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FOREWORD 

Acidification of bodies of freshwater was one of the first effects of 
transboundary air pollution to be noticed in Europe. The Regional 
Acidification Information and Simulation (RAINS) model developed within 
the Acid Rain Project and later the Transboundary Air Pollution Project 
at IIASA contains a Lake Acidification submodel. Jean-Paul Hettelingh 
was a key member of both projects in developing that submodel, while 
working on his Doctorate at the Free University of Amsterdam. This 
Research Report, in fact Dr. Hettelingh's thesis, describes the development 
of the Lake Acidification submodel of RAINS and its application to whole 
regions, and in particular the Netherlands and Norway. A unique feature 
of this work is the concept of "flexible zoningn in which model predictions 
are obtained as a function of model calibrations within predetermined 
regions. 

R. W. SHAW, Leader 
Transboundary Air Pollution Project 

B.R. DOOS, Leader 
Environment Program 





ABSTRACT 

Policies aimed at the alleviation of negative environmental impacts have 
increasingly been based on predictions made with models of the environ- 
mental systems involved. The usefulness of these models is limited by 
many uncertainties, e.g., is the complexity of a system properly reflected in 
the model structure and chosen aggregation-level? Is the data used in the 
model representative of the system? Is the temporal and spatial scale used 
in the model appropriate for understanding the system's behavior? The 
combination of these uncertainties may lead to unexpected results. 

This study identifies key factors determining watershed responses to 
acid deposition in different regions, using the RAINS Lake Acidification 
Model. The study aims at: 

Providing a method for defining a region such that environmental 
policy directed at alleviating watershed acidification will become 
more suitable for the large scale management of surface water 
quality. 
Depicting regional characteristics that allow for the usage of a less 
detailed and thus more aggregated model. 
Providing an operational concept of critical loads for policy insight 
into watershed quality as a function of the spatial zoning of 
watersheds. 

The results of the study are: 

The 5-step method of flexible zoning introduced in this study, allows 
for a probabilistic investigation of the compatibility between models 
and available spatial data. 
The calibration of models to previously defined regions may be of 
limited use for policy purposes because predictions of environmental 
effects (i.e., watershed acidification) as a result of changing deposi- 
tion patterns over large regions may be error prone. 
Cumulative distributions of model predictions about the acidification 
of watersheds should be used to assess critical and target loads for 
broad regions. 

Key words: acidification, aggregation, calibration, critical loads, environ- 
mental modeling, sensitivity analysis, uncertainty analysis, regionalization, 
target loads. 
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1. GENERAL IATRODUCTION 

1.1 INTRODUCTION 

Prologue 

No part of the universe is so simple that it can be grasped and 

controlled without abstraction (Rosenblueth and Wiener, 1945). However, 

a certain methodological procedure used by investigators to make an 

abstraction of a part of the universe heavily depends on their 

perception of the systems that are part of the universe. Some 

scientists view systems holistically as everything being indisruptably 

related to everything else. Others adopt the reductionist approach 

where systems can be understood by mechanistic principles (Hofstadter, 

1980, p.389) which explain the whole system on the basis of a detailed 

understanding of its parts. 

The understanding of systems as a collection of parts evolved with 

the development of industrial organization in the western world. The 

mechanization of the production and the rapid growth of industrial 

enterprises required the coordination of many different managerial 

functions and tasks. The scientific management of many different 

activities to support a task became known as Operations Research during 

the second World War. Operations Research provides (industrial) 

managers with a rigorous basis for solving problems involving the 

interaction of components of the organization in the best interest of 

the organization as a whole (Churchman et al., 1957, p.6). 

In later years C. West Churchman wrote: "....the earliest document 

aiming at a systems approach to decision making was written in China in 

the second millennium B.C.. This very early attempt- which, 

interestingly enough, became quite popular in the 'radical culture' of 

the 1970s- is the I Ching or Book of Channes" (Churchman, 1979, p.32). 

In I Ching the universe is assumed to be holistically organized, such 

that guidance through daily life may be achieved by consulting 

randomly obtained signs, called hexagrams. These hexagrams were 



intended to serve as a mapping of the universal space of answers to 

particular problems. Nowadays, consulting such an oracle is far from 

the way in which policy makers tackle real life problems. On the 

contrary, policy making consists often of a more mechanistic approach 

that partitions real life problems into areas of responsibility 

governed by particular ministries, hierarchical administrations and 

procedures. 

In modern scientific research a similar approach of making 

abstractions of parts of the universe by mental or formal models, still 

prevails. The result is that an increasing number of scientific studies 

of real life processes by means of systems analysis can be found. 

According to Quade and Miser (1985, p. 2) "the central purpose of 

systems analysis is to help public and private decision makers to 

ameliorate the problems and manage the policy issues that they face." 

Policy making on social, economic and environmental issues must rely on 

abstract representations of real world systems that can then be 

simulated by computer modeling, analyzed by mathematical methods and 

verified by statistical analysis. Although simplicity seems to prevail 

as an objective of systems analysis, the tools, terminology and 

interpretation of results can vary greatly among scientific 

disciplines. The methods used vary from simple data analysis to the use 

of mathematical equations and solution techniques by means of advanced 

computer algorithms. These methods have become increasingly tailor-made 

tools for coherent policy analysis. 

A bird's-eye view of the study. 

The purpose of this study is to provide policy makers1 with a 

comprehensive means of dealing with the definition, localization and 

assessment of damage to the natural environment from human activities. 

With the growth of the scale of the interactions between human 

development and the environment, the complexity of these interactions 

has also increased. Today's concern about the greenhouse effect and its 

environmental consequences is an example of an emerging consciousness 

that human activities, biochemical processes and climate are 

'some terminological classification is in order first. In general 
'policy makers' are responsible for managerial actions, whilst 'policy 
analysts' provide the technical support to a 'policy maker'. 



interrelated (see also Clark and Munn, 1986). Individual environmental 

problems like acid rain, soil erosion, ozone depletion, deforestation 

and surface water pollution are all associated with interrelated human 

activities. Studying these problems requires a multi-disciplinary 

scientific collaboration and an integrative - or at least coherent- 

way of describing and formalizing the system of causes and effects. 

Disentangling relationships between subsystems implies observation and 

analysis on more than one level, as is illustrated by the question 

whether climatic change is due to the depletion of ozone or to chemical 

processes between hydrocarbons and nitrate-oxides which indirectly 

affect the ozone concentration. These questions often fall into the 

category 'what was first; the chicken or the egg', and may need a 

hierarchical arrannement of complex systems to efficiently address 

these issues (Mesarovic, 1984). Investigating global change of the 

environment requires an understanding of the hierarchy of causes and 

environmental problems as well as an identification of their related 

temporal and spatial scales. The temporal scale of environmental 

problems often results from economic and social activities that are 

often undertaken for a benefit that is measurable within the time span 

of the current human generation. The usage of pesticides, for example, 

may have increased the quantity of agricultural output over the past 

years but the persistence of these pollutants may jeopardize the 

quality of natural products for a long time to come. The related 

spatial scale may extend far beyond the regional scale within which the 

economic and social development occurred. Many studies of interactions 

between activities and environment concentrate on individual rather 

than on global problems, on immediate impacts of ameliorative measures 

rather than on a sufficiently long time horizon, and on local or 

national scales rather than on a sufficiently broad spatial scale. 

However, this study had to be kept to manageable proportions. It 

will indirectly deal with general issues like 'hierarchical 

arrangements' and 'complexity' of systems only to a limited extent. The 

central question here can be formulated as: what level of detail is 

necessary to be able to predict effects over the broad spatial scales 

relevant for policy design and policy measures? The acidification 

process, for example, of one single lake in a given area can be 

reasonably understood and modeled. The questions to be addressed here 

are (1) to what extent and level of confidence can this model be used 



to predict the acidification of many lakes over a broad spatial scale? 

(2) how should the region be defined to reflect the model's input needs 

and output capabilities? 

The problem of defining the scale at which model application is 

justified has some similarity to the modifiable areal unit problem. The 

modifiable areal unit problem is used in the spatial planning sciences 

to describe the uncertainty concerning the identification of objects in 

a spatial study (see also Openshaw, 1978). In the discipline concerned 

with spatial behavior problems, data are available that have been 

spatially aggregated more than once. These data then serve as input 

values for spatial interaction models leading to model predictions that 

may bear behavioral significance but, on the other hand, might very 

well only reflect the way in which a study region is partitioned into 

zones (Openshaw, 1977b). Similarly, the prediction of economic models 

that describe the development of economic variables, e.g. industrial 

production and investments, on a macro economic scale is only equal to 

the sum of predictions obtained by applying these models on various 

micro economic scales if particular conditions are fulfilled (see also 

van Daal and Merkies, 1984). Regional economic models are often 

tailored to the regional scale at which data is available. Spatial 

units are often not appropriate for the usage of economic models for 

regional economic policy analysis. Therefore, emphasis is often put on 

statistical techniques to make optimal use of available temporal and 

spatial data (see also Folmer, 1986). Economic functions or prevailing 

administrative structures may have influenced the composition of these 

regional scales (Nijkamp et al., 1984). The categorization of social 

and economic functional relationships in the Netherlands, for example, 

has lead to the distinction of 40 COROP regions (CBS, 1975) for which 

data is available that is used by a great variety of models (see for 

example Arntzen et. al., 1981; de Vries, 1987). 

Thus the questions formulated above have some relevance for many 

investigations that involve the application of models on different 

spatial scales. In this study the choice was made to restrict these 

investigations to the environmental system. 

This study does not deal with spatial interaction patterns and 

related models in general, but deals more specifically with the 

relationship between zoninq of an environmental system and its 

consequences for environmental model results. 



The environmental process chosen in this study is watershed 

acidification on scales that vary from a single lake to large regions 

containing meny lakes. The study is a technical exercise that needs to 

be treated in a broader frame because of the relation between system 

complexity, different aggregation levels, model simplification, zoning 

and model prediction uncertainty. 

The precise aim and restrictions of this study are described in 

section 1.4. Since, in the disciplines dealing with systems 

representation a unified terminology is lacking, the concept of systems 

and models in general and the development of model building and 

methodological applications in particular will be reviewed first in 

this chapter. Then environmental modeling is treated in terms of policy 

use, real life eystem interactions, model structure and model 

aggregation (i.e., macro versus micro) in relation to model result 

confidence and methods to perform uncertainty analysis (Chapter 2). 

These theoretical sections are followed by a description of the 

subsystems represented in the so called RAINS Lake ~odel', ueed in this 

study, and the equations describing the chemical processes that lead to 

the acidification of a single watershed (Chapter 3). 

The RAINS Lake Model is then used to evaluate a method, comonly 

referred to as calibration, for matching model results to zonal 

(regional) data (Chapter 4). Finally a new method, flexible zonin~, is 

proposed in which regional model results, are evaluated in conjunction 

with uncertainty analysis of model variables that are important in each 

zone (Chapter 5). Chapter 6 then discusses the application of flexible 

zoning of the RAINS Lake Model in the Netherlands. A retrospective and 

prospective chapter concludes this study. 

1.2 SYSTEMS AND MODELS 

Terminoloav and concepts of systems 

Following Fishman (1973). Kleijnen (1974) and Rubinstein (1981) a 

'The Regional Acidification INformation and Simulation model 
describes causes and effects of acidification in Europe. It consists of 
several modules ( see Chapter 2) including the sirmlation of lake acidification. 



system is considered to consist of a set of related components or 

elements, each having certain characteristics or attributes with 

numerical or logical values. System elements may be related to one 

another by intra-relationships, whereas relationships with elements of 

another, usually external, system are defined as inter-relationships. 

The set of external systems is called the systems environment. The 

systems environment generates inputs that are transformed by the system 

to become outputs. The transformation of inputs is generated by the 

process operating the system. 

Systems may show varying values of its attributes over time. Such 

dynamic behavior is denoted by the state of a system. If the 

probability of the system in some specific state does not vary over 

time, the system is said to be in steady state. Otherwise its state 

will be called transient. 

Systems may be classified in many ways. Kleijnen (1974, p.3) for 

example, mentions real world vs abstract, black box vs identified, open 

vs closed, adaptive vs nonadaptive, feedback, feedforward and non- 

controlled, static vs dynamic, stochastic vs deterministic, continuous 

discrete and hybrid, technical, organizational and abstract systems. 

Each discipline tends to have its own systems approach (see for example 

Emery, 1969; Lasker (ed), 1981). Odum (1986) for example defines an 

ecosystem as the sum of the input environment, the area with its biota 

and the output environment. 

In all disciplines nowadays an effort is made to recognize a system 

and its inputs, outputs and state to be able to make predictions, i.e. 

to estimate the value of a systems output when its inputs change, or to 

evaluate a system's state when some of its attributes reach other 

(perhaps critical) values. To understand a system, its hierarchy and 

its different levels of detail need to be investigated in order to 

adequately describe the model's operations either verbally, 

mathematically or technically. Any of these descriptions of a system 

can be termed a model. 

Terminolony and model concepts 

The aims of using a model are, according to Pishman (1973, p.11): 

1. enable an investigator to organize his theoretical assertions 



and empirical observations about a system and to deduce the 

logical implications of this organization, 

2. lead to improved system understanding, 

3. bring into perspective the need for detail and relevance, 

4. expedite the speed with which an analysis can be 

accomplished, 

5. provide a framework for testing the desirability of system 

modification, 

6. make easier and less costly to investigate system's behavior, 

and 

7. permit control over more sources of variation than the direct 

study of a system would allow. 

Models, like systems, have in the past been classified by many 

authors in different ways (see also Mihram 1972, pp.3-11). In the early 

days of systems representation one was concerned with the definition of 

different kinds of models. Rosenblueth and Wiener (1945) distinguished 

between (1) v, which consider transformations of original 

physical objects, and (2) Formal models, which provide a symbolic, 

mathematical representation of the original factual system. These 

formal models were sub-categorized in (1) open-box models which were 

predictive models for which, given all inputs, the model output could 

be determined and (2) closed-box models, which were explorative models 

of a more descriptive nature aimed at understanding a system's output 

under differing input conditions. With the increasing availability of 

computing machines, algorithms for symbolic models "were no longer 

constrained to provide the time-stepped solution of a few differential 

equations, but could be employed to simulate the behavior of large 

numbers of elements in complex, interactive systems" (Mihram, 1974, 

p.5). The use of computerized symbolic models became a primary tool of 

the systems analyst, which led to the distinction of iconic. analog and 

symbolic models (Churchman et al., 1957). Iconic models pictorially 

represent certain aspects of models; analog models employ one set of 

properties to represent some other set of properties that the system 

under study possesses; and symbolic models require mathematical or 

logical operations that can be used to formulate a solution to the 

~roblem at hand. Symbolic or formal models were used to describe the 

same kind of system's representation that could be sub-categorized into 



analytic and numerical models. However, this distinction did not lead 

to an operational difference; both kind of models consisted of a set of 

mathematical equations of which only the solvinp: techniques were 

supposed to be different. 

The early emphasis on system description, model definition and model 

solving has gradually been replaced by an extension of the aim of 

modeling, viz. from solving, towards simulation. 

The simulation of systems 

This section will present an overview of the terminology used by 

different authors in an attempt to distinguish the different kinds of 

simulation and their application. A summarizing synthesis of the 

terminology and types of model application distinguished by the 

different authors treated below, is presented in Figure 1.1. 

The new modeling capability of simulation was incorporated by Sayre 

and Crosson (1963), who introduced three categories of models: 

1. replication: models that display a significant degree of 

physical similarity between the model and its representation 

of the system (e.g. a flight simulator). 

2. formalization: symbolic models in which none of the physical 

characteristics of the modeled system is reproduced in 

the model itself, and in which the symbols are manipulated by 

means of an exact discipline such as mathematics or logic, and 

3. simulations: symbolic models in which none of the physical 

characteristics of the model is reproduced in the model itself, 

and in which the symbols are not manipulated entirely by an 

exact discipline in order to arrive either at a particular 

numerical or at an analytic solution. 

Analogy exists between some of the model definitions introduced 

above. Formalized models are similar to the formal models in the 

terminology of Rosenblueth and Wiener's (1945), and to the symbolic 

models of Churchman et al. (1957). The equations of formalized models 

became tractable by means of alaebra and calculus, which is not always 

true for the class of simulation models. 
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Figure 1.1 Flowchart describing types of models. 



For example, a formalized model of the functioning of a telephone 

switchboard may consist of Boolean expressions that describe the state 

of switches; either 'on' or 'off'. However, a model that represents the 

functioning of the switchboard in terms of the frequency of calls that 

come in may not be adequately described by formal representations. Such 

a (simulation) model will require guidance by certain decision rules, 

that describe the consequence of specific events, i.e, what to do with 

calls when all lines are full. Such rules may be described by more 

flexible algorithms which for example may represent a model's output as 

result of randomly varying inputs (Mihram, 1974, p.8). The model will 

have to apply a random process to simulate the sequence by which calls 

enterthe switchboard. 

With the further development of systems analysis other 

characterizations of models have become relevant as well, such as: 

1. the inclusion of u; a model with state values which change 

with time is called dynamic ,otherwise it is called static. 

According to Fishman (1973, p.12) a static model is only a 

snapshot of the state of a system at a moment in time. It 

should however be noted that a dynamic model that reaches a 

state of structural equilibrium may be considered as (quasi-) 

static, from that time on. 

2. the solution method; a model is defined as deterministic when, 

according to Fishman (1973, p.12), a problem in a model can be 

solved analytically ,i.e. by means of mathematical 

relationships. Kleijnen (1974, p.5) notes that solutions for 

complex models can be achieved by numerical methods. These 

numerical solutions are obtained for each set of model 

parameter values (e.g., numerical integration). Fishman (1973) 

considers stochastic models to be the complement of 

deterministic models. In stochastic models at least a part of 

the systems behavior is random in nature. 

The stochastic models of Fishman include, in contrast to Kleijnen, 

also simulation. Kleijnen (1974, p.5) considers two special numerical 

techniques, i.e., the Monte Carlo Method and Simulation. The term 

'Monte Carlo' originated as a code word for the research on the nuclear 

bomb at Los Alamos in the U.S.A., around 1944. According to Hamersley 

and Handscomb (1964, p. 8) the credit for rediscovering the method goes 



to Ulam, von Neumann and Fermi. One of the first scientific journal 

publications that explicitly describes the usage of the Monte Carlo 

technique for numerical integration, was written by Metropolis et al. 

(1953). In this paper "a general method suitable for fast computing 

machines, for investigating such properties as equations of state for 

substances consisting of interacting individual molecules is 

described". An exhaustive description of methods and techniques, 

including FORTRAN code for sampling from statistical distributions 

related to Monte Carlo analysis can be found in McGrath et a1.(1973), 

McGrath and Irving (1973a, 1973b) and in Gardner et al. (1983). The 

Monte Carlo Method is defined "in a wide sense as any technique for 

the solution of a model using random numbers or pseudo-random numbers" 

(Kleijnen, 1974, p.6). 

Simulation methods are, strictly speaking, distinct from Monte Carlo 

methods. Simulation implies experimentation, without necessarily using 

random numbers. There exist many kinds of simulation models like flight 

simulators, business and military games, and man-machine simulations. 

Klei jnen (1974, p. 14) explicitly narrows simulation down to 

"experimenting with an (abstract) model over time, this experimenting 

involving the sampling of values of stochastic variables from their 

distributions". Kleijnen refers to this kind of simulation as 

stochastic simulation or, since random numbers are used, as Monte Carlo 

Simulation. Thus, the combination of simulation with random generators 

becomes a distinct modeling method (Figure 1.1). 

Describing simulation in a sense as a technique of performing 

sampling experiments on the model of the system, Rubinstein (1981) 

derives the following four reasons for the application of simulation 

(see also Naylor et al., 1966, pp. 8-9): 

1. it may be impossible or extremely expensive to obtain data from 

certain processes in the real world, 

2. the observed system may be so complex that it can not be 

described in terms of a set of mathematical equations for which 

analytical solutions are available (i.e. economic systems) 

3. even though a mathematical model can be formulated to describe 

some system of interest, it may not be possible to obtain a 

solution to the model by straightforward analytic techniques, 

and 

4. it may be either impossible or very costly to perform 



validating experiments on the mathematical models describing 

the system. 

Rubinstein explicitly distinguishes between simulation, including 

stochastic simulation, and Monte Carlo methods. In contrast to 

simulation, Rubinstein states that (1) the Monte Carlo Method does not 

allow time to play as substantial a role as it does in stochastic 

simulation, (2) the observations in the Monte Carlo Method are 

independent, but serial correlation may be the rule in simulation 

models and (3) the response of a Monte Carlo Method may be expressed as 

a rather simple function whereas the response of a simulation model can 

be expressed only by the computer program itself. 

Mihram (1972, p. 207) also distinguishes between the Monte Carlo 

Method and the simulation model on the basis of either exclusion or 

inclusion of time as an explicit required variable. Mihram states that 

"...even if one of the independent variables in the differential or 

integral equation would be interpreted as time, the Monte Carlo Method, 

when applied to its solution, seldom requires an explicit mechanism for 

advancing time or for keeping track of its passage". Mihram however 

also points out that "...distinctions that could possibly be made among 

the terms: sampling experiments, the Monte Carlo method, and Stochastic 

Simulation, will not likely be universally adopted" (Mihram, 1972, p. 

208). Indeed, the wide definition of Monte Carlo Simulation, as used by 

Kleijnen, makes such distinction rather tedious. 

Fishman (1973, p. 20) defines Monte Carlo Simulation as the random 

sampling part of the broader computer simulation which is the 

combination of "computer, operational rules, mathematical functions and 

probability distributions, given that a method of analytical solution 

is not readily available" (Fishman, 1973, p. 16). Since the definition 

of Fishman is merely adding a reason for applying stochastic techniques 

to the definition of Kleijnen, no distinction will be made further in 

this study between Computer and Monte Carlo Simulation. 

The inclusion of probability concepts in simulation models need not 

necessarily lead to Monte Carlo Simulation. An economic model, for 

example, of which the coefficients have been estimated with regression 

techniques will provide a so-called deterministic simulation of the 

economic system. The prediction of the endogenous variables by 

exogenous and lagged endogenous variables does not include random 



numbers any longer (Kleijnen, 1974, pp. 11-12). A more general example 

of deterministic simulation focuses on changes in system structure and 

policy to make the system better behaved. This kind of simulation has 

generally become known as system dynamics (Forrester, 1961; 1980). 

Simulation and uncertainty 

The advantages of introducing a probabilistic concept in modeling 

are, according to Mihram, threefold. Mihram (1972) first argues that 

symbolic models of the greatest complexity are becoming more and more 

common with the ongoing development of computing machines. 

Concentrating on digital computers "the capacity to keep track of large 

numbers of interacting components of a system meant that significantly 

improved modeling capabilities were available; no longer was the 

investigator constrained to represent the system's components 

interactions by formalized representations" (Mihram, 1972, p. 11). 

Second, the ability to represent random phenomena in the simulation 

model is important. The complexity of many models (e.g., a model 

representing the mixing of fluids) is such that a formalized model 

would have to describe attributes at a very disaggregated level (e.g., 

molecules), whilst the summarized probabilistic description of a set of 

molecules might suffice. "The internal relationships may be somewhat 

modeled by mathematical expressions, but a closer examination of the 

structure of the system reveals a much more profound and intricate 

internal behavior. This internal behavior usually comprises such a 

diversity of contributing effects that it is best described 

probabilistically" (Mihram, 1972, p.12). Thus, Mihram introduces 

probabilistic approaches as a relaxation of mechanistic modeling 

approaches especially when the confidence in the model results is not 

justifying the model detail. 

The third reason, according to Mihram, for introducing a 

probabilistic concept in simulation is best described as insufficient 

knowledne of the investigator about the behavior of all system's 

components. "Deterministic models may be valid for the representation 

of system behavior on the gross scale . . , but if such models do not 

readily compare with the observed behavior of the actual system, then a 

more detailed model may be in order. With the increase in detail comes 



an increase in the likelihood of ignorance of the prevailing state of 

affairs and, concomitantly, of a stochastic model of the system" 

(Mihram, 1972, p. 14). This lack of knowledge is often referred to in 

terms of uncertainty. Uncertainty in the understanding of the 

investigator of the intricacies of systems is labeled by Mihram (1972, 

p.13) the "Uncertainty Principle of Modeling" which implies a broader 

notion that "refinement in modeling eventuates a requirement for 

stochasticity". 

In systems analysis, the use of simulation models and probabilistic 

methods have increasingly been appreciated, not so much as a last 

resort for situations where no analytical approach was at hand, but 

rather as a means for reaching a better understanding of a system, its 

subsystems, their interactions and uncertainties. 

A svstem as a set of subsystems: the anarenation problem 

A com~lex svstem according to Mesarovic (1984) consists of 

relationships between components that are systems themselves. 

Components of real world systems do not necessarily interact strongly 

with other components. Very often more or less independent subsystems 

may be distinguished; systems may be decomposable or nearly completelv 

decomposable (Simon, 1961; 1978). The latter means that system 

relationships may be decomposed into individual blocks within which 

only stronp. interactions occur among the elements, while between such 

blocks only weak interactions may be distinguished. "This kind of 

hierarchical structure is often recursive with increasingly weak 

interactions as we go upward in the hierarchy" (Simon, 1978, p. 116). 

An economic system for example is built on the department-firm- 

industry-national and finally world market hierarchy. Similar 

hierarchies can be distinguished in the natural environment. A natural 

environmental system can be viewed as being built on the hierarchy of 

individual species that are contained in ecotypes, a set of which 

defines a natural system, and finally landscape and the biosphere, 

which consists of different natural systems. 

The relevance of the concept of hierarchy in systems is that the 

(dynamic) behavior of a nearly-completely-decomposable-system may be 

analyzed without simultaneously examining each of the elements with 



their attributes and their relationships. Depending on the problems 

that an investigator of a system wants to explore, a detailed system's 

description is not always required. If certain aggregated aspects of a 

system are of interest it may be that predictions can be obtained by 

using an appropriate aggregate model (Simon, 1978, p.114). The 

definition of 'appropriate aggregate' may, however, be influenced by 

the continuing controversy between holistic and reductionist modelers. 

The first group of modelers might favor a high aggregation level 

compared to the second, more mechanistically oriented, group. 

In the process of modeling a system, the aggregation level of the 

model also depends on the data that has been sampled about the system 

and its environment. Decomposition of a system could consequently be 

guided according to criteria for grouping the data. The data could be 

clustered into homoneneous groups (see Rubin, 1967 for an overview of 

techniques) containing coherent3 system elements and into heteroneneous 

groups such that intra~roup homogeneity and interzroup heterogeneity 

are both high (Owsinski, 1983). Depending on the aim that is pursued, 

different kinds of groups could be defined. The (aggregated) model that 

is developed to simulate the behavior of the grouped system elements 

may thus become a function of the way the data are stratified. The 

composition of regions, for example, can - besides from a homogeneity 

principle - also be adapted to an existing administrative structure, to 

economic functions (Nijkamp et a1.,1984) or to different ecotypes (Cale 

and Odell, 1979). 

The aggregation concept can be extended towards the choice of the 

mathematical form of the model. In the modeling of monetary processes, 

for example, it has been shown that model-results are influenced by the 

modular structure and the relationships between modules (den Butter, 

1986). It is therefore not surprising that it has been demonstrated 

that a simple linear relationship instead of a non-linear model may 

represent the same set of system dynamics (see for example O'Neill and 

Gardner, 1979; Gardner et al., 1982; Cosby et a1.,1985b, Hornberger and 

Cosby, 1985b, Hettelingh and Gardner, 1988). The aggregation to simple 

mathematical relationships may involve the establishment of a relation 

between the outputs of a (computer-) model and its inputs, treating the 

3~ group of elements is called 'coherent' in the view of Owsinski 
(1983), depending on the definition e . ,  the measure) used to 
describe the distance between the elements. 



model as a black box, which is referred to as the response surface 

methodolo- (Downing et al., 1985; Iman and Helton, 1988). When the 

relation between inputs and outputs of a simulation model are 

established by means of regression analysis the term metamodeling, 

introduced by Kleijnen (1987), may be employed. 

In this study, metamodeling plays an important role in the design of 

experiments to investigate the merits of zoning for environmental 

policy making. 

Systems analysis and policy making 

Systems Analysis is useful for policy making if the results of such 

analysis, as they pertain to a particular policy, are clear. However, 

clarity is dependent on the harmony between the policy problem, the 

isolation of the system involved, the choice of the proper aggregation 

level, and the confidence that may be assigned to the analysis results. 

Therefore, uncertainty analysis is of vital importance to judge the 

credibility of model results. The extent to which results are to be 

trusted is nevertheless contaminated by many kinds of errors, e.g., due 

to uncertainty of system perception, by insufficient and erroneous 

data, and in model structure and computer programs. These errors may 

propagate through the model (see Clifford, 1973) that yield unexpected 

results of dubious credibility for, among others, policy makers. 

The present study cannot provide a complete overview of the 

advantages and pitfalls of systems analysis to policy making. The scope 

has been restricted to our natural environment. The reasons are the 

current policy relevance, the scientifically challenging complex 

features and the uncertainty involved in modeling parts of the 

consequences of human activities on the environmental system. 

1.3 ENVIRONMENTAL WDELS FOR POLICY APPLICATIONS 

The attention addressed to our natural environment has increased 

over the past years due to the exhaustion of various natural resources, 

the damage to forests and lakes by acid rain, the legal and illegal 



dumping of chemical waste, the controversy about nuclear power and 

nuclear waste disposal, the nuclear power plant failures at Harrisburg 

(U.S.A) and at Chernobyl (USSR), the desertification in Africa and 

deforestation in tropical forests, and, finally, the recently projected 

changes in global climate. The immediate cause of these environmental 

and resource problems is the uncompensated social costs associated with 

the use of ecological systems for socioeconomic production and 

consumption activities. 

The many interacting systems that lead to the decrease of the 

vitality of environmental systems can be treated in a mono-disciulinarn 

way provided that the temporal scale is short or the spatial scale is 

small, and otherwise should be approached in a multi-disciulinarv way 

(see also Braat and van Lierop, 1987a, p. 8). Multi-disciplinary 

approaches to environmental systems have led to inte~rated 

environmental modeling (see Brouwer, 1987 for an overview). The 

validation of environmental damage (Opschoor, 1974) and the modeling of 

integrated economic and ecological system processes has in the past 

years received great attention (see also Nijkamp and Opschoor, 1977; 

Lakshmanan and Ratick, 1980; Arntzen et al., 1981; Brouwer et al., 

1983; Hafkamp, 1984; Brouwer, 1987). An  integrated approach to 

environmental model building called Ada~tive Environmental Assessment 

(AEA) has been introduced by Holling (1978) and Walters (1986) which 

aims at bringing together different disciplines for brief periods of 

intensive workshop interactions. Such modeline. workshops consist of a 

team of mathematical modelers, research scientists from various 

disciplinary backgrounds, resource managers with experience in 

monitoring and regulation, and finally policy analysts or decision 

makers with a broad responsibility for defining management objectives 

and options. 

In recent years there has been a tendency to provide the policy 

maker with information management systems (see also Nijkamp and 

Rietveld, 1984), integrating data, models and expert opinions about the 

natural environmental system and its environment. An  example of an 

approach towards such a model (Braat et al., 1987) on a European scale 

deals with natural ecosystems, fisheries, forestry, agriculture, air- 

and water pollution, and economic and energetic processes. The 

validation of environmental policy through user friendly computer 

programs, where results are displayed graphically and user inputs are 



driven by simple menus, is another recent development. The Regional 

Acidification INformation and Simulation (RAINS) model, which is 

developed at the International Institute for Applied Systems Analysis 

(IIASA), is such a tool which integrates modules that compute European 

sulfur and nitrogen emissions with modules evaluating deposition, 

forest soil and surface water acidification (Hettelingh and Hordijk, 

1986; Alcamo et al., 1987; Hettelingh and Hordijk, 1987). Because the 

present study draws on parts of RAINS, a detailed review of this 

deterministic simulation model will be given in this study. 

The usage of this kind of models, and concepts by policy makers, is 

holistic in nature; the models are not used to simultaneously evaluate 

all socioeconomic and environmental mechanistic consequences, but are 

used to evaluate pre-targeted criteria like 'Lowest Admissible Emission 

Rates' (LAES) or 'Prevention of Significant Deterioration' (PSD)- 

levels (see also Wetstone and Rosencranz, 1983 for policy legislation 

in the U.S and Europe regarding acidification). In March 1984, 

Ministries of nine countries agreed on reducing sulfur-dioxide 

emissions by 30% in 1993 based on national emissions in 1980 (see also 

Hordijk, 1986). This kind of policy thresholds is generally called 

target loads which are used in tarneted volicv stratenies aimed at 

goals or constraints implied by so called indicators (see Batterman 

aJ., 1988, p.543). Indicators may represent economic factors, like 

'Reasonably Available Control Technology' (RACT) and investment costs, 

or be based on environmental impacts, i.e dose-response functions (see 

also Opschoor, 1974). The concept of impact indicators (Munn, 1975) as 

an aggregate measure of the condition of an environmental subsystem has 

become increasingly operational to policy making (see also Vos et al., 

1986). It is clear that target loads that are based on technical or 

economic considerations, may still cause unacceptable damage to the 

environment. Therefore, the highest load that will not cause chemical 

changes leading to long-term harmful effects on the most sensitive 

ecological systems (i.e. critical loads) are becoming increasingly 

important for evaluating acid deposition effects (Nilsson, 1986). 

The concept of indicators in general and critical loads in 

particular is still controversial. It categorizes the quality or state 

of parts of our environmental system, without the need to fully 
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Figure 1.2 The sensitivity of aquatic organisms to a lowered pH in 
fresh waters (Source: Ministry of Agriculture of Sweden, 1982). 



understand causes and effects of all systems that may be directly and 

indirectly involved. It is a holistic approach to systems in which the 

indicator is assumed to represent the state of the system as a result 

of the relations to other system elements. An example of this kind of 

categorization of the effect of watershed acidification is shown in 

Figure 1.2. In Figure 1.2 the extent of acidification of a watershed is 

described in this Figure by pH levels (see chapter 3, equation 3.4). At 

different pH levels, the extent of the damage to the flora and fauna in 

watersheds is shown to increase. 

Without the understanding of systems, however, managers and policy 

makers would probably not be able to face the increasing demands to 

produce quantitative predictions of environmental responses to 

disturbances, such as air pollution. 

1.4 SCOPE AHD OUTLINE OF THE STUDY 

This study will identify key factors determining watershed responses 

to acid (sulfur) deposition, in different regions. The study aims at 

1. providing a method of defining a region such that 

environmental policy directed at alleviating watershed 

acidification, becomes more suited for large scale management, 

of surface water quality 

2. depicting regional characteristics that allow for the usage of 

a less detailed, thus more aggregated model, and 

3. providing an operational concept of critical loads for policy 

insight into watershed quality as a function of the spatial 

zoning of watersheds. 

To keep the study manageable, an existing model has been used to 

illustrate the above goals. The model that has been used predicts 

acidification of surface water, i.e. lakes and watersheds. The model is 

part of the Regional Acidification, INformation and Simulation (RAINS) 

model, developed at the International Institute for Applied Systems 

Analysis (IIASA), and is therefore called the RAINS Lake Model. 

ad 1. Regionalization or zoning, as pointed out earlier, often 



entails some kind of aggregation. This aggregation may often not be 

suited for the problem that is investigated; a region contains many 

different kinds of lakes with respect to the response to acid 

deposition. The application to a region of a mechanistic4 description 

of the acidification of one lake for the purpose of policy making, 

e.g., evaluating the state of acidification as a function of critical 

loads, may lead to biased conclusions with respect to some of the lakes 

in that region. Rather than investigating the average state of lake 

acidification in a region, policy should be focussed on the state of 

lake classes within that region. 

A new method of flexible zoninq is introduced that allows for the 

policy assessment of environmental systems in regions. 

The method is aimed at reducing the interdependency between 

environmental model predictions and the choice of the zoning system. 

ad 2. The treatment of many lakes that are zoned into lake classes, 

e.g. sensitive and insensitive lakes, also has consequences for the 

aggregation level of the model used to describe regional lake 

acidification. The necessity to mechanistically approach sets of lake 

acidification systems, depends on the uncertainty of model predictions 

as a function of zonal system components, viz., soil characteristics 

and deposition patterns. The correspondence between metamodel response 

and the RAINS Lake Model predictions is used to investigate the 

homogeneity of lakes of which the acidity is simulated within a zone. 

ad 3. The policy exercise of matching regional target and critical 

loads deterministically may, as mentioned earlier, nevertheless lead to 

damage to parts of the environmental system e.g., particular lake 

classes. A more probabilistic approach towards the estimation of sets 

of lakes under risk will be proposed in this study as an alternative. 

The questions to be addressed in the study are, as mentioned before, 

illustrated using the RAINS Lake Model. The complexity of the RAINS 

Lake Model, the scarcity of input data and the importance that will be 

attributed to uncertainty are reasons for Monte Carlo Simulation to be 

used throughout this study. 

The study contains 7 chapters. The first three chapters review the 

4 A  mechanistic model is the result of a reductionist approach to 
systems (see section 1.1). 



field of environmental modeling in general, the application of 

uncertainty analysis techniques, and watershed quality modeling in 

particular. The following three chapters consist of the design and 

results of the investigation to quantify the uncertainty aspects of the 

regional RAINS Lake Module. The last chapter summarizes the study. 

The first chapter has introduced the nature of the study and 

relevant terminology, although some terms (e.g. uncertainty, Monte 

Carlo) are treated in more detail in the following chapters. Chapter 2 

gives a review of techniques that have recently been developed in the 

field of environmental modeling, while also approaches related to 

environmental model structures are considered. Then, attention is given 

to the uncertainty involved in modeling an environmental system. Next, 

modeling requirements with respect to input data and the need for model 

calibration as a function of available data, in relation to the Monte 

Carlo method is treated. These modeling requirements are also related 

to the potential that the model output provides to policy makers. This 

chapter concludes the part of the study where environmental modeling is 

treated from a systems theoretical point of view. 

Chapter 3 explains the processes in the soil and lake, due to acid 

deposition, that lead to lake acidification . An overview of state-of- 

the-art lake acidification modeling in general and the RAINS Lake 

Module in particular is presented next. 

Chapter 4 presents the research design and the results of applying 

the RAINS Lake Module on predefined regions in Scandinavia using 

standard emission scenarios from RAINS through 2040. It will be shown 

that the calibration methods needed to obtain behavioral significance 

of the model applied to a particular zoning system, i.e. predefined 

regions, may lead to model predictions that are less appropriate for 

targeted policies. 

In chapter 5 the method of flexible zoning is developed and 

illustrated to distinguish between lake classes within a region. The 

use of mechanistic vs. metamodels is treated in the light of model 

uncertainties and lake classes. It is shown that the concept of 

critical loads can be operationalized on the basis of lake classes 

within a region under consideration. 

Chapter 6 describes the results of applying the method of flexible 

zoning on Dutch watershed data. The Dutch area is overlaid by four acid 

deposition level classes within which a total of eight watershed zones 



are distinguished. Model predictions are obtained for each of these 

watershed zones in combination with the acid deposition level classes 

just mentioned and in combination with critical loadings. 

Finally, Chapter 7, evaluates the study and its potential: the early 

inclusion of uncertainty in the application of a model to regional 

systems improves the understanding of the compatibility between model 

predictions, the choice of regional boundaries and available data. 
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2. ISSUES IN ENVIRONMENTAL kDDELIHG 

2.1 INTRODUCTION 

Environmental modeling is a subset of modeling in general. Like in 

any other effort to represent a system by means of a formal model, 

environmental modeling is concerned with the analysis and 

identification of relevant systems processes. Our natural environment 

is, however, not isolated from the systems in which daily life is 

taking a course, so that not one single system needs to be understood, 

but many interacting ones. Models, including intearated models are, 

according to Mihram (1972, p.213) built in five stages: 

1. Systems analysis, which isolates a sufficient set of state 

variables to represent the system and the interactions among 

the elements of the system. 

2. Model synthesis, which includes the delineation of the 

necessary state variables, entities, attributes, relationships 

and input data. It also requires the necessary computer 

routines to be written. 

3. Model verification, which consists of comparisons of the 

model's behavior and the behavior that was intended in the 

programing structure. This stage consists of the correction of 

the model syntax as a result of experiments (see also Kleijnen, 

1974, p. 75). For example, checking if the sign ( -  or +)  of the 

model response, under varying inputs, corresponds to what is 

expected, is a typical verification experiment. 

4. Model validation, which consists of comparisons of the 

responses of the model, that was verified in stage 3, to 

observations taken on the modeled system. 

5. Model analysis, which consists of the experiments with the 

verified (stage 3) and the validated (stage 4) model to address 

those questions which initially prompted the construction of 

the model. 

The multi-disciplinary nature and the large temporal and spatial 



scales of environmental systems make the distinction of these stages 

dependent on the hierarchical arrangement of a system (see chapter 1). 

The definition, for example, of boundaries of an environmental system 

is heavily dependent on one's view of the way in which elements of the 

nature interact, i.e. the causal relationshi~s within the natural 

system. Although synthesis and verification of the model, that is 

developed within the frame of these boundaries, may be successful, 

validation may remain a problem due to causalities that were excluded 

as a consequence of the boundaries chosen. An additional problem is the 

independence between data sampling setups, also referred to as 

monitorina Droarams, and the input requirements of models that may even 

have been non-existent at the time when the data were collected. 

Finally the time and spatial scale at which processes of environmental 

systems take place are often too broad to allow for validation by means 

of data collected at a few geographic locations at a particular point 

in time (see Brouwer, 1987). In general, there is a considerable 

discrepancy between the data needed to validate environmental models 

and the available data. This also has consequences for the stage of 

model analysis. Therefore, in environmental modeling the need for 

assuring that model predictions resemble observed patterns, is becoming 

an important factor in the validation stage. This, for example, is done 

by means of adaptation of parameter values in an iterative sequence of 

model runs. This adaptation exercise is often referred to as 

calibration (see also Kleijnen, 1987, p.186). More attention is also 

needed for calibration in relation to the treatment of uncertainties 

in model parameters and in model relations, and of errors in field data 

measurements (see also Beck, 1983). 

This chapter will summarize some recent concepts of environmental 

model structures and present some examples of recent environmental 

models. Much attention will be given to the RAINS model because of its 

relevance for this study. The last three sections of this chapter will 

be aimed at familiarizing the reader with the analysis of model 

uncertainties and the related topics of calibration and stochasticity. 

Since stochasticity of model behavior and model response is closely 

related to Monte carlo Simulation, a rather detailed statistical expose 

of random sampling techniques is included in the last section of this 

chapter. 



2.2 MODEL STRUCTURE: INTEGRATED ENVIRONMENTAL MODELING 

In chapter 1 an overview was given of different causes that have 

recently led to increased focus on our natural environment. The global 

changes of our biosphere, e.g. climatic change, has urged the need for 

a simultaneous treatment of causes and effects; the human activities 

with respect to industrial and resource development all are interacting 

causes of the depletion of the environmental quality. The effects vary 

from rather local household waste disposal problems to global changes, 

e.g. damage to the ozone layer by chlorofluorocarbons set free by 

dumped refrigerators. The simultaneous treatment of linked processes in 

different systems has therefore increasingly become a tool to analyze 

environmental changes. 

Following Hafkamp (1984, p. 25) an Intearated Environmental Model 

(IEM) is defined as a type of model in which a areat diversity of real- 

world phenomena. including those related to the natural environment, 

and their inter-de~endencies are represented simultaneouslv. According 

to Hafkamp (1984, p. 2 5 ) ,  an IEM may encompass the modeling of: 

1. environmental impacts, inter alia due to air pollution (e.g. 

acid rain as result of sulfur and nitrogen compounds), solid 

and toxic waste; 

2. ecoloaical systems: terrestrial and marine ecosystems, 

predator-prey systems etc.; 

3. resources management: exploitation of energy sources (i.e. 

coal, oil, gas), forests; 

4. economic systems: macro, meso, micro scale systems; 

5. social and political systems: social layers, activity pattern 

(e.g. consumer organizations), unemployment rates; 

6. transportation systems: (rai1)road networks, airport and harbor 

facilities; 

7. demographic developments: age structure, educational profiles. 

In general IEMs are characterized by a multi-disciplinary approach 

to relevant phenomena of the natural environment (Brouwer, 1987, p.11). 



Figure 2.1 IEM modules representing parts of the real world 
system. N represents the set of natural environmental systems. E 
represents the set of other systems. M1, M11 and M12 are modules of 
the, as yet not represented, model M which controls the relationships 
between the modules. 



Linked components o f  d i f f e r e n t  subsystems, e  . g .  t h e  seven examples 

l i s t e d  above, can  be modeled by l i n k i n g  v a r i o u s  sub-models, c a l l e d  

modules. A module w i l l  be i n t e r p r e t e d  a s  a  s e t  of i n t r a - r e l a t e d ,  o f t e n  

mono-d isc ip l inary  o r i e n t e d ,  v a r i a b l e s  (Brouwer, 1987, p . ,  t h a t  

r e p r e s e n t  phenomena of a  subsystem and t h a t  a r e  i n t e r - r e l a t e d  t o  

v a r i a b l e s  of ano ther  module. I n  an  IEM, one of  t h e  modules w i l l  be 

r e p r e s e n t i n g  a  p a r t  of  t h e  n a t u r a l  env i ronment .  A p i c t o r i a l  

r e p r e s e n t a t i o n ,  of  an IEM i s  g iven  i n  F igu re  2.1,  which d i s p l a y s  t h e  

r e l a t i o n  between a  model and i t s  sub-models; computat ions o f  M 1  can on ly  

be performed w i th  i n p u t s  prov ided by M l l  and M12. Impor tant  f o r  t h e  

system's  unders tand ing  and t h e  model d e s i g n  i s  t h e  way by which t h e  

modules a r e  l i n k e d .  The l i n k i n g  s t r u c t u r e  of  such, o f t e n  mono- 

d i s c i p l i n a r y ,  modules may be:  

1. h o r i z o n t a l :  a l l  d i s c i p l i n e s  invo lved  a r e  regarded  a s  e q u a l  

c o n s t i t u e n t s  f o r  b u i l d i n g  a  m u l t i - d i s c i p l i n a r y  model 

(Nijkamp, 1987, p . 3 0 ) ,  

2.  v e r t i c a l :  one d i s c i p l i n e  is  regarded  a s  s u p e r i o r  t o  t h e  

o t h e r s ,  s o  t h a t  t h e  r e l a t i o n s h i p  from t h e  dominant 

d i s c i p l i n e  t o  t h e  remaining ones r e c e i v e  s p e c i a l  a t t e n t i o n  

(Nijkamp, 1987, p .  3 0 ) ,  

3. s a t e l l i t e :  a  mix ture of a  h o r i z o n t a l  and v e r t i c a l  s t r u c t u r e  

(F igu re  2 . 2 ) ,  o rgan ized  around a  c o r e  module (Brouwer, 1987, 

pp. 79-80) 

4 .  m u l t i - l a y e r :  more l a y e r s  r e p r e s e n t  t h e  same s e t  of  

subsystems, b u t  t h e  d i s c i p l i n e s  by which t h e  subsystems a r e  

modeled va ry  amongst t h e  l a y e r s  (Hafkamp, 1984, p .  6 9 ) .  

Thus, i n t r a - l a y e r  r e l a t i o n s  between s i m i l a r  modules of  each 

l a y e r ,  va ry  from l a y e r  t o  l a y e r .  I n t e r - l a y e r  r e l a t i o n s h i p s  

ensure  m u l t i - d i s c i p l i n a r y  r e l a t i o n s  between t h e  modules t h a t  

r e p r e s e n t  t h e  subsystems. An example of  a  t r i p l e  l a y e r  

approach (Hafkamp, 1984, p .77 )  i s  p r e s e n t e d  i n  F igu re  2 .3 .  

I n  r e c e n t  y e a r s ,  many IEMs have been c o n s t r u c t e d .  An overview of 

IEMs can be found i n  Hafkamp (1984) ,  Brouwer (1987) and i n  B raa t  and van 

L i e r o p  (1987b) ,  and hence not  reviewed i n  d e t a i l  h e r e .  To avo id  t o o  

vague an unders tand ing  of  t h e  concept of  i n t e g r a t e d  modeling, t h r e e  

r e c e n t  examples a r e  p r e s e n t e d  below, v i z . ,  t h e  Modeling and In fo rmat ion  

System f o r  Environmental  P o l i c y  ( s e e  a l s o  H e t t e l i n g h  e t  a l . ,  1 9 8 5 ) ,  



crossdisciplinary 

Figure 2.2 A satellite structure for a cross disciplinary model 
(source: Nijkamp, 1987, p.31) 



Figure 2.3 A simple version of the Triple Layer Model obtained by 
multi-layer projection in three layers (source: Hafkamp, 1984, p. 77). 



the Integrated Regional Environmental Model for Physical Planning 

(Arntzen et al., 1981; Brouwer et al., 1983), both operational on 

respectively a national and regional scale in the Netherlands, and the 

Regional Acidification, INformation and Simulation model, RAINS 

(Hettelingh and Hordijk, 1986; Alcamo et al., 1987), which describes 

and predicts European acidification. The similarity between the models 

is the chained treatment of the cause and effects of environmental 

stress. Dissimilarities occur with respect to the way in which the 

models are driven (e.g. where does the model start), and to its 

transparency for policy purposes (e.g. user-friendliness; prediction 

confidence) . 

The Modelin9 and Information System for Environmental Policy (RIM) 

The RIM is a Dutch model that integrates economic trends and 

constraints, processes of technological change and innovation, 

pollution abatement policy, and population dynamics whilst it provides 

input to long term dynamics of ecological processes. The general 

structure is presented in Figure 2.4. 

The RIM model is based on use of extended input-output tables. The 

major addition to the traditional analysis of pollution via input- 

output tables (e.g. Leontief, 1970), is the detailed description of 

economic and energy flows into the tables. By relating emission factors 

to these flows of energy products and other goods, the extended input- 

output tables enable the construction of a detailed mass balance table 

for every pollutant. The tables are constructed on the basis of 

official Dutch economic projections, enabling the estimation of input 

output tables for all the target years encompassed by the economic 

projections. 

If the structure of the model were to be defined in terms of the 

definitions presented above, the vertical structure applies because of 

the superiority of the projections of the economic system as compared 

to other systems involved in driving the model. When not so much the 

model driver, but rather the organization of the input-output 

relationships serve as basis to define the model structure, then the 



Figure 2.4 The general structure of RIM 

Economy 
Energy 
Transportation 
Technology 

Basic data 

Scenarios 

A A 

- 
d 

Environmental 

l nformation 
system Model 

'I 

Environmental 
policy projections 



multi layer structure may apply as well; the great many tables, i.e. 

economic Input-Output tables, emission Input-Output tables of different 

pollutants may be layered on top of one another. 

The Integrated Renional Environmental Model for Physical Plannine. (GMM) 

The purpose of the GMM was to simultaneously analyze socio-economic 

change, spatial planning and effects on the (regional) natural 

environment, triggered by a policy intention to transform a small water 

area into land. A case study (Arntzen et al., 1981; Brouwer et al., 

1983) was carried out for a small region in the southern part of the 

Netherlands. 

Five modules were designed (Figure 2.5): 

1. The demonra~hic module describes the composition and 

development of the population. 

2. The economic module quantifies production, land use and air 

pollution. The module is driven by a consistent, interrelated 

plan of the future in which employment is the crucial variable. 

The employment variable is a function of the population 

composition, derived in the demographic module. 

3. The facilities module quantifies recreation, water use, waste, 

housing and air and water pollution caused by households. This 

module is linked to the demographic module through total 

population, to the economic module through employment and to 

the ecological module through the recreation. 

4. The ecolonical module identifies the main homogeneous natural 

environmental regions, called geotones. Two such geotones were 

discerned, one of which was treated in a purely qualitative way 

because of lacking data. The development of the nature is a 

function of stress incurred by recreation, households and 

economic activities. 

5. The intermediate module contains the dispersion module of 

sulfur-dioxide in the air using a Gaussian plume model, and 

takes care of the bookkeeping to balance land supply with the 

demand. 
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Figure 2.5 The structure of the modulee of the GMM. 



The GMM is driven by the demographic developments that feed the 

economic scenarios. 

Because of the importance of the demographic module, the vertical 

structure seems the most appropriate definition, as far as the model 

driver is concerned. The central position of the economic module would 

also allow for the satellite structure to be used to describe the GMM 

setup. 

A definition of the structure of a model, as can be seen from the 

examples given above regarding the RIM and the GMM, depends on the way 

in which the model and its functional relationship is viewed. The main 

advantage, as pointed out earlier, of defining a priori model- 

structures is the resulting frame of thoughts, provided to an 

investigator of a system. However in terms of model applicability it 

seems that a ~r ior i  concepts of model structure are less important than 

the stage of validation, verification and model analysis (section 2.1), 

which directly affect model results. 

Finally it can be remarked that both models are deterministic, have 

not yet been subjected to uncertainty analysis, whilst their 

utilization is dependent on qualified investigators in the sense that 

neither the GMM nor the RIM are provided with user-friendly interfaces. 

The RAINS model for the prediction of European acidification 

The RAINS model (Figure 2.6) is in many respects on top of the 

current mainstream of the development of IEM's; it uses deterministic 

as well as stochastic techniques including calibration, it is highly 

interactive and within reach of many types of users, and many of its 

modules have been made subject to sensitivity and uncertainty analysis 

(Hettelingh and Hordijk, 1986; Alcamo et al., 1987; Hettelingh and 

Hordijk, 1987). In the following the description of RAINS will be 

restricted to its main features. 



Choose r strategy . Official energy pathway 1 
Natural gar scenario 

Maximal feasible reduction 
Dlsplay energy demand 

User defined strategies and supply structure per 
country between 1960 and 2000 

Deflne Deffnc abatement strategy, 

apply flue gar derulfur~zation. 
fuel switchang, combustion 
modif~cation. etc 

De f~ne  target 
deposition levels 

OPTIMIZATION 

Store resulting 

Display deposition 

between 1960 and 2040 

, acidification per country 
or group of countries 
between 1960 and 2040 

RAINS LAKE MODULE 1- 
Display lake 
acidification in Finland. 
S d e n  or Norway 
between 1960 and 2040 

Display forests , coverage at risk + in Europe 
between 1960 and 2040 

Figure 2.6 A simplified flowchart representation of the Regional 
Acidification, INformation and Simulation (RAINS) model. 



The subsystems that have been modeled and linked in RAINS are (1) the 

energetic5 (2) the atmospheric transport (3) the soil acidification (4) 

the direct forest impacts of SO2 concentrations and (5) the lake 

acidification system. The integrated treatment of causes and effects by 

RAINS consists of a detailed description and prediction of fuel 

combustion in the European countries (causes) and the effects on 

European forest soils and Scandinavian lakes. The combustion of many 

fuel types leads to the emission of sulfur and nitrogen oxides of 

which the dispersion over Europe is simulated in RAINS by means of a 

source-receptor matrix. Such a matrix describes the deposition anywhere 

in Europe due to emissions in European countries. The matrix has been 

derived from an atmospheric transport model (Eliassen and Saltbones, 

1983). Such a model takes the non linear relationships into account 

between stack heights, atmospheric mixing layers, wind fields and many 

other atmospheric processes. 

The effects submodules of RAINS are integrated models as well, e.g. 

the soil and lake acidification modules describe different systems like 

water flows over the surface of, and within different layers of the 

soil. In each soil-layer chemical reactions are simulated between 

deposited acid and soil-minerals. RAINS thus integrates large scale, 

macro processes (e.g country emissions, depositions) with small scale, 

micro processes (e.g. depletion of soil minerals by acid deposition). 

The problem in this kind of macro and micro process integration is how 

to make large scale predictions that are based on micro processes. As 

mentioned earlier the RAINS Lake Acidification Module is used to 

investigate this problem (chapter 3 and following). 

Besides the various scales at which the RAINS submodels operate, 

also the scales at which RAINS results are displayed vary. The spatial 

scale of the RAINS model is Europe, varying from approximately 4250 km2 

large grid squares in the deposition and soil acidification module, 14 

so-called lake regions in the lake acidification module, to 27 

countries in the energy-emission computation module. Its temporal scale 

covers the period from 1960 to 2040. 

 he economic system has not been modeled explicitly. The modeling 
of European energy demand and supply structure is based on official 
governmental projections. 



The RAINS computation modes 

The RAINS model (Hettelingh and Hordijk, 1986; Alcamo et al., 1987) 

basically performs its computations in three steps (see Figure 2.6 for 

a more detailed partitioning): 

1. Enernv use patterns, classified by 8 fuel types and 6 energy 

sectors, are the bases to compute national emissions of sulfur 

and nitrogen oxides. Users may define different emission 

patterns by applying pollution abatement techniques, of which 

also the costs are evaluated. The module provides graphical and 

tabular displays of user defined pollution abatement 

strategies. 

2. Deposition patterns of sulfur and nitrogen are computed by 

multiplying country emissions by a source receptor matrix 

(Eliassen and Saltbones, 1983). 

3. Environmental effects of sulfur are computed as a function of 

the deposition in European forest soils and Northern European 

lake reaions. Also direct forest impacts of sulfur air 

concentrations are predicted. 

RAINS consists of computational modules as well as display modules. 

The soil and lake acidification, for example, can only be displayed 

after translating sulfur deposition (glm2 lyr) in a measure for acidity, 

the pH (see chapter 3). 

RAINS is driven in two ways i.e. in a scenario analysis mode and in an 

optimization mode: 

1. scenario analvsis consists of the user definition of sulfur and 

nitrogen abatement strategies as function of scenarios that 

embody the official government predictions of the energy use 

until the year 2000 for all countries throughout Europe, and 

2. optimization consists of the definition of minimum cost 

abatement strateaies subject to a target deposition in a 

geographic location anywhere in Europe (see also Batterman 

d., 1988). 



RAINS used for policy-making 

RAINS is increasingly becoming an important tool for evaluating 

European policy aimed at abating sulfur and nitrogen pollutants. Such 

policies can not be restricted to a local or national scale because of 

the fact that country emissions lead to depositions in other countries. 

Abatement policies, therefore, lead to transboundary alleviation of 

environmental damage. In july 1985 a protocol was added to the 

Convention on Long-Range Transboundary Air Pollution (Economic 

Commission for Europe (ECE), 1985) , signed by 32 countries, the 

European Economic Community (EEC), Canada and the USA, stating that 

sulfur emissions or transboundary fluxes will be reduced by at least 

30% (ECE, 1987) as soon as possible and at the latest by 1993 (using 

1980 levels as the basis for calculation of reductions). Recently a 

similar protocol on nitrogen oxide emission reductions was signed. This 

protocol (ECE, 1988) states that by 1994 emissions of nitrogen oxides 

should not exceed the level of a year, to be chosen by each country, 

before and including 1987. In addition the average emission between 

1987 and 1994 should not exceed the 1987 emission level. 

In february 1989 the ECE "Task Force on Integrated Assessment 

Modelling" (TFIAS) who is coordinating the development of integrated 

assessment modeling in Europe, has recognized RAINS as the only 

regional acidification model that is capable of developing and 

assessing European strategies. The "Working Group on Abatement 

Strategies" , to which the TFIAS reports, has officially recognized 

RAINS as the primary tool to be used by the ECE for developing the new 

sulfur and nitrogen oxides that will succeed the protocols mentioned 

above. 

Some examples of RAINS results 

In the Figures 2.7 through 2.11 examples are presented that 

illustrate the way by which RAINS compares two alternative policy 

strategies. Figure 2.7, displays the deposition pattern of Europe in 

1995 when no abatement is applied. The country emissions causing this 

pattern result from the governmental projections of energy use until 

2000, which is denoted in RAINS as the Official Enerpv Pathways. The 



result of a 30% reduction on 1980 emissions has been used as input into 

RAINS as a strategy called Current Reduction Plans of which the 

deposition in 1995 is displayed in Figure 2.8. It is clear from Figure 

2.8 that the area with depositions of more than 10 glm21yr in central 

Europe is reduced, compared to Figure 2.7. The same area has become 

subject to a deposition in the range of 8.0 to 10 g/m2 lyr. The effects 

for soil acidification of the Current Reduction Plan strategy is shown 

in Figure 2.9. The area with a pH smaller than 4.3 is becoming smaller 

with this strategy as compared to the area with a similar soil pH in 

the Official Energy Pathways over the period from 1985 to 2040. 

Taking into account the delayed response of the nature to changes in 

external stress, the state of lake acidification is displayed in 

Figures 2.10 and 2.11 for 2040. In Figure 2.10 the effect of the 

Current Reduction Plan strategy is shown, while the consequences of 

applying all available technologies in Europe to reduce emissions is 

displayed in Figure 2.11. 

This Maximal Feasible Reduction strategy takes into account what the 

country potential is to invest in pollution abatement equipment. The 

difference between the effect of the two scenarios is a reduction of 

1.8%, leading to about 8.1%, of lakes with a ph lower than 5.3, of 

2.2%, leading to about 16.1%, of lakes with a ph in the range between 

5.3 and 6.3 and an increase with 4%, to about 751, of the lakes with a 

pH higher than 6.3. 

The RAINS Lake Model prediction of lake acidification in northern 

Europe is obtained by using deposition levels of years beyond 1980 as 

input into the model. Additional parameter values needed to run the 

model are the same as those used in the model when it was validated to 

1980 pH measurements. In other words the model was calibrated (see 

section 2.4) in the period from 1960 to 1980 to provide predictions in 

the period 1980 to 2040. The calibration procedure was repeated for 14 

predefined regions in Scandinavia. The confidence to be attributed to 

the model predictions thus is dependent on the accuracy of the 

calibration and may, as pointed out before, be a function of the zoning 

of Scandinavia to 14 subareas. The zoning has led to an aggregation of 

lakes each of which may differ significantly from one another, i.e. 

some may be big and insensitive to acid deposition, others small and 

sensitive. It may very well be that a particular abatement strategy 

leads to only the sensitive lakes to become acidified. 



Legend : 

Figure 2.7 Deposition pattern of Sulfur (g/m2/yr) in 1995 
resulting from country emissions as projected by the governments, 
referred to by RAINS as the 'Official Energy Pathways' 



Legend : 

Figure 2.8 Deposition of Sulfur (g/m2/yr) in 1995 due to country 
commitments to reduce at least 30% of the 1980 emission levels, 
referred to in RAINS as 'Current Reduction Plane'. 
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Figure 2.9 Time evolution of forest soil areas in Europe with a 
pH below 4.3 due to the 'Official Energy Pathways' (solid line) as 
compared to the 'Current Reduction Plan' (dotted line) scenarios. 
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Figure 2.10 State of lake acidification in 14 predefined lake 
regions in 2040 due to the Official Energy Pathways (shaded bars) 
compared to the Current Reduction Plans (white bars). 



Annual - pH 

Figure 2 . 1 1  State of lake acidification in 14 predefined lake 
regions in 2000 due to the Official Energy Pathways (shaded bars) 
compared to the Maximum Feasible Reductions (white bars) 



However, whether a lake is sensitive or not depends on many factors, 

e.g. soil characteristics, precipitation levels, lake depth, catchment 

areas and the location of lakes (e.g., surrounded by a forest). All 

these characteristics combined with particular deposition levels lead 

to differences in the state of lake acidity in a region. The question 

treated in this studv is whether the application of a calibration 

procedure in a fixed zone allows for model predictions with a 

sufficient confidence resolution. In chapter 4 it will be shown that 

this is not generally true. 

Therefore, the success by which a policy is defined that applies to 

many kinds of lakes, rather than an aggregate, is dependent on the 

extent to which the system of watershed acidification has been 

assessed. The assessment, i.e. the application of a model, should 

assure consistency between the calibration conditions and the 

conditions for which predictions are to be made. This studv introduces 

a concept of model use. that relaxes both the calibration effects and 

the model application to predefined 'lake regions'. The concept draws 

for an important part on uncertainty analysis. Therefore much attention 

is paid to uncertainty analysis of the lake model (KaGri et al.. 1986: 

Gardner et al.. 1987; Hettelinnh and Gardner. 1988: Hettelinnh et al., 

1988) in this study. 

Uncertainty analvsis in RAINS 

Besides the importance attributed to uncertainty in the lake module 

mentioned above, also in other modules of RAINS, attention is given to 

uncertainty. 

Uncertainty analysis has been applied to the results of the RAINS 

deposition module (Alcamo and Bartnicki, 1987) by means of the original 

atmospheric transport model (Saltbones and Eliassen, 1983). from which 

the RAINS source receptor matrix was derived. The analysis aims at 

describing the confidence limits of the predicted deposition patterns 

over Europe. The results of the analysis is described in Alcamo and 

Bartnicki (1987), and applied by means of the computation and plot of a 

confidence interval around deposition patterns. In Figure 2.12 the 

light shaded area depicts the confidence range around a 4 g/m21yr 



Figure 2.12 Deposition isoline of 4 g/m21yr including an upper and 
lower uncertainty range, depicted by the light shaded area. The dark 
shaded area represents the deposition of 10 g/m2/yr including its 
uncertainty. 



deposition isoline over Europe in 1995, whereas the darker shadings 

refer to the range around 10 g/mz/yr isolines in that year. 

The effects of optimal emission abatement strategies as function of 

uncertain deposition patterns were investigated in the energy-emissions 

computation routines (Amann, 1989; Batterman and Amann, 1989). It was 

shown that reallocation over European countries of funds to finance 

sulfur abatement could lead to a reduction of the average costs to 

obtain targeted deposition levels in Europe. 

Variables most sensitive for the behavior of the soil acidification 

module were depicted by Posch et al. (1985). 

Uncertainty in IEMs in ~eneral 

In general, the role of uncertainty analysis and the related use of 

stochastic techniques have received rather little attention in the 

development of IEMs. Brouwer (1987, p. 129) mentions, in relation to 

his treatment of statistical and econometric tools to operationalize an 

IEM, that "The lack of reliable information would lead to skepticism 

regarding numerically quantified modeling results. When either 

theoretical knowledge concerning the specification of an IEM is scarce 

and/or when relevant information is not reliable or not available at 

all, graph theoretic methods and qualitative calculus are useful tools 

to analyze the structure of the impacts between variables or to solve a 

set of equations in a qualitative way". Brouwer's (1987) treatment of 

qualitative and quantitative modeling methods is not extended towards 

the use of stochastic simulation to solve complex systems of equations 

and the related concept of uncertainty analysis. 

The lacking treatment of uncertainty analysis in integrated modeling 

is acknowledged by Braat en van Lierop (1987b. p.67) who, with respect 

to uncertainty, note that "Explicit studies which evaluate integrated 

modeling in this respect have not been found among the studies 

surveyed". 



2.3 UNCERTAINTY ANALYSIS 

Errors in data measurements, model structure, model parameter 

estimation and numerical computation methods are a few of the causes 

that affect confidence in model predictions. 

O'Neill (1971) appears to have been the first to directly address 

the contribution of individual parameter errors to the uncertainty in 

model results, using a Monte Carlo approach. Since then the term 

uncertainty, error or sensitivity analysis, applied to systems of the 

natural environment, can be encountered in literature on water quality 

modeling (Beck and van Straten, 1983), long range air pollutant 

transport (see also Alcamo and Bartnicki, 1987), dispersion of radio- 

nuclides (see also Helton and Iman, 1982; Helton et al., 1985; BIOMOVS, 

1988), water acidification (Hornberger and Cosby, 1985a; Hornberger & 

d., 1986; Kamiiri et al., 1986) , and ecosystems (see also Gardner, 

1984; Gardner et al., 1980a, 1980b, 1982, 1987 ; Gardner and O'Neill, 

1981, 1983; O'Neill and Rust, 1979; O'Neill and Gardner, 1979; O'Neill 

et al., 1980, 1982; Goldstein and Ricci, 1981; Bartell et a1.,1983, 

1986, 1988; Wood, 1985). 

There does not seem to be a consistent terminology in the literature 

especially with respect to the distinction between uncertainty and 

sensitivity analysis. Tomovic and Vukobratovic (1972) state that 

"Sensitivity analysis studies the effects of parameter variations on 

the behavior of dynamic systems". This definition is sometimes referred 

to as conventional sensitivity analysis (Beck, 1987, p. 1422). In 

conventional sensitivity analysis the approach is based on the partial 

derivatives of the model structure with respect to individual model 

parameters. The techniques used in conventional sensitivity analysis 

assume that measurement errors do not change the patterns shown by the 

partial derivatives (Gardner et al., 1980a). With the introduction of 

Monte Carlo Methods the need for an infinitesimal approach to parameter 

changes is relaxed. In this context the sensitivity of model 

predictions may be estimated by setting the variance of all parameters 

to 1% of their nominal values (Gardner, 1984). 

Uncertainty and error analysis are used interchangeably in the 

literature. The term error analysis , however, is often used in 

numerical techniques as applied to the accuracy of a function (e.g. 

Runge-Kutta). In uncertainty analysis the influence of the uncertainty, 



i.e the variance, of a parameter on the model response is investigated. 

The relation between sensitivity and uncertainty analysis is formulated 

in the following mathematical representation, borrowed from Janssen 

al. (1988). - 
Let y be a response defined by a time dependent relation of the 

model parameters6 x, .. 4 as follows: 

For the sake of notational simplicity, equation 2.1 does not include 

state variables and input and output disturbances. Assume further that 

each parameter is fixed at a pre-specified real number value. Then the 

variation with respect to the values of xi (i=l,..,k) leads to the 

following distortion of the value of y: 

which in conventional sensitivity analysis is used as a measure for the 

sensitivity of model responses. 

Next, define the absolute deviation of the real value of a parameter xi 

from its approximation xio by means of the mathematical operator D as 

follows : 

Then, by applying D on y, the absolute deviation of y can be written as 

(Abramowitz and Stegun, 1964, p. 14, 3.5.5 ) :  

Dy - (df /dx, ) Dx, + (df ldx, ) Dx, + . . . + (df 1%) Dxl, (2 4 

Assume further that x,,. ..,4 are uncorrelated so that: 

6parameters have unique values during the course of a single model 
run, although these values may be varied from one run to the next. In 
this study, therefore model variables are denoted as parameters when 
there values are sampled once and remain the same during one Monte 
Carlo run. 



where E is the mathematical expectation operator. 

When investigating the influence of parameter distortion around a real 

value a logical next step is to use the mean as parameter estimator, 

changing equation 2.3 to: 

Dx, = mean(x,, ) - xi 

From equation 2.5 and 2.6 now follows, 

var (y)  = (df/dxl)' var(xl)+ ... + (dfld-)' var(5) 

where, 

var(y) = the variance of y 

Equation 2.7 shows that the contribution to the uncertainty, i.e. 

variance, of y on the left hand side of 2.7 is due to the uncertainty 

of xi, i.e var(x,), and to the sensitivity, dfldx,, of xi, (i = 1 . . . 
k) on the right hand side of 2.7. The result is that very sensitive 

parameters with low uncertainties, may still lead to a relatively low 

uncertainty of model response. 

The derivation 2.1 to 2.7 formally only holds if a Taylor expansion 

in 2.4 is allowed. This is only the case for small deviations resulting 

from the operator D. 

Distinction of errors in the modeling process. 

Modeling a system is error prone in several ways. Beck (1987, 

p.1396) developed a frame of reference (Figure 2.13) of uncertainty, 

which he defines as follows: 

". . .uncertainty will be understood in a probabilistic sense, 

encapsulating therefore the variability in the outcome of a random 

event (including the attributes of a biological population) and 

embracing the notions of erroneous assumptions or the distributions of 

errors associated with observed or estimated quantities" (Beck, 1987, 

pp. 1395-1396). 

The explicit introduction of stochasticity in the concept of 



Figure 2.13 Frame of reference for the analysis of uncertainty 
(Source: Beck, 1988, p. 1396) 
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uncertainty overlaps with the definition of Mihram (1972) presented in 

chapter 1 of this study. One of the causes of uncertainty in the prior 

assumptions about the system, as shown in Figure 2.13, is directly 

related to the problem of aznrenation. 

The essence of Beck's treatment of aggregation with respect to water 

quality modeling is that " ..detailed spatial patterns of water 

circulation and equally detailed differentiation of ecological behavior 

described by the more comvlex models would demand experimental 

observations that are simply not technically feasible" (Beck, 1987, p. 

1396). Aggregation is on the one hand related to the temporal, spatial 

and ecological scale of the system, and on the other to the number of 

system compartments distinguished in the model structure. Beck argues 

further that the debate about the approaches to modeling can be shifted 

away from the usual confrontations between the statistical and the 

mechanistic models. This confrontation may be relaxed by the notion 

that complex models may serve the understanding of a system, whereas 

simpler, statistical, models are more suited for the stage of model 

analysis (see section 2.1). Statistical models, sometimes referred to 

as empirical models, comprise response surface methodologies and 

metamodeling whereas mechanistic models (see also Reckhow and Chapra, 

1983, pp. 20) represent the more reductionist view of systems (see 

chapter 1). Several studies have demonstrated the success of such 

aggregation. O'Neill and Rust (1979), for example, showed that non 

linear models with two interacting components could successfully be 

substituted by a single variable model. Cosby et al. (1985b) 

demonstrated that long-term catchment responses to acidic depositions, 

can be represented by a simplified representation of the different 

processes. Gardner et al. (1982) showed that a complex non linear model 

and a relatively simple empirical model could both be used to represent 

the same set of system dynamics. A similar result has been obtained by 

Hettelingh and Gardner (1988) with respect to the RAINS lake model (see 

chapter 4 of this study). In this study the term aggregation will have 

a twofold meaning: 

1. the aggregation of a model structure, to sufficiently describe 

the process of acidification of a set of lakes in a geographic 

region, and 

2. the notion that a geographic region of lakes is in fact an 

aggregation or, more specifically, a unification of many 



different kinds of lakes to one or more classes of lakes with 

similar characteristics. 

The aggregation of a system to compartments is an exercise that also 

lies at the roots of the model structures discussed earlier, i.e. the 

vertical, horizontal, satellite and multi-layer structure. Both the IEM 

structure and the ecological model structures, referred to above, have 

in common that several mechanisms are integrated. In an IEM the 

mechanisms may be related to economic and other 'macro' Drocesses, 

whereas in an ecological model of for example water-systems, more 

detailed 'micro' processes, like water percolation in soils, govern the 

mechanisms. The influence of the model structure on uncertainty is 

however not only restricted to the level of systems representation, 

i.e. macro or micro, but also to the nature of the equations. Model 

structure uncertainty is extremely difficult to quantify in a formal 

manner, such that it can be distinguished from other sources of 

uncertainty. The sources of uncertainty thus often accounted for are 

uncertainties in the initial state of the system, uncertainty in model 

parameter estimates, uncertainty in the observed input disturbances and 

output responses and uncertainties due to unobserved input disturbances 

of the system (Beck, 1987, p.1396; see also O'Neill and Gardner, 1979). 

The major part of methods used to investigate these uncertainties, 

are based on random sampling methods that are very often referred to as 

Monte Carlo. The distinctions made in chapter 1 between Monte Carlo 

methods, Monte Carlo simulation and stochastic simulation are very 

scarcely elaborated in the reported applications of uncertainty 

analysis. Other methods, mentioned in the literature applying 

uncertainty analysis, are the already mentioned (chapter 1) analytical 

approach, the Fourier Amplitude Sensitivity Test (FAST) (see also 

Cukier et al., 1978; McRae et al., 1982; Liepmann and Stephanopoulos, 

1985; Uliasz, 1985), and methods based on possibility theory (see also 

Keesman and van Straten, 1987). In the FAST method output variables of 

a model are Fourier analyzed. The Fourier coefficients represent an 

average of the output variables over the uncertainties (variations) of 

all the parameters (Cukier et al., 1978, p.4). In the methods based on 

possibility theory model parameters leading to a desired model behavior 

are chosen on the basis of a definition of a membership function. 

Keesman and van Straten (1987) apply possibility theory in combination 



with Monte Carlo analysis, which method is referred to as the Modified 

Monte Carlo-Set Theoretic Method, to reflect model as well as data 

uncertainty in model predictions. The method assumes that there is a 

gradually diminishing possibility to find the true system behavior 

further away from an observed data point, which allows for the 

definition of membership function values to each data-point. Next, a 

criterion function may be defined which can be optimized. A parameter 

vector can for example be chosen that maximizes the lowest membership 

function value over the time-series of data-points. The resulting model 

response is finally compared to predefined system bounds (see Keesman 

and van Straten, 1987, pp. 299-301). 

An overview of uncertainty methods can be found in Janssen et al. 

(1988) . In the vast majority of applications in environmental 

modeling, sensitivity and uncertainty analysis is related to Monte 

Carlo methods. 

Before presenting a more formal description of sampling methods used 

in Monte Carlo simulation, first its application in the stage of model 

synthesis and model verification is treated in the next section. This 

part of model identification is often referred to as calibration. 

2.4 CALIBRATION AND MONTE CARLO SIMULATION 

The aim of calibration is to test a model structure, representing a 

given system, under uncertainty. This method may involve the recursive 

adaptation of model parameters until the comparison between the model 

outputs and a set of numbers, like measurements, fulfills a predefined 

criterion (See also Fedra, 1983), e.g. a non-significant difference 

between the cumulative distribution of model predictions and 

measurements. Kleijnen (1987, p.337) restricts the term calibration to 

the following methodology: model parameters are quantified from, say, 

N1 number of runs with the model, whereas, say, N2 number of other runs 

are executed to validate (see section 2.1) the calibrated model. Beck 

(1983, 1987) extends the concept of calibration to the investigation af 

the appropriateness of a model structure to be capable of describing 

measured system's behavior. 



The methodolog ies of c a l i b r a t i o n ,  d i s c u s s e d  i n  t h e  l i t e r a t u r e ,  have 

i n  common t h a t  they  a r e  based on Monte C a r l o  s i m u l a t i o n  and /o r  t h a t  a  

r e c u r s i v e  procedure i s  i nvo lved .  I n  t h e  development of  t h e  e c o l o g i c a l  

module of  t h e  GMM, f o r  example, t h e  a p p r o p r i a t e n e s s  of model parameters  

was s o l e l y  r e c u r s i v e l y  adap ted  u n t i l  a  reasonab le ,  n o t  s t a t i s t i c a l l y  

t e s t e d ,  r e p r e s e n t a t i o n  of  t h e  r e a l  world was o b t a i n e d .  

No c l a s s i f i c a t i o n  of c a l i b r a t i o n  methods i n  env i ronmenta l  model ing 

h a s  been encoun te red  i n  t h e  l i t e r a t u r e .  I t  appears  t h a t  most of  t h e  

concep ts  encountered,  a r e  based on a n  approach a p p l i e d  i n  r e s e a r c h  by 

Young (1978) , Hornberger and Spear (1980; 1981) , Spear and Hornberger 

(1980) and Young (1983) ,  t h a t  i s  aimed a t  a n a l y z i n g  model u n c e r t a i n t y ,  

system i d e n t i f i c a t i o n  and model p r e d i c t i o n .  Th is  method, o f t e n  c a l l e d  

r e q i o n a l i z e d  s e n s i t i v i t v  a n a l y s i s  which approach i s  deno ted  by Beck 

(1987) a s  t h e  Hornberger-Spear-Young (HSY) a lgo r i thm,  and t h e  r e s u l t i n g  

approaches t h a t  a r e  based on t h e  HSY a l g o r i t h m  a r e  d i s c u s s e d  below. 

Req iona l i zed  s e n s i t i v i t v  a n a l y s i s .  

The purpose of r e g i o n a l i z e d  s e n s i t i v i t y  a n a l y s i s  i s  t o  g e n e r a t e  a  

s e t  of model parameter  v e c t o r s  from r e p e a t e d  samples t h a t  l e a d s  t o  a  

p a r t i c u l a r  model response,  t h a t  r e f l e c t s  t h e  observed system behav io r ,  

f u r t h e r  r e f e r r e d  t o  a s  t h e  d e s i r e d  model behav io r  B. Le t  t h e  model 

response t h a t  does  n o t  r e f l e c t  t h e  observed system behav io r  be non-B. 

For t h i s  purpose Monte C a r l o  s i m u l a t i o n  i s  a p p l i e d  t o  t h e  model. Each 

run  u s e s  ano ther  sample of  t h e  model pa ramete rs .  The r e s u l t  of t h e  

method i s  a s e t  of  pa ramete rs  t h a t  g i v e s  r i s e  t o  t h e  d e s i r e d  model 

behav io r  (B) and a complementary s e t  (non-B) of pa ramete rs  t h a t  does  no t  

(F igu re  2 .14)  . The mathemat ica l  fo rmu la t ion  p r e s e n t e d  below i s  t a k e n  

from Young (1983, pp.75-76) .  Th is  fo rmu la t ion  i s  chosen t o  be a b l e  t o  

more s p e c i f i c a l l y  d e s c r i b e  t h e  method of r e g i o n a l  s e n s i t i v i t y  a n a l y s i s  

i n  t h i s  s t u d y .  The method can however a l s o  be a p p l i e d  t o  o t h e r  c l a s s e s  

of f u n c t i o n s  and w i th  d i s c r e t e  t ime d a t a .  

Cons ider  a  r e p r e s e n t a t i o n  of  a  g e n e r a l  c l a s s  o f  systems by a  non- 

l i n e a r ,  s t a t e  space  d i f f e r e n t i a l  e q u a t i o n  i n  con t inuous  t ime,  a s  

p r e s e n t e d  i n  e q u a t i o n  2 .8  
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where, 

t = time 

x = [x1,x2, ... ,x,IT is an n-dimensional vector of state variables 

which describe the system behavior in the "state spacet'. 

a = [a1 ,aZ, . . . ,a ] is a q-dimensional vector of (possibly time- 
q 

dependent) parameters or coefficients that characterize the 

system in the state space. 

pc = [pl ,p2, . . . ,pmIT is an m-dimensional "control input" vector. 

pd = [dl ,d2, . . . ,dl I T  is an 1-dimensional vector of measurable 

(exogenous) but uncontrollable disturbances which affect the system 

U = [ul ,uz, . . . ,unIT is an n-dimensional vector of stochastic 

disturbances whose statistical properties may or may not be known, 

depending on the level of a priori information available about the 

system. 

f -  a nominally nonlinear and non-stationary vector function 

reflecting the idea that badly defined systems will, in general, 

exhibit nonlinear and possibly changing behavioral patterns. Since 

many physical relationships are stated more naturally in continuous 

time, a continuous time formulation has been chosen. 

The approach consists of evaluating the model behavior for different 

vector functions f with the associated parameter vector a which is 

represented as the probability distribution over the complete range of, 

supposedly, possible values of the coefficients that compose the 

vector. The approach should also allow for the input uncertainty, U, to 

represent disturbances to the system. In addition it may be desirable 

to consider the model behavior for different deterministic inputs pC 

and pd,  to simulate particular system conditions, e.g. "dry" or 

"average" precipitation conditions. This approach is exploited in 

methodological terms by recourse to Monte Carlo simulation analysis, in 

which equation 2.8 is solved repeatedly for uncertain parameters and 

inputs by sampling at random from their assumed parent distributions. 

The result of the analysis is a large number of random results, each 

providing a unique state trajectory x(t). Finally the test is made 

whether the sampled model parameter vector, a, leads to a state 



trajectory x(t) that gives rise to an expected behavior B or to the 

complement of the behavior set non-B. The number of Monte Carlo runs 

will thus consist of N runs in which M parameter vectors lead to the 

behavior B and B-M did not. In evaluating which elements of the vector 

a are giving rise to the behavior B and which did not, the cumulative 

probabilities associated with these elements resulting from M samples 

are compared to those resulting from the 8-M samples. An element of 

vector a is considered important if there is a statistically 

significant difference between the cumulative distributions based on 

resp. M and N-M samples, and the vector a is considered not important 

otherwise. A case study based on this principle for distinguishing 

between the parameters that significantly influence model response and 

those that do not, can for example be found in Hornberger et al. 

(1986). The statistical tools used may be the Kolmogorov-Smirnov, or 

the Mann-Whitney test or the tools may be based on eigenvalue- 

eigenvector analysis of the variance-covariance matrices associated 

with the parameter vectors by means of principal-component methods 

(Young, 1983, p.77). 

The philosophy of the HSY algorithm has been applied frequently for 

model calibration and for obtaining model predictions, although the 

actually applied methodology varies between the authors. The 

application may for example be aimed at using the set of parameter- 

vectors, that resulted in behavior B, for model prediction. 

O'Neill et al. (1980), for example, applied Monte Carlo simulation 

to a simple model that represents the dynamics of herbivores, such that 

only those simulation results were kept that led the model to pass 

through 4 "windows", i.e. model response constraints, in time. 

In this application, the aim was to investigate parameter errors, for 

the entire time series for the model simulations that matched the 

"window" criterium. The difference with the genuine HSY algorithm is 

that sampled parameter values are varied to investigate prediction 

error, and not so much aimed at selecting the right parameters. 

In the calibration of the RAINS Lake Module two approaches have been 

used. The methods are generally applicable and are not dependent on the 

model equations, which in the case of the RAINS Lake Module are 

presented in chapter 3. The first method is implemented in the current 

RAINS model, to be able to make predictions about lake acidification in 

14 a priori determined lake regions in northern Europe. The method (see 



Kadri, 1988; Posch and Kaeri, 1987) is depicted in Figure 2.15. The 

approach is aimed at saving the sampled values of only the model 

parameters, that lead to model predictions of pH and alkalinity of 

which the joint frequency distribution matches the joint frequency 

distribution of the field measurements of pH and alkalinity. Otherwise, 

the set of parameter values is discarded. In fact the saved set of 

parameter values, in the terminology of the HSY algorithm, lead to a 

behavior of model simulations such that the predictions match the 

measured pH and alkalinity distribution. This 'filtering' procedure 

(Figure 2.15) may mathematically be described as follows: 

Let, 

be the frequency of measurements in the two dimensional-interval7 (i.e. 

a square) i of the range of measured pH and alkalinity combinations. 

Let further, 

be the joint frequency distribution of a combination of pH model 

response values (SpH) and alkalinity model response values (Salk) that 

fall in the two-dimensional interval j, for a particular set of 

parameter-values of the parameter vector a. Note, as mentioned before, 

that the term parameter is used for model variables of which the values 

have been sampled and thus remain the same during one single run. 

State variables are left out of the equations 2.10 and the following 

equations for notational simplicity. For each set of parameter values a 

that lead to a model output falling in j, a value, ee, is added to 

equation 2.10 as follows: 

7 i  is a notational simplification of the square defined by the 
lower left hand corner (phl , alkl and the upper right hand corner (phr , alkr . 

'e should be larger than the inverse of the number of Monte Carlo 
runs. 





s(+ ,Sp& ,Salk )j = s(al ,SpH1 ,Sallcl )j + e 

where, 

k,l = Monte Carlo run number k and number 1, 

1 < k < N = total number of simulations 

The parameter values a,, with n denoting one of the M 

simulations [nl,q, ..., k,l, ...n,,], with M < N, leading to a model 

output in two-dimensional interval j, are saved, provided that 

s(a,,Sp~,Salkn), 5 g(pH,alk)i for i = j (2.12) 

This procedure is repeated for all i in the allowable range of measured 

pH and alkalinity values, until s becomes equal to g in 2.12 for all j. 

The set of parameter values of all, say M, runs which does not lead to 

the violation of 2.12 is saved. The set that lead to model predictions 

violating 2.12, i.e. lead to predictions that are outside of the 

allowable range of measured pH and alkalinity values, is rejected. 

Finally, the M sets of accepted parameter values are used to predict 

the distribution of lake acidity in future years as a result of 

forecasted sulfur deposition. The computational disadvantage of this 

approach is (1) that the important as well as the unimportant 

parameters have to be manipulated, and (2) that the number of Monte 

Carlo runs needed cannot be fixed a priori; it may very well happen 

that after for example 1000 runs some ranges of the measured pH and 

alkalinity frequency distribution have not been reproduced in the M 

accepted pH and alkalinity model predictions (M<1000). A more efficient 

algorithm taking care of the latter disadvantage has been developed by 

Posch (1987) and is added in appendix I of this study. 

The second method applied to the RAINS lake module was developed by 

Gardner et al. (1987) and Hettelingh and Gardner (1988) circumvents the 

first disadvantage of the filtering method mentioned above. This method 

incorporates the influence of parameter uncertainties and will be 

further discussed in chapter 4 of this study. 

Monte Carlo Simulation in sensitivitv and uncertaintv analysis 

With respect to the use of Monte Carlo methods for the purpose of 



sensitivity and uncertainty analysis on computer models in general and 

environmental models in particular modeling, much recent progress, 

discussed earlier, is due to the work of Iman and Conover (1980), Iman 

et al. (1981) and to McKay and Beckman (1979). 

In the application of Monte Carlo simulation in the context of 

sensitivity and uncertainty analysis the following two concepts are of 

importance, 

1. the sampling method: 

Sampling from parameter value ranges can basically be done in 

three ways, i.e. random sampling, stratified sampling and Latin 

Hypercube sampling. 

2. the analysis of the relative importance of model parameters: 

the issue here is to quantify how much each of the parameters 

is contributing to the model response. 

Sampling methods 

Adapting equation 2.1 to represent model output as function of time, 

the next equation represents the output Y by the computer code as a 

result of any selection of input parameters X = (X1,X2, ... ,Xk). Note, 

as before, that the term 'parameters' is used rather than 'variables', 

because every Monte Carlo run will constitute a sampled value of X that 

remains constant in that particular run, even though this run may 

contain several time steps. 

The uncertainty about the values of the input parameters is modeled by 

treating them as stochasts, and is obtained by studying the probability 

distribution of Y(t). Assume that the inputs X have a known probability 

distribution F(X), for X defined in a sample space S. McKay and Beckman 

(1979) distinguishes three methods by which input values XI,%, ... ,% 
can be obtained: 

1. Random Samvlinp(. This consists of a straightforward drawing of 

X1 ,%, . . . ,X, from F(X), in a not necessarily more complicated way 

than repeatedly tossing a dice for the case where the value range of 



the stochast lies between 1 and 6. 

2. Stratified Samvlinq. In stratified sampling, all areas of the 

sample space of X are represented by input values. Let the sample space 

S of X be partitioned in I disjoint strata, with not necessarily the 

same size, i.e. pi - P(X C Si). A random sample Xij, j=l, ... ,ni where 

ni will sum to A for all i of I. In other words, N runs will consist of 

n, hits in stratum 1, rq hits in stratum 2, . . . , q hits in stratum 

i. The number of samples from a stratum Si depends on its size pi. 

If, I - 1, then random sampling is applied over the entire sample 

space. 

3. Latin Hypercube Sampling. With this method the aim is to ensure 

that each of the input parameters %, 
k = 1, ... ,K, has all portions of its distribution represented by 

input values. Here, in other words, sampling is done without 

replacement, i.e. to sample all portions of S. The procedure consists 

of dividing the range of each % into N strata of equal marginal 

probability 1/N, and sampling once from each stratum. One sample is 

denoted by q j ,  j - 1, ... ,A, k - 1, ... ,K and called the % 
component of Xi, 

i = 1, ... ,N. Note that the N intervals of each component combine to 

form * cells which cover the entire sample space of X. All components 

are combined in a random manner. 

Much attention has been spent to the relative advantages of the 

sampling methods presented above. Generally, with respect to Monte 

Carlo simulation, latin hypercube sampling has the following 

advantages: 

1. Variance reduction: The variance of the sample mean obtained 

with Latin Hypercube is smaller or equal to the variance of the sample 

mean resulting from other sampling procedure, provided that Y(t) is 

monotonic in each of its arguments. The proof of this statement can be 

found in &Kay and Beckman (1979). Stein (1987) shows that the 

asymptotic variance of an estimator based on Latin Hypercube sampling 

is not only smaller than in sample random sampling, but that in 

addition the amount of variance reduction increases with the degree of 

additivity in the random quantities. 

2. Representative sampling: Even with a relatively small sample, the 

method assures that values are drawn over the entire probability range 



of a parameter. 

3. Parameter correlations: By implementing a method developed by 

Iman and Conover (1982), a desired rank correlation matrix may be 

induced on the multi-variate input random parameter X, defined above. 

The random pairing of intervals by Latin Hypercube may similarly lead 

to undesired pair-wise correlations among some of the parameters, 

especially when the sample size is small. The addressed method can 

avoid this. This addition to latin hypercube sampling is called 

Modified Latin Hypercube sampling (see Iman and Helton, 1988). 

Computer programs have been written that allow for an easy 

implementation of any model in a Monte Carlo framework using latin 

hypercube sampling or its modified equivalent. For this study the 

program written by Gardner et al. (1983) has been implemented on the 

RAINS Lake Model. The program, called PRISM, will be treated in some 

detail in chapter 4. 

Relative importance of Darameters 

The purpose is to analyze which of the input parameters contributes 

most to the uncertainty, i.e. the variance, of the model response. 

Three methods are used: 

1. Repression techniques: Ordinary Least Squares is applied treating 

the model resDonse as dependent variable, and the input parameters as 

the exogenous variables. Thus the computer model is in fact replaced by 

a single equation model response as a function of input parameters, for 

which Kleijnen (1987, pp. 147-157) introduces the term metamodel. In 

other literature (see also Downing et al., 1985) the term response 

surface is encountered more frequently. By investigating the 

coefficients of the parameters an, optionally stepwise, evaluation is 

obtained of the importance of each parameter (see also Iman and 

Conover, 1988). The relevance of the linear approximation can be 

obtained by inspecting the R' (see also Gardner et al., 1987) and the 

relevance of parameter is investigated by its contribution to the R~ 

statistic. This partial R~ is computed by 

PRzk - (RSS - RSq)lTSS 



where, 

PR2, - the partial R2 for parameter 4 
RSS = Regression sum of squares for the complete model 

RSS, = Regression sum of squares for the reduced model, i.e 

omitting parameter 

TSS - Total sum of squares 

If the parameters are nearly orthogonal, PRZk represents the 

fractional contribution of < to the variance of the model output Y, 

and is therefore an important indicator in uncertainty analysis. This 

method has been incorporated in many applications of PRISM (Gardner 

aJ., 1983). 

The use of response surface tec:lniques may be aimed at replacing the 

full computer model, in order to be able, for example, to make 

predictions about a system for which purpose the full model may be too 

complex. All inferences about the uncertainty and sensitivity analysis 

may be derived from this fitted equation only. A careful consideration 

is necessary of the structure of the metamodel and the parameters to 

include; questions about the inclusion of quadratic and cross terms in 

the equation may easily lead to a model equally difficult to handle. 

The fraction of the parameters to include can be evaluated by methods 

referred to as fractional factorial desinn (see also Kleijnen 1975). 

Iman and Conover (1979;1981) point out that regression may lead to 

biased conclusions if the relation between model response and input 

parameters is nonlinear, which problem may be circumvented inter alia 

by applying rank renression. Rank regression consists of replacing the 

data with their corresponding ranks which is then used in an OLS 

procedure. 

2. Correlation analysis: Computing correlation coefficients between 

the response variable and input parameters may also lead to insight in 

the parameter influences on the output variable. Either the Pearson or 

the S~earman correlation coefficient can be used. The Pearson 

correlation is applied to the parameter values. This method has the 

disadvantage that (see also Downing et al., 1985): 

1. Extreme observations may have too much influence, 

2. A measure of linearity is obtained, whereas a measure of 

monotonicity is desired to investigate non-linearity between X and Y. 



The Spearman correlation coefficient, which computed using ranks in 

stead of values, relaxes both disadvantages of the Pearson measure of 

correlation. The partial rank correlation is defined as the correlation 

between the ranks of one parameter with the ranks of the response 

variable, removing the effect of the other parameters. When the partial 

rank correlation is close to 1, it indicates a strong monotonic effect 

of the parameter on the response. The disadvantage of using rank 

correlation is that only true sensitivities (e.g., between output and 

inputs) are obtained, and that relative sensitivities (e.g., the output 

is more sensitive to an input than to another) of parameters become 

difficult to perceive. 

Generally both the partial correlation and partial rank correlation 

is computed. If the partial rank correlation is high but the partial 

correlation low, a nonlinear relation between response and input should 

be considered. 

2.5 CONCLUDING REMARKS 

An overview has been presented of the current state of integrated 

environmental modeling. In particular applications of uncertainty 

analysis in the field of ecosystem- and water quality modeling have 

been described. In these applications, models investigated are 

generally complex in nature, i.e. many, not necessarily linear 

relations are interacting in a way that does not allow for 

straightforward analytical solution methods. 

The fact that depletion of our natural resources is due to many 

interacting different systems (and subsystems) has been described as a 

reason to favor modeling in an inter disciplinary rather than in a 

mono-disciplinary way. This has led to Intenrated Environmental 

Modeling. Attention was given to the different levels of hierarchy and 

the different model-structures by which systems can be identified in 

integrated modeling, i.e. the level of detail and the linkages by which 

systems and subsystems can be represented to explain the same 

phenomena. This has led to the notion that there is similarity from a 

systems analysis point of view between integrated 'micro' processes, 

e.g. the modeling of chemical constituents in water quality modeling, 



and integrated 'macro' processes, e.g. the functioning of groups of 

actors in a social economic system. Three examples of recent Integrated 

Environmental Models were presented, i.e. the Modeling and Information 

System for Environmental Policy, the Integrated Regional Environmental 

Model for Physical Planning and the Regional Acidification INformation 

and Simulation model. These three models were compared with respect to 

policy and user friendliness and the extent to which uncertainty and 

sensitivity analysis are included. It was shown that in Integrated 

Environmental Modeling in general uncertainty and sensitivity analysis 

is becoming increasingly important for the credibility of policy that 

is based on model-results. 

Sensitivity and uncertainty analysis have been treated and 

associated with the apparent application of Monte Carlo simulation in 

the vast majority of applied uncertainty analysis in the field of 

environmental modeling. 

Finally, different methods regarding Monte Carlo sampling and 

methods to investigate the contribution to the variance of model 

response due to model parameters, have been reviewed. A combination of 

latin hypercube sampling and metamodeling with related partial R~ 

investigations between model inputs and outputs, emerged as a possible 

appropriate framework to investigate model uncertainties. A widely used 

computer program, PRISM (Gardner et al., 1983) incorporating these 

features will be used in this study. 

This chapter and chapter 1 were concerned with the presentation of 

the state of the art of environmental modeling placed in a wide context 

of applied systems analysis. This context enabled the treatment of 

model aggregation and scales of model application. In the next chapters 

the context, just mentioned, will be treated in a much more focussed 

way. These chapters hence become very detailed and contain the 

equations of the RAINS Lake Model (chapter 3), the illustration of the 

possible insufficiency of calibration for the application of the model 

in fixed regions (chapter 4), and the presentation and illustration of 

an alternative zonal approach (chapter 5) followed by an application in 

chapter 6. 



3. WATWSHED ACIDIFICATION HDDELING 

3.1 INTRODUCTION 

Watershed acidification is the result of chemical reactions in the 

air, soil and watersheds involving sulfur and nitrogen oxides. Compared 

to 1960 the total emissions of SO2 in Europe have increased with about 

66% and those of NO, with about 144% in 1990 (RAINS data-base). The 

development of the total European emissions is shown in Figure 3.1. 

The relationship between emissions of sulfur and nitrogen oxides and 

acidification, i.e. acid rain, is currently better understood since 

Oden (1968) first investigated acidification effects in the natural 

environment. The processes involved in the acidification of soils and 

watersheds are expressed in Figure 3.2. The representation of these 

processes in models have recently received much attention. 

This chapter gives an overview of the subprocesses that are 

considered in many watershed acidification models to familiarize the 

reader with the concept. The scope of this study emphasizes the concept 

of applying model results to regions under uncertainty. It would be 

beyond the scope of this study to also provide the reader with a 

detailed description of the often complex chemistry involved in the 

processes. For this purpose, the reader is referred to Stumm and Morgan 

(1981). A verbal description of the processes will be presented 

instead, with the exception of the equations that are incorporated in 

the RAINS Lake Module. A comparison is made of three leading models 

with emphasis on the RAINS Lake Model with regard to process treatment 

and regionalization. 



SO2 NOx * S02tNOx 

Figure 3.1 The time development of SO, and NOx (units of NO,) 
emissions in Europe in millions of tons. Emission forecasts are based 
on the official governmental energy use estimations until 2000  that 
have been implemented in RAINS. 
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3.2 SUBPROCESSES IN WATERSHED ACIDIFICATION MODELS 

As can be seen from Figure 3.2 many processes on the soil surface as 

well as in the soil precede the actual acidification of a lake. Many 

models have been developed dissimilar from one another with respect to 

the processes included (see Kadiri, 1988, p.17). An overview of the 

models is presented in Table 3.1. 

Table 3.1 11 different watershed acidification models' 

Model Author( s) 

Equilibrium 

Birkenes 
Empirical 
ILWAS 

Adsorption Isotherm 
ETD 
PULSE 
MAGIC 
Seepage Lake 
Direct Distr. Model 
RAINS Lake Module 

Reuss (1980), 
Reuss & Johnson (1985) 
Christophersen et al. (1982) 
Wright and Henriksen (1983) 
Chen et a1.(1983), 
Gherini et al. (1985) 
Arp (1983) 
Schnoor et al. (1984;1986) 
Bergstrom et al. (1985) 
Cosby et al. (1985a;1985b) 
Lin and Schnoor (1986) 
Small and Sutton (1986) 
K a G r i  (1988) 

- - - - 

ladapted from KaGri ,  1988, p.17 

This study is not served with a detailed description of all of the 

models mentioned in Table 3.1. Three of the (American) models i.e. the 

Pbdel of Acidification of Groundwater in Catchments (MAGIC) of Cosby 

al. (1985a, 1985b), the Enhanced Trickle Down Model (ETD) of Schnoor & - 

al. (1984, 1986) and the Integrated Lake/Watershed Acidification Study - 

(ILWAS) of Chen et al. (1983) and Gherini et al. (1985) have received 

much attention not only in Europe but also by the National Acid 

Precipitation Assessment Program (NAPAP) in the United States (Rose, 

1988). In the next sections of this chapter first an overview is 

presented of the chemistry involved in watershed acidification. Then 

the equations of the RAINS Lake Model are presented. 



The basic chemistry 

A n  acid is a substance that can donate a proton (i.e., H+) to 

another substance, whereas a base is a substance that can accept a 

proton from another substance. A proton transfer can thus only take 

place if an acid reacts with a base. This reaction may be summarized as 

follows (Stum and Morgan, 1981, p. 122) 

Acid, - Base, + proton 
proton + Base, = Acid2 

+ 
Acid, + Base2 - Acid, + Basel 

The concentration of H+, [JI+]* is measured in pH units defined as 

pH = 3  - log [r ] ( 3 . 4 )  

with [H+] expressed in eqlm3 .9 

Acidification of natural waters is the result of interactions 

between acids and bases. Acids that naturally have leaked to 

watersheds, and the SO, and NO, contamination of precipitation on 

watersheds, react with bases that have been set free by the erosion of 

primary rock. This erosion process will further be called weatherinpr. 

Depending on the weathering rate and the capacity of bases, called 

buffer capacity, the equilibrium process may lead to a changed 

concentration of E' protons. 

The pH of natural waters generally lies between 6 and 9 (Stumm and 

Morgan, 1981, p. 121). 

The Acid Neutralizing Capacity (ANC),  often called alkalinity, 

determines the adsorption capability of acids in water and soils. It 

may be computed as follows: 

ANC = Cb -C, 

Cb = K+ + Na+ + m 2 *  + Ca2+ + m4+ + A13' 

C, = C1- + SO4'- + NO3- + P- 

where Cb is the sum of base cations resp. potassium, sodium, magnesium, 

note that 1 mol/l H+ = lo3 eq/m3 H+ 



calcium, ammonium, aluminum, and C. is the sum of base anions resp. 

chloride, sulfate, nitrate and fluoride. In general the equations 3.6 

and 3.7 may be extended with many more resp. H+ -ion acceptors and H+- 

ion donors. 

Equations 3.1 to 3.7 describe the basics of acidification, further 

chemical elaboration of which will not be attempted in this study. 

The comprehensive explanation by Eary et al. (1989) of the modeled 

processes in ETD, MAGIC and ILWAS has been summarized below in order to 

illustrate the line of thoughts in watershed acidification modeling. 

The summary presented here of Eary et al. (1989) is extended to 

indicate whether processes have been modeled in RAINS. The reader is 

referred to the original document (Eary et al., 1989) to obtain a full 

overview of details and of the technical, mostly chemically oriented, 

literature references. 

The processes involved in watershed acidification (Figure 3.2) can 

broadly be classified in meteorological, hydrological, geochemical 

processes in soil and lake, and in biochemical processes. 

Meteoroloay 

Meteorologic parameters, e.g. precipitation and temperature, 

influence incoming water from rain and snowmelt and outgoing water from 

evapotranspiration. This is treated differently in the different 

models. ETD and ILWAS for example need daily meteorological data, MAGIC 

monthly or yearly averages and RAINS yearly value ranges. 

The treatment of deposition chemistry is another important part of 

the modeled meteorology. Distinction is made between wet deposition 

(sulfate and other base ions in precipitation) and dry deposition 

(deposition on the surface due to diffusion and impaction in the 

absence of precipitation). MAGIC and ILWAS require data on a major part 

of the chemical elements in deposition. MAGIC uses a multiplication 

factor of wet deposition to compute dry deposition. ETD uses only ANC, 

~ 0 4 ~ '  and C1-. RAINS inputs total (wet + dry) deposition, but computes 

the fraction of the sulfur flux to be actually used for the 

simulations. 



Hydrological processes are concerned with the way in which 

precipitation is treated. The process is subdivided into surface 

hvdroloav, and subsurface hvdrolonv, covering water flows on top of, 

and within the soils, and lake hydroloap. ILWAS and MAGIC both take 

into account that a part of the precipitation is intercepted by the 

foliage of a forest canopy. RAINS distinguishes between deposition on 

open, i.e. agricultural areas including a lake, and forested regions. 

The assumption is made that forests intercept more pollutants than open 

areas. ETD, MAGIC and ILWAS take snowmelt into account when computing 

the net result of precipitation and evapotranspiration. The RAINS model 

does not explicitly simulate snowmelt and the pollutant storage 

capacity of snow. 

In the subsurface hydrology all four models describe flow as a 

function of the hydraulic gradient and the hydraulic conductivity. For 

this purpose the soils are partitioned in different layers. RAINS 

distinguishes two such layers, i.e. the A-laver, consisting of the 

upper 50 cm of a soil, and the B-layer, for deeper soils. 

In the lake hydrology the models differ in the assumptions with 

which incoming water is mixed with the entire lake volume. 

MAGIC, ETD and RAINS assume perfect mixing. ILWAS allows for 

stratification of the lake into 80 layers. ILWAS, which is the by far 

most complicated model with respect to all modeled subprocesses, also 

takes heat exchange between the layers into account. 

Geochemistry formulations 

Geochemistry is concerned with the computation of ANC. Many chemical 

processes contribute to changes of ANC. In what follows a number of 

these processes are shortly clarified, since they are vital for an 

elementary understanding of soil and lake acidification. 

1. ANC conventions: basically equation 3.5 is applied in all models 

although its form may differ and many more constituents may also be 

taken into account. An important issue in the computation of ANC is the 

way in which the Aluminum- water equilibrium is treated, which is 

basically described by 



The actual model formulation depends on the solubility constant, which 

is a function of temperature and the kind of gibbsite in the soil. The 

equilibrium stage is formalized as 

where, K,, is the solubility constant (mollliter) with the following 

values : 

K,, - lo8." fo r synthetic gibbsite, 

= for natural gibbsite, ~ n d  

= lo9 35 for microcrystalline gibbsite 

Equation 3.9 may be extended on the right hand side with an aggregate 

of similar arguments to account for the different gibbsites. 

2. Carbonic acid equilibria: the dissolution of carbon dioxide (CO,) 

in water and the resulting carbonic acid specification, is what drives 

positive ANC (equation 3.5). All models treat this process as an 

equilibrium, as follows: 

CO, + 4 0  - > HCO, - + H+ (3.10) 

The solubility of C0, depends on different constants i.e 

where K, is called the first acidity constant and K,, is called the 

Henry's law constant. The buffering of H4 ions by the exchange with 

base cations located on the soil surface, causes pCO,, the partial CO, 

constant to increase. This results in an increase of the HC03- 

concentration and of the ANC. 

3. Oraanic acid chemistry: In this process the effects of generic 

organic acids on solution chemistry is considered. This process is 

taken into account by ILWAS in particular. 

4. Mineral weathering: This process is concerned with the weathering 

reactions of silicate minerals in shallow soils and underlying exposed 



bedrock. These minerals are formed under crustal conditions of high 

temperature and pressure and are subject to weathering reactions due to 

the thermodynamic instability of these silicates. The involved 

reactions consist of combinations of weak acids with strong bases. 

Weathering is highly dependent on the weathering rate: 

Rw = k * (HC) 

where, 

RV = weathering rate 

k - rate constant for silicate hydrolysis 

(H+) - Hydrogen ion activity 

Silicate hydrolysis can generally be formalized as 

Silicate Mineral + H+ --> Silica +I- Alumina + Cations (3.14) 

Although the basic equation used in ETD, MAGIC and ILWAS is similar 

to equation (3.13), the actual modeling of the weathering rate differs 

much among the models. One of the major reasons for that is the limited 

availability of field data, leading to MAGIC, ETD as well as ILWAS to 

apply a calibration procedure to match the weathering rate to 

particular field observations. Weathering rate in RAINS is one of the 

model parameters that is externalized by defining a range of values 

which is made subject to random sampling. 

5. Cation exchanne: This process involves the depletion of base 

cations by the consumption of Ht ions. The process is much faster than 

the mineral weathering rate, resulting in the buffer capacity to become 

depleted at some point in time. The total capacity of base cations is 

called the Cation Exchange Capacity (CEC), and may consist of 

CEC - c a 2 *  + Mg2+ + NH,* + K+ + N a *  + H+ (3.15) 

The exchangeable fraction of base cations is called base saturation. 

MAGIC as well as ILWAS require estimates of CEC and base saturation 

that can be modified during model calibration, leading to accepted 

values that should lie within a reasonable range determined by field 

measurements. ETD calibrates the magnitude of CEC to result in a model 

response of ANC that matches ANC field measurements for the entire 



watershed. RAINS has externalized CEC as well as base saturation. 

6 .  Anion retention: and NO,- anions may be adsorbed by the 

soils, a process that has been shown (see Eary et al., 1989)  to be a 

function of pH. Sulfate concentration is a more important driver of 

acidification than Nitrate, due to the fact that nitrates tend to be 

taken up by vegetation. The concentration of Sulfate in the soil 

solution is however limited by the adsorption capacities of the soil 

minerals for SO, - . The dependence of pH is modeled by neither of the 

models. Eary et al. (1989)  argue that this lack may lead to an 

inaccurate description of Sulfate adsorption over long times during 

which significant changes in soil solution pH may occur. The pragmatic 

approach followed in MAGIC, ETD and ILWAS reduces the data requirements 

for sulfate adsorption capacity. Such data for a whole catchment, 

subcatchment or soil layers are hardly obtainable, since adsorption 

capacities and soil solution pH may vary aerially and with depth in a 

watershed. MAGIC uses a nonlinear relation between the equilibrium 

concentration of a sorbed anion in the soil, in the solution and the 

maximum sulfate adsorption capacity of soil. ETD and ILWAS both use 

linear relations to describe this process. The RAINS model has no 

representation of this process, simply because it is not observed in 

the northern part of Europe, for which the model has originally been 

designed. 

Bioaeochemical formulations 

Biogeochemical processes involve the uptake of nutrients from soil 

layers by vegetation, decomposition of organic matter and the influence 

exerted on chemical reactions, by microbes. Three subprocesses are of 

importance : 

1 .  Sulfate reduction: ANC in a lake may increase due to the 

reduction of sob2-. The reduction process may be formalized as follows 

Equation 3 . 1 6  shows that H* ions may be consumed due to sulfate 

reduction resulting in a net increase of ANC. All four models have 

modeled the process of sulfate reduction. MAGIC, ETD and XLWAS apply 



differential equations that vary from one another by the use of rate 

constants and the inclusion of variables like lake depth and lake area. 

RAINS uses a linearized formula taking into account the catchment and 

lake area, using a stochastic parameter to simulate the fraction of the 

total sob2- coming into a lake that is reduced. The external definition 

of such fraction is also part of the MAGIC simulation of the process. 

2. Nitrification: this process describes the oxidation of ammonia 

which is mediated by microbes. ILWAS has the most extensive description 

of this process, followed by MAGIC that treats the loss of ammonia from 

the soil as a nutrient uptake process. ETD and RAINS have not 

incorporated this process. 

3. Nutrient uptake: here the uptake of NO,-, NH4- and ~ 0 ~ ~ -  by 

vegetation is represented. Both ILWAS and MAGIC have included this 

process, each in a different way as far as detail is concerned. RAINS 

and ETD do not simulate this process. 

Other bioaeochemical processes 

The chemical processes addressed here are: 

1. canopy-induced changes in throughfall (precipitation through 

the canopy) chemistry. 

2. litter fall and decay, and 

3. root respiration. 

These detailed processes have only been represented in ILWAS and have 

not been included in ETD, MAGIC and RAINS. 

The next section describes the equations that represent the above 

processes incorporated in the RAINS Lake Model. 

3.3 THE RAINS LAKE MODULE EQUATIONS 

Figure 3.3 displays the overall structure of the RAINS Lake Module. 

In this section the model equations representing the processes of 

section 3.2 in the RAINS Lake model are formalized. 
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Figure 3 . 3  The structure of the RAINS Lake Module (source: Kamliri, 
1988, p.  20 ) .  



The subscript t indicates the state of a model variable at simulation 

time t. The subscript 0 indicates the initial condition of a model 

variable. 

Meteoroloay 

Total deposition of sulfur (g/m2gr) is obtained from the EMEP long 

range transport model (Eliassen and Saltbones, 1983) and transformed to 

acid load (eq/m2gr). 

First, the net acid load to the forest and open land is computed as 

the fraction of the total acid load that excludes base cations. 

(Dlordbt = (Dtot)= - ( D ~ ~ ) ~  (3.17) 

where, 

( D ~ ~ ~ ~  ), = the net acid load in year t in eq/m2 

(Dtot ), = total deposition on the area in year t in eq/m2 

(Dbc ), - the flux of base cations in year t in eq/m2 

It is assumed that more pollutants are filtered out by forests compared 

to open land: 

( ~ l o a d f ) ~  = fraC f    lor do 
) t (3.18) 

where, 

( D ~ ~ ~ ~ ~  1, = acid load on forests in year t in eq/m2 

   lo ado 
1, = acid load on open land in year t in eq/m2 

f rac - forest filtering factor 

The total deposition on the area is the sum of deposition on forests 

and on open land: 

(DlO'd), , f*(~lo=df ), + (1-f )* ( D ~ ~ ~ ~ ~ ) ~  

where, 

f = fraction of forests within the area 

substitution of 3.17 in 3.18 gives: 



The hydrologic processes are dependent on monthly temperature and 

precipitation data as follows: 

T(m) - PiP(m) + (PLx(m) - PiP(m)) * tfac (3.21) 

P(m) - pmin(m) + (PLx(m) - pmiP(m)) * pfac (3.22) 

where, 

T(m) = the temperature in "C in month m 

Tmax(m) = maximum temperature in "C in month m 

~ m i n  (m) = minimum temperature in " C  in month m 

P(m) = the precipitation in month m in meter (m) 
pmax (m) = maximum precipitation in month m in meter (m) 

pmin (m) = minimum precipitation in month m in meter (m) 

m = month m, m = 1, ... ,12 

pfac,tfac = random factors from the interval [0,1] 

The evapotransviration is computed from 3.21 as follows 

E(m) = efac * T(m) if T(m) > 0 

where, 

E(m) = evapotranspiration in month m (E(m) = 0 if T(m) 5 0) 

efac = an empirical constant 

From 3.21, 3.22 and 3.23 the runoff is computed as 

R = (P(1) - E(l))+(P(2) - E(2))+ ... +(P(12) - E(12)) 

where, 

R = yearly runoff in m 

In the subsurface hydrology runoff is used to compute the quickflow 

in the A-layer of the soil (top 0.5 m) and the baseflow in the B-layer 

(deeper than 0.5 m). The baseflow is computed according to catchment 

properties i.e. hydraulic conductivity, surface slope, catchment width 

and soil thickness of the B-layer: 



Bth ick  - ( s t h i c k  - 0.5, 0) 

where, 

B' h i  = soil thickness of the B-layer in m 

st h i c k  = soil thickness in a region in m 

The catchment properties are all sampled from an interval that is a 

reasonable representation of field measurements. The catchment area is 

computed as follows: 

where, 

t C a t C h  = terrestrial catchment area in m2 

a c a t c h  = total catchment area in m2 

al a k e = lake area in m2 

Another catchment property is the catchment width. The width 

represents the circumference of the average terrestrial catchment, 

assuming a circular lake in a circular catchment. 

p i d t h  , ( P i ) 1 / 2  ( ( a c a t c h ) l 1 2  + ( a l ~ k c ) 1 / 2 )  

where , 
cw id t  = width of the catchment in m 

pi - 3 . 1 4 1 5 9 . . .  

Baseflow is formulated from 3 . 2 4  to 3 .27  as: 

where, 

F~ = basef low in m 

ccond - hydraulic conductivity in the catchment in m/yr 

c s L O P e  = mean slope of the catchment in m/m 

From 3 . 2 8  and 3 . 2 4  the quickflow is computed as: 

F - R - p b  

where, 

Fq - quickflow in m 
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The total water volume entering the lake becomes: 

LVOl = g * ac.tch 

where, 

Lvol = water volume entering the lake in m3 

The water volume contained in the lake is expressed as 

LI~X - ~ d c p t h  * slake 

where 

L~~~ = volume of the lake in m3 

 depth = mean lake depth in m 

Geochemical processes 

The following set of equations represent the geochemical processes. 

These processes take place in the A- as well as in the B-layer. First 

buffer capacity and silicate buffer rate are computed as function of 

the thickness of the A-layer: 

 thick, dn (sthick 
9 0.5) 

where, 

A~~~~~ = soil thickness of A-Layer 

The calcium buffer capacities in A- and B-layer thus become 

(ACaP)O = aCaP *   thick 
(BCaP)O = bCaP *  thick 

where, 

(ACaP), = Calcium buffer capacity in eq/m2 (A-layer) in year t=O 

aCaP = sampled Calcium buffer capacity in eq/m3 (A-layer) 

(Bcap), = Calcium buffer capacity in eq/m2 (B-layer) in year t-0 

bCaP = sampled Calcium buffer capacity in eq/m3 (B-layer) 

The silicate buffer rates in both layers become: 



where, 

 rate = s i l i c a t e  buf fe r  r a t e  i n  e q / m 2 g r  (A-layer) 

S ra te  = sampled S i l i c a t e  buf fe r  r a t e  i n  e q / m 3 g r  ( i n  the  s o i l )  

B r a t e  = s i l i c a t e  buf fe r  r a t e  i n  e q / m 2 g r  (B- layer)  

The ca t i on  exchange capac i ty  expressions used a re :  

where, 

A C e C  = ca t ion  exchange capac i ty  i n  eq/m2 (A-layer) 

B C e C  = ca t ion  exchange capac i ty  i n  eq/m2 (B- layer)  

SCeC = sampled ca t i on  exchange capac i ty  i n  eq/m3 i n  t h e  s o i l  

A f r a c t i o n  of t h e  ca t i on  exchange capac i ty  i s  t he  base sa tu ra t i on :  

(ABat)o = * B a t  ACeC (3.39) 

( ~ 0 . t ) ~  = bB8t BCeC (3.40) 

where 

(Asat )o = a c t u a l  CEC i n  eq/m2 (A-layer) i n  year t=O 
as a t  = sampled base sa tu ra t i on  (A-layer) when t=O. 

I f  t > 0 then a s a t  = (Asat) ,  / ACeC 

= a c t u a l  CEC i n  eq/m2 (B-layer) i n  year t=O 

beat  = sampled base sa tu ra t i on  (B- layer)  when t=O. 

I f  t > 0 then bsat  = (Bsa t ) t  / B c e c  

F ina l l y  t he  f i e l d  capac i ty ,  t he  maximum amount of water t h a t  t he  

unsaturated zone of a  s o i l  can hold aga ins t  the  p u l l  of g rav i t y ,  i n  the  

A and B laye r  i s  computed as:  

f c r p A  , f c r p  *   thick 
f c a p B  , f c r p  *   thick 

where, 

f capA = f i e l d  capac i ty  i n  m (A-layer) 

f caPB = f i e l d  capac i ty  i n  m (B-layer) 

fCaP - sampled f i e l d  capac i ty  f r a c t i o n  



The following equations describe the chemical reactions that lead to 

a change of [PI and the alkalinity. First the initial condition of 

lake alkalinity and soil pH is defined: 

( ~ a l k ) ~  I sthick t s r a t e  t tcatch / (R t aca tch  1 (3.43) 

(PA)o - c (3.44) 

P o  = c (3.45) 

(LB+)O - K1 Kg pCOL / ( L ~ ~ ~ ) ~  (3.46) 

where, 

(Lalk),, = initial lake alkalinity in year t=O in eq/m3 

(H'A)o = initial Hydrogen ion concentration in year t-0 

(A-layer) in eq/m3 

(H'~)~ - initial Hydrogen ion concentration in year t=0 

(B-layer) in eq/m3 

c = starting constant eq/m3 which equals pH-7) 

(L"')~ = initial Hydrogen concentration in the lake in year t=O in 

eq/m3 

K I = first acidity constant in eq/m3 

K~ - Henry's law constant in eq/m3-atm 

PC% = partial C02 pressure in atm 

Now the iterative representation of chemical reactions in soil 

layers and in the lake can start. 

Soil chemistry 

In each soil layer a three step buffering sequence is simulated by 

resp. the : 

1. Calcium carbonate buffer range 

2. Silicate and Cation Exchange range 

3. Aluminum range 

First the buffer sequence in the A-layer is simulated starting with 

the carbonate range. Equations 3.47a and 3.47b are only simulated if 

condition 3.47 is met: 



(Acmp), = ,, ((ACmP),-, - ( ~ l o m d f  1, 9 0) (3.47a) 

(*A't - c, (0.000631 which equals a pH - 6.2) (3.47b) 

If 3.47 is not met, the net acidifying potential of the A-layer is 

computed as: 

( ~ 1 0 m d ) ~  I ( d o m d f )  - (grmte ) t 

where, 

(AIOmd )t = acidifying potential in eq/mzgr 

and the next buffering range is entered, i.e the silicate and cation 

exchange buffer range, only if condition 3.49 is met: 

Then, if there is cation exchange capacity left in the A-layer, it 

is exhausted with a rate equal to the potential defined in 3.47, as 

follows 

A functional relationship between the base saturation and the pH leads 

to the computation of the hydrogen ion concentration (see Reuss, 1980): 

(FA), = 10 ** (-1 - 1.6* ((Anmt), / A ~ ~ ~ ) ~ . ~ ~ )  

where ** denotes the power operator. 

If 3.49 is not met, thus the pHt-, 4 and there is no cation exchange 

capacity left in the soil, the computation of Hydrogen ion 

concentration results from an equilibrium relationship between [H+]  and 

the aluminum ion concentration, [~l'+ 1 ,  assuming a certain solubility 

of a solid phase of aluminum: 

(f13+A)t-1 = K~~ * l 3  (3.50) 

where, 

(A13+A)t-1 - Aluminum equilibrium concentration in year t-1 in the 

A-layer in eq/m3 

K, 0 
- gibbsite solubility constant 



The dissolution or precipitation of aluminum takes place until the 

gibbsite equilibrium stage is reached. Precipitation that infiltrates 

the soil leads to a change of the disequilibrium concentrations of 

aluminum and hydrogen (see Kamiiri, 1988, pp. 25-26): 

( P A d ) ,  = ( P a p A  * ( P A ) , - ,  + ( A ~ O ~ ~ ) , ) / ( P C ~ P ~  + R) (3 .51)  

(A13+Ad),  = ( P a p A  * ( A 1 3 + A ) t - , ) / ( P a P A  + R) (3 .52)  

where, 

( H + ~ ~ ) ,  = disequilibrium hydrogen ion concentration in year in eq/m3 

( ~ 1 ~ + ~ ~  ), = disequilibrium aluminum ion concentration in year t in 

eqlm3 

The disequilibrium relation is formalized as follows: 

Substitution of 3.50, 3.51 and 3.52 in 3.53, leads to a cubic equation 

which has a single real root (Abramowitz and Stegun, 1965, p.17, 3.8.2) 

of the hydrogen ion concentration , that will be expressed below using 

four auxiliary variables h, , hZ , h3 and h4 : 

The soil is assumed to be controlled by the aluminum solubility as long 

as the weathering rate is not able to produce excess base cations i.e 

(Aload), s 0. If however condition 3.49 is fulfilled and (ALoad), > 0, 

then has been set to 0.1 which is equivalent to a soil pH of 4. 

Finally the flux of A+ ions that is released from the A-layer is 

computed: 

( ~ f  l u x A  1, = P9 * ( P A ) ,  

where, 

(Hf LuxA  1, = flux of H+ ions in eq/m2j r  (A-layer) 



The flux of bicarbonate ions, (HCO, ) -  , released from the A-layer 

becomes : 

(cf luxh )t = max (Arate - (~loadf It 90) (3.60) 

where, 

(cf lux" ), = flux of bicarbonate ions in eq/m2j r  (A-layer) 

Now that all processes in the A-layer have been simulated, the next 

set of simulations relate to the B layer. The process equations are 

basically a repetition of equations 3.47 until 3.58 in which the A's 

should be replaced by B's. The transfer of the hydrogen ion 

concentration to the B-layer is simulated by: 

(Batreaa ), = (PA), * pb (3.61) 

where, 

(Bstress)t = the net acid load coming from the A-layer in 

eq/m2j r  (B-layer ) 

This influences the simulation of the carbonate buffer range in the B- 

layer (see equation 3.47a): 

(BC.P), = max ((BC.P)t-I - (BBtresa )t , 0) 

Similarly 3.48 changes to: 

Other equations used in the A-layer that are to be changed more than 

just typographically, are related to the usage in the B-layer of the 

basef low rather than the runoff . This influences the type of equation 

to replace 3.51 and 3.52 as follows: 

Finally the hydrogen ion and bicarbonate ion concentration that are 

released by the B-layer are represented as: 



(HfluxB 1, = Fb (rBIt 
( c ~ ~ u x B ) ~  , - (Brat= - (Batre## It 

q O )  

where, 

( H ~ ~ ~ ~ ~ ) ~  - flux of ions in year t in eq/m2 (B-layer) 

(cf lUxB), = flux of bicarbonate ions in year t in eq/m2 

(B-layer ) 

Lake chemistry 

The last step consists of the simulation of the lake acidity. The 

in-lake alkalinity generation (Baker et al., 1986) from SO, retention 

in lakes is obtained from the total sulfur load: 

where, 

( c ~ ~ ~ ~ ~ ) ~  = bicarbonate concentration released in the lake in year t 

in eq/m2 

~ r e t e  - sampled in-lake retention coefficient in m/yr 

The total hydrogen ion load in the lake can now be computed from 3.59, 

3.62 and the direct input from precipitation on the lake: 

(HfluxT , ((HfluxB)), + (Hfl~xA),) t tC.tch + 
) t 

+ ( p ~ a d o ) ~  t slake 

where, 

(FIfLuxT), = total hydrogen ion load in the lake in year t in eq 

The total bicarbonate ion load in the lake is similarly computed from 

3.60 and 3.63 and the internal alkalinity generation in the lake: 

( ~ f l u x T ) ~  = ((cfluxA + (~ f lux l )~)  * p a t c h  + 
) t 

+ ( ~ f l u x L ) ~  t slake 

where, 

(cfLUxT), = total bicarbonate ion load in the lake in year t in eq 



The equilibrium relationship between [H+]  and [HC03-]  is as follows 

(see also equations 3.10,3.11 and 3.12) 

( L ' ~ ~ ) ~  = KI pCOz I ( L " ) ~  

where, 

K1 - first acidity constant in eq/m3 

% - Henry's law constant in eq/m3-atm 

pC02 - partial C02 pressure in atm. 

Because of the inflow of hydrogen and bicarbonate ions, disequilibrium 

relations persevere: 

(Hf luxTd)t  - ( (Hf luxT) t  + ( L ~ + ) ~ _ ,  Lmix) I 
(L"X + LV01 1 ( 3 . 6 9 )  

( c f l u x r d  ) t ( ( ~ f l u x r ) ~  + (L' lk),-,  L . ~ x )  1 
 mix + ~ ' 0 1  1 ( 3 . 7 0 )  

where, 

( ~ f  l u x T d  
)t I disequilibrium load of Hydrogen ion in year t in 

eq/m3 
(cf l u x T d  

)t - disequilibrium load of bicarbonate ion in year t in 

eq/m3 

(LH*)t.,l - Hydrogen ion concentration in the lake in year t-1 in 

eq/m3 

( L ~ ~ ~ ) ~ - ~  - bicarbonate ion concentration (alkalinity) in the 

lake in year t-1 in eq/m3 

The disequilibrium relation, which represents that equal amounts of 

hydrogen and bicarbonate ions are consumed, is formalized as follows: 

Substitution of 3.68, 3.69 and 3.70 in 3.71 leads to a second order 

equation for which the positive root for the bicarbonate concentration 

is accepted. The algebraic result, after introducing auxiliary variable 

h,, h,, h, and ha becomes: 



Equation 3.76 is the lake-alkalinity in year t and 3.77 represents 

the Hydrogen ion concentration of the lake in year t. The pH is 

computed by substitution of 3.77 in equation 3.4. The pH will be the 

model response variable that is analyzed in the remainder of the study. 

3.4 SPATIAL GENERALIZATION 

The MAGIC, ILWAS , ETD and RAINS Lake models have all been verified 

against field measurements of particular catchments. Regionalization, 

however, consists of applying the models to an entire region1' in 

contrast to a few individual lakes. MAGIC has been calibrated to a 

region by means of the regional sensitivity method (HSY algorithm) that 

has been introduced in chapter 2, using Monte Carlo. 

The regional version of ILWAS (RILWAS, see Goldstein et al., 1984) 

consists of defining typical parameter values that are assumed to be 

representative of lakes in a region. 

By using the ETD model in conjunction with multiple regression on 

lake data about watershed variables (exogenous) and alkalinity 

(endogenous), regional forecasts of lake resources at risk were 

obtained (Schnoor et al., 1986). Regionalization of the RAINS Lake 

Module has been achieved in the RAINS model by predefining 14 lake 

regions in northern Europe (Scandinavia). For each of the regions, 

model parameter value ranges have been defined to which a filtering 

procedure (see chapter 2) is applied in combination with Monte Carlo 

simulation. 

'O~ote that in the economic sciences the term regionalization 
often refers to subdividing a larger area into smaller ones (top down). 
In this study, regionalization consists of defining larger areas from 
single watersheds (bottom up). 



3.5 CONCLUDING REMARKS 

Many interrelated meteorological, hydrological, soil surface, soil 

chemical and lake chemical processes (Figure 3.2) have been identified 

to contribute to watershed acidification. Modeling of watershed 

acidification has therefore not only been concerned with the definition 

of the relative importance of each of these processes but also with its 

formal representation. Many different models have been built. A short 

description of the modeled processes has been presented in conjunction 

with three currently well known models i.e the ILWAS, the ETD and the 

MAGIC model. 

A detailed mathematical description of the difference equations 

representing the processes that are simulated in the RAINS model was 

provided. 

The major problem of the modeling efforts has been the lack of 

data, especially when results have to be obtained in order to describe 

acidification processes in regions containing lakes. Calibration 

procedures have therefore taken an important place in watershed 

acidification modeling. Calibration results are however dependent on 

the choice of regional boundaries, as will be shown in the following 

chapter. Thus, one of the products of this study is a concept, based on 

uncertainty analysis, in which both the calibration effects and the 

model application to predefined regions are relaxed. 

In the next chapter a calibration procedure is introduced that, 

instead of using all model parameters, only uses the ones that are 

shown to have the largest influence on the variability of model 

predictions. The issue in chapter 4 is addressed whether a calibration 

method for model applications in regions, of which the boundaries have 

been predefined, affects the confidence of model predictions. 



9 4 

4. BECIOHBZ. VALIDATION OF THE RAINS LAKE W D E L  

4.1 INTRODUCTION 

The definition of a region (see chapter 1) and its boundaries is 

often based on historical, pragmatic or political precedents. Such 

established regional boundaries often tend to serve as a convenient 

spatial scale within which issues can be investigated, but for which 

the region was not otherwise distinguished. An example is the 

application of the BEgional Soil Acidification Model (RESAM; see de 

Vries, 1987) to COROP regions in the Netherlands. The Netherlands 

distinguishes 40 COROP regions (CBS, 1975) based on a categorization of 

social-economic functional relationships, not taking any environmental 

consideration into account. The policy assessment of the state of large 

scale environmental subsystems, e.g. water quality, effects of 

deposition and of climatic change is dependent on the scale at which 

data has been collected and aggregated. The analysis of large scale 

systems often involves the application of a model to a study area that 

has been partitioned into zones. The choice of the zoning system often 

leads to the aggregation of data to match the chosen scale. There are 

many ways in which zones can be chosen and aggregation levels defined. 

It has been shown in the field of spatial interaction modeling, e.g. 

models in which inter zonal flows are described that the modeling 

results are not invariant to the choice of the zonal boundaries 

(Openshaw, 1977a; 1977b; 1978; Openshaw and Taylor, 1981). 

The objective of this chapter is to determine the effect that 

predefined regional boundaries have on the estimate of broad scale 

environmental effects using a model that is a function of site specific 

estimates. More specifically, it will be shown that the calibration of 

the model output to regional measurements, may affect the confidence of 

model predictions. The investigation concentrates on the RAINS Lake 

Module. In order to estimate the influence of model complexity also a 

metamodel of the RAINS Lake Model is applied. The spatial scale of both 

model applications is chosen similar to the scale of the RAINS Lake 



Figure 4.1 14 lake regione demarcated for the usage of the RAINS 
Lake Module. 



Model that was distinguished in the RAINS model. This scale was 

restricted to Northern Europe, i.e. Scandinavia. The reason for 

restricting the RAINS Lake Module to that area was (1) the large amount 

of lakes in that area (2) the early policy involvement leading to the 

support of monitoring programs and (3) the available data resulting 

from these monitoring programs (see section 4.2). A total of 14 lake 

regions was chosen in Scandinavia (see Figure 4.1). The regions in 

Finland were distinguished on the basis of criteria about soil 

sensitivity (Kamiiri, 1988, pp 8-15). Sensitive areas are ranked as 

result of the selection of terrestrial and aquatic sites where 

atmospheric deposition may have the largest unfavorable effects. The 

prediction of the extent and severity of the effects is not the purpose 

of ranking sensitive areas. Policy makers are predominately interested 

in forecasting environmental effects. However, the policy evaluation of 

the effect of emission abatement strategies in regional environmental 

systems, e.g. watershed acidification, may suffer from uncertainties 

that are introduced by the combination of a zonal system and a model. 

This is shown in the following. 

First the way in which the RAINS Lake Module is driven and 

calibrated is discussed. 

4.2 The RAINS LAKE MODULE; DRIVER, DATA AND CALIBRATION 

As alluded to in chapters 2 and 3, the RAINS Lake Module is driven 

in a Monte Carlo simulation framework. Two such shells have been built 

around the module. The first one (see the filtering procedure in 

chapter 2) does not incorporate model parameter uncertainties, whereas 

the second, used in this study, does. Taking the parameter 

uncertainties into account is of importance especially with respect to 

calibration, as will be explained later. 

The driver 

The driver used in this study consists of a three stage procedure: 

1. Monte Carlo sampling 



2. running the model 

3. model response analysis 

The method of treating these three stages independently with respect 

to computer implementation, is available as a software package called 

PRISM (Gardner, 1983). The three stages are respectively called PRISMl, 

PRISM2 and PRISM3 which are linked to one another by file handling 

routines (Figure 4.2). In Figure 4.2 the RAINS Lake Module has been 

substituted in PRISM2, which is a model driver in which any model can 

be incorporated. PRISMl reads the file (data.dat) of parameter value 

ranges. It performs a Latin Hypercube sampling procedure (chapter 2) 

which optionally allows for the implementation of rank correlations 

among the parameters (see Iman and Conover, 1982). The samples are 

written in a file (prisml.dat) which becomes input to the model in 

PRISM2. 

PRISM2 produces an output file (prism2.dat) which can be used for 

the purpose of model response analysis. The latter may consist of 

different routines, the set of which is called PRISM3. 

The decision of which parameters to include in the sampling file 

(data.dat) depends on the available data and on the variables (Monte 

Carlo parameters) that drive the model. 

Table 4.1 lists the model variables that have been used as Monte 

Carlo parameters in data.dat of several model analyses (Kmiiri et al., 

1986, Gardner et al., 1987, Hettelingh and Gardner, 1988, Hettelingh 

d., 1988). 

The number of Monte Carlo simulations proved sufficient around 500 

(Gardner et al., 1980a; O'Neill et al., 1982). The criteria for testing 

the appropriateness of the number of runs was to apply the Kolmogorov- 

Smirnov test on the cumulative distributions of model responses, i.e. 

pH, of two subsequent runs. No significant difference at a 5% 

confidence level usually ensued before 500 runs. Another criteria 

consisted of verifying whether the correlations between the sampled 

input parameter values, were small ( < 0.001). This criteria was 

equally met at a number of runs smaller than 500. 





Table 4.1: Monte Carlo parameters for the RAINS Lake ~odule' 

Symbol (chapter 3) 
(equation # )  Code name2 Short description 
(first used) 

alake (3.26) 
acatch/alake (3.26) 
~~~p~~ (3.31) 
sthick (3.25) 
c s l o p e  (3.28) 
cCond (3.28) 
snte (3.35) 
sc e c (3.37) 
as a t (3.39) 

fCaP (3.41) 
bsat (3.40) 
~ a l k * ~ H +  (3.68) 

efac (3.23) 
f (3.19) 
Lrate (3.64) 
frac (3.18) 
D~~~~ / D ~  O f  (3.17) 
tfac (3.21) 
pfac (3.22) 
 tot (3.17) 

lakar 
clrat 
ldept 
soilt 
slope 
cond3 
sibr 
cec 
bsata 
f cap 
bsatb 
calk3 
evs3 
satu 
xso4 
fofi 
1 -sigma 
tfac4 
pf ac4 

SY 

lake area 
catchment to lake ratio 
lake depth 
average soil thickness 
slope of the catchment 
hydraulic conductivity 
silicate buffer rate 
cation exchange capacity 
base saturation in A-layer 
soil moisture content 
base saturation in B-layer 
alkalinity constants 
evapotranspiration const. 
forest coverage 
sulfur retention coeff. 
forest filtering factor 
base cation fraction 
temperature factor 
precipitation factor 
total deposition 

l ~ h e  number of input files of Scandinavia is equal to the number of 
regions, i.e. 14. A short description of the structure of an inputfile 
is given in appendix 11. 
2The code names refer to the names of the computer program variables. A 
description of the computer program can be found in appendix 11. 
3 ~ n  some of the investigations a fixed cond-, calk- and evs-parameter 
was used. 
4 ~ n  some of the investigations a monthly temperature and precipitation 
range was added in data.dat (see equation 3.24), referred to as T(1), 
... ,T(12) and P(l), ... ,P(12). 

Sulfur devosition scenario 

The meaning of the parameters of Table 4.1 in the context of the 

RAINS Lake Model, is extensively delineated in the equations of chapter 

3. The treatment of deposition as random parameter needs some further 

explanation, since RAINS computes the deposition in every grid11. With 

respect to a lake region however, site specific levels of deposition 

are computed as random stress, say ey,, which lies between the minimum 

l 1  The european area considered is bound by -12O longitude, 35O 
latitude and 42O longitude, 74O latitude. The grid size is lo longitude 
by O.SO latitude. 



and maximum deposition levels in the region. 

Note that simulations do not address particular lakes in particular 

grids, but are directed towards watershed site characteristics, in a 

region. By sampling from ranges of the parameters representing the 

watershed characteristics (Table 4.1), a representation is obtained of 

the kind of lakes 'tvpical' for that region. Monte Carlo Simulations 

thus result in 500 'typical' lakes. 

The analysis in this chapter first treats the RAINS time horizon 

from 1960 to 2040, in which years regional deposition is assumed to 

follow the same path as the minimum and maximum deposition, starting 

from syo in 1960. The deposition paths result from two RAINS scenarios 

i.e a high-emission-scenario and a low-emission-scenario, that deviate 

from one another from 1980 to 2040. The investigated deposition pattern 

resulting from both emission scenarios were computed with the EMEP-I 

source receptor matrix ( Eliassen and Saltbones, 1983) and are resp. 

displayed in Figure 4.3 and Figure 4.4. Deposition becomes as high as 3 

glm2/yr (Figure 4.3) in the southern part of Sweden due to the high- 

emission-scenario. The low-emission scenario leads to 1 glm2/yr (Figure 

4.4) being the highest deposition level in Scandinavia. The deposition 

pattern in 1980 is addressed further below (Figure 4.7). 

A second approach (section 4.4), applied to a metamodel, consists of 

considering European emission history (Fjeld, 1976, cited in Whelpdale, 

1987) starting from 1920, and allowing yearly deposition in future 

years to be randomly drawn between the minimum and maximum deposition 

in a region. 

The data 

Field measurements of watershed characteristics and pH and 

alkalinity levels were sampled in 5 regions of Finland, 6 regions of 

Sweden and 3 regions of Norway. For each lake region a set of 

corresponding parameter distributions was developed based on these 

measurements. The quality and quantity of the data on which these input 

distributions are based varied for all regions of the three countries. 

Table 4.2 illustrates the differences in sampling intensities between 

the regions. 



Figure 4 . 3  The deposition pattern over Scandinavia in 2 0 4 0  as 
result of the High Deposition Scenario 



Figure 4.4 The deposition pattern over Scandinavia in 2040 
as result of the Low Deposition Scenario 



Table 4.2 Watersheds sampled in 14 lake regions1 

Country Total Number 
Region of Lakes 

Finland 
1 2833 
2 13579 
3 12146 
4 9644 
5 1784 1 

 umber^ of Percent of 
Lakes Sampled Lakes Sampled 

1590 56.1 
647 4.8 
2061 16.9 
1537 15.5 
512 2.9 

Norway 
1 1 382 
2 ) unknown2 6 5 
3 1 67 

Sweden 
1 1194 1 

1 
2 5887 1 
3 7580 ) 8000 
4 15308 1 

1 
5 9943 1 

1 
6 47500 1 

1 
) unknown 
1 

15% lakes 1-9 ha 
50% lakes 10-99 ha 

1 
1 
) 2% of all 

) Swedish lakes 
) have been 

) sampled 
1 

'See Fig. 4.1 for geographical location of regions in Scandinavia. 
2 ~ h e  total number of lakes in Norway is approximately 3000. 
 he Finnish lakes were sampled under supervision of the Finnish 
National Board of Waters and Environment between 1975 and 1983. The 
Swedish morphological data was obtained from the Swedish Meteorological 
and Hydrological Institute (SMHI) and the information on the lake 
acidification was obtained from the National Swedish Environmental 
Protection Board from samples taken between 1977 and 1980. The data 
used here was obtained from reports which aggregated the information 
into frequency distributions in which details about the sample sizes 
were made explicit. The Norwegian data were sampled by the Norwegian 
Institute for Water Research (NIVA) between 1974 and 1977. 

Uncertainty analvsis and calibration 

No calibration would be necessary if the model were known to 

correctly represent the behavior of each catchment and if the a priori 

information on the shape of the parameter distributions, that were 

derived from the measurements, were correct. The model would then 

produce reliable pH frequency distributions. The data, however, as 

illustrated by Table 4.2, is characterized by a high degree of 

heterogeneity and generalization. The result of not applying a 



calibration method is shown in Figure 4.5. 

Figure 4.5 displays the cumulative frequency distribution of pH 

model response in 1920 and 1980, using the European sulfur emission 

history as mentioned above, compared to the cumulative frequency 

distribution of measured pH in 1980 in region 1 of Finland. The 

cumulative distribution of 1920 has been displayed to show the models 

initial response as compared to the last simulation year 1980. As can 

be seen, only about 5% of the measurements have a pH lower than 5, 

whereas Monte Carlo simulation leads to about 20% of the lakes with a 

pH less than 5 in 1980. Evidently the lower pH ranges are being over- 

estimated by the model without calibration. 

A model calibration procedure was designed for this study that (1) 

was simple to apply, (2) resulted in adequate model prediction of the 

measured frequency distribution of 1980 watershed pH, and (3) produced 

parameter sets that could be used in other regions, and (4) allows for 

the estimation of uncertainties of model applications as function of 

predefined regions. 

The calibration procedure was applied to the southern parts of the 

three countries in Scandinavia because these regions receive the 

highest levels of sulfur deposition. The calibration method consists of 

changing the shapes of the frequency distributions assigned to 

parameters most relevant12 for the explanation of the pH model response 

variation. A flowchart of the calibration procedure is provided in 

Figure 4.6. 

An uncertainty analysis investigating partial RL (see equation 2.16) 

leads to a parameter ranking in which the soil thickness (soilt) and 

silicate buffer rate (sibr) were most important. The results of the 

uncertainty analysis are displayed in Table 4.3. 

The definition of calibration given in section 2.4 involves a 

recursive modification of model parameters until the comparison of 

model response and measurements agrees with a goodness of fit 

criterion. Traditional tests of goodness-of-fit, such as the 

Kolmogorov-Smirnov or Chi-squared test, are not well suited to this 

purpose because significant differences may result that are irrelevant 

with respect to acidity. 

12A parameter is more relevant than another if its partial R2 is 
higher (see section 2.4). 



Figure 4.5 Cumulative distribution of the measured pH in 1980 in 
region 1 of Finland (graph I), of the RAINS Lake Module response of pH 
in 1920 (graph 2) and in 1980 (graph 3) as result of 500 Monte Carlo 
simulations (adapted from Hettelingh and Gardner, 1988). 





Table 4.3 Parameter uncertainty analysis for Monte Carlo 
simulations of the regions 1 of Finland, Sweden and Norway1 

Finland Norway Sweden 
Parameter 

Rank X Rank X Rank X 

soilt 
sibr 
clrat 
cond 
f cap 
bsata 
cec 
areal 
T(12) 
P(7) 
ldept 
T( 11 
SY 
slope 
evs 
bsatb 
T(6) 
P(4) 
T(8) 
P(12) 

'Parameter ranks are based on the percent effect that each parameter 
has on predicted pH values in 1980. The percent effect is estimated 
using the partial R' statistic (equation 2.16). Values for the 
uncertainty analysis are determined by simultaneous variation of 
parameters from pre-specified frequency distributions (see section 2.3 
and 2.4). Parameters explaining less than 1% of the pH variation, are 
not ranked. 

If, for example, calibration leads to a Figure like 4.5 in which, 

however, the difference between the cumulative pH distributions occurs 

in pH ranges above 6.5, the relevance of this mismatch is not 

significant from a water-quality standpoint (see Figure 1.2). A 

combination of the Kolmogorov-Smirnov test and the requirement of a 

good fit in the lower percentiles would be a possible approach (see 

Hettelingh and Gardner, 1988). An alternative is to restrict the 

analysis to the moments and to the tails of the distribution. 

In this chapter a calibration method is applied that allows 

extrapolation of results to other regions and that allows for the 

estimation of errors and uncertainties of the regionalization. The 

comparisons of interest for this study are the differences between the 



RAINS Lake Module and the Scandinavian data for the mean, variance and 

the range of predicted pH values. For most applications in 

environmental modeling a knowledge of the mean and the variances is 

sufficient (see also Tiwari and Hobbie, 1976). A method first applied 

by Bartell (1986) simultaneously compares relative biases and the ratio 

of variances as follows: 

where, 

rB = relative bias 
- 
Xp = mean of the pH model predictioxs 
- 
Xo = mean of the pH measurements 

So = standard deviation of the pH measurements 

Sp = standard deviation of the pH model predictions 

F = ratio of variances 

Relative bias measures model accuracy by quantifying the mean 

difference between the model and the measurements in units of standard 

deviations of the data. An exact match leads to an rB of 0. The ratio 

of variances provides an indication of the relative spread of the model 

predictions compared to the measurements. If F < 1 the model response 

has a narrower distribution than the measurements while for F > 1 the 

opposite is true. The objective of the applied calibration procedure 

is : 

1. reducing rB to a minimum close to 0. 

2. having F converge to 1. 

3. having the difference in the ranges of the predicted and 

measured pH values be as small as possible. 

The procedure consists of several iterations of 500 Monte Carlo 

simulations of the model over the period 1960 to 1980 until the 3 

criteria, specified above, are satisfied. For each repetition of the 

procedure the distributions of the parameters that rank highest (Table 

4.3), i.e soilt and sibr are adjusted. After every set of 500 Monte 

Carlo runs, the rB, F and the percentage of responses outside the 



allowable range, were compared to the results of the previous set of 

runs and to the 3 targets specified above. A new repetition with 

another shape of the initial distribution or other moments of the most 

important parameters13 was started when a previous run had led to 

better results. The decision whether a run leads to better results was 

subjectively made, i.e. not all three criteria of a run needed to be 

simultaneously better than a previous one. For example a slightly 

higher rB was accepted if F and the percentage outside the range were 

improved. Table 4.4 lists the extent to which the 3 criteria were met 

in every calibration iteration applied for the three southern regions 

of Finland, Sweden and Norway. 

Table 4.4 is a result of the adaptation of the shapes and moments of 

the average soil thickness and the silicate buffer rate. The initial 

distribution of the averane soil thickness (soilt) was iteratively 

adjusted resulting in a final distribution that was triannular. The 

procedure involved the simultaneous adaptation of the moments of sibr 

but not its initial histogram shape. 

The assumptions about the shape of soilt does not imply that its 

actual distribution in a region is triangular, but rather that the 

effective soil thickness and silicate buffer rate must jointly show a 

strong central tendency in order to make the mean and the variance of 

model predictions match those of the measurements. Conversely it is 

also true that the fact that the other parameters were unimportant, and 

therefore not adjusted during the calibration process, does not imply 

that they have been correctly estimated. Thus, parameters are not 

unique for each region, but represent a set of values which best 

characterize the model behavior in a particular region. 

Table 4.4 illustrates that the values of rB and F in the 

uncalibrated case, iteration 1, of the southern region of Finland was 

corrected by the final calibration result of iteration 6. The frequency 

of model response outside the measured pH range of 1980 was decreased 

from 8% before the calibration to 7% afterwards. The results show that 

the southern regions of Sweden and Norway were more difficult to 

calibrate. 

13~hese  changes were made in the file data.dat of PRISM1 (see 
figure 4.2). 



Table 4.4' Iterative calibrated pH model response 

iteration - I of response 
Country X 

Xp Sp r B F outside 
range 

Finland 1 6.42 0.97 0.21 1.27 8 
2 6.28 1.02 0.06 1.38 1 0  
3 6.36 0.99 0.14 1.32 8 
4 6.38 0.94 0.17 1.19 8 
5 6.44 0.80 0.24 0.86 5 
6 6.30 0.93 0.07 1.17 7 

Sweden 1 6.29 1.02 0.57 1.03 1 1  
2 6.37 0.96 0.64 0.93 1 1  
3 6.58 0.83 0.86 0.69 7 
4 6.34 0.96 0.62 0.91 1 1  
5 6.55 0.93 0.82 0.86 6 

Norway 1 6.37 0.96 3.19 4.67 0 
2 6.44 0.89 3.35 4.07 0 
3 6.37 0.96 3.19 4.67 0 
4 5.00 0.73 0.08 2.74 0 
5 4.98 0.76 0.04 2.97 0 

'see equation 4.1 and 4.2 for the meaning of the variables. 

The difficulty in calibrating Sweden and Norway may be due to the 

relatively high deposition (Figure 4 . 7 )  in calibration year 1980 as 

compared to the southern part of finland, and differences in 

geochemical processes which are not accounted for by the parameters of 

the RAINS Lake Model. Note, also from Figure 4.7,  that the deposition 

gradient in region 1 of Norway is much less homogeneous than in the 

first region of Sweden and Finland. 

4.3 RAINS LAKE MODEL RESPONSE AS FUNCTION OF PREDEFINED REGIONS 

The procedure designed to investigate the effect of regionalization 

consists of investigating the sources of error which affect regional 

model   re diction. The sources of errors that affect model predictions 

have been partitioned (see Figure 2 . 1 3 )  in many ways (O'Neill and 

Gardner, 1 9 7 9 ;  Gardner et al., 1 9 8 0 b ) .  but the effects on regional 

environmental models have not been clearly specified. 



Figure 4.7 The deposition pattern over Scandinavia in 1980, 
similar for all RAINS scenarios. 



In the following three sources of error are assumed to be relevant 

(Gardner et al., 1987): 

1. errors (el) due to uncertainties associated with estimates of 

model parameters, 

2. errors (e,) due to the application of a model on different 

regions, i.e. when model predictions are extrapolated from one 

region to another, and 

3. residual errors (e3) due to assumptions and simplifications in 

the structure and computer implementation of the model. 

In general the effects of these errors individually are difficult to 

distinguish. Residual errors (e3) and extrapolation errors (e2) will be 

dependent on the adequacy of parameter estimates. It is, however, 

important to characterize the errors and, where possible, quantify them 

in order to verify model applications on regions of environmental 

subsystems. 

The effect of parameter uncertainties (el) and residual model errors 

(e,) was characterized by superimposing the calibration results (see 

section 4.2) of the most influential parameters (soilt and sibr) of 

region 1 of each country on all other regions within the same country. 

This extrapolation with its associated errors was made for all but the 

first region within each country and is referred to as the 

intra-country comparison with an associated intra-country error. 

Additional errors due to the extrapolation process (e,) were 

investigated by superimposing the results of the calibration process 

and all other input parameters (see Table 4.2), i.e the geomorphologic 

characteristics, from the first region in Finland to all other regions 

in Scandinavia. Region 1 of Finland was chosen for this extrapolation 

because of the good agreement between the model and data (see Table 

4.4). Such extrapolation will be called inter countrv extrapolation 

with an associated inter country error. Inter country extrapolation 

assumes that all other regions "behave" as region 1 of Finland except 

for the pattern and quantity of sulfur deposition. 



Intra-country extrapolation 

The intra country comparisons are summarized in Table 4.5. The 

results in Table 4.5 show that in general the estimation of the mean 

lake pH is not too distant from the measured mean. In Finland the 

largest deviation, d, of 7.9% ( %  column) occurs in region 2. The 

largest deviation in Sweden, 14.52, occurs in region 1, due to the 

unsatisfactory calibration. In Norway the prediction of the mean is 

equally reasonable, with a largest error of 5.5% in the northern most 

region 3. Note however that the application of the calibration result 

in the northern part of Finland, starting from region 2, and all 

northern regions of Sweden result in a reduction of the prediction bias 

to resp. 2.1% and 0.1% . However, in Norway an inverse pattern is 

displayed, increasing from 0.4 to 5.5. The effect of a calibration 

error (el)  should be expected to show an equal pattern in all intra- 

country comparisons. A possible cause of the inconsistency may be the 

joint effect of the calibration error, and the different deposition 

patterns within the regions. Indeed, from Figure 4.7 it is clear that 

the heterogeneity of deposition patterns is largest in Norway, in 

particular in region 1. 

The value of d for the first regions of Finland, Sweden and Norway 

is 0.06, 0.83 and 0.02 with an average for these regions of 0.30. The 

average value for d for all comparisons is 0.29, indicating that the 

extrapolation process produces no increase in absolute bias if all 14 

regions are investigated in an aggregate way. 

The values of rB are all less than 1.0, indicating that the mean of 

the model predictions are always less than one standard deviation from 

the data. The ratio of the variances, F, is less than 1.0 in the 

regions 2 through 5 of Finland, near 1.0 in the regions 2 through 6 of 

Sweden, and above 1 in the regions 2 and 3 of Norway. The combination 

of rB and F statistics is displayed in Figure 4.8. Ideally, model 

predictions should result in (rB,F)-clusters around ( 0 , )  The 

underestimation of the variability of the predictions in all the 

regions of Finland, most of the regions in Sweden, and its 

overestimation in all the regions of Norway demonstrate that the 

calibration error in the regions will affect the fit between the 



extreme percentiles of the cumulative distributions of the predictions 

and those of the measurements. 

Table 4.5' Intra-Country Comparisons of 1980 Measured pH Values 
Against Model predictions2 

DATA MODEL 
Region d 2 rB F 

Finland 
1 6.24 13.8 6.30 14.8 0.06 1.0 0.07 1.15 
2 6.31 11.3 6.81 8.4 0.50 7.9 0.70 0.63 
3 6.47 12.1 6.83 9.1 0.37 5.7 0.47 0.64 
4 6.58 11.6 6.94 8.1 0.36 5.5 0.48 0.53 
5 6.79 9.4 6.93 5.9 0.14 2.1 0.21 0.40 

Sweden 
1 5.72 17.5 6.55 14.2 0.83 14.5 0.82 0.86 
2 5.30 22.1 5.84 17.5 0.54 10.2 0.46 0.76 
3 6.33 18.3 6.26 14.7 0.07 1.1 -0.06 0.62 
4 5.84 12.3 6.41 12.9 0.58 9.9 0.80 1.33 
5 6.36 11.0 6.51 11.8 0.14 2.3 0.21 1.19 
6 6.61 12.1 6.60 9.5 0.01 0.1 -0.01 0.62 

Norway 
1 4.96 8.9 4.98 15.3 0.02 0.4 0.04 2.97 
2 5.54 15.2 5.48 15.7 0.07 1.3-0.08 1.03 
3 5.96 8.9 6.29 11.6 0.33 5.5 0.61 1.88 

sum/ 14 0.29 

adapted from Gardner et al., 1987. 2 ~ h e  CV is the relative 
variability calculated as the (standard deviation / mean) X 100. d is 
the absolute value of the difference between the mean of the data and 
the mean of the model. The mean absolute value of d for each country 
and for the entire table are also listed. The Z column gives d as a 
percentage of the mean of the measurements. 





Inter-country extrapolation 

Table 4.6 summarizes the results of the inter country comparisons of 

the RAINS Lake Model simulations compared to available measurements. 

The inter country comparisons are based on the extrapolation of all 

parameters from region 1 of Finland (Figure 4.1) to other regions 

within Scandinavia, except for the deposition. For every region the 

prevailing sulfur deposition ranges (Figure 4.7) is applied. 

The absolute deviation (d) is smallest in Finland and largest in 

Norway. The average over all Scandinavian regions of the absolute 

deviation d (0.39) has increased compared to the result of the inter 

country extrapolation (0.29, Table 4.5). The average over the regions 1 

in the three countries has also increased from 0.30 (Table 4.5) to 0.58 

(Table 4.6) indicating that the calibration and regional extrapolation 

error jointly (el U e,) lead to a larger error, than the average 

absolute deviation over all regions (0.39 in Table 4.6); aggregation of 

regions smoothes the error. 

The inter-country extrapolation for Finland is generally better than 

the intra-country (Table 4.5) comparison (recall that only the soil 

thickness (soilt) and the silicate buffer rate (sibr) were extrapolated 

in the intra-country comparison). The relative bias of results, rB, is 

less and the ratio of the variances, F, more closely estimates the 

variability of the data. Figure 4.8 shows that the (rB,F) cluster of 

the inter country extrapolation in Finland is closer to (0,l). 

The results of the inter-country extrapolation for Sweden are not 

consistently higher or lower. Except for region 2 and, to a lesser 

extent, region 6 the absolute deviation d is lower than in Table 4.5. 

The difficulties in predicting the regional behavior of lakes in region 

2 may be due to interaction of high rates of sulfur deposition, a 

relatively strong deposition gradient differences (see Figure 4.7) and 

differences in geochemical processes which were not accounted for by 

the parameters of the Rains Lake Model. The joint effect of the 

calibration (el) and regional error (e,) thus increases the prediction 

error in region 2. However, the average over the Swedish regions of d 

in the case of the inter-country comparisons (0.35, Table 4.6) is 

similar to the average of d in the case of the intra-country 

comparisons (0.36, Table 4.5). This suggests that the prediction errors 



in the intra and inter comparisons, become less distinguishable when 

the region is heterogeneous with respect to deposition levels, 

calibration and regional error. 

The inter-country extrapolations are rather poor for the three 

regions in Norway. 

Table 4.6 '  Inter-Country Comparisons of 1980 Measured 
pH Values Against Model predictions2 

DATA MODEL 
Region d X r B F  

Finland 
1  6 . 2 4  
2  6 . 3 1  
3  6 . 4 7  
4  6 . 5 8  
5  6 . 7 9  

Sweden 
1  5 .72  
2  5 . 3 0  
3  6 . 3 3  
4  5 . 8 4  
5  6 . 3 6  
6  6 . 6 1  

Norway 
1  4 . 9 6  
2 5.54 
3  5 . 9 6  

'adapted from Gardner et al., 1987.  
2The CV is the relative variability calculated as the (standard 
deviation / mean) X 100 .  d is the absolute value of the difference 
between the mean of the data and the mean of the model. The mean 
absolute value of d for each country and for the entire table are also 
listed. The X column give d as a percentage of the mean of the data. 



Both t h e  a b s o l u t e  (d )  and r e l a t i v e  (rB) b i a s  a r e  h igh  and t h e  v a r i a n c e  

i s  poor l y  e s t i m a t e d  f o r  reg ion  1 (F = 5.08, Table  4 .6)  . I n  F igu re  4.8 

t h e  ( rB,F)  c l u s t e r  of Norway i s  shown t o  be d i s t a n t  from ( 0 , l ) .  

The p r e d i c t i o n  e r r o r  i n  t h e  t h r e e  r e g i o n s  i n  Norway is  c l e a r l y  a f f e c t e d  

by t h e  r e g i o n a l  c h a r a c t e r i s t i c s ,  i . e .  co r respond ing  t o  r e g i o n  1 of 

F in land ,  t h a t  a r e  imposed. The v a r i a n c e s  of t h e  p r e d i c t i o n  have 

i n c r e a s e d  i n  comparison t o  t h e  i n t r a - e x t r a p o l a t i o n ,  i n  a lmost  a l l  

r e g i o n s ,  t h u s  a f f e c t i n g  t h e  con f idence  t h a t  may be a t t r i b u t e d  t o  t h e  

t a i l s  of t h e  cumulat ive d i s t r i b u t i o n  of  model response .  

Time dependent e x t r a p o l a t i o n  

Model s i m u l a t i o n s  of  t h e  mean pH va lues  i n  t h e  y e a r  2040 f o r  two 

s u l f u r  d e p o s i t i o n  s c e n a r i o s  were performed w i th  t h e  i n t r a -  and i n t e r -  

c o u n t r y  parameter  s e t s .  Because t h e s e  p r e d i c t i o n s  can  n o t  be v e r i f i e d  

by d a t a ,  t h e  r e s u l t s  w i l l  c o n c e n t r a t e  on t h e  d i f f e r e n c e s  due t o  t h e  

i n t e r a c t i o n  o f  t h e  two e x t r a p o l a t i o n  p rocedures  w i th  t h e  s u l f u r  

d e p o s i t i o n  s c e n a r i o  ( F i g u r e s  4 . 3  and 4 . 4 ) .  Th is  d i f f e r e n c e ,  D,  between 

t h e  i n t r a -  and i n t e r - c o u n t r y  s i m u l a t i o n s  f o r  each  s c e n a r i o  i s  g iven  i n  

Table  4.7 

The t ime  e x t r a p o l a t i o n  o f  t h e  c a l i b r a t i o n  and r e g i o n a l  e r r o r  t e n d s  

t o  i n c r e a s e  t h e  average p r e d i c t i o n  e r r o r  when d e p o s i t i o n  accumulates 

over  t ime  i n  F in land  (from 0.34 t o  0.41, 0 . 3 4 ) ,  i n  Sweden (from 0.15 t o  

0 .17,  0 .18)  and i n  Norway (from 0.82 t o  0.97, 1 . 0 3 ) .  Th is  i n c r e a s e  is  

however no t  s i m i l a r  i n  a l l  c o u n t r i e s .  The dominat ing c a l i b r a t i o n  e r r o r  

(el) i n  F in land  (underes t ima t ion  of  i n t r a - v a r i a n c e s ;  F igu re  4 . 8 )  remains 

c o n s t a n t  under t h e  h igh  d e p o s i t i o n .  .However, from comparing t h e  h igh  

d e p o s i t i o n  p a t t e r n  i n  2040 (F igu re  4 .3)  w i th  t h e  d e p o s i t i o n  p a t t e r n  i n  

1980 (F igu re  4 .7)  it can be seen t h a t  h a r d l y  any d i f f e r e n c e  occurs  i n  

F in land .  The low d e p o s i t i o n  p a t t e r n  i n  2040 (F igu re  4 . 4 ) ,  on t h e  

c o n t r a r y ,  i s  d i f f e r e n t  from t h e  1980 p a t t e r n .  

The average  over  t h e  F inn ish  r e g i o n s  of  t h e  p r e d i c t i o n  e r r o r s  

consequen t l y  becomes l a r g e r  (from 0.34 i n  1980 t o  0.41 i n  2040) .  The 

dominat ing r e g i o n a l  e r r o r  (el U e,) i n  Norway ( o v e r e s t i m a t i o n  of  i n t e r -  

va r iances ;  F igu re  4 .8)  l e a d s  t o  an  impor tan t  i n c r e a s e  of  t h e  p r e d i c t i o n  

e r r o r  i n  bo th  t h e  low and h igh  d e p o s i t i o n  case .  



Table 4.7l Differences Between Inter and Intra Country 
Comparisons for the High and Low Sulfur Deposition Scenarios2 

Country scenario2 for Year 2040 
Region 1980 

Low High 

Finland 
1 
2 
3 
4 
5 

Sweden 
1 
2 
3 
4 
5 
6 

Norway 
1 
2 
3 

'adapted from Gardner et al., 1987 
2D is the absolute value of the difference between sets of simulations 
calibrated to the first region of each country (Table 4.5) and sets of 
simulations calibrated to the first region of Finland and extrapolated 
to other countries (Table 4.6). The X column gives the values of D as a 
percentage of the mean predicted value of Table 4.5. The mean absolute 
value of D for each country and for the entire table are also listed. 

In Sweden where the calibration as well as the regional error lead to a 

somewhat similar predicting error (cluster around (1 ,O)  in Figure 4.8) 

no major change of the prediction error over time occurs. 



The difficulties of calibrating and predicting lake pH for regions 1 

and 2 in Sweden are still evident by inspection of D in 2040. The 

extrapolation errors made in Norway (Table 4.6) also lead to an 

increase D from 1980 to 2040, especially if the deposition is high. 

The mean predicted pH in 2040 are shown in Figure 4.9 for the 

calibration regions (solid circles), intra-country extrapolations 

(solid triangles) and inter-country extrapolations (solid squares). 

The simulations of the high sulfur deposition scenario and low 

deposition scenario are connected by a solid line, with the high 

deposition scenario always predicting a lower mean pH. Each point 

illustrated in Figure 4.9 represents 500 independent Monte Carlo 

simulations. On average the mean difference between scenarios ranges 

from 0.18 to 0.28 pH units. 

In summary 

The results indicate that (1) if the RAINS Lake Module is used as a 

measure of D (the net difference in pH due to the different sulfur 

deposition scenarios), then its calibration and regional error are less 

important. (2) If, however, the accuracy of the pH simulations is more 

important, then , as has been shown from the intra and inter country 

comparisons, the importance of regional and calibration error may 

affect the confidence of the prediction of watershed quality in a 

region. Differences in geomorphological conditions and deposition 

patterns have been shown to interact in a spurious way, thus affecting 

regional as well as temporal predictions that are based on calibration 

results. 

Regional and temporal predictions are evaluated in the next section 

when in stead of the RAINS Lake Model another more aggregated model 

structure, i.e a metamodel is used. 
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Figure 4.9 Comparison of mean pH model predictions in 2040 for the 
Low (left squares and rectangulars) and for the High Scenarios. 
(adapted from Gardner et al., 1987) 
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4.4 METAMODEL RESPONSE AS FUNCTION OF PREDEFINED REGIONS 

In this section the quality of the information on regional 

characteristics is investigated, that must be met in order to make pH 

predictions as function of deposition patterns and calibration. For 

policy purposes it is important to be able to make predictions also 

when information on geomorphological conditions is lacking and/or 

varying in a predefined region. 

Therefore, the aim is (1) to investigate whether the information 

contained in the application of a complex model in a region can be 

condensed to a small subset of information and (2) to investigate what 

the influence of model complexity is with respect to the issue of model 

predictions in fixed regions, treated in section 4.3. 

Reaion and deposition pattern 

Region 1 of Finland was chosen, because of its relatively good 

coverage in the sample (Table 4.2), in combination with deposition 

ranges in 1980 resulting from the Official Energy Pathways (see Figure 

4.7). The simulation period chosen for the analysis was arbitrarily set 

three times as long as the standard calibration period within RAINS, 

i.e. sixty years covering 1920 to 1980. The reason for a long period is 

to reduce the effect of uncertainties associated with the initial 

values for starting the model simulations. The deposition values for 

the years before 1960 were obtained by disaggregating the historical 

emission totals (Fjeld, 1976, cited in Whelpdale, 1987) over the 

European countries on the basis of the 1980 emissions per country, and 

applying the RAINS deposition module (chapter 2). The minimum and 

maximum deposition in Finland region 1 ranged in every year within the 

interval between 0.5 g/m2/yr and 2.0 g/m2/yr. 

A four step procedure was designed as follows: 

1. Identify important parameters: An uncertainty analysis similar to 

the one conducted in section 4.3 was performed, using 60 deposition 

input ranges (sy, Table 4.2). The result is presented in Table 4.9. 

The ranking of Table 4.9 is different from that in Table 4.3. This 



indicates that different deposition patterns, on a region, can lead to 

a shift in uncertainties of model parameters. 

2. desinninp, a metamodel: The purpose of the second step is to use 

the important parameters of step 1 along with appropriate deposition 

parameters to form an empirical relationship that can be used to 

predict the response of the model in 1980. It is reasonable to assume 

that acidification is a function of acid deposition in a current and 

past years. This process of the lagged influence of acid deposition is 

well taken into account by the recursiveness of the RAINS Lake Module 

(chapter 3). 

Table 4.9' RAINS Lake module parameters explaining more than 1z2 of 
the 1980 pH response. 

parameter3 
Name 

Rank z2 

soilt 1 54.8 
calk 2 6.0 
sibr 3 4.0 
pf ac 4 1.2 
cec 5 0.8 

'~dapted from Hettelingh and Gardner, 1988. 
2 %  contribution of parameters to the variance of the pH response in 
1980 is computed by means of the partial R~ statistic (chapter 2). 
3parameter names are explained in Table 4.1. 

For this reason the pH response of the metamodel in 1980 (see for a 

description of metamodeling chapter 1 and chapter 2) has been assumed a 

function of accumulated sulfur deposition in the period 1920-1980. 

The inclusion of deposition as explanatory variable, in spite of its 

relative non-importance (Table 4.9), is a result of the apparent 

relation between deposition and regional characteristics of section 

4.3. 

3. calibrating the metamodel: Calibration of the regression equation 

was accomplished by performing Monte Carlo simulation on the equation 

and comparing the cumulative distribution of the metamodel response 

against the cumulative distribution of the measured pH in 1980. The 

calibration convergence criterion consists of the Kolmogorov-Smirnov 

test in conjunction with an acceptable fit of the lower percentiles 

(see also section 4.2). 



4. reducing the number of explanatory variables of the metamodel: 

this step is introduced to increase the applicability of the metamodel 

in a region where even not enough information is available to use the 

equation of step 3. Another reason is that the generality of the method 

proposed here is unnecessarily affected by the adjustment of the input 

parameter distributions as part of the calibration procedure in step 3. 

The ability to obtain a metamodel with unchanged measured (input) 

parameter distributions evidently increases the application of such a 

simple model on other regions. 

Response surface models, including metamodels, can be formulated 

using statistical techniques (regression, principal components) or be 

based on intuition. In either case will the fit of the relationship be 

improved by the calibration procedure of step 3 in accordance with step 

4. Following Kleijnen's (1987) application of regression techniques in 

the development of metamodels, ordinary least squares (OLS) is applied 

in step 2. 

Different metamodels were tested. A suitable least squares 

relationship, defined in step 2 was found to be equation 4.3 : 

+ 0.62*ln(SpHl ,,,) 
(0.07) 

where, 

SpHlg8, = pH model response of the RAINS Lake Module in 1980 

SPH,,,~ = pH model response of the RAINS Lake Module in 1920 

Sdep - ln(s~,,,,) + In(sy,,,, + . . . + ln(sy,,,,) 

(see Table 4.1 for the meaning of the other parameters) 

The numbers between brackets indicate the standard deviations of the 

estimated coefficients. Figure 4.10 displays the cumulative 



Figure 4.10 Cumulative distribution of the measured pH in 1980 in 
region 1 of Finland (graph I), of the RAINS Lake Module response (graph 
2) and of metamodel 4.1 (graph 3) of the pH in 1980 as result of 500 
Monte carlo simulations (adapted from Hettelingh and Gardner, 1988) 



Figure 4.11 Cumulative distribution of the measured pH in 1980 in 
region 1 of Finland (graph l), and of the calibrated response of 
metamodel 4.1 (graph 2) as result of 500 Monte Carlo simulations 
(adapted from Hettelingh and Gardner, 1988). 



distribution of the simulated pH from equation 4.3 (graph 3)14, the 

model response of the RAINS Lake Module (graph 2) and the pH 

measurements in Finland region 1 (graph 1). Both simulation results 

deviate substantially from the 1980 pH measurements. The metamodel 

performs better than the RAINS Lake Module in the lower but worse in 

the higher percentiles. 

Monte Carlo simulations were performed (step 3) on equation 4.3 by 

assuming that the initial values of the lake pH in 1920 lie within the 

neutral range, i.e. between 6 and 8 with a mean of 7, with the shape of 

SpH1920 assumed to be triangular. By iteratively changing the moments 

of SpH1920 and soilt, the difference between the cumulative 

distribution of the metamodel response and the measurements was 

gradually reduced. The final result of this calibration is shown in 

Figure 4.11. A two-sided Kolmogorov-Smirnov test was performed by 

comparing the predictions of the metamodel (graph 2) with the 

measurements (graph 1). A statistic of 0.13 was obtained which allows 

for the rejection of the null hypothesis that the two graphs are 

similar15. 

It is of more importance for the prediction of water quality to 

obtain a good fit in the lower pH ranges rather than a reasonable fit 

over the entire pH range. Therefore, the Kolmogorov-Smirnov test was 

used as convergence criterion of the calibration procedure. A 

calibration run was considered better than a previous run if it 

resulted in a lower Kolmogorov-Smirnov test value, in conjunction with 

an improvement of the lower percentiles of the simulation result. The 

absolute deviation of the 2.5, 25 and 50 (median) percentiles of graph 

1 and graph 2 as percentage of the similar percentiles in graph 1 are 

respectively 3, 3 and 0.2%. The application of this combined criterion 

indicated that no better calibration to the measurements could be 

obtained. 

Entering step 4 of the analysis the question is if all variables of 

equation 4.3 are relevant from the point of view of being able to apply 

the equation in another region. The 1% inclusion criterion (Table 4.9), 

'   he distribution is obtained by performing 500 Monte Car lo 
simulations on equation 4.1 over the period 1920-1980. 

15the number of measured pH values in region 1 of Finland equals 
819 and the number of Monte carlo simulations equals 500. The 
significance for the two sample test is 0.05. 



for instance, lead to the inclusion of pfac which is nothing more than 

a weight attributed to precipitation (see equation 3.22), which was 

relevant for the RAINS Lake Module. Moreover assumptions were made 

about the shape of SpH1920 in order to calibrate equation 4.3, which 

affects its application for another combination of regional 

characteristics and deposition patterns. Therefore it is of interest to 

accommodate another metamodel to the results of equation 4.3. For this 

purpose the Monte Carlo simulation results of equation 4.3 were 

regressed on soilt, calk and accumulated deposition only: 

-0.009fSdep 
(0.0009) 

where, 

M p H l g B O  = Monte Carlo simulation response of equation 4.3 

A Monte Carlo simulation and analysis of equation 4.4, lead to a 

cumulative distribution of the predicted pH in 1980 that is not 

significantly different from the measurements in 1980 at 0.01 

significance (statistic of 0.09). In addition the fit is relatively 

good in both the lower and higher percentiles (Figure 4.12) 

Temporal and spatial extrapolations with the metamodel 

In order to test spatial and temporal robustness of equation 4.4 two 

extreme tests were performed. The first test was to apply the metamodel 

on the most northern part of Finland (region 5, see Figure 4.1) where 

low deposition levels occur (between 0 and 0.5 g/m2 lyr). The second 

test was to use equation 4.4 with a ten fold higher deposition (between 

10 and 20 g/m2 lyr) thus simulating in an extreme way a distant future 

deposition accumulation16. 

1 6 ~ o t e  that deposition levels higher than 10 g /m2/y r  are not 
uncommon in central Europe. 



Figure 4 . 1 2  Cumulative distr ibution of the measured pH i n  1980  i n  
region 1 of Finland (graph l), and of the response of metarnodel 4 . 2  
(graph 2 )  as resul t  of 500  Monte Carlo simulations. 



Applying equation 4.4 in a Monte Carlo simulation using regional 

inputs of the Northern part of Finland (region 5), leads to a mean of 

absolute deviations between the predicted pH values of 1980 and the 

measured pH values which is as great as 36% of the mean of the measured 

pH values. Simulations with the RAINS Lake module in region 5 with a 

deposition pattern resulting from the Official Energy Pathways scenario 

lead to a mean of absolute deviations that is not greater than 12% of 

the mean of the measured pH value. The possible reasons for this 

difference are that a shift in parameter uncertainties occurs in region 

5 as compared to region 1. The three most important parameters in 

region 1 (Table 4.8) are also most relevant in region 5, but explain 

respectively 43.41, 21.8% and 6.1% of the variance in the pH response 

of the RAINS Lake Module. 

The application of an extremely high deposition scenario in region 1 

leads to a mean of absolute deviations between the metamodel response 

and the measured pH values of about 70% of the mean of measured pH 

values whereas a similar deposition input to the RAINS Lake Module 

results in a mean of absolute deviations of about 22%. 

Summarizing it can be remarked that metamodel applications must be 

restricted to regional and deposition conditions that are similar to 

the calibration case. In the calibration case a metamodel, that 

consists of only the most important parameters of the RAINS Lake Model, 

may be used within a fixed region instead of the RAINS Lake module. 

When the combination of regional characteristics and deposition levels 

change the predictions of a metamodel Model are liable of being error 

prone. 

4.5 CONCLUDING REMARKS 

The main proposition of this chapter was that the choice of a zoning 

system may influence the model calibration results and thus affect the 

quality of model predictions. 

The zoning system that was used is similar to the spatial 

disaggregation applied for the lake acidification module of RAINS, i.e. 

partitioning Scandinavia into 5 regions in Finland, 6 in Sweden and 3 

in Norway. Two kinds of calibration were applied: 



(1) fitting the mean, standard deviation and tails of the RAINS Lake 

Model pH predictions of 1980 to the same statistics of the 

measurements. The temporal scale was also chosen similar to the time 

horizon used in RAINS, i.e from 1960 to 2040. This calibration method 

was applied to the southern regions, i.e. the regions with number 1 

(Figure 4.1, of each of the Scandinavian countries. The best 

calibration result was obtained in region 1 of Finland and the worst in 

region 1 of Noway.  

(2) fitting the cumulative distribution of the pH predictions in 

1980 of a metamodel to the cumulative distribution of the measurements. 

The calibration especially aims at providing a good fit in the lower 

percentiles of the cumulative distribution of the pH predictions 

because this pH range is relevant from a water quality point of view. 

The spatial scale was restricted to the southern part of Finland 

because of the relatively good sample by which lake characteristics 

were described. The temporal scale was taken from 1920 to 2040. 

The investigation conducted with both the calibration methods 

concentrated on (a) the quality of the model predictions under 

different regional conditions (soil characteristics and deposition 

patterns) from the conditions under which the calibration was 

performed, i.e regional extrapolation and (b) the quality of future 

predictions, i.e temporal extrapolation. 

With both calibration method (1) and (2) it was shown that changing 

combinations of deposition levels and regional characteristics may lead 

to shifts in the ranking andlor the magnitude of the uncertainty of 

model parameters. This shift in uncertainties leads to a changing 

variability of the model predictions, thus affecting the quality of the 

predictions. 

The quality of the predictions made with calibration method (1) was 

tested by applying the calibration result of the southern regions of 

Scandinavia to the other regions, and consequently, different 

deposition ranges in the respective countries. This kind of 

extrapolation within a country was termed intra-countrv extrapolation, 

and was aimed at testing the effect of a calibration error. Besides 

intra-country extrapolation the effect of applying the regional 

characteristics of the southern part of Finland to all other regions, 

i.e. inter-countrv extrapolation was investigated. Inter country 



extrapolation aims at testing the effect of a combination of 

calibration error and errors due to defining wrong regional 

characteristics. 

It was shown that intra-country extrapolation led to prediction 

errors that were different in one country to another. The variability 

of the predictions was underestimated in Finland, mostly underestimated 

in Sweden and overestimated in Norway. The inter-country extrapolation 

led to varied results. In Finland predictions were better, in Sweden 

remained comparable to, and in Norway became worse than the prediction 

due to intra country extrapolation. 

Temporal extrapolation showed that the dominating calibration error 

in Finland leads to a larger prediction error in future years as 

compared to the calibration year when the deposition pattern changes. 

This result also occurs in Norway where the regional error is 

dominating the error in model results. In Sweden where the calibration 

error cannot be well distinguished from the regional error, the 

prediction error was shown to remain about the same. 

The quality of predictions made with calibration method (2) was 

tested by applying the calibration result in the Northern part of 

Finland and by predicting the pH of 1980 in region 1 of Finland when 

the deposition increases drastically. First it was shown that the 1980 

predictions of a metamodel can be calibrated to obtain a cumulative 

distribution that is not significantly different from the measurements. 

Second it was shown that, as with calibration method ( I ) ,  a prediction 

error occurs when regional conditions and deposition ranges, that are 

used as input into the model, become different from the combination of 

conditions under which the model was calibrated. 

In general, from both kinds of investigations, it can be concluded 

that the merit of calibration for policy purposes, in cases where 

models are applied to predefined zones in a regional environmental 

analysis may be limited; envircnmental policy is concerned with the 

evaluation of environmental effects due to measures leading to 

different deposition patterns over a large scale. The predictions 

necessary for such evaluation may become error prone. 

This conclusion has to be formulated in a conditional way, because 

(1) it has not been investigated what the thresholds are at which 

regional and deposition changes lead to wrong predictions; the number 



of predictable states of a system may be large, varying between the 

state for which the model was calibrated and the state at which the 

system collapses, due to a sudden impact. For the latter situation, 

models need to be used that apply catastrophe theory (see also Zwick, 

1978) rather than calibration methods. Another reason (2) is that the 

conclusion is based on results of using two models that are different 

with respect to complexity. The RAINS Lake model has mechanistic 

characteristics, i.e it explains chemical soil and lake processes in 

some detail. However as was pointed in earlier chapters, systems can be 

interpreted in many ways, depending on holistic or reductionist views 

on system modeling. Lake acidification models exist that are much more 

detailed than RAINS e.g. ILWAS (see chapter 3). The extent to which 

complexity interferes with the result obtained has not been 

established; it was shown that the results hold for the RAINS Lake 

Model and a much simpler metamodel. 

However, it must be noted that the result is similar to what was 

found in the field of spatial interaction modeling. Openshaw (1977a. 

1977b, 1978, 1983) showed that the zoning system and model predictions 

were interdependent, with the result that different regional 

partitioning lead to different relations within and between regions. 

In the next chapter an alternative method is proposed, in which a 

zonal system is used in relation to RAINS Lake Model predictions 

without the application of calibration. 
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5. ZONIlPG OF RAINS LBKg tsDDEL PREDICTIONS 

5.1 INTRODUCTION 

The application of site specific models to regions is limited by the 

influence of regional characteristics and deposition patterns on model 

calibration. The previous chapter has shown that the result of a 

calibration in a predefined region may not lead to consistent 

predictions in other regions. This lack of prediction confidence also 

occurs when in a predefined region a calibrated model is used to 

predict effects of deposition patterns that differ from the calibration 

case. The reason is that a study area can be partitioned in a virtually 

infinite number of ways, each of which would combine with deposition 

patterns to different model calibration results. 

In spatial interaction modeling, the uncertainty concerning the 

identification of the objects of spatial study, known as the 

modifiable-areal-unit problem (Openshaw, 1978; Openshaw and Taylor, 

1983). has also been recognized. In this discipline alternative methods 

to choose a zoning system were developed. Openshaw and Taylor (1983) 

distinguish (1) filtering methods to identify trends of real patterns 

by removing noise caused by aggregation effects (2) arbitrarv design 

criteria in which zones are chosen to match particular problem 

descriptions (3) information theoretic methods determining how many 

zones are needed to describe a particular phenomenon (4) statistical 

methods implying that the methods of sampling and zoning are analogous 

(5) traditional methods aimed at defining zones that have a 

geographical rationale and (6) optimal zoning methods in which zones 

are chosen as function of the results that are desired. Openshaw and 

Taylor (1983, p. 67) describe the optimal zoning method as "... a 

methodology for formulating and testing spatial hypotheses by 

deliberately and purposefully exploiting the uncertainty that exists in 

zonal data because of the modifiable areal unit problem." 

The modifiable areal unit problem has not been solved in the sense 

that a unique method has been found which is always applicable. 

Openshaw and Taylor (1983, p.67) argue that ". .. it is necessary for 



geographers to be more aware of the geography of the methods they 

employ and the zoning systems they study. In the longer term it would 

be nice if the possibilities opened up by the optimal zoning approach 

for a more geographical form of geographical analysis could be 

realized." 

Undoubtedly, there exists some analogy with the problem described in 

chapter 4, i.e. both the environmental and geographical model 

applications lead to results that are dependent on the chosen zonal 

system. The difference is that the spatial interaction models describe 

objects that have intra zonal or inter zonal relations. In watershed 

quality modeling this kind of relationships do not occur. A zone may 

contain different classes of lake types, each of which reacts in a 

particular way, i.e. delayed or fast, to acid deposition. But, unless a 

lake is connected to another, the decrease of water quality of a 

watershed will not depend on another lake. 

This chapter introduces an alternative concept to model calibration 

in fixed regions, aimed at increasing prediction reliability. The basis 

of the concept is to partition a predefined region into zones that 

consist of a combination of soil characteristics and deposition levels. 

The finding of chapter 4 that a metamodel may be used instead of the 

full model, in the calibration case, is used in each zone to test if a 

zone consists of similar types of lakes. Since the method does not use 

calibration it does not follow immediately that the usage of metamodels 

in a zone is allowed. This is clarified in the following: 

The assumption is made that calibration is not needed if the model 

is able to make predictions of a set of lakes that are as accurate as 

the model would predict the quality of one lake site. Indeed, if a 

region consists of similar types of lakes, i.e be homogeneous, the 

deterministic17 model result obtained for one single lake would be 

representative for the region; calibration would be obsolete. However a 

region does not consist of exactly similar kinds of lakes. Nor can 

zones be designed to fulfill exactly that condition. What can be 

achieved is to design zones that contain lakes that approximately 

exhibit a similar behavior in reaction to acid deposition. Therefore, 

the appropriateness of zones designed in that manner is tested by 

17~ote that for the application on one single lake many 
characteristics of the watershed can be represented by point estimates 
rather than by parameter ranges. 



verifying if a metamodel may be applied instead of the model, i.e. 

test the fit of the metamodel predictions to the RAINS Lake model 

predictions. 

The number of zones that result in the course of the analysis need 

not be fixed. Obviously, the method may result in zones within which 

model predictions have to apply to types of lakes that are similar 

under one kind of acid deposition conditions but become non-similar due 

to another deposition level. This is the kind of alternatives a policy 

maker usually may wish to evaluate. Such zones are subsequently 

partitioned again, until a good fit of the metamodel is obtained, and 

consequently appropriate policy predictions are provided. The method 

will be referred to in the following as the flexible zoninn method. 

In this chapter the flexible zoning method is described and 

illustrated. 

5.2 FLEXIBLE ZONING 

Method 

The method of flexible zoning consists of 5 steps: 

1. apply an uncertainty analysis using Monte Carlo Simulation on 

the model parameters when the model is applied to an arbitrary 

bounded region. 

2. subdivide the ranges of the most important parameters to allow 

for different groups of soil characteristics, e.g. sensitive 

and insensitive zones, as follows. Four groups of parameters 

can be distinguished on the basis of their influence on the pH 

prediction, e.g parameters of which the increase leads to a pH 

increase or a pH decrease and parameters of which the decrease 

leads to a pH decrease respectively a pH increase. For example, 

in a parameter range of which the values lead to a pH 

decrease, a 'sensitive' range is taken close to the upper bound 

of the full value range whereas the 'insensitive' range will be 

chosen close to the lower bound. Combinations of subranges of 

different parameters that represent watershed characteristics 

in a region thus account for the 'sensitive' respectively 



'insensitive' zones of watersheds in that region. 

3. perform Monte Carlo Simulation on each of these zones subject 

to a few levels of the forcing function, i.e. acid deposition. 

4. investigate the homogeneity (sampled watershed characteristics) 

of each zone by investigating the fit of a metamodel. 

5. apply the cumulative distribution of model predictions to 

assess policy intentions, e.g. target loads, in a 

probabilistic way, i.e. assess the probability of lakes 'at 

risk' due to a target load. 

The variability of predicted regional effects is obtained, as 

before, by applying PRISM (chapter 4) to the RAINS Lake Model. The 

region has been subdivided into 2 types of soil characteristics and 4 

types of deposition levels. Thus an initial partition of 8 zones was 

obtained. An example is given to illustrate the method. 

This example, worked out below, is based on one arbitrarily chosen 

region for which data is available at a similar level as shown in Table 

4.1, and for which it was difficult to obtain a satisfactory 

calibration (see chapter 4), i.e. the Southern region of Noway. The 

most important parameters are however adapted usinn additional 

information from literature and other sources, as is explained below. 

Thus, the resulting parameter range or distribution become arbitrarily 

different from the ranges obtained originally for this region. 

The starting point of the analysis is the performance of an 

uncertainty analysis, as explained in chapter 4, on region 1 of Norway 

exposed to depositions from the Official Energy Pathway scenario 

(chapter 2). The result is presented in Table 5.1. 

Value ranges were sampled from all the ranges defined in region 1 of 

Norway except for the 4 parameters presented in Table 5.1. Extreme 

value ranges were imputed to soilt, calk, sibr and bsatb, with the aim 

of obtaining a combination of soil characteristics that were either 

sensitive (the lower range of soilt, sibr, and bsatb and the upper 

range of calk) or unsensitive (the opposite ranges of soilt, sibr, 

bsatb and calk) to sulfur deposition (see Table 5.2). 



Table 5.1' Parameters explaining about 5% or more of SpH19a02 

Parameter Name3 Rank % 

SOILT 
SIBR 
BSATB 
CALK 

(Source: Hettelingh et al., 1988) 
luncertainty analysis was performed on the RAINS Lake Module pH 
response in 1980, resulting from a combination of regional 
characteristics in South Noway  and the Official Energy Pathways 
deposition pattern. 
'AS noted already, compared to Table 4.3 and 4.9 a shift of parameter 
uncertainties result when a combination of 
regional characteristics and deposition pattern is changed. 
3see Table 4.1 for an explanation of the parameters 

These extreme value ranges have, for illustrative purposes, not be 

chosen such that their unification covers the entire range of the 

parameters. For example, in the region under consideration the soil 

thickness ranges from 0.05 to 5 meters. In the example only those 

watershed are investigated of which the soil thickness varies between 

0.05 and 1 meterla for the sensitive and between 4 and 5 meters for 

the insensitive watersheds (see Table 5.2). The range of the silicate 

buffer rate (sibr) was derived from data sampled in the upper midwest 

lake area of the U.S.A by Schnoor et al. (1986). The base saturation is 

the fraction of the total cation exchange capacity available in soils 

(see equation 3.39 and 3.40). For the base saturation in the B-layer 

(bsatb) the upper half of the interval between 0 and 1 was assumed to 

be available in insensitive regions whereas a lower range was assigned 

in sensitive regions. The alkalinity constant (calk) is a function of 

the partial pressure of C02, the first acidity constant and of Henry's 

law constant (see also equation 3.11, 3.12 and 3.68). 

The range of values of the alkalinity constant was defined (Cook, 1988) 

by applying information about these constants from the literature 

(Herczeg and Hesslein, 1984). 

l a ~ h e  soil thickness is therefore 0.5 m. thicker than the A-layer 
defined in chapter 3. 



Table 5.2 Parameter value ranges for sensitive and insensitive 
soil-characteristics 

Parameter 
Name 

Sensitive Insensitive 
Minimum Maximum Minimum Maximum 

soilt 
sibr 
bsatb 
calk 

(adapted from Hettelingh et al., 1988) 

Yearly sulfur deposition scenarios of 0.0, 1.0, 5.0 and 10.0 

g/m2/yr were simulated for both the above defined sensitive and 

insensitive regional types, covering the range of sulfur deposition 

widespread in Europe. Similar to section 4.4, the time horizon covered 

1920 to 1980. Monte Carlo Simulations were performed on each of the 8 

zones by sampling values from all ranges of the parameters, defined in 

Table 4.1, replacing the ranges of the parameters in Table 5.1 by the 

ranges of Table 5.2, and substituting the proper zone-deposition level. 

Then, an uncertainty analysis is performed on the Monte Carlo simulation 

results of the W I N S  Lake Model in every zone. Finally, the most 

important parameters (explaining at least 1% of the variance of SpH,,,,) 

are assessed to investigate the compatibility of the regional 

characteristics with the model results. In other words to test the 

homogeneity of the zone in which model results were obtained. 

The statistical analysis performed on the behavior of the RAINS 

Lake Module in each of the 8 zones involves the application of 

metamodeling. The result in chapter 4.4 (equation 4.4) indicated that 

when calibrated to stable circumstances (soil characteristics and 

deposition pattern), a metamodel performs as well as the RAINS Lake 

model. Therefore, the fit of the metamodel to the sampled parameter 

values and model response obtained with PRISM, serves as an indication 

of the homoqeneitv of lake types in a zone. By lake type the combination 

is meant of areal parameters, for instance lake and catchment area. 

Two metamodels were fitted to the Monte Carlo Simulation results: 



SpH,,,, - b, + (b,*P, + ... + b,*Pm) + (c,*(P,)' + ... + 

+ c,*(P,)') + (dl*Pl*P2 + ... + %*P,_,*P,) (5.2) 

where, 

SpEI,8, = simulated pH in 1980 using the RAINS Lake module in a zone 

P~ = most important parameter i, i=l,...,m, 

max(m)= 19, (Table 4.1), min(m) - 5 (most important 

parameters). 

a,b,c,d = coefficients 

Equation 5.1 describes the Monte Carlo simulation pH response of the 

RAINS Lake Model as linear function of the most important parameters in 

every zone. Equation 5.2 includes quadratic and cross term elements of 

the top 5 most important parameters in every zone. 

The importance of parameters was evaluated using the concept of 

partial R~ (see chapter 2; equation 2.16). The fit of equation 5.1 was 

evaluated by means of the multiple correlation coefficient. For the fit 

of equation 5.2 an adjusted multiple correlation coefficient was 

defined as follows: 

AR'~ = (TSS - ESS~) ITSS 
where, 

A R ~ ~  = Adjusted multiple correlation coefficient of eq. 5.2 

TSS = Sum of squares about the mean (Total Sum of Squares) of 

equation 5.1 

ESSq = Sum of squares due to regression (Error Sum of Squares) of 

equation 5.2 

Results of an ap~lication of flexible renionalization 

An uncertainty analysis on the sensitive and insensitive zones 

resulted in a ranking of parameters that are respectively shown in 

Figure 5.1 and Figure 5.2. 





I L U X .  



The conclusions of chapter 4 are clearly confirmed: a shift in 

uncertainties occurs whenever deposition patterns and regional 

characteristics vary. In the insensitive subrenion the first most 

important parameter is pfac19 explaining most of the pH variance in the 

1 deposition zone (46%) and the least in the 10 deposition zone (11%). 

In the sensitive subrenion, however, soilt is the most important 

parameter in reap. the 1 (44X), 5 (43%) and 10 (39%) deposition zone, 

but is replaced by sibr in the 0 deposition zone (partial R~ of sibr is 

37% and of soilt 31%). The conclusion is that within a fixed region 

different zones can be distinguished leading to varying model parameter 

uncertainties. 

Table 5.3 shows mean, median, minimum and maximum values of predicted 

pH (SpH1980) in every zone. An overview of the statistics and a display 

of the cumulative distribution of SpH1980 for all 8 zones is given in 

appendix 111. 

Table 5.3 Mean, Median, Minimum and Maximum SpH1 80 by zone 

Region Yearly Deposition Levels (g/mz /yr) 
TY pe 0 1 5 10 

Insensitive 
Mean 7.63 7.47 7.37 7.18 
Median 7.61 7.46 7.38 7.31 
Minimum 7.17 6.90 4.69 3.97 
Maximum 8.07 7.93 8.01 7.93 

Sensitive 
Mean 7.02 5.82 4.72 4.48 
Median 7.20 6.10 4.05 3.97 
Minimum 4.46 4.0 3.82 3.58 
Maximum 8.07 7.91 7.82 7.53 

(adapted from Hettelingh et al., 1988) 
'SpH1980 is the lake pH in 1980 predicted by the Monte Carlo simulation 
of the RAINS Lake Module. The statistics shown are based on 500 Monte 
Carlo simulations. 

As expected, for a given deposition level, predicted pH values tend 

to be lower in the sensitive subregion. Furthermore, predicted median 

pH values in the sensitive subregion decrease markedly with increasing 

deposition (7.2 under 0 g/m2/yr deposition to 3.97 under 10 g/m2/yr), 

lgsee table 4.1 for the meaning of parameter abbreviations. 



whereas predicted median pH values in the insensitive region remain 

relatively constant (> 7.31). 

Examination of predicted pH ranges (Table 5.3) show that the ranges 

of pH values are relatively constant in the sensitive region for all 

deposition levels, ranging from 4.46 to 8.07 under zero deposition and 

from 3.58 to 7.53 under a deposition scenario of 10 g/m2 /yr (see also 

appendix 111). Predicted pH in the insensitive renion ranged from 7.17 

to 8.07 under zero deposition, and from 3.97 to 7.93 under deposition 

of 10 g/m2/y. The relatively stable range of pH values in the 

sensitive region suggests that this region responds in a homogeneous 

fashion to sulfur deposition (i.e., the effect of random variation 

among watersheds is relatively small), while the insensitive region at 

high deposition levels displays a heterogeneous response. 

Another indication of the relative heterogeneity of the insensitive 

region is provided by the multiple correlation coefficients of the 

response surface models. Table 5.4 shows the magnitudes of the 

multiple correlation coefficients for the two metamodels for each zone. 

Table 5.4 Multiple Correlation Coefficients for the Standard 
(R2) and for the Quadratic ( A R ~ ~ )  metamodel for every zone. 

Region Yearly Deposition Levels (g/m2 /y) 
Type 0 1 5 10 

Insensitive 
R2 0.90 0.90 0.67 0.30 
AR2 q 0.83 0.85 0.58 0.30 

Sensitive 
R2 0.79 0.82 0.67 0.57 
AR2 q 0.86 0.83 0.86 0.77 

(adapted from Hettelingh et al., 1988) 

The percentage of the variance explained by the metamodels decreases 

substantially in the insensitive subregion with increasing sulfur 

deposition. Multiple correlation coefficients for the quadratic and 

standard models decrease from 0.90 and 0.83 under zero deposition to 

0.30 under the 10 g/m2 Iy scenario. In contrast, the magnitudes of the 

multiple correlation coefficients for the sensitive subregion show a 

much smaller decrease with increasing deposition levels. Even under the 



10 g/mZ/y deposition level, the two metamodels explain at least 50% of 

the variability in predicted pH. Thus, as the level of sulfur 

deposition increases the predicted pH in the insensitive region shows 

an increased range of variability in predicted lake pH. 

The relatively low multiple correlation coefficient for the 

insensitive subregion under 5 and 10 g/m2/yr deposition scenarios can 

be attributed to heterogeneity within the regional type. When a 

critical pH level is chosen at which damage to watershed flora and 

fauna starts, i.e. 6.5 (see Figure 1.2), then two subregions (Table 

5.5) can be distinguished within the insensitive-10 g/m2/yr zone. 

Table 5.5 Physical Characteristics of Subsets of the Monte Carlo 
Simulation for the insensitive-deposition of 10 glm2lyr zone 

Parameter pH < 6.5 pH z 6.5 
Name 

min max mean min max me an 

LAKAR 11.3 604.7 108.9 1.1 937.0 107.1 
RATCL 1.0 11.6 3.9 1.1 747.1 46.1 

(adapted from Hettelingh et al., 1988) 

Comparison of the sets of parameter values of these two subregions 

shows that the pH < 6.5 subregion comprises small catchment lakes (mean 

clrat of 3.9), whereas the pH z 6.5 subregion comprises large catchment 

lakes (mean clrat of 46.1). Application of equation 5.1 to each of 

these subregions results in correlation coefficients of 0.77 for the 

pH<6.5 subregion and 0.69 for the pH 2 6.5 subregion. 

5.3 POLICY MAKING WITH FLEXIBLE ZONING 

As mentioned in chapter 1, threshold levels for pollution effects 

are becoming increasingly important for decision making, but the 

analysis of uncertainties shows that it is difficult to apply concepts 

of thresholds within heterogeneous regions e when regional 

boundaries are arbitrarily established). Two kinds of thresholds have 



been distinguished (see section 1.2): (1) target loads which are the 

policy related thresholds for deposition and acidification levels 

within a country or region; and (2) critical loads which are deposition 

levels which produce a predetermined level of effects. From the 

foregoing it is clear that the establishment of a deterministic 

threshold for a predefined region may lead to vrong policy decisions, 

because of the varying ways in which watersheds are influenced by 

deposition patterns and regional characteristics. Calibration, as 

demonstrated in chapter 4, may not alleviate this fact. 

Flexible zoning in combination with a probabilistic evaluation of 

watershed quality, may improve such policy assessments. This is 

illustrated by inspection of the cumulative model response 

distributions (appendix 111) in every zone. 

When for example a target load is assumed of respectively 0, 1, 5 

and 10 g/m2/yr, and when, as above, a threshold pH of 6.5 is taken as 

indicator for water quality, the assessment of the cumulative 

probability functions (appendix 111) for each of the 8 zones provides a 

policy maker with an estimation of sets of lakes under risk within a 

zone ( see Table 5.6). 

Table 5.6 Assessing target loads to 8 lake zones within a zone 
at a critical pH indicator of 6.5 

Region Yearly Deposition Levels (g/m2/y) 

Type 0 1 5 10 

Insensitive 
X of lakes 
withpH<6.5 0 0 3 5 

Sensitive 
X of lakes 
with pH<6.5 20 5 5 8 5 8 7 

The resolution of Table 5.6 can easily be improved by incorporating 

more deposition levels in the analysis and by investigating the 

percentiles from appendix I11 at different other pH levels that might 

be considered relevant from a policy makers point of view. 



5.4 CONCLUDING REMARKS 

This chapter has evaluated the potential for policy making of 

replacing an arbitrarily bounded region by different zones for the 

assessment of environmental quality, i.e. watershed quality. It has 

been shown that heterogeneity within a region should be considered when 

developing policy guidelines concerning the effect of target deposition 

levels. An example region was disaggregated to 8 zones and Monte Carlo 

simulation of the RAINS Lake Module results was applied. 

The method of flexible regionalization consists of the following 

steps: 

1. perform an uncertainty analysis on model parameters when 

applied to the arbitrarily bounded region, 

2. subdivide the ranges of the most important parameters (as 

determined in step 1) into ranges which can be recombined into 

zones that are either sensitive or insensitive to acid 

deposition, 

3. perform Monte Carlo simulation for each of these zones under 

varying deposition levels. Four deposition levels were chosen 

for this study of 0, 1, 5 and 10 g/m2/yr, 

4. investigate the homogeneity of each of the zones, and determine 

if the homogeneity criterion is satisfied -- if not, then 

further subdivisions may be necessary. Two metamodels were fit 

to the simulation results of the RAINS Lake Module and the 

goodness of fit was used as indicator of homogeneity within 

each zone, and 

5. assess different target (or critical) loads on the cumulative 

distribution of the response in every zone, leading to a 

probabilistic evaluation of policy intentions. 

The advantage of the method is that it focusses on predictions of 

sub-systems within a region for which data samples are not sufficient 

to identify potential environmental damage. Monitoring programs 

executed at a point in time on an arbitrarily defined region, may not 

lead to the desired insight concerning environmental quality. This is 



especially true if the most important forcing function of the system 

(deposition) has a spatial or temporal gradient. Calibration procedures 

may not prove sufficient (see chapter 4) to circumvent the drawbacks of 

policy assessments to environmental systems (watersheds) that exhibit 

heterogeneous characteristics within a predefined region. 

Validation (against data) of model results of flexible zones is only 

possible if measurements of model response are available for every 

zone. In the absence of these measurements, the method of flexible 

zoning provides a relative distinction of sets of environmental systems 

(watersheds) being at risk, i.e. compared to model response in other 

zones. 

Model predictions thus become less dependent on the calibration and 

aggregation errors that may result (see chapter 4) from the choice of a 

fixed zoning system. 



6. APPLICATION TO DUTCH WATERSHEDS 

6.1 INTRODUCTION 

Over the last decade the quality of the natural environment in the 

Netherlands has become subject to increasing concern. An overview of 

the causes, the effects and the projected levels of its pollution has 

recently been published (RIVM, 1988) in view of the preparation of 'the 

National Environmental Policy Plan' (NMP). Acidification, of which an 

important share in the Netherlands is caused by an over-production of 

livestock manure, is one of the important environmental policy issues. 

Deposition of ammonium-N, nitrate-N and sulfate-S has led to a decrease 

of the vitality and diversity of species in heath, forests, small 

lakes and moorland pools (RIVM, 1988, pp. 112). The occurrence of 

particular plant species in small surface waters at different pH levels 

has shown that acidification has increasingly affected the quality of 

Dutch surface waters after 1950 (Roelofs and Schuurkes, 1983; Roelofs 

et al., 1984). 

In the period 1983-1984 the quality of sensitive ( < 100 ha and 

rather shallow) surface waters has been monitored 

(see also Schuurkes and Leuven 1986, Schuurkes 1987 and Leuven 1988). 

The results (Kersten, 1985) of these field measurements show that about 

90% of the lakes have a pH lower than 7, and 50% of the investigated 

surface waters have a pH lower than 4.2 (Schuurkes and Leuven, 1986, 

pp. 16). A percentage between 4.6 and 10.2% of the total Dutch clear 

water surfaces, excluding the Ysselmeer, have been acidified (Schuurkes 

and Leuven, 1986, pp. 27). 

On the basis of dose-effect relationships, Schuurkes (1987) found 

that the threshold at which no apparent change in the water quality 

occurs lies at an acidity level of 250 mollhalyr. Leuven (1988) 

estimates that the critical load lies between 250 and 800 mollhalyr for 

waters having low calcium levels. 



Figure 6.1 Deposition of potentially acidifying constituents in 
the Netherlands in 1986 in mollha (Source: RIVM, 1988, pp. 109). 



In sandy soils a critical load that lies in the range of 500 to 700 

mol/ha/yr was estimated by the RIVM (1988, pp.103), and a level below 

600 mol/ha/yr was proposed by de Vries (1988). 

Note that the assumed critical load for soils is similar to the one 

assumed for the maintenance of a healthy water quality. However, 

inspection of the deposition of potential acid in 1986 (Figure 6.1) 

shows that these levels have been exceeded, especially in the south- 

east and east of the Netherlands where most of the acidified small 

lakes and sensitive soils are found. 

Simulation models have been applied to describe soil acidification 

in the Netherlands. ILWAS was modified and calibrated to an acid sandy 

forest soil (van Grinsven, 1988) and the REgional Soil Acidification 

Model (RESAM, see de Vries, 1987) was applied to COROP regions. 

However, regional simulation to estimate and describe lake 

acidification in the Netherlands has not been performed yet. 

This chapter will provide a first attempt in this field, by the use 

of the RAINS Lake Model to describe the pH levels on a regional scale 

in the Netherlands. It will be shown that the method of flexible 

zoning, as proposed in chapter 5, offers insight into acidification of 

broad watershed areas in the Netherlands when deposition levels are 

varied within the ranges currently prevailing over the Netherlands. 

A description of the data is given, then the adaptation of the RAINS 

Lake model is discussed and agreement with the Dutch data, particularly 

the influence of Nitrates on the acidification process, is tested. 

Finally the results are presented, and the simulated effect of a range 

of critical loads is determined. 

6.2 DUTCH WATERSHED DATA 

Dutch data on soil and lake characteristics had to be collected to 

serve as input to a RAINS Lake Model application in the Netherlands. 

Lake characteristics were provided by the Laboratory for Aquatic 

Ecology (Maessen, 1988) of the University of Nijmegen. Data on 

geochemical soil characteristics were obtained from de Vries (1989) who 



extracted the information from the Information System on soils of the 

Netherlands Soil Survey Institute (STIBOKA). 

Table 6.1 RAINS Lake Model parameter statistics and ranges 
for Dutch surface waters and soil characteristics1 

Code name2 Mean Stand.Dev. Min. Max Unit 

lakar 2.0 23.07 0.1 8 0 ha 
clrat 1.5 0.57 0.0001 2.0 ratio 
ldept 1.0 0.29 0.01 2.0 m 
soilt 1.0 0.79 0.25 3.0 m 
slope 0.0005 2.89e-04 0.0 0.001 m/m 
sibr 0.02 0.01 0.01 0.03 eq/m3 yr 
cecA3 54.6 40.3 2.6 356.6 eq/m3 yr 
b v ~ ~  0.10 0.046 0.034 0.216 fraction 
f cap 0.15 0.13 0.05 0.50 fraction 
bvc4 0.065 0.039 0.018 0.206 fraction 
PC% 0.02 0.01 0.01 0.04 atm 
f oco5 0.3 3.33e-03 0.2 0.4 fraction 
sulre" 0.4 0.12 0.2 0.6 m/ yr 
fofi 2.25 0.43 1.5 3.0 factor 
basca7 0.65 0.09 0.5 0.8 fraction 
tfac 0.5 0.29 0. 1.0 fraction 
pf ac 0.5 0.29 0. 1 .O fraction 
c e c ~ ~  35.0 35.0 0.0 249.2 eq/m3 yr 
cecc3 6.52 10.87 0.0 142.46 eq/m3 yr 
b v ~ ~  0.065 0.039 0.018 0.206 fraction 
cond 0.2 0.12 0.1 0.5 a11 yr 
tJl3eqa 0.10 0.020 0.0579 0.1429 eq/m2 yr 
~ 0 e q ~  0.09 0.02 0.06 0.12 eq/m2yr  
fnita 0.875 0.07 0.75 1.0 fraction 
nitupa 0.07 0.01 0.057 0.086 eq/m2 yr 

'~ata  were collected from various unpublished sources (see text) and 
reflect the author's best understanding of the Dutch watershed systems. 
2See Table 4.1 for a description of most of the code names. Other code 
names are explained in this chapter. 
3 ~ h e  cation exchange capacity in the upper 0.15 m of the soil. 
cecB applies to the layer between 0.15 and 0.5 m and cecC is the cation 
exchange capacity in layers between 0.5 and 2.5 m. 
4~asesaturation in the upper 0.15 m of the soil. Similarly bvB applies 
to 0.15-0.5 m whereas bvC applies to 0.5-2.5 m. 
 orest st coverage 
6~n-lake sulfate retention 
7Correction for the Base-cation deposition of SO,, loading 
aSee next section about inclusion of Nitrate-N and Ammonia-N in the 
RAINS Lake model. 
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Figure 6.2 Cumulative distribution of measured pH in forested 
Dutch areas sampled on 1984 (digitized from Kereten, 1985). 



Climatologic data on precipitation and temperature were obtained from 

ml ler (1982, pp. 20). The measurements of the Dutch weather stations, 

i.e., Eelde, Den Helder and De Bilt, were used in order to obtain 

precipitation and temperature ranges representative for the 

Netherlands. 

The Monte Carlo input parameter ranges that were thus compiled are 

presented in Table 6.1. Table 6.1 illustrates that Dutch catchments are 

rather small (maximally twice a lake area), that the lakes are shallow 

(maximally 2 meters) and that the Dutch soils are thin (maximally 3 

meters). 

Kersten (1985) sampled the physical and chemical characteristics of 

about 164 Dutch watersheds in 1984. A majority of the sampled 

watersheds, i.e., about 116, are situated in forested areas. The 

cumulative distribution of the pH for these catchments has been 

digitized from Kersten (1985) and the result is displayed in Figure 

6.2. Since damage to the biota within watersheds is assumed to be 

attained at a pH level below 5 (see chapter 1, Figure 1.2), it can be 

seen from Figure 6.2 that about 70% of Dutch watersheds in forested 

areas are at risk. 

Dutch lakes are different from the lakes in Scandinavian countries 

from a geo-physical as well as from an acidification point of view. 

Soil processes may have a limited impact on Dutch lake acidification 

and the causes of acidification do not originate mainly from sulfur 

deposition. The different geo-physical conditions are incorporated in 

the Monte Carlo parameter ranges for the RAINS Lake model, but the 

influence of Nitrogen is not part of the RAINS Lake Model. 

The next section will discuss the changes made to the RAINS Lake 

Model in order to take the special Dutch conditions into account. 

Adaptations to the RAINS Lake Model 

Changes to the RAINS Lake Model were made to (1) incorporate 3 soil- 

layers instead of 2 and (2) to take N-deposition into account. 

STIBOKA (de Vries, 1988) distinguishes three soil-layers: the A- 

layer (0-0.15 m), the B-layer (0.15-0.5 m) and the C-layer (deeper than 

0.5) each with unique cation exchange capacity (CEC) and base- 

saturation characteristics (see also chapter 3). Thus, the A-layer in 



RAINS is equivalent to the A and B layers defined by STIBOKA, whereas 

the B-layer in RAINS is equivalent to the C-layer defined by STIBOKA. 

The threefold partitioning of the soil has consequences for the 

equations 3.37, 3.38, 3.39 and 3.40 of RAINS described in chapter 3. If 

for example a soil thickness (soilt) is greater than 0.5 meter, the 

RAINS equations become respectively: 

where, the parameters have values from the ranges specified in Table 

6.1. 

The meteorologic part of the RAINS model was extended and tested to 

incorporate N-deposition with the following modification of equation 

3.17 (de Vries 1989): 

 load ), = (Dtot), - ( D ~ ~ ) ,  + NOeq + (2*fnit-1) meq + 
- nitup (6-5) 

The purpose of equation 6.5 is that the extent to which 

nitrification has occurred (fnit varies between 0.75 and 1, see Table 

6.1), will affect the ammonia level that contributes to acid stress. In 

addition it is assumed that due to organic processes nitrogen uptake 

can vary between 10 and 11 kg/haZ0. A detailed description of a soil 

acidification model that incorporates these processes can be found in 

de Vries et al. (1989). 

Equation 6.5 was compared to the unmodified version (equation 3.17) 

by running the RAINS LAKE model using all the input-ranges of Table 

6.1. Note, that equation 6.5 becomes equal to equation 3.17 when 0 is 

substituted for NOeq, NHeq and nitup. The model was started in 1900 

using historical European emissions (Fjeld, 1976 quoted in Whelpdale, 

1987) that were dissaggregated to country level contributions in 1980 

(see also chapter 4). 

2 0  10 kg/ha N uptake corresponds to 1 g/mz - 0.07 eq/m2 (atomic 
weight of N is 14). 



Figure 6.3 Simulated pH (thick graphs) in 1985 excluding N (a) and 
including N (b), compared to the cumulative distribution of 
measurements. 



The range of NO, and NH3 depositions over the Dutch area were taken 

from the RAINS model in 1985 and were assumed to be unchanged since 

1900. The result of the lake acidification in the Netherlands in 1985 

due to equation 3.17 is expressed in Figure 6.3a, and the acidification 

due to equation 6.5 is shown in Figure 6.3b. It is clear from comparing 

Figure 6.3a to Figure 6.3b that equation 6.5 does not affect the RAINS 

Lake Model predictions of lake acidification in the Netherlands. 

Therefore, instead of equation 6.5, total potential acid stress (which 

is due to N and S deposition1 may be used as input to model equation 

3.17. Total potential acid stress is implemented in step 2 of the 

investigation method, applied to the Dutch lakes, which is described in 

the next section. 

6.3 REGIONAL WATERSHED ACIDIFICATION IN THE NETHERLANDS 

Introduction 

This section discusses the RAINS Lake Model predictions of pH, for 

zones in the Netherlands that consist of a combination of deposition 

ranges and of sensitive and insensitive catchment characteristics. In 

chapter 5 an example was given of the method of flexible zoning in 

contrast to the results described in chapter 4 that were based on 

calibration of the model in predefined renions. For the Netherlands 

predefined regions have not been defined yet for managing large scale 

surface water quality. An application of the method of flexible zoning 

will therefore be used to identify the kinds of catchment zones for 

which water quality management is particularly useful, according to 

RAINS Lake Model predictions. 

The method 

Recall from chapter 5 that the method of flexible zoning consists of 

5 steps that are interpreted as follows for the Dutch application: 

1. Performing an uncertainty analysis of the model and the Dutch 

data. 



2. Subdividing the value ranges of the most important parameters 

into watershed zones that increase the resolution of the model 

predictions, i.e. recognize kinds of watersheds that are 

identified by the model to be at risk, relative to different 

levels of potential acid deposition. Four zones of acid 

deposition have been defined in accordance with the deposition 

pattern displayed in Figure 6.1, i.e. 3600-4400, 4400-5200, 

5200-6000 and 6000-6800 mollha. 

3. Performing Monte Carlo Simulations with the model for every 

zone of watershed characteristics in combination with a range 

of potential acid deposition. 

4. Investigating the R~ of pH predictions when regressed on the 

most important parameters in each zone. Decide if a further 

breakdown of zones is necessary (if so, repeat steps 2-4). 

5. Compare the model predictions in every zone to the response of 

the model in the same zone when a critical load range of 250- 

800 mollhalyr (see section 6.1) is specified for model 

simulations. 

The modified RAINS Lake Model is then run from 1900 to 1985 and from 

1900 to 2040. The first period is used to investigate model predictions 

in 1985 when each of the four deposition ranges remain unchanged since 

1900. In addition, predictions of the pH in 1985 are also obtained for 

the artificial case that critical loads have been deposited on the 

Dutch surface since 1900. The latter pH predictions in 1985 will be 

referred to as Critical Load Acidification. The Critical Load 

Acidification level can be compared to future acidification levels that 

result from policy measures to abate emissions. An example of 

interesting policy measures are those that lead to deposition levels 

being equal to critical loads. If policy measures lead to a deposition 

of critical loads from 1990 and future years, the question is addressed 

how long it will take before the acidification 'recovers' to the 

Critical Load Acidification. The comparison of the Critical Load 

Acidification with other model predictions thus provides a relative 

measure of interpreting the effect of policy measures with the RAINS 

Lake Model. 



Results 

Results of an uncertainty analysis of the RAINS Lake Model pH 

prediction in 1985 including N (Figure 6.3a) and excluding N (Figure 

6.3b) show that the forest filtering factor and sulfate retention 

parameter are the two most important parameters. Soil thickness plays a 

minor role in the Netherlands in comparison to its importance in other 

countries (see chapter 4 and 5). Table 6.2 summarizes the ranking of 

the model parameters that have a partial RL (see chapter 2) of at least 

1%. 

In the analysis including N as well as in the analysis excluding N, 

an R~ of about 0.4 was obtained when regressing the predicted pH in 

1985 against all the parameters listed in Table 6.1 and yearly sulfur 

deposition. This low R2 indicates a poor fit between the simulated pH 

and the sampled values of the soil and catchment characteristics, of 

the climatology and of the deposition. 

Figure 6.3a shows that the model proves to be capable of predicting 

lake effects below the 0.35 percentile of the measurements. About 95% 

of the simulated pH lies in a range of 3.4 to 4.4. In 5% of the 

simulations a pH between 3.4 and 5.9 is simulated. 

To avoid attaching too much absolute value to these predictions, a 

comparison was made with the Critical Load Acidification in 1985 

(Figure 6.4). 

Table 6.2 Parameters explaining more than 1% of the variance 
of the predicted pH in 1985 in Dutch watersheds. 

Name including N ( I )  excluding N ( % )  

fofi 
sulre 
soilt 
basca 
tfac 
sibr 
foco 
clrat 
pf ac 
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Figure 6.4 Cumulative distributions of the simulated pH in 1985 
due to the minimal (graph 1) and maximal (graph 2) Critical Load 
Acidification compared to the cumulative distribution of the 
measurements (3). 



The pH range simulated when Dutch catchment characteristics are used 

for model inputs in combination with minimal and maximal critical loads 

since 1900, covers a pH of 3.9 to 5.9. 

It is obvious from Figures 6.3a, 6.3b and 6.4 that the RAINS Lake 

Model is unable to predict the 20% of the measured pH values that lie 

between 5.9 and 9.5, given the current ranges within which Dutch 

catchment and soil characteristics have been monitored. Even the input 

of a critical load range (Figure 6.4) did not result in a prediction of 

these high pH values. The choice of deposition levels below the 

critical loads would not be supported by current understanding about 

the thresholds of deposition above which damage may occur. 

The next step (step 2) is therefore to subdivide the Dutch area into 

four ranges of total acid deposition. In addition the catchment 

properties parameters are partitioned, around the meanz1, into a 

sensitive and an insensitive range if a parameter value respectively 

leads to a decrease or increasezz of the simulated pH. The parameters 

ranges to be partitioned are not only chosen on the basis of their 

ranking in Table 6.2, as consequence of the low R~ mentioned before. 

For example the weathering rate, subject to other catchment and 

deposition characteristics, has been an important parameter in past 

analyses (chapter 4 and chapter 5) and is therefore included as well. 

In addition the small Dutch catchments give rise to the assumption 

that, no matter how the zoning is done, soil buffering will have little 

effect on Dutch watershed acidification. This assumption is tested by 

including the Cation Exchange Capacity of both the Dutch A and B-layer 

as a zoning criterium. The result of the partitioning of the parameters 

is shown in Table 6.3. 

An uncertainty analysis of the RAINS Lake Model in each of the zones 

resulted in a ranking of important parameters that is displayed in 

Table 6.4. 

Table 6.4 displays how uncertainties differ in both the sensitive 

and insensitive zone. In the sensitive zone the temperature factor 

Z 1 ~ t  seems reasonable to use the average of sampled values for the 
distinction of two classes,i.e below the mean and above. Other 
statistics need not be excluded but make less sense. 

22This is done by investigating the sign of the regression coefficients. 



Table 6.3 Definition of sensitive and insensitive 
catchment characteristics. 

Sensitive Insensitive 
Parameter name min . max . min . max . 

fofi 
sulre 
soilt 
basca 
tfac 
sibr 
f oco 
pf ac 
ceca 
cecb 

Table 6.4 Uncertainty analysis in Sensitive (I) and 
insensitive (11) zones 

Zone Name Potential acid deposition (mollha) 

3600-4400 4400-5200 5200-6000 6000-6800 

clrat 0.28 0.31 0.34 0.36 
tfac 0.31 0.30 0.29 0.29 

I basca 0.12 0.12 0.12 0.12 
sulre 0.08 0.08 0.08 0.08 
pfac 0.06 0.06 0.06 0.05 

tfac 0.36 0.35 0.35 0.34 
I I fofi 0.15 0.17 0.18 0.19 

soilt 0.14 0.10 0.07 0.06 
pfac 0.06 0.06 0.06 0.06 



(tfac) and the catchment to lake ratio (clrat) explain from 59% to 65% 

of the variance of simulated pH of 1985 in, respectively, the lowest 

and highest potential acidic deposition ranges. In the insensitive 

zone, however, the forest filtering factor (fofi) replaces the 

importance of the catchment to lake ratio (clrat). In this zone tfac 

and fofi account for 51% and 53% in respectively the lowest and highest 

deposition range. 

The multiple correlation coefficient (R') indicates that a response 

surface relationship containing the most important parameters fits the 

simulated pH in 1985 better than without zoning (Table 6.2). In other 

words, the Monte Carlo Simulations lead to a cluster of predictions 

that can be approximated by a linear function. Therefore flexible 

zoning has allowed the simulation of types of catchments with 

comparable characteristics. An analysis of the sampled catchment 

characteristics did not exhibit a criterion by which a zone could be 

further disaggregated, as was demonstrated in the example described in 

chapter 5. 

The prediction of the pH in 1985 in the sensitive and insensitive 

zones are presented in Figures 6.5 and 6.6. In each figure the 

cumulative distributions of the Critical Load Acidification (graph 1) 

of the measurements (graph 2), and the predicted pH in the lowest 

(graph 3) and highest (graph 4) potential acid deposition zones is 

plotted. The two middle deposition zones (4400-5200 and 5200-6000) are 

not shown, but lead to pH distributions that lie between graph 3 and 

graph 4. Note that in Figure 6.6 the ph predictions in the 

3600-4400 zone show a close resemblance with the data below the 70 

percentile. 

Data were not available to this study to check the kind of 

catchments that were actually measured. However, the differences 

between the simulated pH in the sensitive (Figure 6.5) and insensitive 

(Figure 6.6) zones support the statement made earlier that the 

resolution of the model predictions is increased by partitioning   he 

region. Policy decisions evaluated by model predictions from the 

flexible zones can be linked to possible responses of catchment systems 

over the Netherlands. This assertion was tested by assuming that 

measures are taken throughout Europe leading to a deposition that lies 



Figure 6.5 Cumulative distributions of the simulated pH in the 
sensitive class in 1985 due to the Critical Load Acidification (graph 
l ) ,  to the lowest deposition range (graph 3) , to the highest 
deposition range (graph 4), compared to the cumulative distributions of 
the measurements (graph 2). 
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Figure 6.6 Cumulative distributions of the simulated pH in the 
insensitive class in 1985 due to the Critical Load Acidification (graph 
l), to the lowest deposition range (graph 3) , to the highest 
deposition range (graph 4), compared to the cumulative distributions of 
the measurements (graph 2). 
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Figure 6.7 Cumulative distributions of the simulated pH in 2040 
(graph 2) compared to the cumulative distribution of the Critical Load 
Acidification in 1985 (graph 1). I 



within the Critical load range in the Netherlands from 1990 to later 

years. The reason for this exercise is to estimate the predicted time 

at which watershed acidification 'recovers' to the Critical Load 

Acidification of 1985. The result in the insensitive zone is shown in 

Figure 6.7. The displayed difference between the cumulative 

distribution of the Critical Load Acidification (graph 1) and the 

'recovery' pH (graph 2) occurs after 2015 and hardly changes in later 

years. Note that the closeness of the distribution functions leads to 

rather large differences in the percentages of lakes having reached a 

particular acidification level, e.g. about 30% of the lakes have a pH 

smaller or equal to 5.0 in the Critical Load Acidification case (Figure 

6.7, graph 1) against about 40% in the 'recovery' case (Figure 6.7, 

graph 2). A n  exact overlay of the Critical Load Acidification 

distribution with the 'recovery' distribution is obtained in 2005 for 

catchments in the sensitive zone. 

Finally the influence of buffer processes in the soils were tested 

by enforcing the model to use the whole Cation Exchange Capacity in 

stead of a fraction (base saturation; see chapter 3). The results of 

this analysis did not exhibit much difference with the results 

described above. This suggest that models in which soil processes are 

less relevant may be appropriate as well for the policy planning of 

surface water quality in the Netherlands by means of flexible zoning. 

6.4 CONCLUDING REMARKS 

In the foregoing chapter the RAINS Lake Model was applied to Dutch 

lakes and moorland-pools. This exercise was useful because data were 

available for the soil and lake characteristics for the Netherlands as 

a whole, rather than for a number of predetermined regions. It could be 

shown that the method of flexible zoning leads to a partitioning of 

Dutch catchments into zones with distinct characteristics. 

The Netherlands were partitioned into four deposition classes that 

cover the North to South deposition pattern of the country, i.e. (1) 

3600-4400, (2) 4400-5200, (3) 5200-6000, (4) 6000-6800 mol/ha/yr of 

potential acid. Catchment characteristics that are sensitive and 

insensitive to acid deposition were defined by partitioning the ranges 



of the most important parameters. These important parameters explain 

most of the variance of predicted pH in 1985 (see chapter 2). The 

combination of four deposition classes and two sensitivity classes gave 

a total of eight zones for the Netherlands. A series of model 

simulations were performed from 1900 to 1985 with deposition levels 

fixed at the critical loads or to one of the four deposition classes. 

Predictions after 85 years of lake acidification where then compared to 

measurements. It was shown that the RAINS Lake Model, when applied to 

Dutch inputs, simulates a cumulative pH in the insensitive zone of the 

first deposition class that is similar to about the 70th percentile of 

the cumulative distribution of the measurements. For the Dutch region 

as a whole, that is the aggregate result without zoning, only 

predictions below the lower 30th percentile are reasonably represented. 

However the effect of acidification from historical and future critical 

load deposition are predicted differently in the sensitive and 

insensitive zones. The acidification due to a 1900 to 1985 deposition 

of critical loads leads to a Critical Load Acidification in 1985 of a 

pH near 4 in the sensitive zones and between a pH of 4 and 6 in the 

insensitive zones. It is shown that when the critical loads are 

deposited starting in 1990, the RAINS Lake Model will predict the 

Critical Load Acidification will be achieved after a minimum of 15 

years. 

In reality it will be difficult to achieve a Critical Load 

Acidification level by 1990 because other countries must collaborate to 

reduce total emissions. Furthermore, the model predictions were 

obtained using only one model, i.e. the RAINS Lake Model. This study 

did not investigate and can not exclude whether another model would 

show different results. It has been shown, however, that the method of 

flexible zoning can be implemented even when data are available on an 

interval scale. It is, therefore, recommended that different models be 

used with the flexible zoning procedure. Data monitoring programs 

should also be designed to obtain the information that allows for 

models to be run with Monte Carlo based methods like flexible zoning. 

Once flexible zoning has been applied, a policy maker can use the 

predictions of the sensitive watersheds to estimate the frequency of 

lakes within any (bounded) region that will be at risk. It is 

recommended that the quality of the data be improved as simulation 

results become available. This was illustrated in this chapter by the 



differences in watershed parameter intervals that lead to different 

model predictions in sensitive and insensitive zones. The simultaneous 

improvement in models and data may increase the speed with which policy 

makers may recornend remedial action. 

Model predictions and resulting policy measures may become more 

targeted when Dutch catchments are flexibly zoned as a function of 

catchment and deposition properties. 



7. CONCLUSION 

7.1 REFLECTION ON THE STUDY 

The scale at which human activities have interacted with our natural 

environment has grown over the past decades. The complexity of these 

interactions has also increased. Therefore, it is now difficult to 

recognize and isolate particular human activities so that the quality 

of our environment can be improved. Climatic change, for example, is 

due to a great many independent human activities operating at different 

temporal and spatial scales. 

Policies aimed at the alleviation of negative environmental impacts 

have increasingly been based on predictions made with artificial 

representations, i.e. models of the systems involved. The usefulness of 

these models, however, are limited by many uncertainties, e.g. ( 1 )  is 

the complexity of the system properly reflected in the model structure? 

( 2 )  are the data used in the model representative of the system? ( 3 )  is 

the temporal and spatial scale used in the model appropriate to 

understand the system's behavior? 

These and other issues related to systems and modeling in general 

and environmental modeling in particular constitute the context of 

chapter 1 and 2  of this study. Chapters 3  through 6 are more technical 

in nature and concentrate on the modeling of watershed acidification. 

The purpose of the study is to: 

( 1 )  provide a method of partitioning the spatial scale of model 

predictions in order to increase the confidence in the 

predictive performance. 

( 2 )  describe the relationship between regional characteristics and 

the level of detail at which system processes are represented 

in the model. 

( 3 )  implement the concept of critical loads to provide policy 

insight concerning surface water quality on broad spatial 

scales. 



Many methodological issues were encountered in the course of the 

investigations. These include: 

- the relationship between system's perception and model 

complexity, 

- models with different solution methods, levels of detail, 

integration of different processes, inclusion of time, and 

inclusion of stochastic techniques, 

- different stages in model building, 

- different structures applied in Integrated Environmental 

Modeling, 

- the treatment of uncertainty, 

- the relation between uncertainty and sampling techniques, 

- methods for calibrating model predictions to represent 

particular characteristics of a system, 

- processes involved in watershed acidification, and 

- the relationship between model predictions of watershed 

acidification and the use of a spatial zoning system. 

Chapter 1 provides an introductory treatment to issues of systems 

analysis and modeling, e.g. system's perception, model complexity, 

model uncertainty and policy applicability. In the analysis of systems 

the use of simulation models and probabilistic methods, have become 

common for understanding systems, determining the aggregation level of 

subsystems, defining their interactions, uncertainties and data 

requirements. This study elaborates on the relation between 

uncertainty, model complexity and data aggregation in the field of 

environmental modeling in general, and the modeling of watershed 

acidification in particular. 

Chapter 2  provides an overview of Integrated Environmental Model 

(EIM) structures and describes some examples of EIM's. One of these 

models is the Regional Acidificatjon INformation and Simulation (RAINS) 

model that predicts the pollution of sulfur and nitrogen oxides on the 

European scale from 1960 to 2 0 4 0 .  RAINS provides its users with the 

possibility of evaluating sulfur and nitrogen abatement strategies that 

can interactively be related to fuel combustion. Evaluation of RAINS 

strategies may consist of investigating sulfur and nitrogen deposition 

patterns over Europe, of forest soil acidification, of direct forest 



impacts from sulfur dioxide concentrations and of lake acidification. 

The latter module is called the RAINS Lake Model which has been used in 

the technical parts of this study. The RAINS Lake Model has previously 

been applied to 14 predefined regions in Scandinavia, i.e. 5 regions in 

Finland, 6 regions in Sweden and 3 regions in Norway. Data about the 

soil and catchment characteristics, necessary for model simulations, 

are available in the form of value ranges and frequency distributions 

for each of these regions. The acidity, i.e. the pH of the lakes in 

each region has been sampled as well. In chapter 2 attention is given 

to the way in which the RAINS Lake Model has been calibrated to 

represent these pH measurements. The calibration result is used in the 

RAINS model to predict the state of lake acidification that results 

from a change of acid deposition due to abatement policies in Europe. 

The potential of the RAINS model for the evaluation of policy 

alternatives has been recognized within the Economic Commission for 

Europe (ECE). Chapter 2 finally addresses the technical aspects of 

uncertainty in model structure, parameter estimates, observed inputs 

and model outputs. Methods to quantify uncertainty are presented 

including a computer package, PRISM, that integrates the sampling from 

model parameter ranges with the execution of the model and the 

statistical analysis of the resulting set of predictions. PRISM is used 

in this study to perform Monte Carlo Simulation on the RAINS Lake Model 

with the purpose of (1) defining the most important Monte Carlo 

parameters of the RAINS Lake Model accounting for the variability of pH 

predictions, and (2) testing the effect of calibration on the quality 

of the RAINS Lake Model in the 14 Scandinavian regions mentioned above. 

Chapter 3 consists of an overview of chemical processes involved in 

the acidification of soils and surface waters due to acid deposition. 

The simulation of the different levels of detail by which these 

processes are represented in four different lake acidification models 

including RAINS is discussed. The chapter also describes the equations 

of the RAINS Lake Model. 

Chapter 4 elaborates on the definition of a region, its boundaries 

and the relationship with regional model predictions. The objective of 

the chapter is to determine the effect that predefined regional 

boundaries have on the estimate of broad scale watershed acidification. 



Two kinds of models are used (1) the RAINS Lake model and (2) a simple 

model, i.e. a metamodel, relating RAINS Lake model predictions to its 

most important parameters. PRISM is used to calibrate both models. The 

RAINS Lake Model is calibrated in each of the southern regions in 

Scandinavia, by adjusting the value ranges of the most important 

parameters. Next, the difference of the model predictions to regional 

measurements is evaluated when (1) the calibration result is used in 

the other regions within the same country (intra country extrapolation) 

and (2) when the calibration result including the value ranges of other 

regional characteristics in the southern region of Finland are used in 

all the other regions (inter country extrapolation). The metamodel is 

calibrated in the southern region of Finland and its predictions then 

tested by using deposition ranges and regional characteristics 

different from the ones used for the calibration. Results of both model 

analyses show that changing combinations of deposition levels and 

regional characteristics may (1) lead to shifts in the ranking of model 

parameters with respect to their importance in explaining the 

uncertainty of model predictions, and (2) affect the quality of model 

predictions. The conclusions following from the analysis are: 

- calibration of models to predefined regions may be of limited 

use for policy purposes because predictions of environmental 

effects (i.e. watershed acidification) as result of changing 

deposition patterns over large regions may be error prone. 

- Simple models may replace more complex models if the types of 

watersheds are similar with respect to their response to acid 

deposition. 

Finally chapter 4 notes that similarity exists between these results 

and the findings reported in the field of spatial interaction modeling. 

Chapter 5 introduces an alternative method for obtaining model 

predictions as a function of model calibration within predefined 

regions. This method is called the 'method of flexible zoning' and 

consists of: 

(1) applying uncertainty analysis using Monte Carlo Simulation on 

the Monte Carlo parameters of the model as applied to an 

arbitrary bounded region, 

(2) subdividing the ranges of the most important parameters, found 



in ( l ) ,  to allow for different types of soil and watershed 

characteristics. Combinations of subranges of different 

parameters can be grouped into for zones of watersheds within a 

region that react in a similar way to acid deposition (i.e. 

'sensitive' or 'insensitive' watersheds), 

( 3 )  performing Monte Carlo Simulation on each of these zones 

subject to different levels of acid deposition, 

( 4 )  investigating the homogeneity of the watershed characteristics 

in each zone by regression analysis (i.e. developing a 

metamodel), 

( 5 )  applying the cumulative distributions of model predictions to 

assess policy intentions, e.g. target loads of acid deposition. 

The percentage of lakes is determined of which the acidification, which 

results from this target load, may still lead to harmful effects to 

flora and fauna. The highest deposition at which no long term harmful 

effects occur, i.e. the critical load, may be found to vary between 

zones. 

The method is illustrated for the southern region in Noway  of which 

the most important parameters are partitioned with values extracted 

from the literature. The results show that zones, constructed by the 

method of flexible zoning, may need to be partitioned again to obtain 

similar kinds of watersheds in each zone. Finally it is shown that the 

assessment of a critical pH leads to different percentages of lakes at 

risk in each zone. 

Chapter 6 consists of an application of the method of flexible 

zoning to the Netherlands. Four zones of acid deposition were 

distinguished, i.e. 3600-4400, 4400-5200, 5200-6000 and 6000-6800 

mollha thus covering the entire Dutch area. The combination of these 

deposition ranges with 'sensitive' and 'insensitive' partitionings of 

the most important Monte Carlo Simulation parameters in the Netherlands 

( a  total of 8 zones) led to satisfactory metamodel simulations. Thus 

there was no need to subdivide these zones. The RAINS Lake Model was 

applied in each zone over the period from 1900 to 1985 and from 1900 to 

2040. Field measurements were available for 1984. B y  applying a 

critical load range of 250-800 mollhalyr starting from 1900, a state of 

acidification in 1985 was simulated for each zone. This state of 

acidification is referred to as the Critical Load Acidification. 



Critical Load Acidification was compared to RAINS Lake Model 

predictions in every zone. It was shown that different predictions were 

obtained when using the RAINS Lake Model in 'sensitive' and 

'insensitive' zones. The cumulative distribution of the pH predictions 

in the insensitive zone due to a range of depositions between 3600 and 

4400 mollha showed resemblance, below the 70 percentile, with the 

cumulative distribution of the measurements in 1984. Finally the RAINS 

Lake Model predicted that it would take at least 15 years to reach the 

Critical Load Acidification in the Netherlands if depositions would be 

reduced to the critical load range after 1990. 

7.2 OUTLOOK 

In order to improve the understanding of dose response 

relationships, monitoring programs should cover a sufficiently large 

temporal and spatial scale to be able to quantify the decrease as well 

as the recovery of the state of environmental systems. Furthermore, 

models should continue to be developed to describe the dose response 

relationships. These models should be capable of predicting the state 

of a system that was documented by the monitoring program. 

Complete compatibility between models and data is uncommon. First, 

the temporal and spatial scales at which changes occur in the quality 

of the environment are different for many processes in the natural 

environment. As pointed out in chapter 1, it is possible to view 

systems in a holistic or reductionistic way. Models developed within 

the frame of each of these views will be different with different data 

needs. The different kinds of Integrated Environmental Models described 

in chapter 2 illustrate this point. Second, the measurements do not 

necessarily provide information about the system elements that lead to 

the observed phenomena. Third, the measurements are not necessarily 

suited for the model to reproduce the observed phenomena. The global 

phenomena that result from many interactions between human activities 

and environmental resources may not allow for enough time needed to 

obtain 'better' data and 'better' models. In fact it is questionable 

whether consensus will ever be reached about the quality of models and 

data needed to understand and reverse the depletion of the 



environmental qua l i t y .  For example, t h e  dep le t ion  of t h e  q u a l i t y  of 

su r face  waters has been simulated by severa l  models (e .g . ,  ILWAS, ETD, 

MAGIC and RAINS) a s  descr ibed i n  chapter  3 .  Each of these models d i f f e r  

from one another  i n  t he  l eve l  of d e t a i l  a t  which s im i l a r  processes a r e  

simulated. This d i s t i n c t i o n  between models makes it necessary t o  use 

c a l i b r a t i o n  procedures, espec ia l l y  when model p red i c t i ons  apply t o  a 

region r a t h e r  than a s i ng le  watershed. Chapter 4 has i l l u s t r a t e d  how 

c a l i b r a t i o n  procedures may a f f e c t  model p red i c t i ons .  I t  is ,  there fore ,  

quest ionable whether p red ic t ions  of d i f f e r e n t  models which s imulate 

s im i l a r  processes can be brought under a common denominator by choosing 

t h e  ' r i g h t '  c a l i b r a t i o n  procedure. 

With t h e  inc reas ing  importance of i n teg ra ted  environmental modeling 

i n  combination with t h e  ana l ys i s  of uncer ta in ty  of model p red i c t i ons  a 

complete consensus may not be needed. Uncerta inty  ana l ys i s  of a model 

which i n t e g r a t e s  d i f f e r e n t  processes ( i . e . ,  meteorological ,  s o i l  and 

watershed a c i d i f i c a t i o n  processes)  has been shown i n  chapter  5 and 6 t o  

al low f o r  ranges of model p red ic t ions ,  i . e . ,  cumulative d i s t r i b u t i o n s  

f o r  d i f f e r e n t  combinations of watershed c h a r a c t e r i s t i c s .  Such a 

p r o b a b i l i s t i c  i n t e r p r e t a t i o n  of model p red ic t ions  i n  combination with 

r i s k  assessments of environmental e f f e c t s  may al low d i f f e r e n t  models and 

da ta  t o  provide overlapping confidence i n t e r v a l s  around p red i c t i ons  of 

environmental s t a t e  va r i ab les .  

The method of f l e x i b l e  zoning introduced i n  t h i s  study al lows f o r  a 

p r o b a b i l i s t i c  i nves t i ga t i on  of t h e  compat ib i l i t y  between models and 

ava i l ab le  s p a t i a l  da ta .  The app l ica t ion  of a wide s e t  of s t a t i s t i c a l  

techniques, inc luding the  method of f l e x i b l e  zoning, should be fu r the r  

i nves t i ga ted  a s  a means t o  inc rease t h e  understanding and the  confidence 

i n  po l i cy  measures taken t o  reverse t h e  dep le t ion  of t h e  qua l i t y  of our 

na tu ra l  environment. 
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De aantasting van ons natuurlijk milieu manifesteert zich op tal van 

manieren varierend van lokale problemen als geluid en stankoverlast tot 

grootschalige veranderingen in het klimaat. Het brede scala van milieu- 

problemen heeft geleid tot de behoefte om het systeem van oorzakelijke 

verbanden tussen menselijke activiteiten en de vermindering van de 

kwaliteit van het milieu nader te onderzoeken. 

Dit heeft de ontwikkeling van Gefntegreerde Milieu Modellen tot gevolg 

gehad waarin door middel van wiskundige formuleringen meerdere systemen 

en hun onderlinge samenhang worden beschreven. De voorspellingen die 

met deze modellen kunnen worden gemaakt over de kwaliteit van 

onderdelen van het milieu, zijn voor beleidsmakers interessant omdat op 

deze wijze diverse beleidsopties met elkaar kunnen worden vergeleken. 

Deze voorspellingen zijn evenwel onderhevig aan tal van onzekerheden 

die het gevolg kunnen zijn van onder andere ( 1 )  een onjuiste perceptie 

van de complexiteit van het systeem dat moet worden gemodelleerd, ( 2 )  

het niet representatieve karakter van de data en ( 3 )  een onvoldoende 

weergave van de temporele en ruimtelijke schaal waarbinnen systeem- 

veranderingen zich voordoen. 

Deze en andere onderwerpen met betrekking tot systemen en modellen 

in het algemeen en milieumodellen in het bijzonder komen aan de orde in 

de hoofdstukken 1 en 2  van deze studie. De theoretische nadruk van deze 

twee hoofdstukken contrasteert met de meer technisch georienteerde 

hoofdstukken 3  tot en met 6 .  De inhoud van deze hoofdstukken 

concentreert zich op de modellering van de kwaliteit van het 

oppervlaktewater als gevolg van zwavel en stikstof depositie, beter 

bekend als 'zure regen'. 

Het doe1 van deze studie is: 

- de ontwikkeling van een methode om de ruimtelijke schaal van 

een model onder te verdelen op een wijze die de betrouwbaarheid 

van modelvoorspellingen verhoogd. 

- de relatie te beschrijven tussen regionale karakteristieken en 

de mate waarin systeemonderdelen in het model zijn 

gedetailleerd. 

- de verhoging van de bruikbaarheid van het concept van kritische 



waarden, i.e. de maximale waarde waarbi j er geen schade wordt 

geconstateerd aan onderdelen van het milieu, om beleidsinzicht 

te verschaffen in de oppervlakte-waterkwaliteit in grote 

regio' s . 

Hoofdstuk 1 bevat een inleiding in onderwerpen die van belang zijn 

voor het begrip van systeemanalyse en modelbouw. Voorbeelden hiervan 

zijn (1) de wijze waarop systemen kunnen worden gelnterpreteerd 

(holistisch versus reductionistisch) (2) de gevolgen hiervan voor 

modelstructuren (3) de keuze van het aggregatieniveau van modellen en 

data en (4) het doe1 en gebruik van onzekerheids- en 

gevoeligheidsanalyse. Termen als "onzekerheid", "modelcomplexiteit", en 

"aggregatie" vormen sleutelbegrippen in deze studie. 

In hoofdstuk 2 wordt de opzet behandeld van gelntegreerde 

milieumodellen en geeft enkele voorbeelden van deze modellen. 

Een van deze modellen is het "Regional Acidification INformation and 

Simulation" (RAINS) model dat is ontwikkeld aan het "International 

Institute for Applied Systems Analysis" (IIASA) te Laxenburg in 

Oostenrijk. RAINS voorspelt de emissies en neerslag van zwavel- en 

stikstofoxiden in Europa van 1960 tot 2040 als gevolg van de 

verbranding van energiedragers. In dit model kunnen emissie- 

verminderingen worden gedefinieerd, en de effecten van dergelijke 

verminderingen of combinaties van verminderingen kunnen worden 

geevalueerd in termen van (1) depositie (2) bodemverzuring (3) direkte 

schade aan bossen en (4) verzuring van oppervlakte wateren in noord 

Europa. Het laatst genoemde onderdeel, het RAINS Lake Model, is 

toegepast op 14 regios in Scandinavie, te weten 5 in Finland, 6 in 

Zweden en 3 in Noorwegen. Gegevens over karakteristieken van de bodem 

en het watergebied evenals de verzuringsgraad (pH) zijn voor elke regio 

beschikbaar in de vorm van intervalwaarden en statistische 

dichtheidsfuncties. Hoofdstuk 2 schenkt verder aandacht aan de wijze 

waarop het RAINS Lake Model wordt gecalibreerd aan de gemeten pH 

waarden. De technische aspecten van calibratie en het hiermede 

samenhangende gebruik van random generatoren en Monte Carlo Sirnulatie 

krijgt tevens uitgebreide aandacht. Dit hoofdstuk gaat ook in op 

methoden om onzekerheidsanalyses toe te passen, zoals het computer- 

programma, PRISM, dat is ontwikkeld aan het "Oak Ridge National 

Laboratory" (ORNL) in de Verenigde Staten. PRISM integreert (a) de 



herhaalde a-selecte trekking (volgens de "Latin Hypercube Methode") uit 

intervallen van waarden die worden toegekend aan de inputs van het 

model (b) de executie van het model, en (c) de statistische analyse van 

de modelvoorspellingen. PRISM werd in dit onderzoek gebruikt in 

combinatie met het RAINS Lake Model om (1) de Monte Carlo parameters te 

selecteren die het meest verklaren van de variabiliteit van de pH 

voorspellingen en (2) het effect te evalueren van de calibratie van het 

RAINS Lake Model in de 14 bovengenoemde regio's. 

Hoofdstuk 3 geeft een overzicht van de chemische processen die 

bijdragen tot de verzuring van de bodem en van de oppervlaktewateren. 

Tevens zijn de wiskundige vergelijkingen beschreven die in het RAINS 

Lake Model zijn opgenomen om de genoemde processen te simuleren. 

In hoofdstuk 4 wordt de relatie uitgewerkt tussen model- 

voorspellingen per regio en de wijze waarop een gebied wordt opgedeeld. 

Het doe1 van dit hoofdstuk is de betrouwbaarheid van de 

modelvoorspellingen van de waterkwaliteit te evalueren als functie van 

strikt begrensde ruimtelijke gebieden. Twee modellen met een 

verschillende graad van complexiteit worden toegepast: (1) het RAINS 

Lake Model en (2) een vereenvoudiging van het RAINS Lake Model, i.e. 

een metamodel, waarbij de pH-voorspellingen worden verklaard door de 

meest belangrijke Monte Carlo parameters van het RAINS Lake Model. 

Beide modellen worden gecalibreerd met behulp van PRISM. De calibratie 

bestaat uit het aanpassen van de verdelingen van de meest belangrijke 

parameters. Dit gebeurt met het eerste model voor de zuidelijke regio 

in elk van de drie landen, terwijl het metawdel alleen in de 

zuidelijke regio van Finland wordt gecalibreerd. Het verband tussen 

regionale condities, met inbegrip van zwavel depositiepatronen, en 

voorspellingen van het RAINS Lake Model wordt als volgt geevalueerd: 

(a) het calibratieresultaat, in elk van de zuidelijke regio, wordt 

toegepast in de andere regio van hetzelfde land (intra-extrapolatie) en 

(b) het calibratieresultaat met inbegrip van de waarden van de overige 

parameters in de zuidelijke regio van Finland wordt toegepast in alle 

overige regio's (inter-extrapolatie). De voorspellingen van het 

metawdel als functie van regionale condities worden geevalueerd door 

het verkregen calibratieresultaat toe te passen in de Noordelijke regio 

van Finland. Tevens worden voorspellingen van het metamodel 

voortvloeiend uit hoge deposities vergeleken met de voorspellingen van 

het RAINS Lake Model onder dezelfde condities. 



De resultaten van beide modelanalyses geven aan dat veranderende 

combinaties van regionale omstandigheden en depositiepatronen leiden 

tot: (1) een verschuiving van de volgorde in de belangri jkheid van de 

Monte Carlo parameters met betrekking tot de verklaring van de 

variantie van de pH-voorspellingen, en (2) een aantasting van de 

kwaliteit van de regionale modelvoorspellingen. Tevens wordt 

geconstateerd dat deze resultaten overeenkomst vertonen met bevindingen 

in de discipline van de ruimtelijke graviteitsmodellen. De conclusies 

die uit de analyses van hoofdstuk 4 worden getrokken, zijn: 

- de modelvoorspellingen die nodig zijn voor de evaluatie van de 

waterkwaliteit in grote regio's als gevolg van veranderende 

condities (regio's, depositie) kunnen aan betrouwbaarheid 

inboeten als gevolg van de inconsistentie tussen het 

calibratieresultaat en deze condities. 

- Eenvoudige (rneta-) modellen kunnen meer complexe modellen 

vervangen als de oppervlakte wateren vergelijkbaar zijn, m.a.w. 

homogene karakteristieken vertonen, met betrekking tot hun 

gevoeligheid voor zure depositie. 

In hoofdstuk 5 wordt een alternatief gepresenteerd om de in het 

voorgaande hoofdstuk geconstateerde tekortkomingen van regionale 

voorspellingen van de milieukwaliteit te compenseren. Deze "flexibele 

zoneringsmethodell bestaat uit de volgende stappen: 

(1) de toepassing van onzekerheidsanalyse op het model in een 

strikt begrensd gebied, 

(2) de onderverdeling van de waarde-intervallen van de meest 

belangrijke parameters, volgend uit (l), teneinde verschillende 

groepen van karakteristieken met betrekking tot de bodem en het 

watergebied te kunnen onderscheiden. Combinaties van 

deelintervallen van verschillende parameters vertegenwoordigen 

verschillende zones van watergebieden die "gevoelig" of 

"ongevoelig" zijn voor zure depositie. 

(3) de toepassing van Monte Carlo Sirnulatie op het model in elk van 

deze zones onder een varierende exogene invloed (zure 

depositie). 

(4) de toepassing van metamodellen om inzicht te krijgen in de mate 

van homogeniteit van de oppervlaktewateren in de zones. 

(5) de evaluatie van emissieverminderingen of andere (beleids-) 



maatregelen met betrekking tot nagestreefde depositiewaarden 

("target levels") aan de hand van de cumulatieve verdeling van 

de pH voorspellingen in elke zone. 

Het blijkt dat de kritische waarde kan varieren voor elke zone. De 

methode van flexibele zonering werd, in hoofdstuk 5, geTllustreerd in 

de zuidelijke regio van Noowegen waarbij de spreiding van de meest 

belangrijke parameters tevens zijn bewerkt aan de hand van de bestaande 

literatuur. 

Hoofdstuk 6 beschrijft de data, de modelaanpassingen en de 

resultaten van de toepassing van de methode van flexibele zonering met 

het RAINS Lake Model in Nederland. Er worden vier zure depositie- 

intervallen in Nederland onderscheiden, resp. 3600-4400, 4400-5200, 

5200-6000 en 6000-6800 mollhaljaar. Met deze depositie-intervallen is 

het gehele Nederlandse grondgebied afgedekt. Deze depositie intervallen 

worden gecombineerd met gevoelige en ongevoelige waarden van de meest 

belangrijke parameters (bijvoorbeeld, respectievelijk, dunne en dikke 

bodems). Deze combinaties heten "zones". Bet RAINS Lake Model wordt in 

elke zone toegepast in de perioden 1900-1985 en 1900-2040. Veldmetingen 

uit 1984 worden in het onderzoek vergeleken met de modelvoorspellingen. 

Door de toepassing van kritische depositiewaarden uit het interval van 

250-800 mollhaljaar, m.a.w. de maximale waarden waarbij in brede kring 

wordt aangenomen dat er geen schade aan flora en fauna wordt 

toegebracht, wordt een staat van verzuring in 1985 voorspeld. Deze 

"Kritische Waarde Verzuring" is gebruikt ale referentie waartegen 

andere modelvoorspellingen kunnen worden afgezet. 

Er is aangetoond dat modelvoorspellingen verschillen wanneer het 

RAINS Lake Model wordt toegepast op gevoelige en ongevoelige zones. 

Verder blijkt de cumulatieve verdeling van de voorspellingen in de 

ongevoelige zone bij het depositie interval 3600-4400 mollha, tot ca. 

het 70 percentiel overeen te komen met de cumulatieve verdeling van de 

metingen. Gegevens ontbreken om, in het kader van deze studie, de 

karakteristieken van de watergebied-intervallen te valideren die tot 

deze modelvoorspelling leiden. 

Tenslotte voorspelt het RAINS Lake Model dat het minstens 15 jaar 

duurt alvorens de Kritische Waarde Verzuring wordt bereikt wanneer met 

ingang van 1990 de depositie in Nederland zou worden teruggebracht tot 



de kritieche depositiewaarden. 

In het algemeen kan worden geconcludeerd dat de methode van 

flexibele zonering de betrouwbaarheid van modelvoorspellingen verhoogt 

in vergeli jking tot voorspellingen die zi jn gebaseerd op 

modelcalibratie. De reden is dat de methode het mogelijk maakt om de 

compatibiliteit tussen het model en regionale condities te varieren. 

Gegevens kunnen worden verzameld om informatie te krijgen die de 

toepassing van flexibele zonering op wdellen mogelijk maakt. Op basis 

van de modelvoorspellingen over gevoelige zones die met de methode van 

flexibele zonering worden verkregen kan de beleidsmaker de frequentie 

schatten van meren in een afgebakende regio die een verhoogd 

verzuringsrisico dragen. De methode van flexibele zonering verschaft 

derhalve inzicht in de combinaties van regionale condities en exogene 

invloeden (depositie) die leiden tot veranderingen in de onzekerheid 

van modelvoorspellingen. 
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A P P E B D I X  I  

Appendix I preeente an efficient algorithm for the calibration 

'filtering' procedure of the RAINS Lake Module (Posch, 1987l ; appendix 

of Sutton, 1987). 

The description of the aim of the filtering procedure can be found 

in chapter 2. 

'Used with permission of Dr. Maximilian Posch. 



The aim of this note is to derive an optimal procedure (filter) for fitting Monte Carlo 
simulations to an observed (measured) cumulative distribution function (cdf). 

The cdf of the observations is characterized by values yo = 0 ,  y l , .  . . ,yn-1, yn = 1 (see 
Figure 1) and is derived from a histogram with n bins. 

Figure 1: One-dimensional cdf for a histogram 

Let N, be the number of simulations with outcome falling into the j th  bin. The aim is to 
derive a formula for the maximal number of accepted runs per bin, a, ( j =  1,  ..., n) ,  in such 
a way, that -- after rejection of N,-a, runs per bin -- the simulated cdf and the observed 
cdf are the same. This requires that 

where a := z i n , l a ,  is the total number of accepted simulations. These are n equations for 
the n unknowns a l , .  . . ,an. However, the last equation in (1) is an identity (1 = I ) ,  so that 
we have only n - 1  equations. This means that we have an additional degree of freedom to 



fix a,, ..., a,. It is clear from the definitions tha t  we have the following constraints on the 
aj 's 

0 5 a, < N , ,  j = l ,  ..., n (2) 

Next we subtract  the ( j P l ) t h  equation from the  j t h  equation in ( I )  and get after rear- 
ranging 

where we have introduced the new unknowns 2,. (3) can be also written as 

showing that  all the 2,'s are identical t o  the  total number of accepted runs. The con- 
s t ra ints for the 2,'s read [compare (2)] 

Now let M be the  minimum of the upper bounds for the 2,: 

Then i t  follows from (4) that  

0 5 z j  < M for all j (7) 

Now we fix the  additional degree of freedom of the  ails in such a way t ha t  we request the 
aj ls ( the number of accepted runs) t o  be maximal. From the definition of the 2,'s [see (3)( 
it follows t ha t  the 2,'s have t o  be maximal, and  from (7) it foIlows t ha t  

z = M for a11 j I ( 8 )  

which means t ha t  the  optima1 a,'s are given by (see (3)] 

with M given by (6). 



The generalization t o  more dimensions is straightforward and mainly a mat ter  of 
notat ion and proper interpretation of the one-dimensional result. 

We note t ha t  y I - y , - ,  =: Ayj  is nothing else but the number of observations in bin j  
divided by the total number of observations ( C r = l A Y j =  I ) .  Therefore we get the follow- 
ing result for the d-dimensional case: 

The  maximal number of accepted simulations for bin ( j l , .  . ., jd)  is given by 

where 

Here N l l , . . , l d  denotes the  number of simulations for bin ( j l , . . , j d )  and nk is the number of 
classes of variable k. 



A P P E N D I X  I1 

In this appendix a description is given of the PRISM computer code 

used in this study and of the input file (data.dat) containing the 

statistics (mean, standard deviation, lower and upper bound) of the 

parameters that are subjected to Monte Carlo Simulation of the model. 

PRISM consists of three blocks: 

(1) PRISMl contains a great number of routines for sampling values from 

cumulative distributions (e.g. uniform, triangular, normal, etc.). 

The choice of the type of cumulative distribution, the value-range, 

the mean and the standard deviation are defined by the inputfile to 

PRISMl (data.dat). The latter inputfile contains (1) the number of 

iterations to be performed with the model, (2) the model parameters 

that are used in the Monte Carlo Simulation (3) the type of 

distribution from which values should be assigned to the model 

parameter and (4) the mean, the standard deviation and the lower and 

upper bound of the parameter values. The output of PRISMl is a file 

(prisml.dat) that contains N (N = the number of Monte Carlo runs) 

blocks of values that have been sampled for every model parameter. 

The parameters implemented in this study consisted of soil, 

watershed and deposition characteristics. 

(2) PRISM,  as applied in this study, contains the RAINS LAKE Model. 

PR ISM reads prisml.dat (see above) and performs a model run for 

each of the N blocks of parameter values. The output of PR ISM is a 

file (prism2.dat) that contains N blocks of model predictions, i.e. 

the predicted pH for every year. 

(3) PRISM3 is a set of routines computing different statistics (e.g. 

partial R2, F-statistic, total, regression and error sum of squares 

etc.), and percentiles of the pH predictions stored in prism2.dat. 

The implementation in PRISM of the RAINS Lake Model in general and 

for the Dutch case in particular and many of the routines of PRISM3 

used for this study have been written by the author. The code as well 

as the input data files used for this study are available upon request. 

PRISM has been developed by Dr.R.H.Gardner of the Environmental 

Sciences Division at the Oak Ridge National Laboratory. Figure 4.2 

(chapter 4) summarizes the setup of PRISM. 
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A P P E N D I X  111 

Appendix 111 presents the cumulative distributions of the RAINS Lake 

Module pH response in 1980 for all the lake classes that have been 

distinguished with the method of flexible zonin~. in chapter 5. 

Distributions and corresponding statistics have been plotted for 4 

'sensitive' and 4 'insensitive' zones. 

An explanation of the results can be found in chapter 5. 
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