )  for the estimation problem (1 .I), (4.l), (1.4), (d.,?), (4.4) is bounded. 



We will further use the latter Lemma to investigate the property of strong observability for dif- 

ferent types of sensors G(t).  This property however may turn to be a rather strong requirement 

on G(t).  It seems reasonable, therefore, to introduce a weaker notion. 

Let A;, a;(.) ( i  = 1,2 ,3 , .  . .) be the sequence of eigenvalues and respective eigenfunctions for 

the problem 

so that 

Let X,(R) = Span{wiJ stands for an r-dimensional linear subspace generated by wiJ (.), j = 

1 , .  . . , r and U,(8, y(-)) for the orthogonal projection of U(0, y(.)) on X,(R), so that 

over all the values pj(y(.), u(-)) that satisfy 

Definition 4.3 We will say that the system (1.1), (4.1) - (4.3), (1.4) is weakly observable with 

sensor G( t )  if the projection U,(O, y(.)) of the set U(0, y(.)) of Definition 4.2 on any finite- 

dimensional subspace X,(R) = Span{~ ;~ ( - ) ) j ' , ~  is bounded, whatever is the measurement y(.). 

Def. 4.3 then again implies Def. 4.1, since Ker {T )  # (0) leads to the existence of an element 

u8(.) # 0, Tu8(.) = 0, and as the system {~;(.)) ;00=~ is complete, to the existence of an element 

w;.(*) E {wi(.))gl such that api',(O, u8(.)) =< au8(-),  w;,(.) ># 0 , VO E R. This indicates that 

both the "linen au8(.) E U(6, {0)), Va, and its projection apL(0, u8(.))w;,(-) E Ul(B, {O)),Va, 

are unbounded. 

It is also clear that  Definition 4.2 implies Definition 4.3. 



Remark 4-b. The definitions of the above could also be interpreted as follows: given a unit ball 

ol(0) in B, the system (1.1), (1.4), (4.1) - (4.3) is strongly observable, once the preimage U of 

ol(0) due to  the mapping 

TU = ~ ~ ( 0 )  

is bounded in L2(R). The latter system is weakly observable if any finite-dimensional projectio~l 

U, of the set U is bounded. The given definitions are thus clearly related to  the invertibility 

properties of the mapping T .  

The forthcoming examples demonstrate that the definitions of the above are nonredundant. 

5. Examples 

Example 1. Consider a one-dimensional heat equation 

under a stationary pointwise observation operator (with measurement at point x = 2) 

y(t) = u(f ,  t )  + ~ ( t ) ,  1 E T,. ( 5 . 2 )  

It is well-known that the eigenvalues and the (orthonormalized) eigenfunctions for problem (5.1) 

are given by 

Ak  = - ( ~ k ) ~ ,  wk(x) = f i  Sin r k x ,  k = 1 ,2 , .  . 

Expanding the output of system (5.1), (5.2) in a series of exponents we come to 

where 

uok = hi1 U(X, 0) Sin r k x  dx. 



Due t o  Lemma 4.1 we will restrict ourselves to  the case of y(t) O,t E T,. 

As i t  follows from the Miintz-Szacz type theorems (Luxemburg, Korevaar, 1971; Fa.ttorini. 

Russell, 1974) the distance dk between an arbitrary function e-(nk)2' and the closed span 

Lk = ~ ~ a n { e - ( " ~ ) ~ ~  I i = 1,2, . . . , i # k} when taken in the space B = C[E,  01 or L,(T,)(p 2 1) 

is non-zero so that 

Assume that a solution u(z, 2 )  of the problem (5.1) does satisfy the observation equation (5.2) 

under y(2) = 0 and under the constraint 

Then, for any integer k we have 

00 

f i  1 1  U O ~  Sin r kj: e-("k)2i + C uo, Sin rjr e-(,j)" i ls  5 1. (5.5) 
j=1 
j#k 

Taking into account (5.4) we obtain for an arbitrary coefficient uok # 0 and an irrational 2 the 

chain of inequalities 

00 

-(nkI2i  - e-(n j )2 i  1 (uok 1 .  I Sin n kii I  .dk <(uok 1 .  I Sinn  kit 1 .  ( ( e  Qj IIB I - 
i=l Js' 

where 

uoj Sin n j% 
aj = - 

uok Sin nk j: ' 

This leads to  estimates 

1 
I uok 15 f o ranyk  = 1,2, .... 

a d k  1 Sin nk it I  (5.6) 

The boundedness of u,k clearly implies the same property for e-(nk)2Buok. The system (5.1): 

(5.2) will thus be weakly observable a t  an initial instant of time as well as at  time 0 if and only 

if the coordinate for the location point of the sensor is an irrational number (Sin n kj: # 0 for 

any k = 1,2, ...). 



Moreover if ? is an irrational number of a special type such that the series c~"= , -~( " ' )~~  1 
(I Sin n k3 I dk)2 does converge, then the system (5.1), (5.2) will be strongly observal,lc. 

The measure of the points of the latter type on the interval [0,1] is equal to  1. This follows 

from asymptotic estimates for the values of dk (Luxemburg, Korevaar, 1971; Fattorini, Russell, 

1974). For instance, this occurs if one substitutes the point % in (5.2) for an arbitrary number 

of "constant type" (Sakawa, 1975), for example 

where a, b are arbitrary rational numbers, c is a positive integer which is not a square, and all 

these are such that ? E (0 , l ) .  

Remark here that  due to  (5.3), under Sinnk? = 0, 3 being rational, the coefficient uok will be 

unobservable and as it further follows from (5.5), the system (5.1), (5.2) will not be even weakly 

observable. 

We further proceed by introducing a class of dynamic pointwise operators ("scanning observers") 

that ensure a strong observability for (5.1), (5.2) and such that in the case of a one-dimensional 

heat equation i t  would be possible to construct a broad class of appropriate nleasurement tra- 

jectories ezplicitly. 

Consider the observation equation 

For any value 6 we will consider a class of dynamic pointwise observation operators unclcl. 

measurement trajectories of the following type 

where Ok = k-I + E. 

The above class is nonempty if k 2 1/(6 - E). 

Indeed, modifying the classical maximum principle for the solution to the mixed problem (5.1) 

for the region {(z,t)  ( 0 5 z _< %(t) , t  E T,) one can obtain the estimate 



The latter estimate yields strong observability of the system, (5.1), (5.7), (5.8) under 

It is important to  stress that the set of continuous curves (5.8) is stable with respect to  possible 

perturbations in the space C [ E , ~ ] ,  and i t  may be extended to  the set of all continuous curves 

defined on the interval T, with values running through the whole spatial interval [0, 11. 

Applying Green's formula to  (5.1) and taking into account estimate (5.9) one may obtain strong 

observability for the system (5.1), (5.7), (5.8) under restriction on ~ ( t )  taken in the space L2(T,). 

A theorem in Section 7 will point out that the transition t o  nonstationary observation operators 

may ensure obseravability also in the general case. 

Example 2. Consider the heat equation in a rectangle 

with the observation equation 

For this example { A k } g l  = { 1 1 ~ } ~ ~ = 1 ,  {wk(x)}Kl = {wlm(z)}rm=19 where 

ilm = r2(12 + a2m2), 2ulm(x) = 2 sin r l x l  - sin ramx2, I, m = 1,2, ... . 

It is known that  the series Cgl X i 1  diverges. Therefore, in this case, all of the values dl,, 

taken for the exponents {e-Xlmt}  and defined similar to  the values dk of (5.4) are equal to zero. 

due t o  (Luxemburg, Karevaar, 1971; Fattorini, Russell, 1974). Hence there does not exist any 

stationary observation operator with one dimensional output that can ensure the system (5.10) 

t o  be either strongly or even weakly observable under B = C[E, 01, L,(Tc), p 2 1. 



The introduction of dynamic pointwise measurements d o w s  to  construct the measurement tra- 

jectory so that the system (5.10), (5.11) would be strongly and, therefore also weakly observable. 

The corresponding class of measurement trajecotries is, in general, unstable with respect to pos- 

sible perturbations. The way out here can be found in increasing the spatial dimension of the 

measurements. 

For example, instead of the pointwise measurements we may consider a "zone" sensor (El Jai 

and Pritchard, 1988): 

where the measurements are taken a t  each instant t over the domain Rz(f(2)) = {x 1 x E R ,  

11 z - ~ ( t )  IJRz < 61, 6 > 0. 

It is clear that if Z(t) is a trajectory that ensures the system (5.10), (5.11) to be strongly oh- 

servable under B = C[E, 81, the system (5.10), (5.12) will be also strongly observable. Moreover, 

this property will be stable with respect to  perturbations of the curve f ( t ) .  

Remark 5-a The latter was an example of an observable system, where G(2) is a "zone" sensor 

and x E R2 . Here the measurement is therefore infinite-dimensional. Further in Section 7 it \v i l l  

be shown that observability could be attained for the same system with a pointwise observation 

along a scanning trajectory Z(t) = ( ~ ~ ( t ) , ~ ~ ( t ) ) ' ,  where Zl(t) = 3; is a given point and f2(2)  is 

constructed along the lines of example 1. 

6. Duality in Infinite Dimensions 

Let us now formulate the problems of control that are dual t o  those of observation as given i n  

Section 4. 

Assume To, S(-)  to  denote the linear bounded maps 

Touo(-) = Y(.), S(t)uo(.) = u(.,t), t E T 

so that U(9, y(.)) = S(B)U(O, y(.)), To = GS(-) ,  U(8, y(.)) c H(R),  S( t )  is continuous in 2. 

Here the respective mappings are defined as 



where H ,  H l ,  H2  are Hilbert spaces. In particular, when dealing with the problems of Sections 

1,2 we may put H = L z ,  H1 = L 2 ,  Hz = H1v0. 

The set U ( 8 ,  ( 0 ) )  of states u ( . ,  8 )  consistent with system 

T o u o ( . )  = Y ( . )  - 77(.), < 77(.),77(.) > I 1  

will have the following support function 

f ( v ( . ) )  = inf {< A(. ) ,  A ( . )  > ' I 2 (  T t A ( . )  = S*(g ) '+ ' ( . ) ) .  (6.1) 

Here according to (Rockafellar, 1970),  one should also allow the value f ( v ( . ) )  = +m. 

In order that the primal system 

= Au( . ,  t ) ,  ( 2 ,  t )  E Q ,  y ( t )  = G u ( . ,  t ) ,  t  E T,, 
a t  

would be strongly observable it is necessary and sufficient that the function p ( v ( . )  ( U ( 9 ,  ( 0 ) ) )  

would be bounded uniformly in c p ( - )  E Z(O),  

This means that the minimum-norm solution A:(-) to  problem ( 6 . 1 )  should be bounded uniforrnl!. 

in c p ( - )  E 2(0). From the properties of Hilbert space i t  follows that 



where 

and the uniform boundedness does hold if and only if there exists a constant y > 0 that ensures 

Then obviously (T;TO)-' exists, so that w$(.) = ( T ; T ~ ) - ' S * ( ~ ) ~ ( - )  and 

whenever cp(-) E E(0). 

Problem (6.1) may be interpreted as a control problem for the system 

where the control X(t) is to be selected so as to solve a two-point boundary value problen~ 

(v(., 9) = (01, v(., 0) = S*(O)(p(.)) with minimum-norm. 

Definition 6.1. We will say that the system (6.4) is strongly controllable if the two point 

boundary-value problem (6.5) is solvable for any cp(.) E L2(0) and if the minimum-norm so- 

lution A:(.) to (6.5) is bounded uniformly in cp(.) E E(0). 

The property of strong observability is thus equivalent to the one that the minimum-izot.111 

solution A:(.) to the control problem (6.4), (6.5) would be bounded uniformly in p(.) E t ( 0 ) .  

The latter is precisely the property of strong controllability for system (6.4), (6.5). As indicated 

in Section 5 the class of such systems is nonvoid for dim x = 1. However, as we shall see i l l  

the sequel, this property does hold for parabolic systems with dim of x > 2 only i f  the sensors 

A, B,C are described by a nonstationary operator G(t).  (Particularly if G*A(.) = f ( . ) ,  f ( i )  = 



X(t)6(z - x*( t ) ,  t E T,; f ( t )  0 ,  t E [0, E )  is a dynamic actuator along a certain continuous 

or piecewise continuous spatial curve x*( t ) .  The existence of a curve x* ( t )  that would ensure 

strong controllability will be proved in Section 7). 

Specifying equation (6.4) we remind that according to the definition of adjoint operators we 

observe that operator G* maps H1(Tc)  into the dual space for H2(Q)  (particularly, L2(Tc)  into 

the dual space for H1vO(Q) for the specific problems of Sections 1 and 2). More explicitly, taking 

the sensors A, B of Section 2 and calculating the respective relation G*X(.) = f ( . ,  .), we have: 

A. j ( z , t ) = h ( z , t ) X ( t ) ,  t ET,; j ( t ) O , t E [ O , E ) ,  

B. f ( z ,  t )  = P( t )X ( t ) 6 (~  I Q h ( t ) ( ~ ( t ) )  n O) ,  t E Te; f ( t )  0 ,  t E [ O , E ) ,  

so that here j ( x ,  t )  E L2(Q). 

A separate issue arises for case C where Gu(. ,  -) is a mapping from either C ( Q )  or H211(Q) (for 

n 5 3) into L2(T,) so that (m  = 1)  

f ( x ,  t )  = 6(x - ~ ( t ) ) X ( t ) ,  t E T,; f ( x ,  t )  0 ,  t E [ O , E )  

should be interpreted along the conventional lines of the theories of Sobolev spaces and gener- 

alized functions (Sobolev, 1982; Ladyzhenskaya and others, 1968; Lions, 1968). 

Theorem 6.1. The property of strong observability for system (6.2) is equivalent to the properig 

of strong controllability of system (6.4), (6.5). (The uniform boundedness of the minimunl-noi.1~1 

solution A:(-) to (6.4), (6.5) over all cp( . )  E Z(0)). 

If we now refer to the property of weak observability then obviously, for any finite-dimensional 

subspace X,(O) the projection U,(B, ( 0 ) )  on X,(O) will be bounded if and only if the function 

p(cp(-) ( U ( ( 0 ) ) )  will be bounded uniformly in c p ( - )  E Z( ' ) (O) where z(')(o) = { v ( . )  : v ( . )  E 

Xr(O) ,  < cp( - ) , cp ( . )  >< 1)  (for $4) E Xr(O)  clearly < cp( . ) ,  4.) > = < v(-) ,  $4.) > r  = 

< c p r ( - ) ,  cpr( . )  >, where cp,(.) is the projection of cp( . )  on X,(O) and < ., - >, is the scalar 

product in X,(R)) .  

For a given c p ( - )  E X,(O) and a given p > 0 the problem 

will be solvable if and only if the inequality 



does hold for any w(.)  E L2(S2). In order that problem (6.1) would be solvable uniformly in  

v(- )  E z ( ~ ) ( o ) ,  it is  necessary and sufficient that there would exist a number p, > 0 such that 

or in other words, that 

whatever is w(. )  that belongs to E L 2 ( 0 )  . 

Lemma 6.1. In order that system (6.2) would be weakly observable it is necessary and suf iciei~l  

that for any finite-dimensional subspace X,(O) there would exist a number p, > 0, such thot 

(6.6) would be true. 

(Note that strong observability yields the existence of a number p that does not depend on r ) .  

The dual property of weak controllability for system (6.4), (6.5) now sounds as follows 

Definition 6.2. The system (6.4), (6.5) is said to be weakly controllable if for any finite dimen- 

sional subspace X,(O) C L 2 ( 0 )  the minimum norm solution A:(.) to problein (6.4), (6.5) is 

bounded uniformly in p(.)  E z(')(o). 

Lemma 6.2. In  order that (6.4), (6.5) would be weakly controllable, it is necessary and suficient 

that for any given X,(Q) the relation (6.6) would hold for some p, > 0.  

Since both strong and weak observability imply that Ker To = { 0 ) ,  we will now demonstrate. 

that the latter property is equivalent to the property of E-controllability of the dual system. 

Definition 6.3. The system (6.4) is said to be E-controllable if for any v(- )  E L 2 ( R )  and any 

E > 0 there ezists a number p,, > 0 such that the problem 

is solvable for p > p,, . 



Lemma 6.3. The system (6.4), (6.5) is E-controllable iff Ker To = (0). 

Once (6.7) is solvable, we obviously have Ker To = (0). Indeed, if Tow*( . )  = (0) for solnc 

w*(-) # 0 and if A*(.) is a solution to (6.7), then one should have 

However, one could always chose cp(.), E so that < we(.), S*(8)cp(.) > 5 - ( 1  w*(.) 11, E < 112. 

The previous inequality will then turn to  be false. 

On the opposite, suppose Ker To = (0). Let us prove that (6.7) is solvable. The following pa.rt 

of the proof gives a constructive estimate for p = p,,. 

Pressuming 

we observe that h(.) allows an expansion along the complete system of orthonormalized functions 

{ w ; ( - ) ) ~ ~ ,  SO that 

and for a given E > 0 we may find T = T(E) > 0 that yields h(.) = h,(.) + h:(.), where 

It now suffices t o  prove the solvability of the inclusion 

TZA(.) E h,(.) + 68(0), 6 = 5 ,  
2 

where h,(-) is a finite-dimensional element that depends on parameters 

a; ,  i = 1, .  . . , T(E) (h,(-) E X,(R)). 

For h,(.) E L3(fl), h,(.) # (01, p > 0 the problem (6.7) is solvable iff (Kurzhanski, 1977) 



holds for any w ( . )  E L2(R) .  We will prove the existence of a number p = p,, that depends on 

h, ( . ) ,b  and ensures (6.8)  to be true for any w ( . ) .  

Instead of (6.8) we may consider the condition that the inequality 

P II TOW( ' )  II +b II 4.) I 1  2 1 

should be true for any w ( . )  such that 

Obviously the latter are equivalent to  (6.8). Without loss of generality we may also assume 

< h , ( - ) ,  h, ( . )  > = 1 (as the equation (6.7) is linear in A(.) ). 

Further on we come to 

> < w ( . ) , ( p 2 ~ z ~ o  + b21) w ( . )  . - 

Therefore, in order to  ensure (6.9) ,  (6.10) for any w ( - ) ,  we may first secure 

x0 = min {< w( . ) ,Kp6w( - )  1 < w( . ) , h , ( . )  > = -1) > 1, ( 6 . 1 1 )  

where Kp6  = p 2 T ~ ~ o +  b21 is an invertible map with bounded inverse K $ .  A direct calculation 

of (6.11) by Hilbert space techniques gives 

1 x0 =< h , ( - ) , ~ $ h , ( . )  > - i  . 

Therefore the problem (6 .9) ,  (6.10) is solvable once 

( x O ) - 2  =< h r ( - ) ,  K;,' h,( . )  > < 1 .  

The latter relation is obviously ensured if 



However, we have 

( max < z(.), KL,'z(.) >)-I = mi n 
I IZ ( . ) I I=~ ,  z(.)€xr(n) I IZ( . ) I I=~,  z(.)€xr(n) 

< 4 .1 ,  K,sz(.) > . 

Therefore (6.12) will be ensured if 

or, in more detail, if 

where 

Y = min < z(-), TEToz(.) > > 0 
II~(.)II=1, z(.)€xr(n) 

(since Ker To = {O} and X,(Cl) is finite-dimensional). 

Inequality (6.13) yields p 2 ~ - l / ~ ( l  - b2)l/'. We thus come to  

Lemma 6.4 For the solvability of (6.7) it sufices to select p > Y - 4 ,  where 7 is given by (6.14) 

with dimension r = r ( ~ )  of X,(Cl) being dependent on E .  

We will now prove the property of observability under scanning observers starting wit11 

pointwise sensors. 

7. Observability Under Pointwise Dynamic Observations. 

The examples of Section 5 give us a hint as to  how to prove the existence of a rneasuren~e~lr 

trajectory 2(t) that would ensure observability for the system (6.2) where 

y(t) = G (t)u(., t )  = u(f(t) , t) ,  t E T,. (7.1)  

We further assume that  system (6.2) under uo(z) E Lz(Cl) is such (either classical on T, or 

u(., .) E H2*'(R x T,) with n 5 3) that its arbitrary solution is a continuous function on [ E .  81 

satisfying the mazimum principle (Ladyzhenskaya and others, 1963): 

max { I  u(z,t l )  1 1  z E a} 1 (u(z,t t l )( ,  Vz E a, 1" > t1 2 E .  (7.2)  
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As i t  was demonstrated earlier in Section 4, the system ( 6 . 2 ) ,  (7 .1 )  will be strongly observable 

if the informational domain U ( 8 ,  ( 0 ) )  for the system (6 .2 )  under ''noisy" observation 

with unknown but bounded "noise" v(.) will be bounded (see Remark 4-a). We therefore l~avc 

to  prove the existence of a measurement trajectory Z( t )  that would ensure this property. M'e 

will start  t o  seek for the function Z( t )  in the class X [ E , ~ ]  of piecewise-continuous functions on 

the interval [ E ,  81. 

Let Uc stand for the set of all the solutions t o  the initial boundary value problem ( 6 . 2 )  generated 

by all the possible functions u o ( x ) ,  with Uc[ t ]  standing for the crossection of U, at  instant 1 .  

Since the set 

and since the space C ( f i  x [ E ,  81) is separable, i t  is possible for any y > 0  to  indicate a counta1,le 

y-net for Uc 

u,' = {. i( . ,  - ) ) ~ " = ,  u ; ( . ,  -) E Uc. 

Any crossection U z [ t ]  a t  instant t  of the y-net U2 will hence be a y-net in U , [ t ] .  

In other words, for any element u * ( . ,  .) E Uc there exists an integer i = i, such that 

This yields 

We will now indicate a possible measurement trajectory ~ ( t )  that would ensure the set U ( 8 ,  (0) ) 

to  be bounded. 

Consider a monotone sequence of points t i ,  i = 1 , 2 , .  . . such that 



Clearly there exists a limit 

lim ti = a 5 8. 
1'00 

Denote z(") to  be the lexicographic minimum for the set ~ ( ~ 1 ,  where 

x(') = arg { m a  ( u;(z,t i) I  I  z E SZ}. 

The function 3( t )  will now be constructed in the form of a spline-function 

such that 

with z*(t)  being continuous for t E [ E ,  a), t E [a,  81. 

Clearly z*( t )  is continuous at all the points t E [&,el, except for point 1 = a. Tlierefor~e. 

z*(.) E X[E,  81. Let us show that this function satisfies the necessary requirements. 

Take any element u ( - )  E U(B,{O}) generated by a solution fi(x,t) to (6.2) and ( 7 . 3 ) ,  y ( t )  = 0. 

so that h(z,  8) = ii(x). For a given 7 > 0 select an element uk(- ,  a )  E U,Y SO that 

Then, due to  (7.3), taking y(t) 0, we have 

1 1  ~ k ( z * ( t ) ,  t, IIc[c,B]< 1 + 7 .  

The latter inequality indicates, in particular, that 

uk(z7 0) E U7(0, {OH, 

where U,(0, y(.)) is the informational domain for problem (6.2), (7.3) with constra.int 



so that Uo(8, y ( . ) )  = U (8 ,  y(.)). 

Applying the maximum principle (7.2), we now come to  the relations 

for any z E a. The later inequality, taken together with (7.4), gives us the final estimate: 

The bound (7.6) is uniform in all t i(-, 8 )  E U(8,  { 0 ) ) ,  so that 

which proves strong observability under the pointwise observation G( t )u ( . ,  t )  = u ( f ( t ) ,  t )  gene1.- 

ated by the trajectory Z( t )  = x*(t) .  The symbol Z;(O) stands for the ball 

Theorem 7.1 There exists a pointwise observation trajectory Z ( t )  (a "scanning observer") selecle(1 

in the class X [ E ,  81 of piecewise-continuous functions with a finite number of discontinuities l l lo i  

ensures strong observability for the system (1.1), (4.1), (4.2) ,  (7.3). 

Remark 7-a 

(i) From the proof of Theorem 7.1 it follows that the function Z( t )  could also be selected a.s 

piecewise-constant, so that 



Function Z(t) is measumble, i t  has but a countable set of discontinuities a.t points 1;) a. 

(ii) The result of Theorem 7.1 does not depend on the dimension of the space varjable s arid 

on the stationarity of the elliptic operator A. 

(iii) The property of strong observability is unstable with respect to pertubation of the function 

Z(1) (the measurement curve) when taken in the metric of C[E, 81 or L,[E, 81, p > 0. 

(iv) Since the solution u(z, t )  is continuous in {x,t) (z  E a, 1 E T,) while Z(t) E js 

measureable and bounded, the superposition y(t) = u(Z(t),t) will be measurable and 

bounded and therefore Lesbesgue-integrable on [E, 81 (Sansone, 1949). 

Example 3. Consider again the system (5.10), (5.11) 

The techniques applied in the example 1 allow us to  obtain the estimate 

11 6 ( ~ 1 , 2 2 ,  8) I ~ L ~ ( R ) <  M max 1 6(21,x27t) 1 ( 7 .7 )  
z ~ E [ o , ~ - ' ]  

tEIe,el 

for an arbitrary solution t o  (5.10). Here M is a constant, Zl is an irrational number of "constant 

type", u(x, t )  = 6(21,22, t). 

Indeed, put 

max 1 6(21, 2 2 ,  t )  I =  c. 
z2 ~[o,a-l] 

~ E [ c , ~ I  

Then we have 

where 

uolm = 2 j j U(Z, 0) sinn/xl sin rarnx2dx2dxl 
0 0 

The latter inequality yields 

CT) 00 

I C 4 ( x  e-ilmi sin n 1 ~ ~ u ~ ~ ~ ) ~  I 5 c2 o - l , ~  E [E, 81, 



from where it follows 

max I 2 x e - i l m t  sin ~ l ? ~ u ~ ~ ~  1 < e( l / a ) l i 2  
t E [ c , ~ l  1=1 

for any integer m = 1,2 ,  .... 

Since the series C z l  1/Alm converges, one can obtain (dong the lines of (5.4) - (5 .6) )  the 

following sequence of estimates for the values ~ 1 ,  under an arbitrary irrational Z 1 :  

I u01m I < L , 1,m = 1,2 ,..., 
2& I Sin xlZl I dl, 

where 

- 
dl, = inf (11 e-'lmt - v ( t )  IIc[c.~l I ~ ( 9  E L1") # 0 ,  

L'" = Span {e-'im" i = l , 2 , .  . . , i # 1 ) .  

As in the ezample 1 the latter leads to  (7.7).  

The estimate (7.7) gives an idea as t o  how to  construct a dynamic pointwise observation opera.tor 

in the form 

G ( t ) u ( . ,  t )  = u(Z ( t ) ,  t )  = C ( ? l ,  Z2( t ) ,  t )  

that ensures system (5.10), (5.11) to  be strongly observable under B = C(T,). 

Let coordinate z l ( t )  of the measurement trajectory ~ ' ( t )  = ( Z 1 ( t ) , Z 2 ( t ) )  be fixed so 

where Z1 is an irrational number of a "constant type" (see Section 5) .  The problem is to find 

the function i i2( t )  for the second coordinate so that the domain U ( 0 ,  ( 0 ) )  for the system (5.10) 

under the measurements 

and the constraints 



would be bounded in L 2 ( R ) .  

Let U,7 C Uc be a countable y-net in ~ ( f i  x T,) for the set of all the possible solutions to t11c 

problem (5.10) taken on the time interval Tc so that 

U,' = {u ; (z ,  t ) ) g l ,  u;( - ,  .) = ii;(., ., .) E C(C? x T,). 

Denote by ( z f ) ,  t ; )  an  arbitrary solution to  the optimization problem 

Suppose a t  the beginning that all of the instants ti are different. In this case, an arbitrary cilr.\.r 

z 2 ( t )  = z * ( t ) ,  piecewise-continuous on [ E ,  91, and such that 

z * ( t ; )  = z r ' ,  i = 1,2,3, .  . . 

ensures strong observability of the system (5.10), (7.9), (7.10). 

Indeed, taking any element i i * (z l ,  z 2 ,  9 )  E U ( 9 ,  ( 0 ) )  generated due to  (5.10) and selecting 

i I i . (z1,z2, t )  as an element of the y-net U,7 we observe 

16*(21,22, t )  - ' 21 i . (2~,22, t )  15 Y, 2 1  E [ o , : ~ ] ,  2 2  E [o,a-'I, t E G-  (7.1 I )  

The estimate (7.7) applied for 6; , (z1 ,  2 2 ,  t )  then leads to  

5 M I iii.(itl, i f * ' ,  t i * )  I +7a- i  5 M(I ~ ' ( 3 1 ,  z*(t i . ) ,  t;.) I +Y) + l a - +  5 

In the case of coinciding points t i  i t  is again possible to  obtain the same property of strong 

observability. Instead of the values t ,  we may take some other values close to those but sucl~ 



that all the new t;'s will be different. The necessary property then follows from the countahilit~. 

of the pairs {zf) , t , )  and the continuity of the solutions to the system (5.10). 

8. Observability under Spatially Averaged Observations. 

Consider the Dirichlet problem 

au(27t) = Au(., t), 2 E R, t E T ,  
a t  

and the measurement equation (1.4) under a spatialy averaged observation operator G of the 

type B 

The observability problem for such a sensor is to  specify a curve Z(t), a neighborhood Qh( l )  ( T ( t ) )  

of radius h(t) and with a volume p-'(1) so that system (8.1), (8.2) would be either strongly 01. 

weakly observable. 

It is known that for an arbitrary generalized solution u(x,t) E V;"(Q) to  problem (8.1) the 

following estimate does hold (Ladyzhenskaya and others, 1968 , p. 193): 

where Q, = 0 x (E, 8), L(E) is a positive function. 

Moreover u(z, t )  satisfies the genemlized mazimum principle (Ladyzhenskaya and others, 1968) 

vrai max I u(x,tl) I 2 c vrai max 1 u(x,tl1) 1 ,  tl1 2 t1 2 E, 
z E R  + E n  

(8.3 

c = const. 

Let U be the set of all generalized solutions taken for the time-interval T. Since 



i t  is possible t o  indicate for U a countable y-net U; (y  > 0, y given) so that 

U,Y = { ~ i ( . ,  , ~ i ( . ,  .) E U ,  

Hence for any solution u(x,  t )  there exists an  element (solution) u;(x, t )  such that  

~py II ~ ( . , t )  - ~ i ( . , t )  I l ~ ~ ( n )  5 7 ,  

I1 u(., .) - ui(., a )  l l ~ 1 ~ 0 ( ~ ) 5  7. 

Consider again an  arbitrary monotone sequence of points {ti},"=, such that 

E < t l  < ... < t i  < . . .  < 8 

and 

a = lim ti, a < 8. 
i-w 

Due t o  the properties of Lebesque points for each (squa.re integrable) element u i ( - ,  2) o i  U; thcrc 

exists a point x(') E int fl such tha t  for some neighborhood Q ~ , ( x ( ~ ) )  o i  the latter the following 

estimate is true 

where 

1, if vrai maxZcn (u;(x, t;)l = vrai m a x Z c ~  u(x,  ti), 
$; = 

-1, if vrai minZEn lui(x, ti)l = - vrai minxEn u(x,  ti); 

v is positive (given in advance); and hi are the volume and the radius of the ball Q ~ , ( x ( ~ ) )  

(Qhi(d i ) )  C 0) respectively; i = 1,2 ,3 , .  . .. 
Thus we obtain a sequence {ti, x('), hi,/3i)gl that allows t o  construct spline-functions Z(2) = 

z8(t) ,  h(t)  = h8(t), P(t)  = P8(t) such that 

x*(t;) = ~ ( ' 1 ,  h*(t;) = hi, P8(t;) = A ( i  = 1,2,3, .  . .), Qh.(t)(x*(t)) C R.  

Let us show that the weight function 



x ( z , z * ( t ) )  = P*(t )a(z 1 Qh- ( t ) ( z * ( t ) ) ) ,  z E 0, 1 E TC 

generated by the above parameters ensures strong observability for the system (8.1), (8.2) under 

Consider any element u*(.) E U (8 ,  (0)) generated by a solution u*(x ,  t ) so that u* (z ,  8 )  = u* ( x  ). 

Select u;,(-, -) E U; such that estimates (8.5) do hold. 

Note that  for i = 1,2,3, .  . . 

vrai min v ( x )  5 1 P;v(x)dz 5 v ( x ) ,  Vv ( . )  E L,(R). 
z E R  

Q h ,  

Therefore one can obtain 

1 / X * ( X ,  z8(t;.))(ui.(x3 ti. ) - u*(z ,  ti.))dx 1 5 vraj 1 ui.(x7 ti.) - ~ * ( z ,  ti.) I . 
xER 

R 

Then, due to  (8.3) 

Due t o  the generalized maximum principle (8.4) and also (8.3), (8.5) - (8.8)  we come to the 

estimate 

vrai max I u 8 ( z ,  8 )  I _< c vraj max I u 8 ( z ,  t i , )  I 5 
ZE R x E R  

5 c(vrai max I u;,(x,t;,) 1 + L ( E ) ~ )  I c(1 + 2L(c)y + v). 
xER 

Theorem 8.1. There exists a spatially avemged nonstationay observation operator (a "scanning" 

sensor) of type (2.2) that ensures strong observability for the system (8.1), (8.2), (8.7). Thc 

respective weight function x * ( z ,  z 8 ( t ) )  may be chosen continuous ezcluding the only point o j  T,. 



9. The Informational Domain: An Ellipsoidal Case 

Assume the set W t o  be defined by a quadratic inequality 

where the operators I ,  and the scalar products in the respective Hilbert spaces L2(Q), L2(Q), L2(X ) 

are defined as 

with continuous functions m(x), k(x, t), n ( t ,  t )  and the symmetric matrix Ar ( t )  being given i l l  

advance and such that 

min {m(x), k(x, t ) ,  n(t ,  t)} > 0, min 1'N (t)l 2 c 1 1  1 11, 
t ~ n , t ~ [ c , B ]  t€[c,Bl 

c = const > 0,for any 1 E Rm 

The set W is convex and weakly compact in the Hilbert space H = L2(Q) x L2(Q) x L2(C j x 

LF(Tc). Therefore the respective informational domain U (8 ,  y( - ) )  will be convex and \vealily 

compact in L2(S2). 

It is well-known that the solution to  the problem (1.1), (1.2) allows a unique representation as 



where the operator So( t )  coinsides with S ( t )  from Section 6 ,  

and { X i ) ; " = , ,  {wi(x));"=, are here the eigenvalues and the eigenfunctions for the elliptic opera.tol. 

A under the homogeneous boundary condition of type (1 .2 ) .  

For simplicity we will restrict ourselves below t o  the case of the observatioll operators A ,  B. Ilr 

the case of pointwise operator C adjout operators should be interpreted along the conventional 

lines of the theory of respective SoboIev spaces. 

Due to  (9.2)  the measurement equation (1.4)  could be written as 

Therefore the informational domain U(8,  y ( . ) )  is the reachable set a t  time 9 for the system (9.2 ) 

under constraints (9.3)  and (9.1) .  

Theorem 9.1. The informational domain U(8 ,  y ( - ) )  for the estimation problem (1. I), (1.2), (1.4). 

(9.1) is an ellipsoid in the space L 2 ( 0 )  : 

where 



uO*(., e )  = G ( . ,  e )  + uO(., e ) ,  u O ( . ,  8 )  = F* (e )e ( . ) ,  

Proof. The brief scheme of the proof of Theorem 9.1 can be done as follows. 

Due to criterion of the consistency of the system of inequalities (Kurzhanski, 1977) the set of 

the operator equations (9 .2) ,  (9.3) is consistent with constraint (9.1)  iff the inequality 

m g  L(uo(-),  f (., 9, v( . ,  -),l)(.), A ( - ) ,  ( 9 ( - ) ) -  < 4-,  0 ) .  Y ( . )  >> 0 (9.10) 

does hold for any A ( - )  E L y ( T c ) ,  p ( . )  E 9 ,  where 



Calculating the maximum in (9.10), after a number of transformations we come to the formula 

of support function for the set U(8, y(.)) : 

for an arbitrary element v ( - )  E 9. 

The calculation of the infimum in the latter relation leads to Theorem 9.1 

From above it follows that a consequence of Theorem 9.1 is that F(0) and B(0) are integral 

operators and that h2(8) E [O, 11. 

Lemma 9.1. The support functionp(v(-) 1 U(8, y(.))) = sup{< v(.),  u(.,O) > (  u ( . ,  8) E U(8, y( . ) ) )  

is given by 

being defined for any element ~ ( 0 )  E 9 C L2(fl). 

A specific question that arises here is how to describe the best and the worst measurements y ( . )  

which could be defined as such that the domain U(8, y(.)) would be either the "smallest" or tlic 

"largestn possible. Observing that operator ~ ( 8 )  does not depend upon y(.),  one may reduce. 

the problem to finding the measurements y(-) for which the parameter h2(0) would be equal 

either to 1 (the case when U(B, y(-)) is a singleton) or to zero (this gives the "largest" U(8, y(.)) 

with respect to  the inclusion). 

The answer to the problem is given by the following two propositions: 

Lemma 9.2. The "worst case" measurement y(t) = ij(t),t E T, is the one generated by thc scl 

W(.) = { i iO(. ) ,  f(., v ) ,  C(., .), j j ( . ) )  due to equations (1.1), (1.2), (1.4). This ensures the ezistencc 

for any feasible y(t) of an element cp8(-, y(,)) E L2(fl) such that 



In other words the "worst casen jj(.) is such that for any other y(.) the domain U(0, y(-)) could 

be shifted (by cp*(., y(.))) so that it would lie entirely within U(0, ~ (e ) ) .  

An example of the best measurement where U(0, y(.)) reduces to a singleton could be as follows. 

Suppose that the ini t id value uo(z) is the only uncertainty in the system (1 . I ) ,  (1.2) and that the 

inputs for f (2, t )  and v(c, 2 )  are given and such that f (2, t) = f (z ,  t), v((, t) = E(<, t). Therefore 

we can put 

and denote 

Y = {!I(.) I y(t) = G(t)  S O ( ~ ) ~ O ( ' ) ,  t E Tc, ~ 0 ( ' )  E L2(Q)). 

An arbitrary element of LY(T,) could be represented as 

Y(.> = w(.) + Y(.) I ,  

where 

yy(.) E Y and < yy(-),NyL(.) >= 0. 

Lemma 9.3 Assume that the available observation y(.) = @(.) is such that 

< $*I(.), Nij*I(.) >= 1, 

where 

Then the set U(0, ij(.)) is a singleton. 

In other words, here the whole "resource" assigned to the error ~ ( t )  is completely "spent" on 

producing $*I(.) which is orthogonal to  Y. 



Remark 9-a. Assume now that the set W is unbounded with respect to the initial value uo(. )  

and that 

Under constraint (9.12) the informational domain U(8, y(.)) is a convex, but in general, a non- 

closed unbounded set in L2(fl). Nevertheless, the relations given by Theorem 9.1 allow to  derive 

some formulae for its approximating. 

10. Evolution Equations: The Ellipsoidal Case 

In this section we consider the dynamic guaranteed estimation problem (1.1), (1.2), (1.4), (9.1) 

with dependence on the measurement interval. From the theorem 9.1 it follows that the dolnain 

U(B, y(.)) can be completely described by its parameters h2(B), P(B), B(8), uO*(., 8).  We therefore 

proceed to  specify the evolution of these parameters in time. 

Denote q(x, t, 8) and b(x, y, 8) to  be the kernels of the operators F(B) and B ( 0 )  respectively. so 

that 

Then 



where the function 4(z, t ,8) is a unique solution to the following integral equation 

~ ( t ,  T) is a non-negative kernel of the operator K. 

Using the Schwarz inequality and the equivalence (Sobolev, 1982; Ladyzlienskaya and ot1ie1.s. 

1968; Lions, 1968) of the usual norm in the Sobolev space H1(52) and the norm (for simplicit!. 

we can put a(z)  > O,C(() f 0 ) 

one can observe 

for arbitrary interval (E,O) (where the parameters used in (1.1), (1.4), (9.1) can be defined). 

0 > E ,  where 

Formulae (10.2), (10.3) lead us to the following system of partial differential equations for func- 

tions uO'(z, 8) and b(z, y, 8) : 



ab(z, t, 4) 
 an^ + c(t)b(z, t ,  8) = 0, t E a n ,  

where 

We give here the brief formal scheme for the derivaiton of equations (10.5) (which may be strictly 

justified on the basis of Galerkin's method). 

Differentiating formally the relation (9.7) for u0(.,8) with respect to 9 one can obtain 



where 

Then taking into account that ~ ( 8 , t )  is a kernel of the integral operator F(e)G*(B), formula 

(10.3) and 

we come to  the mixed problem (10.5). 

From (10.9) there follows an ordinary differential equation for h2 (8) 

The operator P(8)  does not depend upon any measurements and as it follows from (9.5) i t  

describes the structure of the reachable set of the system (1.1), (1.2), (9.1) in the absence of 

the measurement equation (and measurement "noise" ~ ( t )  in (9.1) in particular). The opera.tor 

B(8) and scalar h2(8) describe the correction of the latter set due to  the estimation process. 

Theorem 10.1. The evolution in 8 of the informational domain U(B,y(.)) for the estimation 

problem (1.1)) (1.2), ( l .4 ) ,  (9.1) is given by the joint system for the initial boundary voluc 

problems (10.5)) (10.6), the ordinary diferential equation (10.10) and the formula (9 .5) .  

Remark 10-a. The solutions t o  the initial boundary value problems (10.5) and (10.6) are treated 

as generalized solutions in the sense of the corresponding integral identities (see (1.3)). 



In the case of the integral quadratic constraint of general (operator) type the mixed problem 

(10.6) should be modified in the form of a respective differential equation for the operator B(B j .  

11. The Informational Domain: Finite-Dimensional Outputs 

In this paragraph we will consider a particular case of the problem (1.1), (1.2), (1.4), (9.1) whell 

the aim is to estimate a finite-dimensional output of the system. 

We therefore introduce the estimation problem in finite-dimensional outputs which is. to deter- 

mine the set of all elements 

that are defined at instant 8 being consistent with the system (1.1), (1.2), the measurement d a t a  

y(t), t E T, and the constraint (9.1), the linear operator H being given: 

The informational domain Z(8, y(.)) for the latter problem is the projectioil of the respective 

set U(8, y(.)) on the subspace R(H)  : 

Z(9, ~ ( 9 )  = HU(8, Y(.)). 

Therefore, due to Lemma 9.1, we come to 

p(p(.) I Z(8, y(.))) = (1 - h2(8))'I2 < p(.), ~ ( o ) p ( . )  >'I2 + f <(a), uO'(.,  8) > (11.1) 

for any cp(.) E R ( H ) .  

Consider H to be the operator nr of orthogonal projection on an arbitrary subspace Xr(R): 

The respective set Z(8, y(.)) will then be denoted as Zr(@, y(.)). 

Assume that the boundary value v(<, t )  is given: 



and that the operators I;(i = 0 , l )  in the constraint ( 9 . 1 )  are identities. 

Along the scheme of ( 9 . 2 )  - (9 .11 ) ,  (10.1)  - (10.4)  one can obtain the following formulae for 

the parameters of Z,(O, y ( - ) )  which are all further marked by a lower index "r" and which arc 

represented through the parameters and functions specified in (9 .5 )  - ( 9 . 9 )  and (10 .1 )  - (10 .4 ) :  

Pr (e )  = n , P ( e ) n , ,  n; = n , ,  

h,2(0) = h2(8 ) ,  q r ( - ,  t , 8 )  = n r q ( . ,  t , 8 ) .  

Moreover, (10 .8 )  and (10 .9 )  could be modified for values G,  ( 8 ,  O), q , ( x ,  O ,8 )  so as to yield 

Here 



Il: is the operator of orthogonal projection on X k ( f l )  ( I l : v ( . )  = v ( . )  - I l , v ( . ) ) .  

On the basis of relations (11.1) - ( 1  1.5), similarly the proofs of the theorems 9.1, 10.1 we obtajli 

Theorem 11.1. The informational domain Z, (B ,y ( . ) )  is an ellipsoid in the finite-dimensiontrl 

subspace X , ( f l )  of the space L2 ( f l ) :  

< z ( . )  - z,08(., e ) ,  P ; ' ( ~ ) ( z ( . )  - z,O*(., 6 ) )  > 5 1 - h 2 ( e ) )  

with support function ( 1  1.1).  

The evolution in 9  of the parameters of the domain U,(e ,  y ( . ) )  under condition (11.2) and iden- 

tical opemtors I , ( i  = 0 , l )  can be described for any r by formula (11.3) and by the follou~zng 

joint system of partial diflerential equations for initial-boundary value problems in the finzle- 

dimensional subspace X , ( f l )  and of an ordinary diflewntial equation for the value h2 (8 ) :  



0 E ( c ,  O), h2(&) = 0. 

The mixed problems (11.6) - (11.7) are finite-dimensional. Therefore, they may be reformulated 

through a system of ordinary differential equations. 

Indeed, put 

r 

br(z, y, 0) = bjjr (e)w;(z)w,(y), Br[e] = {bijr(e)} is a [T x T] - matrix, 
;,]=I 

r 

q;(x, 0,e)  = q~r (~ )w ; (x ) ,  Q:[O] = {q:,(e)) is a [ r  x m] - matrix. 
i=l 

Then the problems (11.6), (11.7) generate the system 



z,0*[0] = iiOr, 

which should be treated together with 

and formula ( 1 1 . 3 ) .  

Remark l l - a .  We have used square brackets above for the description of finite-dimensionrrl 

vectors obtained through a truncation of respective infinite-dimensional elements. This type of 

notation will also be used below. 

12. The Informational Domain: Instantaneous Constraints 

Assume now that the unknown inputs uo(-), f ( . ) ,  T ( . ,  a )  in the system ( 1 . 1 ) ,  ( 4 . 1 ) ,  ( 1 . 4 )  satisfj. 

some preassigned constraints of an instantaneous type, namely 

uo(.) E Uo; f (., 1 )  E F( t ) ,  t 6 T ;  ~ ( t )  E A( t ) ,  t E T,, ( 1 2 . 1 )  

where Uo is a given weakly compact convex set in L2(Q); F( t )  is a continuous multivalued m a p  

from T into the set of convex weakly compact subsets of L2(Q);  A ( t )  is a continuous multivalued 

map from Te into the set conv Rm of convex compact subsets of Rm and int A( t )  # q5, t E T,; 



E < 9 5 0. We will also restrict the equation (1.4) to  the case of spatially averaged sensors -4 

and B. 

Due to formula (9.10), an arbitrary informational domain U ( 9 ,  y ( . ) )  for the estimation problenl 

(1.1),  (1.2),  (1.4),  (12.1) is a closed convex and bounded subset of the space L 2 ( R ) .  Its evolution 

in time may be described through the techniques of partial differential inclusions in Hilbert space. 

The scheme for deriving appropriate inclusions is based on a limit transition along the results 

obtained for ordinary linear differential systems in (Kurzhanski, Filippova, 1989) for guaranteed 

estimation problems under instantaneous constraints. 

Consider a sequence of infinite-dimensional informational domains U(,)(B, y ( . ) )  that are the so- 

lutions to estimation problem (1 .1) ,  (4.1), (1.4),  (12.1) under condition 

where n, stands for the operator of orthogonal projection on an arbitrary subspace X , ( R )  

generated by first T eigenfunctions for the problem (4.6).  We will investigate a limit transition 

for these with T -+ m. In order to  do that we introduce 

Condition 12-a. We will say that the measurement output y* ( t ) ,  t  E T, satisfies the reyulurzty 

condition of the constmint qualification type if among all of the triplets that generate y* ( l )  d l ~ c  

to (1 .1) ,  (4.1),  (1.4),  (12.1) there exists a triplet {uc ( . ) ,  f*(., . ) ,q*( . ) )  that ensures 

q* ( t )  E int A ( t ) ,  t  E T,. 

Lemma 12.1. Assume that the measurement output y*( t) , t  E T, satisfies Condition 12-a. Theit 

d (U(9 ,  y'(.)), U(,)(9, y*( .)))  + 0 with T + m. (12.3) 

Here d ( A 1 ,  Az)  stands for the Hausdorff metric (Kumtowski, 1966) for the sets A l ,  A2 c L 2 ( R ) .  

Proof. Due to the given assumptions all of the sets U(,)(B, y( . ) )  are nonvoid once T exceeds some 

value T* = r*(y*( .)) .  

We may split an arbitrary solution u ( x ,  t )  to  the system (1.1),  (4.1) generated by pair { uO( . ) ,  f ( . ,  . ) )  

into two terms: 



So that 

u r ( . , t )  E X r ( R ) ,  < u r ( . , t ) , u r ( . , t )  > = 0.  

Here u , ( - ,  t ) ,  u r ( . ,  t )  are solutions to ( 1 . 1 ) ,  ( 4 . 1 )  generated respectively by the pairs 

so that 

Due to formula (9 .2 )  we have 

T = 1 , 2  ,..., c = const. 

Let i i ( z , 8 )  be an element of U ( 8 ,  y e ( . ) )  generated by {Go( - ) ,  f ( - ,  -)} together with j l ( t )  and C ( . ,  1 )  

- the respective solution to ( 1 . 1 ) ,  ( 4 . 1 ) .  

Then 

y * ( t )  = G ( t ) i i ( . , t )  + i ( t )  = G T ( t ) G ( . , t )  + q ( t )  + v r ( t ) ,  t  E Tc, ( 1 2 . 3 )  

where 

and (see 8.3) 

11 %(.I ~ I L ~ ( T * )  ~("1; ~ ( r )  + 0, T + a. 

Relations (12 .4 ) ,  (12 .5 )  mean that 

f i ( - ,a )  E ut ! ; ) (e ,  y * ( . ) ) ,  



where u(!;)(B, y*(.)) stands for the informational domain of the estimation problem (1.1). (4 .1 ) ,  

(12.1), (12.2) and 

rl(t) E h ( t )  + 3 ( ~ ) 0 ( 0 )  = ~ ' ( ~ ' ( t ) ,  E Tc, 

o(0) is a ball of unit radius in Rm. 

Conversely, if an element G(z, 8) belongs to U(,)(B, y*(.)), we can similarly obtain 

ii(., 8) E u ~ ( ~ ) ( B ,  y*(.)), 

where the upper index s ( r )  means the same as in (12.6). 

Noticing that the sets of type U;)(B, y*(-)), UB(8, y*(-)) are continuous in p(p  2 0) under 

condition 12-a, we observe that inclusions (12.6), (12.7) yield the assertiolt of Lemma 12.1. The 

further results follow those of a paper by (Kurzhanski, Filippova, 1989). The results of this 

paper sound as follows. 

Denote X[t ]  = X(t , to ,zO) ,  X[to] = XO, to be the solution tube (generated by initial set XO)  to 

the system 

(A(t),G(t) are continuous matrices; P( t ) ,Q( t )  are set-valued maps, convex compact valued. 

continuous in t). 

Also denote XM[t] = XM(t, to, XO)  to be the solution tube (generated by initial set X O )  to tllc 

system 

Theorem. The following relation is true 

5 1 



where the intersection is taken over all continuous matrix valued function M ( t )  ( T  + RnIXn 1. 

Returning to the basic problem of this paragraph, consider the sequence of sets U,0(8, y(.)) 

( T  = 1 , 2 , .  . .) each of which admits the following representation: 

where the sequence ~ , 0 ( 8 ,  y ( . ) )  ( r  = 1 , 2 , .  . .) comes from the solutions to appropriate finite 

dimensional guaranteed estimation problems: 

Lemma 12.2. Assume the set U,O(B,y*(.)) to be generated by measurement y* ( t ) ,  t E Tc,  that 

satisfies condtion 12-a. Then the following representation is true 

U,"(B, ye ( . ) )  = n { ~ : ( e ,  M r ( . ,  . ) ) IMr( . ,  - )  E M r ( . ) ) ,  

where 



U:(e, M T ( . ,  9) = U { u ( . ,  ~ I M ' ( . ,  a ) ) ) ,  

over all solutions u ( - ,  OJMT( . ,  .)) (taken at instant 0 )  to the initial boundary value problem 

Problem (12.10) is a finite-dimensional problem in X , ( f l )  treated in a generalized sense (see 

(1.3)  )-  

It is also clear that 

Therefore, the relations (12.9) ,  (12.10) are valid for the domain UF, (O,  y * ( - ) )  with Uo. F( I )  

substituted by n T U o  and n T F ( t )  respectively. 

Let now u*(x ,  t )  be an arbitrary solution to  the initial boundary value problem (12.10) generated 

by the triplet {u ; ( . ) ,  f *(-, -), v* ( - ) )  with an arbitrary function 

Mi ( . , t )  E C([O,@l ;L2( f l ) ) )  

and with G ( t )  substituted for G T ( t ) .  

Using the method of transposition (Lions, 1968) we can observe that this solution does exsit i n  

the space C([O, 81; L 2 ( f l ) )  and 



where PI (M( . ,  a ) )  depends upon M;(., - ) ( i  = 1,. . . , m) continuously in the norm of C(T,; L 2 ( R ) ) .  

Denote by u i r ) ( z , t )  the solution of (12.10) generated by the same triplet as above but with 

M r ( z ,  t )  taken as a truncation of M ( z ,  t ) .  Then for the difference i i ( ' )(z, t )  = u 8 ( z ,  t )  - u i r ) ( x ,  .) 

we obtain the mixed problem 

Therefore, due to  (12.11) we have 

1 1  ' ( r ) ( ' l  ' 1  I / L ~ ( ~ )  5 h ( ' 1  M ( ' l  ' ) ) l  

where P2(r, M ( - ,  -)) + 0 when r -r oo whatever M ( - ,  a )  E M ( - ) .  

Taking into account the lemmas 12.1, 12.2, the estimate (12.13) and taking r -- oo, a - 0 i\.cl 

come to  

Theorem 12.1. Once the measurement y8(t)(t  E T,) satisfies condition 12-a, the infornzc~tiorznl 

domain U(8,  Y*(.)) for the problem (1.1), (4.l), (1.4), (12.1) may be described as 

where U(8,  M ( . , - ) )  is the cross-section at instant 0 of the set of all solutions to the partiul 

diflerential inclusion 



Remark 12-a. The condition for the measurement data y*(t), t E T, in Theorem 12.1 may  

be repalced by a more general condition. Indeed the statement of the latter theorem (al~tl of 

Lemmas 12.1, 12.2) will be true under the assumption: 

In particular, (12.16) does hold for an arbitrary measurement y(t), t E T, if the system (1.1), 

(4.1), (1.4) is strongly observable. 

13. Interrelation Between Guaranteed and Stochastic Estima- 

t ion 

Let ( 0 ,  ~ ( f i ) ,  p )  be a probability space (Curtain, Pritchard, 1978; Sawaragi and others, 1978) 

with fi as a topological space, ~ ( f i )  as the Bore1 field generated by fi, and p as the proba.bility 

measure on fi. 

Suppose that G o ( . )  E ~ 2 ( f i , p  ; L2(fl)) and is Gausian with zero mean and with covaria.nce 

operator Po ; f ( . , t )  is a Wiener process on Lz(fl) with covariance operator Q(t )  ; G(.,t) is a 

Wiener process on L2 (a0)  with covariance operator R(t) ; ((t) is a vector valued Wiener process 

on Rm with covariance matrix N (t). 

Instead of the deterministic mixed problem (1.1), (1.2) consider a similar problem for a S ~ O C ~ L C I S ~ ~ C  

partial differential equation 

< dk(., t) ,  cp(.) > +a(Z(., t), p(.))dt = (13.1 ) 

=< df(., t), cp(.) > + 



where U o ( - )  = Go(-)+uo(.), f(., t )  = j(-, t )+ f ( - ,  t ) ,  @(a, t )  = %(., t )+v(., t) ,  the set {.O(.), f(., t ) ,  D(., 

satisfies the restriction (12.1), 

where V ( t )  is a continuous multivalued map from T into the set of convex weakly compa.ct set.s 

of L2(aS2) and 

E[fio(.)l = U O ( . ) ,  E [ f ( . ,  t ) ]  = f ( 0 ,  t ) ,  E[Z)(-, t ) ]  = v ( . ,  t )  

The last two terms in the right hand part of (13.1) are interpreted as respective Ito integrals. 

Suppose that we can observe the process 

where c ( t )  = i ( t )  + ~ ( t ) ,  v(.) satisfies (12.1), 

The processes j(-, t ) ,  $ ( a ,  t )  are assumed to  be statistically independent and also independent of 

the initial function G o ( - ) .  The relations (13.1), (13.3) define a conventional stochastic oplimtll 

filtering pmblem (Falb, 1967; Bensoussan, 1971). We will denote the respective optimal estima.tc 

for this problem as uO( - ,  8 1 w ( . ) ,  A( . ) ) ,  where A(.)  is the quadruple 

Follow the lines of (Kurzhanski, 1988) for the informational domain U(B ,  y(. ) )  of the deterministic 

inverse problem (1.1) - (1.5), (12.1.), (13.2) we then have 

Theorem 13.1. The following relations are true 



Therefore the projection of the domain U(8, y(.)) over a prescribed direction v(.)  may now bc 

evaluated as follows 

where 

The nature of the relation of (13.4) is such that the substitution of any element A(.) into 

J(v( . ) ,  A(-)) gives a guaranteed estimate of the actual state u(x, 8). 

Remark 13-a. From theorem 13.1 i t  follows that the support function p ( p ( . )  I U(8, y(-)) may be 

calculated by minimizing a multiple integral of type (13.5) over A(.). 

Remark 13-b. A number of important physical processes may well be modeled on the basis of 

the theory of guaranteed estimation. As an example we indicate the problem of estimating the 

spatial and temporal distributions of air pollution levels (Omatu and others, 19SS) where unde r  

natural absence of complete statistical information on the inputs and parameters of the system 

the given approach may turn t o  be rather relevant. 
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