
Integration Principles in Numerical
Software

Mazourik, V.

IIASA Working Paper

WP-89-010

April 1989

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33894805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mazourik, V. (1989) Integration Principles in Numerical Software. IIASA Working Paper. WP-89-010 Copyright © 1989 by

the author(s). http://pure.iiasa.ac.at/3334/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

W O R K I N G P A P E R

INTEGRATION PRINCIPLES IN
NUMERICAL SOFTWARE

V. Matourik

April 1989
WP-89010

l n t e r n a t ~ o n a l l n s t ~ t u t e
for Appl~ed Systems Analys~s

INTEGRATION PRINCIPLES IN
NUMERICAL SOFTWARE

V . Mazourik

April 1989
WP-84010

Computer Center of the USSR Academy of Sciences Moscow

Working Papers are interim reports on work of the International Institute for
Applied Systems Analysis and have received only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute
or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

Foreword

Since personal computers are currently being used by individuals who are not profes-
sional computer specialists, the need for a framework allowing quick and easy develop
ment of user-friendly software is necessary. One such framework is the concept of
software integration. This concept is now reasonably popular and several software tools
allowing for such integration are available on the market. Unfortunately, all of these
tools are oriented towards office automation systems, word processing, telecommunica-
tions etc. No such tools are available for scientific users which would allow easy utiliza-
tion of mathematical programming software, model building and analysis etc.

This paper presents the system DISO which can support dialogue solving mathemat-
ical programming problems. The system allows for the treatment of all mathematical
programming modules in a uniform way, allowing easy interaction with the user utilizing
various metaphors for data presentation and analysis of results as well as being open - i.e.
new mathematical programming modules can be easily linked to the system. The DISO
system has been designed utilizing modern software engineering concepts, like hierarchical
program structuring, object-oriented paradigm and abstract data types oriented interface.

Alexander B. Kurzhanski
Chairman

System and Decision Sciences Progam

Table of Contents

Page

. .. 1 Integration in data processing 1

. 2 Mathematical integration ... 2

.. 2.1. Basic set of interrelated models 2
.. 2.2. Hierarchy of models 4

... 2.3. Basic object-oriented software package 5
.. 2.4. .Numeric libraries 7

2.5. Unified model-oriented exception handling .. 7
2.6. Unified abstract data types-oriented interface ... 8

3 . BSP description ... 9

3.1. Object types of BSP cluster .. 9
... 3.2. BSP procedures specification 10
.. 3.3. BSP semantic specifications 15

... 3.4. Example 17

.. 4 . Integration. clusters and programming technology 19

... 4.1. Numeric method 20
.. 4.2. Numeric methods library 21

.. 4.3. Package 21
... 4.4. Task 22

.. 5 . Dialogue clusters 23

... 6 . Conclusion 23

... References 24

INTEGRATION PRINCIPLES IN
NUMERICAL SOFTWARE

1. Integration in data processing.

A wide use of personal computers results in new research of software design for

nonprofessional users. Some of the approaches, which were developed in this area, have

the general meaning and can be applied for the numerical analysis software design as well.

One of these approaches is software integration. The principle of software integra-

tion is now the leading trend in commercial packages. This principle does not mean sim-

ple inclusion of different packages in one system. Actually, it means, that some unified

approach is used for system design, which simplifies both the implementation of the sys-

tem and, what is more important, its use.

Most of the well known integrated systems like LOTUS 1-2-3, SYMPHONY [I] etc.

are based on spreadsheet approach. It means, that all the components of the system are

oriented to spreadsheet capabilities. For example, database records in SYMPHONY are

represented as lines in a spreadsheet.

FRAMEWORK [2] uses another approach. The integration basis in this system is a

frame. The user deals with hierarchy of frames, which are texts, spreadsheets, databases

or complicated structures of other frames.

The integration in JAVELIN [3] is perhaps the most impressive one. All the infor-

mation in the system is saved in a highly unified format which is " L d o n ' t k n o w h o w " .

The idea is t o supply the user with two sets of tools: one is a list of different forms t o in-

put data into the system and another is the list of patterns to retrieve information and to

show it in the most convenient way. Which way to choose for representing the data in-

side the system is not the user's affair.

The usage of strictly defined integration concept in each of these systems results in

their simplicity and clearness. The developement of new integration principles is ex-

tremely interesting task, because these principles are general in their nature and can be

effectively used in different situations. There exists an analogy with programming lan-

guages. The structured programming approach is invariant and does not depend on the

language in use. This approach can be effectively used, say, in FORTRAN, which itself

does not have any features of this style.

We can treat the developement of integration concepts for software packages as the

use of structured programming approach in this new area of application.

Integrated systems which are available now at the software market are oriented to

general data processing and include the list of components, which becomes traditional:

text processor, spreadsheet, data base, graphics and telecommunication. They create the

base of new information technology, promoting now due to the wide distribution of per-

sonal computers.

There exists another area of software packages, which deals with mathematical

modeling. This type of software is much more sofisticated than ordinary data and text

processing.

2. Mathemat i ca l integrat ion.

Mathematical integration is based on the following principles:

- basic set of interrelated models

- hierarchy of models

- basic object-oriented software package

- numeric libraries

- unified model-oriented exception handling

- unified abstract data types-oriented interface.

This paper presents a short description of all these principles. They are valid for

different applications. One of them is optimization problem solving. Mathematical in-

tegration approach which is described here was used in the implementation of the DISO

system (Dialogue System for Optimation problem solving). The DISO system was

developed in the Computer Center of the USSR Academy of Sciences for different types of

computers including mainframes and PCs. We shall illustrate all the integration princi-

ples using the DISO case as an example.

2.1. Bas ic set of interrelated models.

There exist three fundamental optimization models which, being combined, create a

powerful1 instrument for numerous applications problem solving:

- unconstrained minimization (UCM),

- nonlinear programming (NLP) ,

- multicriteria optimization (MCO).

Actually, NLP can be treated as a simple case of MCO with two criteria: one is a

goal function and another is some integrated measure of restrictions violation. There are

two reasons to treat NLP as a basic model. The first is that there exists an advanced

theory of this case. The second is that a lot of important applications come to this

mathematical model.

Very many mathematical models such as optimal control, distributed systems equa-

tions solving, a boundary value problem for ordinary and partial differential equations

etc. can be reduced to one of these three fundamental models of optimization.

For example, the following optimal control problem:

min b (z(t 1))

is reduced to UCM problem by the discretization of vector u(t). UCM goal function

u+b(u) is evaluated for a given discrete approximation of u(t) by ODE integration. If

there are some trajectory restrictions like g(z(t)) = 0 then NLP problem occurs with the

restriction C(u) = 0.

To solve the resulting UCM or NLP problem with the use of gradient methods one

must have effective algorithms of u+db/du gradient function evaluation. Taking into ac-

count the nature of b(u) function it is obvious, that its numerical differentiation is practi-

cally impossible. There exist effective algorithms of recurrent function differentiation

which are proposed by Prof. Evtushenko [4]. They are the part of a more general a p

proach which makes it possible to effectively differentiate a function (obtaining analytical-

ly accurate, but numerical results), defined by the algorithm rather than by analytical ex-

pression [5] . The fundamental nature of UCM, NLP and MCO models makes this set a

full system. Using the analogy with linear spaces we can say, that these models are simi-

lar to coordinate axes and their "linear combinations" create the effective tools to solve al-

most any optimization problem.

The developer of integrated system which is based on mathematical models actually

must investigate thoroughly the proper set of models to provide its fullness. Of cause in

most cases this feature can not be proved for the simple reason that there is no strict

definition of it. But there always exists experience of problem solving in a given area,

which must help in this question. Returning to optimization technique we can illustrate

the necessity of integration principles the by following example. Typical situation in o p

timization problem solving is task redefinition in the process of the solution. The change

of function status from goal function to restriction and back very often results in the

change of the model itself between NLP, MCO and UCM. In a way, this is the change of

the user point of view on his data. The same approach is an ordinary thing in traditional

intrigrated systems, when the same data are viewed either as spreadsheet items or as da-

tabase records. What must be done in the case of mathematical models is the same sim-

plicity to change the view of the data.

2.2. Hierarchy of models.

In fact, there exists some intrinsic hierarchy of optimization models in a sense that

numerical method of one class can create subordinate task of another class. Typical ex-

ample is NLP methods, which are based on penalty function approach. They create UCM

task making some convolution of goal function and restrictions.

Integration approach makes it possible to create the programming structure of the

system in accordance with the mathematical structure of the interrelated models. In fact,

there is no need to duplicate the code of UCM methods while implementing NLP library.

The only thing to be done is to call UCM package inside NLP method yielding in invoca-

tion of all the means of UCM package (including, if necessary, interactive capabilities) in

the process of NLP problem solving. This is the exact case of the DISO implementation.

This source of hierarchy is due to the semantics of numerical methods. There exist some

other potential sources of hierarchy. Global optimization problem solving which uses

nonuniform covering technique can be substantially amplified if the estimation of function

low value is improved. It makes i t effective to combine local and global search in one ses-

sion. Again the integration approach solves this problem automatically. The DISO sys-

tem permits the user to change the optimization mode from global to local, and after des-

cent within the local domain of the current point continue global search.

There exists potential possibility of more skillful hierarchical control of the solution.

For example, the user can stop global search process, which currently uses some covering

technique, and make the system continue the search in subarea with another covering

scheme.

2.3. Basic object-oriented sof tware package.

Integration approach provides the system designer with the unique capability to in-

vestigate and extract the common part of all the integrated mathematical models. Obvi-

ously, this common part exists, due to the similarity of the models.

Unnecessary duplication inevitably exists if the models are implemented indepen-

dently. But this is not the main disadvantage. Independent implementation results in

"local optimization" principle, when all the important solutions are restricted to the local

needs of the particular model efficient implementation. Anyone who ones tried to com-

bine such independent packages understands the problem.

Orientation to procedural, calculational part of the problem is typical for this ap-

proach. Data representation plays the secondary role and is subordinate to the procedure

needs. It results in the fact, that both the system structure and user interface are unna-

tural. For example, presence of the field "current point" at the screen makes dangerous il-

lusion, that the user has access to some vector space and can work with its points. What

he actually has is access to the array of numbers in the program. The attempt to create,

say, two points simultaneously (and to begin independent optimization processes from

these points) proves immediately, that neither vector space, nor vectors are, in fact, avail-

able. Of course, it is very inconvenient for the user, who can not understand why such a

natural and simple things are forbidden in the system. The user can easily handle an

artificial manner of the language as far as its syntax is concerned. But not the semantics.

Basic object-oriented software package (BSP) development is an attempt to solve all

these problems. The main question is to find the common part for optimization models,

which represents their semantics and thus can play the role of implementation base for

them. To find the main components of this basic package let's investigate the structure of

optimization problem solving.

The main goal in optimization is, in fact, analysis of the functions, which creates

task definition. Function analysis and modification at the beginning stage of the solution

is much more a time consuming procedure than the use of optimization method after-

wards. As it was mentioned above task modification can include function redefinition,

change of their status, addition of new functions etc. The same capabilities are very useful

at the next stage of problem solving, when the task definition functions are investigated

and modified in a proper way, and mathematical model to solve the problem is chosen.

Very often function modifications take place again. But if at the beginning stage of the

solution functions are modified using the application point of view (for example, they do

not meet some informal conditions), at this second stage mathematical properties of the

functions are improved in the process of modifications in order to run optimization

methods more effectively.

Continuing this analysis one can easily understand that the notion of the function is

one of the main semantic parts of the BSP. One more important conclusion is obvious.

Only correct function definition as a programming object, which fully corresponds to the

strict mathematical definition of it, will do. Any other solutions based on some "local o p

timization" approach must be rejected in principle.

The function notion, being the main in BSP, is not the only one. The BSP for the

optimization package development is, in fact, abstract cluster, which includes a set of in-

terrelated abstract data types of linear algebra, such as vector space, function, vector,

basis etc., and procedures to manipulate objects of these types. The BSP approach has

several goals. The first is a technological one. The use of the BSP cluster inbeds struc-

tured object-oriented style to the mathematical packages development in the frame of in-

tegrated system. Another BPS goal is to provide integrated system designer with effective

tools to develop new ideas to control optimization problem solving. Any mathematical

model can be treated as a frame, which defines all other parts of the system. For exam-

ple, numerical methods are linked to the structure of the model. Being a theoretical

scheme, mathematical model must not take into account any peculiarities of application

task, which deviate from the scheme. But often these very deviations play decisive role in

the most effective task solution. BSP is a tool to describe and analyze some special o p

tions of mathematical models. It means, that the user creates his own, outer methods of

optimization in dialogue session, which are highly oriented on the specific properties of

the task at a given point. This synthesis of new mathematical methods (or scenario) of

task solution is possible only on the base of BSP capabilities.

This approach solves the well-known paradox which exists in the traditional sys-

tems, based on numerical methods libraries. Numerical methods development is very

time consuming job which is made by skillful specialists. These methods are really very

strong instrument ... but only if the task to be solved has some very special properties,

like the existence of the first and the second derivatives etc. The problem is that to inves-

tigate those properties without special software instruments is often as time consuming as

to solve initial optimization problem. So a strong point of the methods turn out to be

their weak points. The reason is the closed, static nature of the methods. All the power-

ful mathematics inside the method is hidden from the user. And what he actually needs

are simple things at hand, like the use of linear operator to change equipotential lines of

the function.

- 7 -

The brief description of BSP is given below.

2.4. Numeric libraries.

Numeric libraries are a common part of different mathematical models in integrated

systems. The methods themselves are of course different, but all the routines of methods

initiation, run, termination and parameters control are common, which makes i t possible

to implement them once in the framework of integrated system.

Unified manner of methods handling procedures results in the unification of user's in-

terface to control numerical algorithms, which is another useful feature of integrated a p

proach. The unification of methods handling has the same origin as the unification of data

handling procedures, such as copy, move, etc., in traditional integrated systems. The at-

tributes of these procedures do not depend on the type of data to be processed: text,

spreadsheet or database.

2.5. Unified model-oriented exception handling.

Let's investigate the goal of dialogue in the process of optimization problem solving.

It is obvious that the dialogue in general is possible only if participants have nonempty

cross of their world models. It is also obvious that dialogue makes sense only if their

world models do not coincide. These simple remarks show the way to understand the in-

terface logical structure in optimization packages.

Let's consider the innermost level of numerical methods. We can treat any numeri-

cal method for a given optimization model as a "software-being", which is specialized in

particular, narrow area. For example, Newton method is the best in the vicinity of the

solution point. When somebody (program or user) calls Newton method, i t means that

both the caller and the method have common understanding of unconstrained minimiza-

tion model. At the programming level this common understanding is materialized in the

form of the procedure interface specification. The difference between their models is that

the caller does not need to understand the idea of Newton approach. On the other hand,

Newton method does not know, whether initial point is in the vicinity of the solution or

not. If i t is not, then exception will be raised, which means, that the model state is not in

the domain of Newton method. This example demonstrates model-oriented exception han-

dling approach. Exceptions can be treated as current state transfer beyond the boun-

daries of model understanding by the method.

As an additional result, it helps to understand the role of optimization package for a

given model. The package filters the exceptions, which were raised by methods. Any par-

ticular method can not have all the information about the model state, but the package

can, and actually have to. When a method due to some reason fails to solve the problem

the package must analyze the reason and make the decision how to handle the situation.

One possible solution is to change parameters of the method or the method itself.

All this means that the package represents the whole semantics of the optimization

model, which is implemented as data structures, numerical methods library and utility

procedures of different types. The package must obviously include method descriptors

which contain specification of parameters, domain, preferable model state to use the

method etc. All the resources of the package are controlled by the monitor program,

which provides both automatic and dialogue capabilities of optimization problem solving.

Optimization package for a given model creates the middle level of programming

hierarchy. The outermost level is the caller itself. It is the last level of exception han-

dling. There always exist some situations which are beyond the understanding of the

package. They must be filtered by the caller, which means, that the caller must have

common understanding of the model with the package. In fact, he must have additional

knowledge to handle situations which were rejected by the package. It is exactly the

case, when the caller is human being, and exceptions are due to his mistakes in task

definition. Unified implementation technique of model-oriented exceptions handling create

another area of integration. Taking into account hierarchical manner of optimization

models this unification is the necessity.

2.6. Unified abst ract d a t a types-oriented interface.

The BSP provides the user with model-oriented high-level language, which includes

abstract data types of linear algebra objects: vector space, basis, linear operator, vector

etc. The user can create these objects, control their values, analyze and modify their pro-

perties with the help of cluster procedures. As usual, abstract approach means, that data

types implementation is hidden from the user. Object's semantics is defined at the pro-

cedural level by all the procedures which can potentially be applied to the object.

Abstract data types approach can be extended to data visualization. Actually, it is

a necessary extension, if we deal with abstract data. Abstract visualization is based on

the following three ideas.

First, it is an abstract procedural interface. The user reports the system only his in-

tention to see visual pattern of the object. He calls "demo" procedure which has the refer-

ence to the object as a parameter. The system itself will find the proper pattern to

demonstrate the object.

Second, there exist several predefined patterns of visualization for every abstract

data type. They may be linked to some situations or object values, which can be

analyzed by the system. The user can extend the list of patterns and situation filters for a

given object.

Third, there exists field management mechanism, which is independent of data pat-

terns and provides the user with the means to organize his own layout of the screen.

Fields are rectangle areas on the screen. Their number, shape and other attributes are

under the user control in a dialogue session. The object is visible only if it is linked to one

or several fields on the screen. The "demo" procedure reacts both on the object state and

the field attributes, which makes it possible to see simultaneously several different pat-

terns of the object in the screen. This approach makes the strict division between the stat-

ic, abstract part of visualization, which the user creates when he writes application pro-

gram, and dynamic part, which both the user and the application program can create and

modify in the process of solution.

Abstract data visualization was implemented in Field Manager Package [6]. This

package provides software designer with new interactive tools, which create significant

part of integrated technology for model-oriented software development.

3. BSP descr ipt ion.

As it was mentioned above, the Basic Software Package (BSP) is abstract data types

cluster, which provides the user with a set of interrelated mathematical notions of linear

algebra.

3.1. Object t y p e s of BSP cluster.

The object types of BSP cluster are:

v e c t o r ~ p a c e - finite-dimensional vector space over the field of real numbers (double

precision numbers in implementation);

vector - element of a given vector space;

basis - basis of vector space;

vcsys tem -

operator -

function -

ordered set of vectors in vector space

(not necessarily linear independent);

linear operator which maps one vector

space into another;

arbitrary function, i.e. functional

mapping of linear space into field of

real numbers.

The BSP cluster has hierarchical structure. The innermost level is subcluster of ma-

trix algebra, which has obvious data types like column, row, matrix etc.

3.2. BSP procedures specification.

Cluster includes procedures to create objects, evaluate their values, analyze attri-

butes of objects (matrix rank, space dimensionality, etc). Some illustrative (not full) list

of cluster functions specification is given below to make the general impression about the

cluster contents.

3.2.1. Vector space.

Create root vector space of a given dimension:

vectorspace v s ~ o o t (dimension)

int dimension;

Create vector space by ordered set of vectors:

vectorspace vs-bysy (sy)

vcsys tem sy;

Create vector space by kernel of linear operator:

v e c t o r ~ p a c e v s b y A e r (oper)

operator oper;

Create vector space by image of linear operator:

vectorspace v s b y i m a g e (oper)

operator oper;

Reference to parent vector space:

vectorspace f a t h e r o f vs (vs)

vectorspace vs;

Reference to greatest common measure of two vector spaces:

vectorspace v s G C M (vsl, vs2)

vectorspace vsl, vs2;

Dimension of vector space:

int d i m e n s i o ~ o v s (vs)

vectorspace (vs) ;

Is vector space " s u b v s " subspace of "vs":

int is_sub-otvs (s u b v s , vs)

vectorspace sub-vs, vs;

Reference to i-th subspace of a given vector space:

vectorspace s u b o t v s (vs, i)

vectorspace vs;

int i;

Reference to root basis of a given vector space:

basis r o o t b s - o f vs (vs)

vectorspace vs;

Delete vector space:

void vsde le te (vs)

vectorspace vs;

3.2.2. Vector.

Create vector:

vector vc-create (bas)

basis bas;

Assign the value to vector:

void v c v a l u e (vc, bs, val)

vector vc;

basis bs;

column val;

Get vector value in a given basis:

column value-of vc (vc, bs)

vector vc;

basis bs;

Transform vector value to a given basis:

void vc- tobs (vc, bs)

vector vc;

basis bs;

Reference to basis of current vector value:

basis b s o f vc (vc)

vector vc;

Reference to vector space of a given vector:

vector space vs-of vc (vc)

vector vc;

Standard vector space operations over vectors:

vector vc-plus (vcl, vc2)

vector vcl, vc2;

vector v c ~ i n u s (vcl, vc2)

vector vcl, vc2;

vector v c i n v (vc)

vector vc;

vector vc_mul tsca lar (vc, scal)

vector vc;

double scal;

3.2.3. Ordered set of vectors.

Create empty set of vectors:

vcsys tem sy-create (bas)

basis bas;

Add vector to a given set:

void sy inc lude (sy, vc)

v c ~ y s t e m sy;

vector vc;

Eliminate vector from the set:

void s y e l i m (sy , vc)

vr.ystem sy;

vector vc;

Is set of vectors empty:

int is-emptysy (sy)

vcsys tem sy;

Rank of set of vectors:

int r a n k o f y (sy)

v c s y s t e m sy;

Transform set of vectors to a given basis:

void syto-bs (sy , bs)

v c s y s t e m sy;

basis bs;

3.2.4. Basis.

Create basis by set of vectors:

basis bs-bysy (SY)

v w y s t e m sy;

Create basis by matrix:

basis bs-bymt (mt)

matrix mt;

Extract i-th vector of basis:

vector v~ex t rac t -o f bs (bs, i)

basis bs;

int i;

Reference to vector space to which a given basis belongs:

vectorspace v s o f bs (bs)

basis bs;

Reference to i-th linear operator with domain in a given basis:

operator o p - d o m a i n i ~ b s (bs, i)

basis bs;

int i;

Reference to i-th linear operator with image in a given basis:

operator o p i m a g e i ~ b s (bs, i)

basis bs;

int i;

3.2.5. Linear operator.

Create linear operator by set of vectors:

operator op-bysy (sy, b s - o f m a g e v s)

vcsys tem sy;

basis bs-of mage-vs;

Create linear operator by matrix:

operator op-bymt (mt, bs-of doma invs , b s - o f m a g e v s)

matrix mt;

basis bs-of doma invs ;

basis b s o f m a g e v s ;

Is vector in domain of linear operator:

int v c i n d o m a i n o f op (vc, op)

vector vc;

operator op;

Reference to domain basis of linear operator: basis d o m a i n b s - o f op (op) operator op;

Apply linear operator to vector:

vector o p c a l l (op, vc)

operator op;

vector vc;

Linear operator value in a given pair of basis:

matrix value-of op (op, b s o f doma invs , b s - o f image-vs)

operator op;

basis b s o f doma invs ;

basis b s o f image-vs;

Transform linear operator to a given pair of basises:

void op-to-bs (op, b s o f doma invs , b s - o f image-vs)

operator op;

basis b s o f doma invs ;

basis b s o f image-vs;

3.2.6. Funct ion .

Create function with domain in a given basis:

function f ~ c r e a t e (bs, f n c o d e)

basis bs;

double (* f n c o d e) ();

Reference to basis of function domain:

basis b s - o f n (fn)

function fn;

Is vector in domain of function: k

int v u ~ d o m a i n o f n (vc, fn)

vector vc;

function fn;

Evalute function a t a given point of vector space:

double f ~ c a l l (fn, vc)

function fn;

vector vc;

Evaluate gradient value of function at a given point:

row g r a d o f n (In, vc)

function fn;

vector vc;

Evaluate hessian value of function a t a given point:

matrix h e s s - o f n (fn, vc)

function fn;

vector vc;

3.3. BSP semant i c epecificatione.

BSP cluster specification includes list of equations, which define semantics of cluster

objects and procedures. Here are some of them.

The property of root vector space:

f a t h e r o f vs (v s ~ o o t (int)) == NULL;

Dimension of vector space which is spanned on set of vectors is equal to the rank of this

set:

d i m e n s i o n o v s (vs-bysy (sy)) == r a n k o f y (sy);

Vector space, spanned on set of vectors which belong to some vector space, is subspace of

this vector space:

i s s u b - o f vs (v s b y s y (sy), vs-of y (sy) == TRUE;

Dimension of vector space, which is created by kernel of linear operator, equals to the

remainder of dimension of domain vector space of operator and rank of operator:

d i m e n s i o n o f v s (vs-byker (op)) ==

dimensionofvs (vs-ofbs (domainbs-o f op (op))) -
r a n k o f t (value-of op (op)) ;

Kernel of linear operator creates subspace of domain vector space of this operator:

issub-of vs (v s b y k e r (op) ,
vs-of bs (doma inbs -o f op (op))) == TRUE;

Dimension of vector space which is created by image of linear operator, equals the rank of

operator:

dimensionof vs (vs-byimage (op)) ==

r a n k o f t (value-of o p (

op, d o m a i ~ b s - o f o p (op) , i m a g e b s o f o p (op))) ;

Rank of set of vectors, which create basis of vector space, equals the dimension of this

space:

r a n k o f y (sy) ==

d i m e n s i o n o f vs (vs-of bs (bs-bysy (sy)));

Domain of vc-to-bs procedure is restricted by the following necessary condition:

issub-of vs (v s o f vc (vc), v s o f bs (bs)) == TRUE;

Greatest common measure reduction is automatically fulfilled (if necessary) when adding

two vectors. This operation is ruled by the following equations:

v s o f bs (b s o f vc (vc-plus (vcl, vc2))) ==

vs-GCM (v s o f vc (vcl), vs-of vc (vc2));

bs-of vc (~ c - ~ l u s (vcl, vc2)) ==

if (is-sub-ofvs (vs-ofvc (vcl), vs-of vc (vc2))) {

bs-of vc (vc2) ;

) else if (i s s u b - o f v s (vs-of vc (vc2), v s o f vc (vcl))) {

bs-of vc (vcl);

) else {
r o o t b s - o f vs (vs-GCM (vs-of vc (vcl), vs-of vc (vc2)));

1
Applicability of linear operator to vector is defined by the following condition (which

means automatic reduction of linear operator to subspace of domain vector space):

vc in d o m a i n o f op (vc, op) ==

i s a u b o f vs (vs-o f vc (vc), v s o f op (op)));

Applicability of function to vector is defined by the following condition (which means au-

tomatic reduction of function to subspace of domain vector space):

v c i n d o m a i ~ o f n (vc, fn) ==

i s a u b - o f vs (v s o f vc (vc), v s o f n (fn));

3.4. Example.

Let's consider the situation when goal function in unconstrained minimization prob-

lem has irregular equipotential lines. It means the existence of narrow caves which create

great difficulties for optimization methods when the current point is a t the slope of a cave.

The optimization process might be very much simplified by the extraction of two sub-

spaces in initial vector space, which are linked separately t o "fast" and "slow" coordi-

nates of gradient vector. It corresponds to descending the slope and then moving parallel

t o the bottom. Procedures, which are described below, give the idea, how to manage this

situation with the use of BSP capabilities.

static vec to rapace V;

static function fn;

static int f a s t d i m e n s ;

static vec to rspace V A a s t ;

static vector d a s t ;

double f d a s t (x)

double * x;

{
vc-array-value (d a s t , x) ;

return (f n c a l l (fn, d a s t)) ;

1

void r e d u c t i o n t o A a s t ~ c o o r d (dimens, fun, point, f a s t d i m e n s)

int dimens;

double (* fun) ();

double * point;

int * f a s t d i m e n s ; /* output value */
{
extern void coordana lys is ();

basis r o o t b s ;

vector x;

v c s y s t e m sy;

int * f a s t i n d ;

int i;

f a s t i n d = calloc (dimens, size of (int));

V = v s ~ o o t (dimens);

r o o t b s = r o o t - b s o f vs (V);

x = vc-create (root-bs);

sy = s y c r e a t e (root-bs);

fn = f ~ c r e a t e (fun, r o o t b s) ;

vc-arrayvalue (x, point);

coordana lys is (g r a d o f n (fn, x), fast-dimens, f a s t i n d);

for (i = 0; i < * fast-dimens; i++) {

s y i n c l u d e (sy, vc-extract-of bs (root-bs, f a s t i n d [i]));

1
V f a s t = vs-bysy (sy);

d a s t = vc-create (r o o t b s - o f vs (Vfast));

free (f a s t i n d) ;

vc-delete (x);

s y d e l e t e (sy);

1
Procedure "reductionto-fast~coord" creates root vector space "V" and function

"fn" with domain "V". Algorithm of function evaluation is given by a parameter "fun".

Procedure "vc-array-value" assigns initial value to vector "x", which belongs to vector

space "V". Procedure "coordinate analysis" evaluates gradient components of function

and creates " f a s t i n d " array. Subspace "VAast " is created by the extracted set of basis

vectors. Vector " d a s t " is then created which belongs to " V f a s t " . Thus all the objects

are ready for " f d a s t " function which is reduction of "fun" to the subspace of fast gra-

dient coordinates. Note, that " f d a s t " function interface does not contain any cluster

types.

4. Integrat ion, clusters and programming technology.

Structured programming principles can be transferred to the area of numerical

packages implementation. In fact, in mathematical integration the use of structured pro-

gramming technology is absolutely necessary because of the complexity of the problem.

On the other hand, structured programming itself becomes more coherent and model-

oriented.

Structured programming approach deals mostly with procedural part of programs,

making them more clear and reliable. In fact, this approach was very useful to under-

stand, that data and procedures are two sides of the same medal. They are so strongly in-

terrelated, that some control structures are useless, if there are no corresponding data

structures in program and vice versa. Abstract cluster approach greatly improves this

feature of data and procedures interrelation. Mathematical integration gives new direction

to structured programming. The order in programming technology is due now to the in-

trinsic structure of mathematical models which create the base of integrated system.

Logics of programs and their links is derived from the semantics of model objects and

their interrelations. Abstract nature of mathematical notions makes it natural to describe

them using the language of abstract clusters.

The BSP which was described above has abstract cluster structure. The same a p

proach is valid for the upper levels of integrated software hierarchy. These levels are: li-

brary level, package level and system level. As it was mentioned above, they are respon-

sible for model-oriented exception filtering scheme, which is an essential part of their se-

mantics. As an abstract cluster, integrated system consists of hierarchy of interrelated

subclusters. Here is a brief review of their structure.

Main object types of cluster are:

method - numeric method;

library - numeric methods library, which is a set

of methods for a given model type;

package - numeric package for a given model type;

task - applied problem to be solved with the use

of integrated system.

There are sets of predefined attributes for every data type in this list. Attributes are

accessible through procedural interface. For example, cluster includes procedural access

to method parameters, exception lists, library contents, task attributes, comments, which

are the base for "help" mechanism, etc.

4.1. Numeric method.

Create method for a given model:

method m e t c r e a t e (m e t n a m e , model type)

char * m e t n a m e ;

int model type;

New method descriptor is created by this procedure. All the control mechanisms in sys-

tem use this descriptor to address the method. The user can create several descriptors for

the same method and make them differ in the values of control parameters. It means,

that the same numeric algorithm can be linked to different control blocks thus creating

different schemes of problem solving. Independent status of method descriptors is a good

base for multiprocessing.

Initialize method:

m e t i n i t (met-descriptor, task-descriptor)

method metdescr iptor;

task task-descriptor;

Initialization may include some preliminary calculations, memory allocation, initial state

analysis etc. The second parameter provides information about the task to be solved. It

may be useful for initialization process.

Run method:

m e t r u n (met-descriptor, task-descriptor)

method metdescriptor;

task taskdescriptor;

Several successive calls of this procedure result in the continuation of problem solving,

data and method parameters being automatically transferred between these calls.

Terminate method:

met te rmina te (met-descriptor, taskdescriptor)

method met-descriptor;

task taskdescriptor;

4.2. Numeric methods l ibrary.

Create empty library:

library lib-create (l ibname)

char * l i b n a m e ;

Include method to library:

met inc lude (met-descriptor, lib-descriptor)

method metdescriptor;

library lib-descriptor;

Eliminate method from library:

metel iminate (metdescriptor, lib-descriptor)

method metdescriptor;

library l ibdescriptor;

Delete library:

lib-delete (lib-descriptor)

library l ibdescriptor;

The user can define simultaneously several different libraries for the same mathematical

model. This kind of flexibility may have many applications. One of them is memory allo-

cation algorithms with overlays, which is an important problem for small computers.

4.3. Package.

Package is the main resource to solve the problem of a given type, which

corresponds to some mathematical model. It consists of the main control program, which

supervises all data and procedure resources. Package provides the user with model-

oriented interactive capabilities. In integrated system there are as many packages as it is

predefined by hierarchical structure of corresponding mathematical models. For example,

as it was mentioned above, the dialogue system for optimization problem solving DISO

includes unconstrained minimization package, nonlinear programming package, multicri-

teria optimization package, linear programming package etc.

Call package of a given type (for example, unconstrained minimization) to solve the

problem:

U C U o n i t o r (task-descriptor)

UChLtask taskdescriptor;

Actually, package must be treated as dialogue cluster, which includes not only data and

procedural model-oriented resources, but interactive resources as well.

4.4. Task.

Task is collection of data and procedures, which define the problem t o be solved. It

has its own structure for a given mathematical model. The user can create task. It means,

that task descriptor will appear, which contains all necessary information of its contents

and properties. Task refers to its components. For example, nonlinear programming task

consists of the following objects:

- dimension of independent variables vector;

- number of equality restrictions;

- number of inequality restrictions;

- function to be minimized;

- equality vector function;

- inequality vector function;

- vector of independent variables;

- vector of equality restrictions current values;

- vector of inequality restrictions current values;

- function current value;

- dual vector current values.

Create nonlinear programming task:

N L P t a s k N L P t a s k c r e a t e ()

This procedure without parameters creates NLP task descriptor. The content of the task

is empty a t the moment. The user can link some objects t o this task later, filling its com-

ponents.

Object-oriented approach, based on object descriptors, makes it possible t o define

several different tasks of the same type simultaneously. They may refer the same objects

as task components, for example, function to be minimized. This is one more powerful

potential source for multiprocessing which was mentioned above.

Not all the objects in a task structure must be necessarily defined by the user as in-

put objects. For example, if a task descriptor has empty reference to, say, vector of in-

dependent variables, then the package itself will make memory allocation for it.

5. Dialogue clusters.

Supervising program of numeric package plays first of all role of a menu to access all

the resources of a given model. But this role is not the only one. Problem solving can't

be successfully fulfilled by simple package procedure calls and data access. Package must

provide the user with a set of dialogue schemes and scenarios to analyze task properties

and to solve the problem.

We introduce new programming item: dialogue cluster. Dialogue cluster is an exten-

sion of abstract data types for such cases, when, due to high complexity of task to be

solved, it is not enough to supply the user with ordinary abstract cluster capabilities.

From the user point of view model consists of interrelated set of abstract objects:

goal function, initial vector, gradient of function etc. There exists a set of procedures to

evaluate objects values. The user can explore function properties or initiate numeric

method. If a method succeeds then all is okay. But some exception may occur, and i t is

the most interesting (and, in fact, rather typical) situation for numeric packages.

As it was mentioned above, exception is raised, when current situation goes out of

model domain of definition. But when a particular method rejects the task, it is not fatal,

and the fact itself very often gives the user a good idea, how to continue problem solving.

It explains the main goal of dialogue cluster: to ensure effective problem solving when any

separate resource can't manage the situation by itself. In other words, dialogue cluster is

a means to solve problems with the use of numeric algorithms, which do not have strict

domain of definition.

Dialogue cluster semantic specification includes definition of its dialogue capabilities.

Semantics of every cluster object is fully defined both by its procedural interface and by

dialogue commands and scenarios, which use this object as an argument. For example,

the notion of vector space is properly defined in dialogue cluster, if there exists a list of di-

alogue commands, such as "create vector space" e t ~ .

From the implementation point of view every dialogue cluster for different optimiza-

tion models is represented by BSP capabilities, numeric algorithms in the library, and by

package resources. T o invoke cluster the user calls package supervising program (dialo-

gue monitor) with task descriptor as a parameter.

6. Conclusion.

Numeric software is an area, which greatly influences very many branches of science.

Efficient numeric package can greatly improve and accelerate scientific research. Recent

efforts in numeric software is focused mostly on procedural part of algorithms implemen-

.ation. The ~rob lems of system design are not so much developed. This paper shows

some problems in numerical software design. Integrated model-oriented approach, which

was described in this paper, proved to be highly efficient principle of software design. It

was used as a leading principle in the DISO project, which is being developed since 1980

in the Computer Center of the USSR Academy of Sciences.

R E F E R E N C E S .

[I]. Lotus Development Inc. (1984). LOTUS 1-2-3 and SYMPHONY Integrated Systems.

User's Manuals.

[2]. Aston Tate Inc. (1985). FRAMEWORK Integrated System. User's Manual.

[3]. JAVELIN. (1986). User's Manual.

[4]. Evtushenko Yu.G. (1985). Numerical optimization technique. Springer Verlag.

New-York.

[5]. Rall L.B. (1981). Automatic Differentiation: Technique and Applications. Lecture

Notes in Computer Science. Vol. 120. Springer Verlag.

[6]. Mazourik V. (1987). Field Manager Application Package. IIASA Working Paper, to

appear.

