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FOREWORD 

Playability conditions of differential games are studied by using Viability 
Theory. 

First, the results on playability of time independent differential games 
are extended to time dependent games. In fact, time is introduced in the 
dynamics of the game, in the state dependent contraints bearing on controls 
and in state contraints. 

Second, some examples of pursuit games are studied. Necessary and 
sufficient conditions of playability of the game are provided. Here, pursuit 
games are directly considered as "games of kind" (in Isaacs's sense) and 
are not considered as "games of degree". The viability condition does not 
always provide the "optimal strategy" to be as close as possible to a certain 
goal, but it supplies strategies allowing the system to reach a given goal. 
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Playable Differential Games 

Marc  Quincampoix 

1 Introduction 

We consider a two players differential game whose dynamics are described 
by: 

( b )  { 9 Yt(t) = g(t, ~ ( t ) ,  Y(t) ,  v ( t ) )  
2 2 )  v( t )  E V( t ,  x(t), Y( t ) )  

The constraints of the game are the time dependent game rules P  and Q  
P : R x Y -  X & Q : X x R - Y  
The playabil ity t u b e  of this game is: 

K ( t )  := { ( x , Y )  / a: E P ( ~ , Y )  and Y E Q(z ( t ) , t )  

The playabil ity property of the game holds when for all time to and 
for every initial state ( xo ,  yo) in K(to)  , there exist solutions of the differ- 
ential game starting at time to for ( x o ,  yo) such that : 

We shall characterize it by constructing t h e  regulat ion m a p  RpBQ 
in which we could choose playable controls. This map is built thanks to  



contingent derivatives of the rules1. We can introduce the subset of dis- 
criminating controls which allow the players to associate to any control v 
played by the second player a t  least a control u such that (u, v) is playable. 

AP,Q(x,~,Y,v)  := { U E U ( t , ~ , ~ ) ; ( u , v )  E RP,Q(x,~,Y) ) 
We also introduce the pure control map BpVQ which allows the first 

player to choose a control u such that (u, v) is playable for any v E V(t, x, y). 
Before going further, it may be use ful to relate these concepts to  Isaacs- 
Hamilton- Jacobi equations. 

Next, we adress the question of general pursuit games. A pursuer wants 
to catch an invader. Of course the meaning of "to catch" will depend on 
each example, but, generally, it means to  be near enough as we shall see 
in the construction of the playability domains. At the beginning, we shall 
write a condition of playability for the famous R. Isaacs problem: The 
target and its guardian. 

We solve the case of certain capture with playability rules of the form: 
P( t ,  y) = y + y(t)C and Q(x,t) = a: - y(t)C 
We then apply this to affine differential games: 

The regula.tion map of this game will be conducted in an example. 

'Let us recall the contingent cone at x to a subset K: 

TK ( t )  := { v / lim inf d ( t  + hv, K ) / h  = 0 ) 
h-O+ 

The contingent derivative of the set valued map Q X H Y is the set valued map 
DQ(t ,  y) : X H Y defined by: 

or, equivalently, by: 



Another problem is the end time of a capture. So, we give conditions for 
a time T to be the end time of the pursuit. For this purpose, we consider 
an increasing nonnegative function w and write the viability tube in the 
following way: 



2 Time dependent differential games 

Let us consider two players Xavier and Yves. Xavier acts on a state space 
X with a control u , and, Yves on a state space Y with a control v .  The 
controls depend on players states and on time through the set valued maps 
U and V respectively. Their actions on their states are governed by the 
controlled system: 

Where X ,  Y are finite dimensional spaces, and where 
f : GraphU X g : GraphV I-+ Y are single valued maps. 

The influence between the two players is exerted through the rules of  
t h e  game: 

P : [ o , T ] x Y H  X & Q : X X [ O , T ] I - + Y  
It means that constraints of the game are: 

V t E (0, TI x(t) E P(t, ~ ( t ) )  and ~ ( t )  E Q(x(t),t) 
So we can define a playability tube :  

K( t )  =: {(x, y) / (x, t ,  y) E GraphQ n GraphP-' ) 
For any (xo, to, yo), let's also introduce the solution map S(xo, to, yo) of 
solutions to (1) starting on (x0,yo) at to. 

Now, we always assume that the playability domain is non empty and 
that graphs of P and Q are closed. 

We need a suitable definition of playability: 

Definit ion 2.1 The game enjoys the playability property if and only if: 

v to E [O, T[ v (xo, Yo) E h'(t0) 3 (x(-1, ~ ( 9 )  E S(x0, to, Yo) 
v t  E [to,T[ (x(t), Y(t)) E K(t )  

ii) if T < w V t >_ T (x(t), y(t)) E K(T)  



Before writting our first proposition, let us assume that: 

2) f and g are continuous with linear growth and 
are afFine with respect to u and v 

ii) The controls maps U and V are upper semi continuous 
with compact convex images and with a linear growth. 

We have to  define notions of transversality and sleek sets: 

Deflnit ion 2.2 A set  K i s  sleek a t  z if and only  if the  set  valued m a p  TK(-) 
i s  lower  s e m i  cont inuous.  ( A l l  conuez subsets are sleek.) A se t  valued m a p  
i s  sleek i f  and  on ly  if i ts  graph is  sleek. 

Deflnit ion 2.3 T h e  rules wi l l  be said "transversal" i f  and  on l y  if: 
v t E [O, T] v (x,Y) E K(t) 

T~raphq(x* t ,y )  - T ( ~ r a p ~ - l ) )  (z,t ,y) = X x R x Y 

Proposi t ion 2.4 Under  assumpt ions (3) and if the  rules P,Q are "sleek" 
and transversal ,  a necessary and s u f i c i e n t  condi t ion of game  playabil i ty i s  
t he  fol lowing Haddad's cont ingent  condit ion: 

i i) if T < oo g ( T , x , ~ , v )  E DQ(x,T,y)(f(T,x,y,u),O) 
f (T, x, Y, u) E DP(x, T, Y)(O, f (T, x, Y, 4 )  

Remark  - The transversality condition is assumed because it is 
useful to separate the rules following way: 

( 4 ) T ~ ~ ~ ~ h ~ ~ ~ ~ a ~ h ~ p - 1 ) ( ~  t, Y) = T ~ r a p h ~ ( ~ ,  t, Y) T~raphp-I (z, t ,  Y) 

It is an obvious consequence of (2.3). 



A necessary and sufficient condition for the transversality of the rules is 
that for all perturbations (e, f ,  g ), there exists (u,  7, V) E X x R x Y such 
that: 

See corollary 4-3 of [I] 

Proof  - 
Let us consider H(x, s, y) =: 

I if s E [O, T[  
{f(s,x, Y,U)} x { 1 1 x {g(s,x, y,v)) I (u,v) E U(t, +, Y) x V(t,x, Y)} 

The system now becomes: 

(~ ' ( t ) ,  s1(t), Yt(t)) E H(z, 3, Y) 
Applying Haddad's Viability Theorem (see [2]), there exist viable solutions 
if and only if: 

V s V (z, y) E K(s) 
H(x,s, y) n TK(x, S, y) # 0 with K := GraphQ n GraphP1  
According to the definition of the transversality and the contingent 

derivative, it is possible to write: 
T G ~ ~ ~ ~ ~ ~ G ~ ~ ~ ~ ( ~ - I  ) ( x  t>  Y) = GraphDQ(x, t ,  Y) n Graph(DP(Y, '1 z)-' ) 
With the expression of H we have proved the previous proposition . 

Remark  - In some particular cases, we can compute directly the 
contingent cone TGraphQ GraphP-], without assuming the transversality 
condition. In fact, very often it is more simple to write TGraphQnGraph(P-l) 
for instance when it is impossible to separate the constraints sets of the two 
players (see further the example of pursuit game with certain capture). 



We need to choose controls satisfying the previous proposition. For 
that purpose, let us define the retroaction rules C and D acting on the 
controls: 

Definition 2.5 Xavier's retroaction rule b the set-valued map : 

and Yves's retroaction rule is the set-valued map: 

These maps allow to replace the initial differential game by a game 
on controls parametrized by the state and the rules through the following 
regulation map. With these retroaction rules, we can define subsets in 
which it is possible to choose playable controls, discriminating controls, 
pure controls, respectively. 

Definition 2.6 We associate with the retroaction rules C and D the reg- 
ulation map R of playable controls defined by: 

RP,Q(~, 2, Y) = { (21, v) 1 u E C(t, X, Y; U) & v E D(t, X, Y; u) 1 
The discriminating set valued map : 

A P , Q ( ~ , ~ , Y , v )  := { u E U ( t , x , ~ ) ; ( u , ~ )  E RP,Q(~,x,Y) 1 
The set valued map B: 

BP,Q(x,~, Y) := ~ V E  ~(t. t ,y)A~,Q(t,  2, Y, U) 
The concept of playable rules:(P and Q are playable if:) 

v t  E [O, T] v (x, Y) E K(t) Rp,Q(t,z, Y) # 0 



Let's remark that RpVg is the set of fixed-points to the set valued map 
C x D.  

An obvious consequence of these definition is the easy result: 

Corol lary 2.7 If the domain3 of the retroaction rules are equal to the con- 
trol set valued map3 U and V, then the con~traint set and the regulation set 
are nonempty. 

It can, then, be useful to translate the viability conditions of the game 
to Isaacs-Hamilton-Jacobi contingent equations2. Playability can be ex- 
pressed by an Isaacs Hamilton Jacobi equation thanks to contingent epi- 
derivatives.Consequently,let us recall the definition of the contingent. epi- 
derivative of V at x in the direction v :  

Definit ion 2.8 Let V : X -+ R U { m )  
D l  V(x)(v) := lim i n f ~ - ~ +  , ,,,(V(x + hu) - V(x))/h) 
or in shorter way: 
TEpigraphv(~, V ( ~ ) )  = Epigraph (DV(x)) 

Proposi t ion 2.9 The regulation map i~ nonempty if and only if: 

i i) 
if T < m  

Here, the rules are characterized by indicators functions of their graphs 
W p  WQ. 

=See [2] 



W P ( ~ ,  t ,  y )  := 
0 i f  z E P( t ,y )  0  i f  Y E Q ( z , t )  
oo else oo else 

Proof - It is only the translation of (2.4), if we notice that: 
0 2 D, W Q ( x ,  t ,  y)(a, 1 ,  b)  if and only if: 

(a ,  1 ,  b )  E T',aphg(x, t  , 9 )  

To proceed further, it is convenient to write the differential game in a 
more compact form. The state ( z ,  y )  is now z E X x Y and this system 
includes the playability rules in the set valued maps U and V: 

U ( t , z )  := 0 if ( t , z )  4 GraphP 
V ( t ,  z )  := 0 if ( t ,  z )  4 GraphQ 
This is given by the following equations with the single valued map 

h(t ,  z ,  u ,  v )  describing the evolution: 

with constraints: 
V t  E [0, TI z ( t )  E K ( t )  := { z  / U(t ,  ~ ( t ) )  # 0 & V ( t ,  ~ ( t ) )  # 0 ) 

We assume that: 

' i )  h :  X : = R x R n x R P x R q ~ R n  
is continuous with a linear growth and is f f ine 
with respect to u and v. 

i i )  K is sleek. 
i i i )  U, V are upper semi continuous with compact 

convex images and with a linear growth. 

Under assumptions (6) ,  we can write the Haddad's contingent condition 
for the game playability: 

V t  E [0, T [  V z E K ( t )  3 ( u ,  v )  E U(t ,  2 )  x V ( t ,  z )  
i )  i f  t  E [0, TI h(t,  z,u,v)  E DK( t ,  z ) ( l )  
ii) i f  T < o o  h(T ,z ,u ,v )EDK(T,z ) (O)  



We can, then, translate this viability condition into the following Isaacs- 
Hamilton-Jacobi contingent equation: 

V t  E [O,T] V z  E K ( t )  
i )  infuE v ( t , ~ )  v ( ~ , z )  D , W K ( ~ ,  z ) ( l ,  h( t ,  z ,u , v ) )  = 0 
i i )  i f  T < m  

D W K ( T ,  z)(0, h(T,  2 ,  u ,  v ) )  = 0 i n fu~  U(T,z)  WE V(T ,z )  1 

with W K ( t , z )  = 
0 if z E K ( t )  
im else 

In the same way, we can associate to the control system four Isaacs- 
Hamilton- Jacobi contingent equations. 

i i )  i f  T < m 
inf WE V(T , z )  inf UE V(T ,z )  Dl @(T,  z)(O, h(T,  2 ,  u ,  v ) )  5 0 

i i )  i f  T < m  
 SUP^^ V(T.2) U(T,z)  z ) ( O ,  h(T, z ,  u ,  v ) )  I O 

t i )  i f  T < m  
supv, V(T ,Z )  i n fu~  U(T.2) Dl @(T,  z)(O, h(T, 2,  u ,  v ) )  0 

I "'I ii) i f  T < m  
infu, V(T ,z )  SUPvE V(T,z)  ' ) ( O ,  h(T, ' 9  u ,  ' 1 )  5 O 

Theorem 2.10 We assume that : 

10 



The function h i~ cont inuou~ with linear growth, ~ e t  valued map3 U and 
V are c lo~ed with linear growth,and that 

@ : R x X -, R U {oo} rJ nonnegative, contingently epidifferentiable 
( ~ e e  (2.8)) and that it3 domain i~ contained in the inter~ect ion of domain3 
of U and V .  

Then the equation (9 )  rJ equivalent to : 

-a) If U and V have convez value3 and h i~ af ine  with re~pect to the 
V ( s ,  Z )  E Dom(@) 3 z(.) solution to ( 5 )  

two  control^ . v t  E [O ,  TI @(t ,  4)) 5 @(s,  z )  

- p )  i f  h i~ uniformely lipsitzchean 
V ( s ,  z )  E Dam(@), V z(.) solution to ( 5 ) ,  
V t  E [O ,  T ]  @( t ,  z ( t ) )  L @(s,  z )  

-7) If V a3 lower ~ e m i  cont inuou~ U and V with convez value3 and h 
af ine  with respect t o  the two controb. 

For any closed loop control C(s, z )  E V ( s ,  z )  
V ( s ,  z )  E Dam(@) 3 z(.)  solution to ( 5 )  with 6 ( t ,  z ( t ) )  
such that V t  E [0, T ]  @(t ,  z ( t ) )  5 @(s,  z )  

-6) V i~ lower ~ e m i  cont inuou~ with convez value3 and T = oo. 
B = { ti E U ( s ,  z ) ,  in fu€ U( t , z )  SUPvE V(1.t) 
Dt@( t ,  z ) ( l ,  h ( t ,  2 ,  u ,  4) = SUPvE V(,,,) Dl @( t ,  z ) ( l ,  h ( t ,  2 ,  ti, v ) )  ) 
i~ lower ~ e m i  cont inuou~ with convez valued. 
The equation (9) 6 is ~ a t i ~ f i e d  if and only if: 

There exists i i (s, z )  E U(s ,  z )  played by Xavier 
such that for any'closed loop strategyC(s, z )  E V ( s ,  z )  
V ( s ,  Z )  E Dom(@) 3 z(.)  solution to ( 5 )  with fixed C and ii 
such that: V t E [0, T ]  @(t,  z ( t ) )  5 @(s,  z )  

Remark - If @ = maxw,,w, the case a means that Dom(@) = K 
is a playability tube; the game has the playability property. In the case /3, 
K is an invariant tube; the game has the winnability property. 

The case 7 define Xavier's discriminating property 
(V 6 A p , ~ ( t ,  z ,  C) # 0). The last case define Xavier's leading prop- 

erty ( B P , Q ( ~ , ~ )  # 0)- ' 



P r o o f  - For sake of simplicity, we only prove this theorem when 
T = a. 

Let be: 

First, it's convenient to notice the following Lemma. 

Lemma 2.11 We have D,iP(t,z)(l, h(t, z,u, u)) 5 0 if and only if: 

P r o o f  - It's the obvious consequence of the definition of Hamilton 
Jacobi contingent equations for the system : 

(st, zt, wt) E H(s, z) x (0) with Epigraph O as a viability tube. 
Equivalences cr and /3 are the application of the invariant tube and 

viability tube theorems . The lemme (2.11) shows that implications 
( 2 . 1 0 ) a  (9) are a simple translation. 
Let's prove the third implication. According to  Michael's selection The- 

orem, for any (s, z , )  E Dom(iP), for any vo E V(s, z) 
there exists cont,inuous 6 in the set valued map V such that 6(s, z) = uo. 
Hence,inf,(D,O(t, z)(l, h(t, z, u, 6)) 5 0) means that we can applie a 

similar lemme (that (2.11)) to H;. Consequently, Viability tubes Theorem 
proves the implication. 

Finally, let's prove the last result: 
According to Michael's selection Theorem ( B is lower semi continuous 

with closed convex values), there exists continuous ii in the set valued map 
B and for He thanks to the lemme we can conclude. 

3 Some applications to pursuit Games: 

Let us study some cases to which we can apply last results: 



3.1 The target guardian problem. 

[see Isaacs 1.9 p.181 
We consider a game between a guardian (Xavier) and an invader (Yves). 
The guardian's task is to guarantee that no one can go near some target (a 
set C)  and the invader has the opposite goal. The guardian's coordinates 
are z and, his opponent's coordinates are y. The evolution of the state 
(2, y) is given by equations (1). If the distance between Yves's state and C 
is lower than I(.) the invader wins; if the distance between Xavier's state and 
Yves's state is lower than w(.) the Guardian wins. These cases determinate 
the end of the game. 
We can write this, using a viability tube, in the following way: 

K(t) := { (2, Y) / 4x7 Y) 2 w(t) and d(C, Y) L l(t) 1 
We immediately give a viability condition for this system: 

Proposition 3.1 If w and 1 are two nonnegative single valued C' difler- 
entiable maps , if the set C is reduced to a point {p), then the game is 
playable if and only if: 

t /(x,y) E K(t) 3 (u,v) E U(t,x,y) x V(t,z,y) such that 
i) if d(x,y)=w(t) 

< 5 - Y, ( f  (z, Y, 4 - 9(z, Y, v )  > -wt(t).w(t) L 0 
ii) if Ily - pll = l(t) 

< ( Y  - p),g(z, Y, v )  > -wt(t).w(t) 2 l(t) 

Before prooving this proposition let's write the following proposition for 
tangent cones calculus, it is an obvious consequence of (corollary 4-1 in [I]). 

Proposit ion 3.2 Let be X, Y two finite dimensional Banach spaces, A 
X H Y a map C1 -diflerentiable around z. 

If VA(x)(X) = Y, and if M i~ sleek, 
then 
(VA(z))-' .TM (A(z)) = T A - ~ ( M ) ( ~ )  

Proof  - We have to compute the contingent-derivative of the set 
valued map K when the set C is a point p . 



Let be : A(x, y, t) := (I, IIx - ~JJ '  - w(t)', (ly - P ~ ~ 2  - l(t)') 
The map A is obviously C1 (because w and 1 are C1 too) and 
Graph K = A-'(R+ x R+ x R+). 
As w(t) and l(t) are nonnegative, VA(x, y,t) is surjective and we can 
apply (3.2): 
Consequently: 

TGrapk(t ,  Y) = (VA(t, I, Y)-~.TRxR+ XR+  A(t, X, Y)) 

Remark - In the case i ,  for instance, the condition means that if 
Xavier is near the prey, the game will be playable if and only if the relative 
velocity v j  - v j  has with the vector y2 an angle less than or equal to 90". 

Here, it's easier to compute directly the cone, without separating rules. 

Now, with these formulas, it will be possible to choose open loop and 
closed loop controls, in practical cases. 

3.2 Pursuit game with certain capture: 

Let us consider a pursuit between two players, Xavier the pursuer and Yves 
the quarry. We know that the evader can escape from Xavier if he is far 
enough : outside of a set which may depend on time (this is realistic, for 
example Xavier can have less and less energy in a two planes pursuit). We 
shall study the case with a certain capture. For this, let's introduce a set C 
of final states and a single valued map cp(t) which defines a tube. Players 
have to move in this tube. Here, for sake of simplicity let's assume that 
the end time T = oo. This is not very important because we can always 
modify the function 9 such that it is constant (=I) as soon as t 2 T. 

The viability constraint is then: 

A reasonable assumption is to have cp larger than or equal to 1 and C1 
differentiable. 



Proposi t ion 3.3 Let us posit the same assumptiom in first section. If 
C rj locally compact, the evader cannot escape if and only if: 

Vt  E R+ V(x,y) E K(t) 3 (u,v) such that: 
- Y) + v(t)(f(t, +, !I, u) - x, Y,  v)) E T c ( Z )  

Proof  - We can calculate in fact the contingent derivative of the 
tube thanks to (3.2). As GraphP-I = GraphQ the consequence (4) of the 
transversality is satisfied. 

In fact, here: GraphK = A-'(C) with A(t, x, y) := 3 a C1 differen- 
tiable function. 
Hence : 
if (5, Y) E K(t )  
(u, v) E DK(t, x, y ) ( ~ )  if and only if 
'(cpf(t)(x C P ( ~ ) ~  - y1.r + v(t)(u - v)) E T c ( 3 )  
because 
TA-~(c) (~,  x, Y) = (VA(t, x, Y ) ) - ~ - ~ c ( ~ )  
In fact, VA(x, y, t) is surjective because y > 1 and we can use (3.2). D 

We study more concrete cases: 
For instance, in R3, if C = { x / llxll < 1 ) 
this equation can easily be interpreted: 
(cpf(t)(x - Y) + ~ ( t ) ( f  0,  x, Y, u) - g(t, x, Y, v))).(x - Y) 5 0 
It means that there is an angle less than 90' between the vector y 5  and 
cpf(t)(x - Y) + v(t)(f (t, x, Y, u) - g(t, x, Y, 4) 
Very often, it is necessary to specify the function cp , for instance a "good 
one" is : 

cp(t) = 1 + ~ e - ~ '  
and, of course we should be able to choose a and b allowing the pursuit is 
possible for every pair of controls (u, v) just solving (if f := u 

and g := v) : 
V (u,v)  - ab11x - ylJ2 + (1 + ~ e - ~ ' ) ( u  - v)(x - y) 5 0 
This is not very useful because this condition is depending on time, we 

shall try, now, to  have a condition independent on time. A way to do this 
is to determinate all suitable functions cp(.) to describe the tube K(t). Let 
's find such functions solving the following system : 



In this case, it means that 
K 1 ( t )  := { ( x , y , ~ )  E X x Y x R+ / (1s - Y I (  5 Q )  is a viability tube 

of this new system. We can write a necessmy and sufficient condition on 
W for this : 

Lemma 3.4 The function W will provide so lu t io~ l~  if and only if: 
If IIx - Y I I  = 9 

3 ( u ,  V )  such that ( x  - y, u  - v )  - W(q)q  5 0  

Proof  - Let's define B(x ,  y, Q )  := Ilx - Y l 1 2  - Q* and let's notice that 
B-'(R- ) = Graphh" and thanks to (3.2) the lemme is proved. In fact, as 
soon as ( ( x  - y) ,  ( x  - y) ,  9 )  # ( 0 , 0 ,0 )  , V B ( x ,  y, 9 )  is surjective. 

Let us study a case when f and g have explicit forms. 

3.3 An affine differential pursuit game: 

3.3.1 General case: 

We are in the case when two players act on the same state z ( . ) .  The first 
player tries to brake the system and the second player tries to accelerate it 
by using two controls u and v .  

The evolution of the system is given by the following differential equa- 
tion: 

(12)  
{ i )  z1 = Az( t )  - u ( t )  + v ( t )  

i i )  u ( t )  E U( t ,  z ( t ) )  v ( t )  E V ( t ,  ~ ( t ) )  

The goal is to drive the system near a given target C. Consequently, 
let us consider the following constraints: 



With C := { z E Rn / Mb = Mz ) and (b,r,A) E Rn x R+ x R+ 

Let us write the playability condition of this game: 

Propos i t i on  3.5 Let A: Rn I+ Rn , M: Rn I+ Rk be linear . 
The pur~uit h po~~ible if and only i f  : 

whenever z E e-At(r + C )  
V t  3 (u ,v )  E U( t ,z )  x V ( t , z )  such that: 

M[Az + A.z - u + v] = 0 

P r o o f  - According to  (3.2), the necessary and sufficient condition of 
playability is: 

V Z E  K ( t )  3 ( u , v ) E  U ( t , z ) x V ( t , z ) / A z - u + v E  DK( t , z ) ( l )  
But, we know that (thanks to (3.2)): 

T ~ r a p h ~ (  t ,  z )  = Graph DK(t ,  z )  = TL-l(q = V L ( t ,  2)-'.Tc(L(t, z ) )  
with L(t, z )  := eAtz - r 

And we can notice that: 
V L ( t , z )  = (AeAtz, eA t )  
is obviously always surjective. Hence: 

x E DK(t ,  z ) ( T )  @ [AeAt.zr + eAt.x] E kerM 

We can write the discriminating set valued map: 
A(t, z, u )  := { v E V ( z , t )  / v E kerM - ( A  + A)z ) 

Now, let us apply this proposition to  the following example: 

3.3.2 A n  example  i n  a two  dimensional  space: 

As we just saw: 
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Proposition 3.6 T h i ~  game i~  playable if and only if: 

Xz + (1 - X ) y  = u + v 

Proof - It is just the translation of previous proposition with: 

3.4 End time of a capture: 

3.4.1 A general model: 

Let us consider a two player pursuit game in which one player has to catch 
the other one in a finite time. The evolution of the game is governed by 

(1). 
For this, let us introduce a constraint function w ( - )  which is the largest 

possible distance between the two players at time t .  Let us consider the 
end time T as a variable related to t .  Hence, we can write a condition for 
the existence of solutions to this game. 
Then solutions have to belong to : 

K := { (2 ,  y,t ,  T )  / d(z,  Y )  I w(T  - t )  ) 
With the following assumption on w  : 
V s S O  w(s) = 0  and V s  w ( s ) > O  
It means that the distance between two players is equal to zero after cap- 
ture. 

We need another assumption because the two players coordinates do 
not have to change after Xavier has caught Yves. Consequently f and g  
are such that: 

V z  E  X f ( . , z , z , . )  = 0  
V z E  X g ( . , z , z , . ) = O  

It means that as soon as z  = y (the capture) the system does not evolve, 
forever the state will remain constant forever. 

The set { ( z ,  y )  / z  = y) x R+ x R+ is a viability tube of the game. 



Proposi t ion 3.7 Under assumptions (J), a necessary and suficieni con- 
dition for the game playability is : 
forall (x ,y , t ,T)  such that d(z,y) = w(T - t )  
there exists (u,  v )  such that 

Proof  - We now write the inclusion to which we shall apply Haddad's 
theorem in the form: 

The viability set is: 

K := { (x,y,s,T) / ~ ( X , Y )  5 w(T-3)  ) 
It is necessary to calculate the contingent cone at K in ( z ,  y ,  t ,  T ) ;  it is 

easy with assumption of C1 differentiability of w. 
For this calculus let introduce the following C1 different,iable map: 

A(z, y ,  t ,  T )  := 112 - yl12 - w(T - t )2  
then K = A-'(R- ) 

Hence (See 3.2) 
T K ( ~ ,  Y ,  t ,  T )  = V(A(2, Y ,  t ,  T))-' .TR- (A(z,  Y ,  t ,  T ) )  
because VA(z ,  y ,  t ,  T )  is surjective as soon as z # y or w'(T - t )  # 0 

We can calculate the cone: 
a- if d(z, y )  > w(t - T )  then: TK(z ,  y ,  t ,  T )  = 0(it is outside K )  

because TR- ( A(z, y ,  t ,  T ) )  = 0. 
b- if d(z,y) < w(t - T )  then: TK(z,y, t ,T) = X x X x R x R (it is in 

the interior of K )  
because TR- ( A(z, y ,  t , T ) )  = R 



c- if d(x, y) = w(t - T) then: 
TK(x, y, t, T) = {(u, V, a, T)/(x - y).(u - v) - w(T - t)w'(T - t ) ( ~  - 0) 5 0) 
(on the boundary of K) 
because TR- (0) = R- 0 

3.4.2 A very simple example: 

The two players can only choose their velocities u and v the norms of which 
have to be less than or equal to respectively cr and p (nonnegative numbers). 

(u, v )  E B(O,cr) x B(O, P) 
The playability condition now becomes: 
If d(x,y) = w(t - T) 
(U - v).(x - y) + w(T - t)wl(T - t) 5 0 

It is always possible if : 
-(a + P)))x - yll + w(T - t)wl(T - t) 5 0 i.e cr + P > wl(T - t) 
This condition means that the two players have to move fader than the 

"slope " of the tube when they are on its boundary. 
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