
A Deterministic Approach to 
Approximation Modelling

Heij, C. and Willems, J.C.

IIASA Working Paper

 

October 1989



Heij, C. and Willems, J.C. (1989) A Deterministic Approach to Approximation Modelling. IIASA Working Paper. Copyright 

© 1989 by the author(s). http://pure.iiasa.ac.at/3268/ 

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


W O R K I N G  P A P E R  

A DETERMINISTIC APPROACH TO 
APPROXIMATION MODELLING 

C. Hc i j  
J.C. Wi l lem * 

October 1989 
W P-89076 

I n t e r n a t i o n a l  I n s t i t u t e  
for Applied Systems Analysis 



A DETERMINISTIC APPROACH TO 
APPROXIMATION MODELLING 

C. Heij 
J.C. Willema * 

October 1989 
WP-89076 

Econometrics Institute, Erasmus University Rotterdam, The Netherlands 
* Department of Mathematics, Groningen University, The Netherlands 

Working Papera are interim reports on work of the International Institute for 
Applied System Analysis and have received only limited review. Views or 
opiniona expressed herein do not necessarily represent those of the Institute or 
of its National Member Organizations. 

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 
A-2361 Laxenburg, Austria 



FOREWORD 

This is a contribution to the activity on the topic From Data to Model initiated at 
the Systems and Decision Sciences Program of IIASA by Professor J. C. Willems. 

A. Kurzhanski 
Program Leader 

System and Decision Sciences Program. 



A DETERMINISTIC APPROACH TO APPROXIMATE MODELLING 

C. HElJ AND J.C. WILLEMS 

Abstract 

In this paper we will describe a deterministic approach to time series 

analysis. The central problem consists of approximate modelling of an 

observed time series by means of a deterministic dynamical system. The 

quality of a model with respect to data will depend on the purpose of 

modelling. We will consider the purpose of description and that of 

prediction. We define the quality by means of complexity and misfit 

measures, expressed in terms of canonical parametrizations of dynamical 

systems. We give algorithms to determine optimal models for a given time 

series and investigate some consistency properties. Finally we present some 

simulations of these modelling procedures. 

Keywords 

Approximate modelling, time series analysis, dynamical systems, canonical 

forms, complexity, misfit, consistency. 



1, INTRODUCTION 

1.1. Modelling: specification and identification 

The purpose of this paper is to describe a deterministic approach to time 

series analysis. This means that within the realm "from data to  model", we 

will pay special attention to  the case where the data consist of a sequence 

of observations over time and where the models consist of deterministic 

dynamical systems. Our approach to  this particular modelling problem forms 

part of a more general modelling philosophy, which we will now describe. 

Some of the essential factors which play a role in the problem of 

modelling data are depicted in figure 1. Two of the main aspects in 

approaching this problem are specification of the problem and, 

subsequently, identification of the model. 
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flgure 1: modelling (S: specification; I: Identification) 

In general terms, the. problem of modelling data consists of constructing a 

good model on the basis of these data. So the class of candidate models, 

i.e., the model class, has to  be specified. Moreover, the quality of 

candidate models for modelling the data has to be assessed. This 

assessment, by means of a criterion, depends on the objectives underlying 

the modelling problem. An identification procedure describes the way a 

model is chosen (identified) from the model class, given the data. The aim 

is to  construct the procedure in such a way that the identified models are 

of good quality with respect to  the data, as measured by the criterion. 



So in order to investigate the identification aspect of the data 

modelling problem it is necessary to specify the model class and the 

objectives. In modelling problems in general it is not known a priori which 

data will be included for identification of a model. This leads us to the 

specification aspect. 

Often the primary objective of constructing a model is not only to 

model the data, but also to model a phenmaon. It then is supposed that 

the data somehow reflect'the phenomenon. The phenomenon is then considered 

as a system which produces the data. 

In the specification of the modelling problem one can incorporate 

prior knowledge concerning the phenomenon. This prior knowledge partly can 

be given by a theory concerning the phenomenon. Apart from this, one will 

impose restrictions partly based upon the objectives of modelling and 

partly for convenience. This leads to a collection of a ptiori conceptions, 

on the basis of which one decides which variables will be included in the 

model and what models will be considered. The identification problem is 

then specified. 

Some of the main objectives of modelling are given in figure 1. On the 

one hand, an objective could be to model the phenomenon. One can think of 

description, prediction or control of the phenomenon. On the other hand, 

another objective could be to construct or test theories concerning the 

phenomenon. 

It is beyond the scope of this paper to discuss fundamental problems of 

data, like the relationship between the phenomenon and the data and 

problems of data collection. 

In the practice of modelling one often considers the specification 

aspect as part of the relevant scientific discipline and the identification 

aspect as a problem of constructing mathematical procedures. However, 

especially the choice of the model class also implies prior conceptions of 

a mathematical nature. The choice between deterministic and stochastic 

models forms a particular example. 

We will illustrate the foregoing general description of the data 

modelling problem by means of five simple examples. 

1.2. Example 1: a resistor 

Suppose one wants to describe a resistor. On the basis of physical theory 

("Ohm's lawn) one postulates a linear relationship between the voltage 



(V )  across and the electrical current (I) through the resistor, i.e., V =  I. R 

with R 2 0  the resistance. A resistor is then described by a model R. So the 

model class is R,. To identify R, suppose one performs a number (n )  of - - .  
experiments with resulting voltage and current measurements (Vi , I i ) ,  

i = l ,  ..., n. See figure 2. 

The identification problem consists of choosing R on the basis of thtse 

data. In general there will exist no R such that vi = T+ R for all i = 1,. . . ,n. 

This can be due to inaccurate measurements and to the fact that the linear 

relationship is an idealization - though it may be an accurate one. A 

reasonable criterion could be total least squares. 

So in this case, in order to describe the resistor, one uses physical 

theory to specify the model class and the data to be collected. 

1.3. Example 2: eye colour 

Suppose one wants to predict the colour of the eyes of a person. On the 

basis of biological theory (genetics) one postulates a specific 

probabilistic relationship between this colour and the colour of the eyes 

of the ancestors. Assume that the colour is either brown (1) or blue (0). 

As model class one could take [0,1], where a particular model pe[0,1] means 

that p is the probability that the person has brown eyes. To identify p one 

collects data on the colour of the eyes of the parents, grandparents and so 

on. One then identifies p by means of elementary probabilistic 

calculations. See figure 3. 



One could now make a prediction for example by maximum likelihood, 
1 i.e., predict the colour to be brown if and only if p >  2.  

So in this case, in order to predict the eye colour, one uses 

biological theory to specify the identification and prediction problem. 

1.4. Example 3: consumptioll 

Suppose one wants to predict the consumption Cto+, for the coming year. On 

the basis of an economic theory one postulates that the dominant factor 

determining Cto+, is the income Yto in the current year. Suppose data for 

consumption and income, (e,,?,), t = s,s+l,. . . ,to, are available. For 

convenience one could postulate an affine relationship between consumption 

in a year and income in the preceding year. The model class for example 

Y ( t o )  

figure 4 



could be R:, where the model (a,b) with a, b 20 describes the postulated 

relationship Ct+l = a +  b.Yt. In order to identify a model one could use the 

data to estimate a and b for example by means of ordinary least squares. If 

the resulting estimates 0,6 indeed are nonnegative, one could predict Ctotl 
A -.I 

by means of a+  b.Yto. See figure 4. 

So in this case, in order to predict consumption, one uses economic 

theory to specify the data. The choice of the model class is entirely a 

matter of convenience. If the estimated values i,; are not accepted as a 

reasonable description of consumptive behaviour one is ready to specify a 

different class of models, e.g., C,+l=~+@.logYt. 

1.5. Example 4: rainfall 

Suppose one wants to control the water supply from a reservoir. The water 

of the reservoir is supplied to customers and replenished by rain. Suppose 

that one can construct a reasonable control strategy, once the rainfall is 

modelled. 

If the climatological conditions are rather stable the rainfall could 

be viewed as a stationary stochastic process. As model class one could 

consider the class of Gaussian ARMA processes. Suppose that rainfall data 

{ F ( t ) ;  t15t5t,) are available. To identify a model on the basis of these 

data one could consider the objective of simultaneous prediction of the 

rainfall for a number of periods in the future. 

So in this case, in order to formulate the water supply problem in 

terms of only the rainfall, one has used prior knowledge of e.g. the demand 

pattern for water and of (stochastic) control theory. It is assumed that 

the rainfall can be modelled as a stationary stochastic process. This 

assumption is of a mathematical nature. It can be supported by arguing 

that the mechanism producing the rainfall is rather stable. This for 

example means that, although the rainfall is uncertain, some time averages 

of the rainfall are less uncertain. 

1.6. Example 5: realization 

Suppose one wants to interpolate n points (x, ,~,)ER~, i = l ,  ..., n, by means 



of ,a polynomial p of lowest possible degree. So the data consists of n 

points in R2 and the model class consists of polynomials. As a criterion to 

choose p one requires yi = p(xi), a = 1,. . . ,n, and the degree of p has to be 

minimal. 

So in this case the objective is to give an exact description of the 

data in a most simple way. This is an example of exact modelling or 

realization. The concepts of phenomenon or theory do not play a role in the 

specification of the modelling problem. The criterion is inspired by 

aesthetics or the desire to give a compact representation of the data. 

1.7. Choice of model class 

The foregoing examples especially are intended to illustrate the various 

considerations which can play a role in specifying the model class. In 

examples 1 and 2 well-established theories are used to choose the model 

class, one deterministic and the other probabilistic. In example 5 the 

choice is inspired by aesthetics. In examples 3 and 4 the choice of the 

model class reflects an 'aim of simplicity. 

One of the crucial elements of the specification of modelling problems 

is the choice whether the model class should consist of stochastic or of 

deterministic models. In examples 1 and 2 the choice is based on a relevant 

scientific theory. In examples 3 and 4, like in the majority of modelling 

problems outside of the natural sciences, the choice is inspired by 

convenience. Moreover, the current practice seems to be to take the model 

to be stochastic. This implies that one introduces disturbances (noise) to 

explain the fact thst in general the data do not satisfy simple, exact 

relationships. Moreover, it is nearly invariably assumed that the noise has 

a stable distribution over time, i.e., the disturbances form a stationary 

process. 

This explanation of the discrepancy between the data and simple 

(deterministic) relations has two important implications. First, the model 

error is caused by disturbances of a stable nature, i.e., the relative 

frequency of the disturbance terms is assumed to be rather constant over 

time. Second, and based on this, the quality of proposed identification 

procedures is assessed on the basis of statistical criteria like 

unbiasedness, consistency and efficiency. 

Clearly, this paradigm of stochastics often is a reasonable and 

convenient one. However, especially for complex phenomena, the fact that 



the data do not exactly satisfy simple deterministic relationships is often 

not due to disturbances or observation noise. Often the phenomenon simply 

is too complex to be modelled exactly within the model class. The models 

even deliberately are chosen to  be simple. Both for human understanding and 

for practical implementation a simple, slightly inaccurate model of the 

phenomenon often is preferred above a complex, more accurate one. The 

central issue then is not noise or stochastics, but approximation. 

1.8 Overview of  t h e  paper 

To conclude the introduction we give an overview of the contents of the 

paper. 

In section 2 we give a formal framework for approximate modelling, 

using the concepts of complexity and misfit. We illustrate this framework 

by some examples which play an important role in the sequel. In section 3 

we describe the model class which we will consider in this paper, i.e., the 

class of deterministic dynamical systems. We will consider the objectives 

of description and prediction. Corresponding identification procedures are 

presented in section 6. These procedures solve an optimal approximate 

modelling problem, defined in terms of a utility of models. This utility 

depends on complexity and misfit measures, which are described in section 

5. The complexity and misfit measures are expressed in terms of canonical 

representations of dynamical systems. These canonical forms reflect the 

objectives of description or prediction and are defined in section 4. 

Section 7 describes the numerical algorithms corresponding to  the 

modelling procedures of section 6. In section 8 we investigate some of the 

consistency properties of the procedures. The procedures have a clear 

optimality property as data modelling procedures. However, consistency 

analysis deals with the question whether the models identified ,by a 

procedure also are good models of the phenomenon. It  is assumed that the 

phenomenon belongs to  a certain class of systems, which does not need to  

coincide with the model class. 

Section 9 contains some numerical simulations illustrating the 

deterministic approximate modelling procedures of section 6. Section 10 

concludes the paper by summarizing the main results and indicating some 

topics of current research. 

The main reference for the deterministic approach to approximate 

modelling as presented in this paper is Willems [15]. 



2. APPROXIMATE MODELLING 

2.1 Complexity, misfit, util ity 

In the sequel of this paper we restrict attention to the identification 

aspect of the modelling problem. So we assume that one has specified the 

objectives of modelling, denoted by A, the model class, denoted by M, and a 

set of conceivable data, denoted by D. 

M Definition 2-1 A data modelling procedure is a map P:D+2 . 

In other words, a procedure associates with any data a set of models. 

Usually P(d) w i l l  be a singleton, but it need not be. 

The aim now is to construct procedures which are optimal in view of the 

objectives R. This means that for d E D the identified model(s) P(d) should, 

within M, reflect the data in a way which is optimal with respect to A. 

A general objective is to construct models which are both simple and 

accurate. We will assume that the objectives .~r can be specified by a 

complexity map c:M+ C and a misfit map E :  Dxkl+ E. We assume the spaces C and E 

to be partially ordered. It is desirable to have models for which both the 

complexity and the misfit are small. However, these desires in general are 

competitive. We will therefore assume that R can be expressed by means of a 

utility map u:CxE+U, with U a partially ordered set. The aim then is to 

choose a model for which the complexity and misfit are such that the 

corresponding utility is maximal. For a partial ordering I on U, meU'cU is 

said to be a maximal element of U' if {uOeUj mlu') + {u'=m). 

Definition 2-2 The procedure P,,: ~ + 2 ~  corresponding to the utility 

u:CxE+U is defined by P,,(d):=argmax{u(c(M),~(d,M)); MEM) for deD. 

So P,, assigns t o  data the set of models for which the utility is maximal. 

This clearly raises questions of existence and unicity of maximal elements. 

In the remainder of this section we illustrate this approach by means 

of several examples. It will turn out that many classical identification 

procedures can be formalized in this context. 



2.2. Exact modelling 

In exact modelling one does not allow any misfit and wants to minimize the 

complexity. \Ve consider three examples. 

2.2.1. Synthesis problem 

As a first example, consider a synthesis problem of electrical circuit 

theory. Suppose one wants to construct an electrical circuit with one 

external port with a prescribed current/voltage behaviour B. Here Bc (R2 )  R 

describes which current/voltage trajectories over time at the external port 

are compatible with the circuit. Moreover, suppose one wants to realize B 

by means of an RLC-network, i.e., only using resistors, inductors and 

capacitors. For an RLC-network with one external port, let B(RLC) denote 

the current/voltage behaviour at the port and let n(RLC) denote the total 

number of resistors, inductors and capacitors of the network. 

The synthesis problem consists of finding an RLC-network with external 

behaviour B and such that n(RLC) is as small as possible. So one allows no 

misfit and wants to minimize the complexity, measured by the number of 

constituent elements. This can be formulated in terms of a utility. Let D = M  

consist of the external current/voltage behaviours of RLC-networks with one 

external port. Define the complexity by c(B(RLC)):= n(RLC) and the misfit by 

e(B,B'):= +oo if B #  B', e(B,B'):= 0 if B=B1. The synthesis problem then 

corresponds to the utility u(n, e):= - n - r .  

2.2.2. Undominated unfalsified modelling 

Let S be a set and let the set of conceivable data consist of finite tuples 

of observations in S, i.e., D:= u{sn;n21). Let a model M consist of a subset 

M c S  and let Mc2' denote a class of models. 

A model M is called unfdsified by a measurement d tz D if d c M. A model bl 

is called undorninated unfalsified in M for d if ~ c M E M  and {~cM'EM, 

M'cM) I, {M'=M). Define P(d) as the collection of undominated unfalsified 

models in M for d. So P models d by models which are i ts  small as possible 

in the sense of set inclusion. This could be expressed by means of the 

following utility. Let c(d,M):= 1 if d&f ,e(d,M):= 0 if dcM and define 

c(Ef):= M. Let - ueM, U:= Mu{u) - and define the utility by uu(M,l):= - u and 

uu(M, O):= E l .  Define a partial ordering ,< on U as follows: - u s  M for all ME M 

and for MI, M2eM, E l ,  sbf2 if and only if M,>M,. Then P coincides with the 



procedure P,, corresponding to the utility uu. 
q A special case of this arises if S=(R ) , so the data consists of a 

finite number of infinite time series in q real-valued variables. We will 

briefly return to this case in section 3.2. For a more thorough discussion 

we refer to Willems [16]. Here we only discuss a particular instance, known 

as the minimal tealizatia problem. 

In the minimal realization problem of linear systems theory the data 
xm N set is D = (R' ) , where N:= {1,2,3,. . .). In this case the data d l D consists 

of an (impulse response) sequence (Gk; k c  N)  with Gk€ RPX? k c N. The model set 

consists of triples (A, B,C) with A E R " ~ ,  BER-, C E R ~  for some n e  N. The 

triple (A, B,C) is called a realization of (Gk;  EN) if CA~-'B= Gk for all 

keN. It is called a minimal realization if n is as small as possible. For 

d = (Gk;  EN) and M = (A, B,C) E R ~ ~ ~ ~ R ~ ~ ~ ~ R ~ ~ ~  define the misfit by ~ ( d ,  M):= 0 

if M is a realization of d and e(d,M):= 1 otherwise. Moreover define the 

complexity of M by c(M):= n. Let U:= { - 1, -2, -3,. . . )u{ -00). Define a utility 

by u(n, l):= - oo and u(n, O):= - n for ncN. The procedure corresponding to this 

utility solves the minimal realization problem. The number n has the 

interpretation of the dimension of the state space. In case a so1uti.m 

exists, it is unique up to a choice of a basis in the state space. See e.g. 

Kalman, Falb and Arbib (71. 

2.2.3. Mi~limum descriptioll length principle 

As a final example of exact modelling we mention the minimum description 

length principle of Rissanen, see e.g. Rissanen (141. In this case the data 

set D consists of finite sequences of (finite precision) real numbers. The 

model class M consists of finite sequences of binary digits. A model 

represents data exactly by means of an injective code C:D+M It is assumed 

that C codes the data d by means of an auxiliary (countable) class 

P = {Po; 6 E Q )  of probability distributions on D, in the following way. The 

binary sequence C(d) consists of an initial part describing the parameter 8 

and a remaining part describing the data in a way which is optimal in PB 

(minimum mean description length code for Po). 

The complexity of a model is defined as the length of the binary 

sequence. Given the class P, the minimum description length principle 

corresponds to the procedure which consists of coding the data by means of 

the shortest possible binary string, i.e., by the model of least 

complexity. This minimum description length principle balances the desire 
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for a small number of parameters (in 8 )  and a simple description of the 

data by means of Pe (maximal likelihood). It is interesting to note that 

this approach gives a deterministic interpretation, in terms of exact 

modelling, of e.g. maximum likelihood estimation and modelling by means of 

minimizing prediction errors. 

2.3. Minimal complexity, given tolerated misfit 

Suppose that the complexity space C and the misfit space E both are totally 

ordered. We denote the orderings by 5 .  A possible reconciliation between 

the objectives of low complexity and of low misfit is to specify a m a x i m a l  

t o l e r a t e d  misfit and to minimize the complexity under this constraint. 

Given E ~ E  E, we define the utility u as follows. Let ueCxE and 
Etoi 

- 
U:= ( C x E ) u { u ) .  - For E 2 ~d let u {c ,E) :=  U,  and for E <EW u { c , E ) : =  ( c ,  E ) .  

&LO 
- &to 

On U we impose the following total ordering: u - < ( c , ~ )  for all ( c ,  E )  E C X E ,  and 

(c1,  < ( c 2 , c 2 )  if c1 > c2  or if c1 = c2 and SO misfits of E,& or 

higher are not allowed. Further, models of low complexity are preferred, 

and for models of equal complexity low misfit is preferred. The procedure 

Pctol 
now is defined as the procedure corresponding to u,,. 

Definition 2-3 Pctd(d):=argrnax{v(c(M), ~ ( d ,  M ) ) ;  M E  M),  where { u ( c l ,  E , )  = 

~ ( ~ 2 1 ~ 2 ) ) :  * ( ~ 1 9 ~ 2  1 ~ t d  Or ( c l r ~ i )  = ( ~ 2 ,  € 2 ) )  and { u ( c l , ~ l )  < u ( c 2 , ~ z ) ) :  

* ( € 1  1 Etd > E2, Or E1,E2 < E d ,  C1 > C2, Or E1,E2< E d ,  Cl = C2, El  > €2) .  

Two of the procedures described in section 6 are of this type. These 

procedures are based upon the ones which will be presented in sections 2.6 

and 2.7. 

The procedure corresponding to the requirement E I E ~  (instead of 

E<E, )  will be denoted by F e d .  

Here we illustrate the approach by a simple geometric example. 

Let D consist of the bounded convex subsets of R' and M of the convex 

polyhedral subsets of R ~ .  For M E M  define the complexity c ( M )  as the number 

of extremal points of M. For C E D  and M E M  define the misfit E ( C , M )  as the 

Lebesgue measure of the symmetric difference ( C \ M ) u ( M \ C ) .  Let c, be 

given. Then Pa, models C by means of the convex hull of a minimal number 

of points under the misfit restriction, and chooses among solutions those 

with minimal misfit. See figure 5 for an illustration. 
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figure 5: C = {(x,Y) ER ;X +Y  5 I, x 2 0, y10),  E I ~  = 0.05; Pc (C) is convex 

Id 
2 % 2 %  

hull of (0,0), (o,Q), (Q,o) md (b, b), with a:= 2(Or + 1) / ( r e  +I)  
3 

and b:= Ora/(l +Or), where Or:= tan(-T) 
8 

Another example is speech processing. Let S denote the set of binary 

strings of finite length. The problem is to code, transmit and decode a 

signal s c S  in the simplest way possible, given a tolerated misfit and an 

auxiliary class of models Ma, c S .  A coder is a map f :S+&,xS transforming 

a signal s into a transmitted signal t c S .  The signal t consists of an 

initial part describing the auxiliary model and a remaining part describing 

the signal s in an approximate way by means of the auxiliary model. A 

decoder is a map g: M,,xS+S transforming a signal t into a decoded signal 

i. See figure 6. 

figure 8 

c. 
s t=(n,,.sl s 

For example, M,, could be chosen to be the (set of parameters of the) 

class of autoregressive systems. The initial part of t then describes the 

order and the numerical values of the parameters of the auxiliary system. 

The remaining part of t could be used to describe the prediction errors of 

the estimates generated by the auxiliary system with respect to the signal 

. 
H coder . 

H decoder \ 
y 



s. .The decoder could construct a signal s  ̂ based upon the estimates 

generated by the auxiliary system and the transmitted prediction errors. 

See e.g. Jayant and Noll [6]. 

Here the set of conceivable data is D = S  and the model class is 

M = MaUxxS. Define the complexity of a model t~bI,,,,xS as the length of the 

string t. Let 6(s,s^) denote a measure of the error of s  ̂ with respect to s. 

Define the misfit of a model t = (Ma,,s') with respect to data s by 

e(s, (Ma,, s' )):= 6(s, s^) where ŝ := g(M,, s'). Given a tolerated misfit, one 

wants to minimize the complexity of the transmitted signal, i.e., of the 

model. 

This approach resembles the minimum description length principle, 

though in speech processing it is not required that the data can be 

reconstructed exactly from the transmitted signal. 

2.4. Minimal misfit, given tolerated complexity 

Again suppose that c and E are totally ordered. Another possible 

reconciliation between the objectives of low complexity and of low misfit 

is to specify a maximal tolerated complexity and to minimize the misfit 

under this constraint. Given cfd€C, we define the utility uctd as follows. 

Let - u#CxE and U:= (CxE)u{u). - For c>cfd let u, (c,E):= u, and for c ~ c ~  
td - 

define uctd(c,~):=(c,e). On U we impose the following total ordering: 

U <  (c,E) for all (c,E) E C ~ ,  and (c l ,q)  < (c2,c2) if >c2 Or if el = E~ and - 
c1>c2. So a complexity above ctd is not allowed. Further, models of low 

misfit are preferred, and for models of equal misfit low complexity is 

preferred. The procedure Pctd now is defined as the procedure 

corresponding to uCtd. 

Definition 2-4 Pctd(d):= argmax{u(c(M), ~(d, iV)) ; M EM), where {u(cl, = 

~ ( ~ 2 , € 2 ) ) :  * {~1 ,~2>c td  Or ( c l , ~ ~ )  = ( ~ 2 9 ~ 2 ) )  and { ~ ( ~ 1 7 ~ 1 )  <u(~2,~2) ) : *  

{cl > ctd 2 c2, Or cl, I ctd, E~ > €2, Or el, c2 I ctd, = €2, c1 > ~ 2 ) .  

Again two of the procedures described in section 6 are of this type, along 

with procedures presented in sections 2.6 and 2.7. 

Returning to  the geometrical example of section 2.3, suppose ctd is 

given. Then Pctd models C by means of the convex hull of a t  most cfd 

points in such a way that the resulting measure of the symmetric difference 



is minimal. Among solutions it chooses those with minimal number of 

extremal points. It can be shown that the last step in fact never will be 

invoked. 

In the next section we give another example of modelling with given 

tolerated complexity. 

2.5. Simultaneous equation models 

We consider a modelling procedure which is sometimes followed in 

macro - econometrics and other disciplines dealing with complex dynamical 

phenomena. See e.g. Maddala [12]. 

Suppose one wants to describe the relationship between two groups of 

variables, one consisting of n, variables collected in xeRnl and the other 

consisting of n, variables collected in ycRn2. For example, x could consist 

of the values of n, variables of interest at time t and y of values of 

these and possibly some other, auxiliary variables at times s <  t. 

Suppose one wants to use linear models. In general, no simple linear 

relationship will be exactly satisfied by the data. It is assumed that this 

misfit can be adequately modelled by means of a (Gaussian) disturbance 

term. 

The model class of simultaneous equation models in this case can be 

parametrized by {(A, B, E); A E ~"l'"l nonsingular, B E  Rnlm2, C E Rnl"l, C = CT 2 0). 

The parameter (A,B,C) corresponds to the model Ax + By = E, where E is a 

Gaussian random variable with mean zero and covariance matrix C. 

Let data {(4,,9,); i = 1,. . . ,n) be available. One possible approach to 

identify a model on the basis of these data, i.e., to estimate (A, B,C), is 

the following. Suppose the data are generated by a stochastic system 

Mi + Boyi = ei, a = 1,. . n, where the ei me independent identically 

distributed zero mean Gaussian random variables with covariance matrix C,. 

First estimate ( -A;'B, , A;'z,(A;')~ ), e.g. by least squares (maximum 

likelihood). Denote the resulting estimates by (8,s). Impose restrictions 

on the parameter (A,B) in order to make the map ~:(A,B)+-A-'B injective. 

The injectivity of f is called identifiability in the literature. In this 
r r r T  

case the model could be estimated as (2,i):- f '(fi) and g:= MA . 
We want to state some of the essential elements in this approach. 

First, identifiability often is obtained by imposing prior 

restrictions on A and B, declaring certain elements of these matrices to be 

zero. The interpretation is that every equation corresponds to a part of 



the phenomenon which only incorporates certain variables. These zero 

restrictions are often inspired by theory. Imposing the restrictions 

resembles fixing the tolerated complexity, interpreted as the number of 

non - zero coefficients. 

Second, it is not so much the least squares misfit as the variance of 

the estimated parameters which determines the confidence in the model. In a 

strict sense, every observation fits any model for which C>O. However, 

inspection of the variability of the parameter estimates corresponds to 

some intuitive concept of misfit. 

Finally, both the complexity and the "confidence" are defined in terms 

of parametrizations of models. In particular, every equation is 

investigated independent of the other ones. For example, declaring a 

parameter in a particular equation to be zero does not imply the absence of 

a direct relationship between the corresponding variables, as such a 

relationship can be due to the other equations. 

In section 6 we decribe two modelling procedures for modelling 

dynamical phenomena which do not make use of stochastic assumptions. This 

in particular avoids the assumption of a stable distribution generathg 

disturbances. Moreover, complexity and misfit measures are explicitly 

defined in terms of canonical parametrizations of dynamical models. These 

canonical forms are directly inspired by the objectives of modelling and do 

not depend on a theory concerning the phenomenon. The resulting measures 

have a clear interpretation in terms of model quality, as opposed to 

parameter quality. Moreover, the measures take the simultaneous nature of 

the model equations explicitly into account. 

The procedures of section 6 for modelling dynamical phenomena make use 

of static modelling procedures. We will now describe these static 

procedures in sections 2.6 and 2.7. 

2.6. Static descriptive modellii~g 

Suppose we want to describe a finite number of points in R" by means of a 

linear subspace. So D consists of the finite subsets of R" and M consists 

of the linear subspaces of R". A model M declares xcRn  to be compatible 

with the phenomenon if and only if xcM. As complexity we take 

cD: M -. {O, 1,. . . , n )  defined as follows. 

Def i i~i t io i~ 2-5 The desctiptive complexity of a model M c M  is defined as 



its dimension, i.e., C"(M):= dim(M). 

So a simple model is one which excludes much. 

Let R" be equipped with e.g. the Euclidean inner product, denoted by 

To define a descriptive misfit, first consider models of codimension 

1, i.e., there is 0 # ~ E R "  with M= (span{a})l. Such a model claims the law 

< % , a >  = 0 to hold true for the phenomenon. A measure of the quality of this 
n N  D law with respect to data d = (f,,. . . , fN) E (R  ) is e l  (d, M):= P ( d ,  a) ,  which is 

defined as follows. 

Definition 2-6 For data d = (f ,, . . . , ZN) E ( R ~ ) ~  and a E Rn, the descriptive 

misfit of the law < x,a > = 0 with respect to d is defined as 

D 1 2 rh 
e ( a ) :  { , a 2  a } . 

a=, 

If codirn(M) > 1, then c:(d,~) is defined as the descriptive misfit of the 
D worst law claimed by M, i.e., r:(d, M):= max{c, (d, M'); M c MI, codim(M' ) = 1). 

Note that the model M claims that ?,EM, so in particular f ieM1 for M'>M, 

i = l ,  ..., n. 

Definition 2-7 For d~ ( R " ) ~ ,  MEN, the first descriptive misfit is 
D r , (d, M):= max{eD(d, a )  ; 0 # a €  MI}. 

I Note that M claims that < f,, a > = 0 for all t = 1,. . . , n, aE M . The second 

descriptive misfit is defined as the worst-but-one claimed law, ie., if 
D D I 

r ,  (d,M) = e (d,al), a l e  M , then c:(d, M):= max{eD(d,a); 0 # a~ ~ ' n  (span 

{ a } ) } .  So r t ( d , ~ )  measures the quality of the laws claimed by M and 

orthogonal to the worst law a,. For k = 3, . .  . ,n-c(M) the k- th descriptive 

misfit is inductively defined as follows: if for j < k  r ? ( d , ~ )  =P(d ,a j ) ,  
I D .  a,. M n (span{al,.. . ,a,.,})l , then rk(d,M):= max{P(d,a); 0 # a €  ~ l n  

(span{a,,. . . , u ~ . ~ ) ) ~ } .  It can be shown that & ( d , ~ )  is well-defined this 

way, even if the a, are not unique. For ken-c(M) tl,. .. , n  we define 
D rk(d,M):= 0. In this way the misfit is a map P: DxN -r R:. 

On the complexity space {O,l, ..., n) we take the natural ordering, as 

well as on R,. The misfit apace R: we order lexicographically, i.e., 

(E~, . .  . ,E,) 2 (El,. ..,En) if and only if rk P Ek for all k = l,.. .,n or if there 

is a k such that ri = E, for i < k and rk > Fb 

We remark that complexity and misfit are defined on the level of 



models, not on the parameter level. 

In the next propositions we give explicit algorithms for the 

procedures pD corresponding to minimizing complexity, given a tolerated 

misfit, and 2; corresponding to minimizing misfit, given a tolerated 

complexity, as described in sections 2.3 and 2.4 respectively. 

1 N - - T  For data d = (lily .. . , f N)  let , C xix have singular value decomposition 
i-1 

1 -mT T T T  (S.V.D.) , i ~ l x , x i  = UCU . Here U is orthogonal, i.e., W = U U = In , the 

identity matrix in Rmn. C is diagonal, C = diag(al, . . . ,an) with a,>.. . 2 an 2 0. 

l N . . - T  
Let +:=rank(, E x,xi), then art, = . . . = un = 0. Let u, denote the j-th column of 

i- 1 
* U. Define Mk:= span{ul,. . . , uk) and M(u):= 8pan{uj; aj -0). 

Proposition 2-8 For given data d = (Z,, . . .EN) e ( R ~ ) ~  and tolerated 

complexity cLd, e L d ( d )  is given by 

( i )  e b l ( d )  ={o) if c ~ = o ;  

(ii) e L d ( d )  = span{~ll. .  . , z ~ }  if cLd 2 +; 

(iii) e L d ( d )  = M : ~  if 0 < cb1 < + and ucLd >acMtl ; 

(iv) ifo12 ... ~ u c l > a c l t l =  ... =ucLd=acLdt l~oc , ,~ . . . ru , then 
Ld 

e,(d)  = {M:, + L ;  LC M(ocLd), dirn(L) = cw - cl}. 

Proposition 2-0 Let data d = (li,, . . . ,EN) E (RnlN be given. Assume moreover 
td that a maximal misfit level is given with cLd = c1 . (1,. ..,I), so the 

misfit restriction concerns only the worst law claimed by a model. Then 
td 

( i )  e L d ( d )  = {o) if c1 >ul;  
td 

(ii) e L d ( d )  = span{Zl, . . . , gN} if E, s or; 
td (iii) if or< E ~ S U ~ ,  then e w ( d )  = M; with L such that u k ~  a, >aktl. 

We also refer to Willems [15]. 

We finally remark that there is a close relationship between these 

procedures and total least squares. See e.g. Golub and Van Loan 

[l].Consider as a simple example the case cLd = n- 1. For 0 # a e  Rn let 

M(a):= (span{a))l:= {re R ~ ;  < x, a > = 0) and let n; denote the orthogonal 

projection operator onto M(a). For given data d = (f,,. . . ,ZN) E (RnlN, in total 



1 
least squares one determines a such that 6(d,a):= N ,E is 

:=1 

minimal. See figure 7 for the case n = 2. 

figure 7 

T 1 ' " - - T  
It is easily sham that 6(d, a) = {a ( E xg,)a}/l\a~12 = {r;(d,M(a))}'. SO in 

L l  

this case of cd =n-1 the procedure e, corresponds exactly to total 

least squares. Analogous results can be obtained for ca<n-1 and f a x  

2.7. Static predictive modelling 

Suppose we want to predict (or estimate) n2 variables y€Rnl on the basis of 

n, other variables xeRnl by means of a linear subspace of R"~'"~. 

Let N observations (f &), zicRn1, Fi€RnZ, i = 1,. . . , N be available, so 

the data set is D = (Rnl+%)'". 

Let M be a linear subspace of Rnl+*. The model M has the 

interpretation that, given x, it is predicted that y will belong to the set 

M(x):= jy€R*; (x, y) E M). Stated otherwise, let x ~ R " l  be observed. The model 

M amounts to predicting that the with x associated, but unobserved, y will 

besuch that < q , x >  + <%,y> -0for a l l ( a l , % ) E ~ ,  qcRnl, %eR? Asmodel 

class M we will take the class of those linear subspaces M of ~" l ' "~  for 

which the projection on the x coordinate L surjective, i.e., {x; 3y such 

that (x, y) EM) = Rnl. This means that prediction L possible for every x c  Rnl. 

It L easily seen that M ( r )  = y+M(O) for any XER"~, YE M(x). So for given 

model MEM, the dimension of the (sffine) predicted set is independent of 

the observation x. We define the predictive complexity cp: M + (0, 1, . . . , n,} 

as follows. 



Definition 2-10 The predictive complexity of a model M E M  is defined as 
P the dimension of the affine predicted set, i.e., c (M):= dirn(bl(0)). 

So a simple model corresponds to  predictions with few degrees of freedom. 

To define a predictive misfit we again consider first models of 

codirnension 1. Let 0 # a = (a,, a2) E Rn1xRn2 and # = (span{a))l. Note that ME M 

implies % # 0. The model M predicts that, given x ,  y will satisfy 

< a2, y > = - < al, x > . For data d = {(ji,, Fi); i = 1,. . . , N) the relative mean 

prediction error of this model is c;(d,M)i= ep(d,a), which is defined as 

follows. 

Defiilitioil 2-ll For data d = {(4,9,) ; i = 1,. . . ,WE ( ~ " l x f ? ~ ) ~  and a = 

(a1,a2) ER"'XR~~ with % # 0, the relative meun prediction error is 

P 1 1 
defined by e (d, a):= [ { Z ( < %,i, > t < > )') 1 { R , ~  < a,,% > ') 1%. 

Ri-1 c-1 

If codim(M) > l ,  then cP(d,M) is defined in analogy with the misfit in 
P section 2.6, i.e., cl(d,M) measures the predictive misfit of the worst 

prediction made by El, c:(d,~l) the misfit of the prediction worst-but-one, 

and so on. 

Formally, let M*:= {a2;3a1 such that ( a ,  a,) s MI), so M: C O I ~ S ~ S ~ S  of the 

space of predicted functionals on y. There holds d i r n ( ~ i )  = n2-c(M). For 
I P k = 1,. . . , dirn(M hi, ) we define ck(d, M) inductively as follows. 

Definition 2-12 For d s (~"lxf?')~, M EM, the first predictive misfit is 
P P I cl(d,M):= max{e (d,a);  a s M  ). 

Further, if for j = 1,.  . , k - 1 c q ( d , ~ )  = ep(d, a")), a.$')s M* n .(span 
P P I (1) (j-l)))L, then ek(d,M):= max{e (d,o); +EM n (span {%, . . . , {%,...,a, 

- 1  I I P )) ). For k = dim(M2 ) tl, ...,rr, we define ek(d,M):= 0. In this way the 

misfit eP: DxM + RY2 is well-defined, provided N2n ,  and provided that the 

data are generic in the sense that span{yl, . . . , yN) = R5. 

We order the complexity and misfit spaces as in section 2.6, i.e., 

naturally and lexicographically respectively. 

Note that again complexity and misfit are defined on the level of 

models, not on the parameter level. 



Next we will give explicit algorithms for the procedures 
td 

corresponding to minimizing complexity, given a tolerated misfit, and 

etd corresponding to minimizing predictive misfit, given a tolerated 

complexity. 

Let the data be d = { ( Z i ,  yi)  ; i  = 1,. . . , N). Suppose that N 2 max{nl, n,) and 

that the data are generic in the sense that span{Zl,.. . , Z N )  = R ~ ~  and 
1 N - (y+n2)~(n1+n2) 

span{%, . . . ,TN)  = R?. Let [& S x ~ ]  := 
X p] [%] ER 

and let 
SYx SYY ni-1 ~i 

CS+~$ have S.V.D. V A V ~ ,  with u ~ R ~ ~ ~ ~  and VER?* both orthogonal 

matrices and A = :] E R~I-, Z=diag(q  ,..., or), ul> ... 2ur>0. There 

holds a, s 1 and r  = rank(Sv). Let r* denote the number of singular values 

equal t o  1. Denote the columna of CU by di), i-1, ..., nl, and those of 
( i )  ( 1 )  @' by $), i  = 1,. . . ,%. For k = 1,. . . ,r define MI:= { ( r , y ) ;  a, y= U , Q ~  r, 

P i = l ,  ..., k) .  Then c(M:)=%-k and E ( d , M f ) = ( ( l - 0 : ) "  ,..,, (1-u;)Ih,0 ,..., 0 ) .  
( i )  (4 Finally, let M(u) := ( ( r , y ) ;  a, y= gal r for all i  with ui = 0). 

Proposition 2-13 For generic data d = { (Z i ,T i ) ;  i  = 1,. . . , N )  and tolerated 

complexity cW, Etd is given by 

( i )  E d ( d ) = ( M ~ ~ ;  ~ c ~ ~ , d i m ( ~ $ ) = n ~ - c ~ ) i f  cml<n,-r; 

( i i)  Ed(d) = M:. if c d 5 q - r * ;  
* 

(iii) E d )  = M , ~  if r  < n2 - cw s r and > ~ n 2 - C l o l + ~  ; 

( iv) if u1 5..  . . rucl >u?+~ = . . . = u5-cd = u55Ctd+l = . . . =uc2 > uc2+l 2 . .  . 
2 or > 0, then <,(d) = (MZln L ;  L, M ( U ~ - ~ ~ + , ) ,  c (L )  = c , + c l ) .  

Proposition 2-14 Let data d = ( ( j T i ,  yi) ; i  = 1,. . . , N) be generic. Assume 

moreover that a maximal misfit level is given with EW= 
rol 

E ( l , . l ) ,  so the misfit restriction concenk only the worst 

prediction made by a model. Then 

rol H 
( i )  K d ( d )  = M : ~  fi cl >(1-u2%) ; 

( i i)  Kd(d)=~"1*" l i f  E ? S ( ~ - u : ) ~ ;  

2 H td (iii) $d (d )=~ : i f r c%and( l -u r )  C E ,  51; 
2 4 5  td 2 H (iu) i f  ( 1  - 0 )  < E 1 - )  , then K d ( d )  = M; where k is such 

2 H td 2 H that(1-Uk) < E l  < ( 1 - 0 ~ + ~ )  . 
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We also refer to Heij [4].  

\Ve remark that for %= 1 and ctd = 0 the ( d  reducer to 

ordinary least squares fitting. See figure 8. 

The special (vertical) way of measuring the error in this case reflects the 

purpose of predicting y on the basis of x. 

This concludes our section on approximate modelling. The procedures 

for static modelling in sections 2.6 and 2.7 are used for approximate 

modelling of time series by means of dynamical models in section 6. In 

order to do this, we introduce the concept of a dynamical system and a 

class of dynamical models in section 3. We define complexity and misfit in 

section 5 in terms of canonical parametrizations of these models. These 

canonical forms are described in section 4. 

3. DYNAMICAL SYSTEMS 

3.1. Definition of a dy~lamical system 

Defi~lit io~l 3-1 A dynumiccrl system is a triple (T,IV,B) with TcR the time 

set, W the signal set and BclvT the behaviour of the system. 

The behaviour B we will sometimes call a system or a model. 

A dynarnical system describes the relationships between variables of 

interest in the following way. Let IV be the set in which the variables on 

every time instant take their values, and let T denote the time set under 



consideration. The behaviour B then consists of a set of time series w:T-+IV 

with the interpretation that time series WEB are compatible with the laws 

of the system, while time series weB are not compatible with these laws. 

This gives a deterministic description of the system. 

For some illustrative examples we refer to Willems (151, (161. 

In the sequel we will restrict attention to a special class of dynarnical 

systems, namely those describable by a finite number of autoregressive 

equations. We will invariably consider discrete time systems with T =Z and 

with signal set 1V =Rq. So there are q variables of interest which take on 

real values. 

We will use the following notation. Let R~EP for k = dl,dl+ l,.. . ,d3, 
d 2 

where d1,d2eZ, dl g dl. Define R E ~ [ S ,  il] by R(s,il):= C Rtrk, so R is a 
k-dl 

finite Laurent series in s with coefficients in Rg"P. By a slight abuse of 

language we will call R a polynomial matrix in s and s-'. By u we denote 

left shift, i.e., if w:Z+Rq then uw: z-+Rq is defined by (uw)(t):= w(t+l), 

t EZ. By u-I we denote the inverse of u. The autoregressive system B(R) then 

is defined as ker(~(u,u- I ) ) ,  i.e., B(R) is the set of those time series 
d 2  

w:Z+Rq for which R(u,dl)w = 0, i.e., C Rkw(t+k) = O  for all ~ E Z .  
k=dl  

Defiilitioil 3-2 Let RE@~[S,S-~ ] .  Then the autoregressive system 

(AR- system) B(R) is defined by B(R):= {WE (Rq)'; R(u,u-~)w = 0). 

We will denote the class of all AR-systems by 8, i.e., 8:= {BC (RqIZ; 

39 ~ R E R ~ ' [ S ,  s-'1 such that B = B(R)). 

This class of systems is interesting for a number of reasons. .First, 

it forms a class of models often used in practical modelling situations 

where one wants to describe linear relationships between the variables and 

their lagged values, as e.g. in econometrics, signal processing and linear 

control. Second, this class of systems includes some widely used systems 

as, for example, linear input/output systems with finite dimensional state 

space. Third, there exists a nice interpretation of AR-systems on the 

behavioural level of sets of time series, which we will now describe. 
9 z It can be shown that a system Bc  (R ) is an AR-system, i.e., there is 



a polynomial matrix R such that B = B(R), if and only is B is a linear, time 

invariant, complete system. B is called linear if it is a linear subspace 

of (R')'. It is called time inuariant if OB = B, i.e., shifted time series of 

the system also satisfy the laws of the system. This means that the laws of 

the system are time invariant. B is called complete if {WEB} * {wlLt0 ' 1 

E B([tO,tl~ for all -a < to I t l  < + a ) .  This means that in order to check whether 
9 a time series W E ( R  ) belongs to B or not it suffices to consider only 

windows [t,,t,] of arbitrary finite length. Moreover it can be shown that 

if B is linear and time invariant, then B is complete if and only if there 

exists a A 2 0  such that {WEB) w { w I ~ ~ , ~ + ~ ~  E BIIo,Al for all t €2). So 'in 
this case the laws which are imposed by B are local in time. 

We finally mention that the class of AR-systems exactly consists of 

those subsets BC(R')' which are linear, shift invariant and closed in the 

topology of pointwise convergence in. (R')'. We will illustrate the use of 

this characterization by briefly returning to section 2.2.2 on undominated 

unfalsified modelling. Let D=(Rq)', so the data consists of an infinite 

time series, and let M=B,  so the model class consists of the AR-systems. 

The property of closedness of AR - systems implies that for every CE D there 

existsaunique B*(C)EB suchthat . i i r ~ ~ * ( C )  a n d { i i ) ~ B ~ B )  * {B*(G)cB). 

The procedure P,, corresponding to undominated unfalsified modelling hence 

models O by means of ~ ' (4 ) .  I t  is called the most powerful unfalsified 

model. In the sequel we will not consider exact modelling of an infinite 

time series, but approximate modelling of a finite time series. 

3.3. Modelling a time series 

Suppose we want to model a dynamical phenomenon. In terms of figure 1 in 

section 1.1, we assume that the objective is either description or 

prediction of the phenomenon. So we do not discuss control problems or 

objectives corresponding to theories concerning the phenomenon. Moreover, 

it is supposed that it is reasonable to model the phenomenon by means of a 

system which is linear, time invariant and complete. The interpretation is 

that the model gives a description of the phenomenon which is local, both 

in space (linearity) and in time (time invariance and completeness). The 

model class hence is 6. I t  is assumed that q real-valued variables have 

been specified which have to be included in the model and that data on 

these variables is available in the form of a finite time series. We denote 
T the variables by a= (to,,. ..,to,) , the time interval of observation by 



T:= [to, t,] for some -m < to 5 t1 < +m, and the data by G:= ( G(t) ;  t ET ), an 

ordered sequence of observations. It is assumed that the data are directly 

related to the variables of interest and that there are no "missing 

observationsn. 

In this case the data set is D = u {(R')";~EN}, so the data consists of a 

time series of length n in R'. The model class is M=B := {BC(R')'; B linear, 

time invariant, complete}. The objective .rr is description or prediction. 
8 The modelling problem consists of choosing a procedure P,:D+2 , 

corresponding to  a utility u, reflecting the purpose T of modelling. We 

will follow the approximate modelling approach described in section 2.1. 

Therefore we will define complexity maps c,: B + C, and misfit maps E,: 

D d  r E, and impose orderings on C, and En. The resulting identification 

problem is depicted in figure 9. 

figure & modelling r time rerles 

time series: 

In order to  implement procedures algorithmically it is desirable to  express 

the utility not only in terms of the sets BC(R')' but also in terms of a 

finite number of parameters parametrizing B, i.e., in terms of an 

AR-representation R such that B=B(R). However, d e f i g  a utility in terms 

of R need not automatically be compatible with a utility in terms of B, as 

the map f :  u { RW[s,s-'1;  EN ) r B with f(R):= B(R) is not injective. The 

representation of B by means of R such that B = B(R) is highly non- unique. 

v 
mdel: B ( R )  

- 
mdel class: B > 

A 

I objectives: (cll.cp) 



In section 4 we will describe the nature of the equivalence relation - 
defined on u { Rm[s, S-'1 ; g E N ) by {Rl - R2) : ++ {B(Rl) = B(R,)). Moreover we 

will define two canonical forms under this relation - , which are inspired 

by the objectives of modelling. In section 5 we will define complexity and 

misfit maps for the problem of modelling time series by means of 

AR-systems. These maps are defined in terms of the canonical forms, i.e., 

in terms of special AR-representations, and induce well-defined complexity 

and misfit measures for systems in B. The corresponding modelling 

procedures defined in section 2.3 and 2.4 are described in section 6. In 

section 7 we give the resulting algorithms. 

4. CANONICAL FORMS 

4.1. Equivalent parametrizations 

Let B denote the class of models BC(RP)' which are linear, time invariant 

and complete. As stated before, BEB if and only if there exist  EN, 
d 2  

d1,d2€ Z, dl i d2, and a polynomial matrix R = E R ~ ~ E ~ [ s , s - ~ ]  such that 
k-d1 z B = B(R):= { wc  (f?) ; R(U,U-')w = 0 ). 

We will use the following notation. Rl is called equivalent to R,, 

notation Rl-R2, if B(Rl) = B(R2). For BE B let k denote the family of laws 

which are satisfied by the behaviour B, i.e., k:= { ~ E R ~ ~ ~ [ S , S - ~ ] ;  

r(u,u-')w = 0 for all w c B}. Let RE p [ s ,  s-'1 have rows r i c ~ l X q [ ~ ,  s-'], 

i = 1,. . . ,g, then the polynomial module generated by r,, . . . ,rg is denoted by 
# 

M(R):= {r E RIY[s, s-'1 ; gpif R[S, c'], i = 1,. . . , g, such that r = L pir,}. Let t 3 l  
i -1 

denote the class of these (finitely generated) submodules of R ~ ~ ~ [ S , S - ~ ] . B ~  

&(MI) we denote the dimension of MIEBI M a module, i.e., d i r n ( ~ l )  is the 

minimal number of elements of MI which generate MI. Finally, UE Fgis, i l ]  

is called unimodular if i t  is invertible in R ~ # [ S ,  s-'I. 

The next proposition summarizes some results on AR-representations of 

models in B. 

Proposition 4-1 (i) For every BE B, k E &; the map f :B&: B+BI is a 

bijection of B onto 8 I ;  (ii) { B= B(R) } LI { k= M ( R )  }; (iii) if 

dim(&) = p, then there exists RE p [ s ,  s-'1 with B = B(R) ; moreover, this 

R is unique up to left multiplication by a unimodular matrix. 



This implies that the equivalence class of AR - parametrizations of a given 

model BEB consists of those polynomials RER~~ [S ,S - ' ] ,  for some gcR, for 

which the rows generate B ~ .  So the (autoregressive) laws which are 

satisfied for any time series in B consist of the rows of R and 

(polynomial) combinations of them. 

We will use these results on equivalent pararnetrizations to define two 

canonical forms. A canonical fown is defined as any subset 

C c  u{ ~ ~ ~ [ s , s - ' ] ;  geN ) which contains at  least one element of every 

equivalence class, i.e., for any geN and ~~Rg"Q[s,s-'l there exists an 

R,eC such that R-R,. C is called minimal if it contains exactly one element 

of every equivalence class, i.e., R1,R2€C with Rl-R2 implies that Rl=R2. 

The two canonical forms defined in sections 4.3 and 4.4 are not minimal. 

This non-minimality is rather intrinsic, i.e., forcing a reduction of the 

canonical form so that it would become minimal would require arguments 

which are not related to the objectives of modelling. 

4.2. Preliminaries 

In order to describe the canonical forms it is useful to introduce some 

vocabulary and notation. 
OD 

For r ~ R ' ~ [ s , i ~ ] ,  r =  Z rks: r k ~ R L X q ,  define the order of r by 
km-a  

d(r):= max{k; rk # 01 -min{k; rk # 01. k t  R = col(rl,. . . , r , ) ~ P [ s ,  PI denote 

the polynomial matrix with rows rl, ..., r, , then the order of R is defined 
d ; 

( i )  as d(R):= max{d(ri); i = 1,. .. ,g). Suppose r = Z , r s with d i2  d; ,  
k-d, 

(i) #o#rd; ( i )  ( i ) .  

4 , so d(ri) = d;-d;. Let L+:= co1(rd,! , i = l , .  .. ,g)  and 
a 

L- :=col(r(') . i = 1,. . . ,g) be the leading and trailing coefficient matrices 
d; ' 

of R. Then R is called bilaterally row proper if L+ and L, both have full 

row rank g. 

Let R = col(rl,. . . ,rg) =ROX(I[s, sS1], then (d(rl), . . . ,d(r,)) is called the 

lag structure of R. In the sequel we will make use of the equation 

structure of R, which is defined in terms of the lag structure, as follows. 

Definition 4-2 If R E ~ [ S , ~ - ' ]  has lag structure (dl, ..., d,), then the 

equation structure of R is defined as e(R):= (e,; fro), where 

e, := #{i;di = t) is the number of rows in R of order t. 



For lag structures we define a total ordering by {( di,. . . ,d;,) s 
(d; ' ,  ..., di..)): cp {(d; ,..., d;,) = (d; ,..., d;,,) or g' <g"  or there is a g s g ' = g V  

such that d; c di and d; = dl for all i c g ) .  So few equations and short lags are 
m 

preferred. We order equation structures by {e' 5 e") :sp {e' = e" or C e;  c 
t -0 

Oe; or ts e; = e; and there h a to such that e;o>e;o and e; = e; for all 
t = -0 t-0 

t <to). For B s B  we call R a shortest lag or tightest equation 

representation of B if B=B(R)  and the lag or equation structure 

respectively is minimal in the class of AR-representations of B. Clearly, 

every BEB has shortest lag and tightest equation representations. The 

following proposition characterizes these minimal descriptions. 

Propositioil 4-3 Let B=B(R).   then the following statements are 

equivalent: 

( i )  R is bilaterally row proper; 

( i i )  R is a tightest equation representation of B; 

( i i i )  there exists a permutation matrix ll such that IIR is a shortest 

lag representation of B. 

We will finally characterize shortest lag representations in terms of 

matrices. Let B s B  and B ~ : =  { r e ~ ' ~ [ s , i ' ] ;  r ( o , d l ) w  = 0 for all W E B ) .  Let 

R:"[s] denote the class of polynomials in s of power at most t ,  i.e., 

' = k  RiXq[s]:= { r  s RL4[s] ; r = C r~ , rk = 0 for k c 0 and k > t). k t  B+:= ~ l n  R1?[s], 
k- -'= 

then & describes the family of laws of order at most t which are satisfied 
1xq t+l by the b e h a v i o ~  B. We will identify & with a subspace of (R ) as 

follows. 

l q  t+l Definition 4.4 The bijection V , : R : ~ [ S ]  + (R ) is defined as 
t 1rq t+l follows. Let r = Z rJ E R ~ ~ [ S ] ,  then v t ( r )  E (R ) is defined by 

k-0 

v t ( r )  := (tO,tl ,..., r t ) .  

It can be shorn that vt(&) is the (Euclidean) orthogonal complement in 

(Rq)"' of Bt := BI[-t,ol=BI[8,8+t~ for any s e 2 ,  i.e., the behaviour on an 

interval of length t +l. 

Next we define spaces L,C+ as follows. k t  Lo := B; consist of the 



1 1 1  zero order laws for B. Define V,:= vo(Lo). Observe that B ,  tsB, cB, .  We will 

say that the first order laws in B: +SB: are implied by zero order laws. 

Truly first order laws for B, collected in L , C B ~ ,  are required to be 

independent of those implied laws. Formally, let V, be a complematay 

space of vl(& + s&) in v 1  i.e., v1n v,(& + SB;) = (0) and 

BI BI -1 Vl + vl( , + s , ) = vl(&). Then L1 := v1 (V,). Analogously, the t-th order laws 

in &-, t s&-I c & are implied by lower order laws. Truly t-th order laws are 
-1 collected in L,c&, defined as L, := v, (V,) for a complementary space V, of 

v,(&, + s&.,) in v i.e., ~ , n v , ( & - ~ + s ~ - ~ ) = { ~ )  and 

v , + v , ( & ~ l + s ~ ~ l ) = v , ( & ) .  

Clearly, the spaces V, and L, in general are not uniquely defined. Let 

q := dim(V,) and let { vf), ..., v::)} be an arbitrary basis of V,. Moreover 
-1 (1) define rit):= v, (vi ), i = 1,. . n . The following proposition establishes 

the relationship between the sets LC k d  shortest lag representations of a 

model BE 8. 

Proposition 4-5 Let BE 8. Then there exists a d such that nd # 0 and n, = 0 

for all t>d. Any tightest equation representation R of B has equati~n 

structure e(R) = (no,. . . ,nd,O,O,. . . ). Finally, R is a tightest equation 

representation of B if and only if there exists a choice of the 
(1 )  complementary spaces V,, of bases {vi ; i = 1,. . .,n,) of V,, and of 

numbers k , ( t ) ~ Z  for i = 1,. . . ,n,, t = 0,. .. ,d, such that the rows of R 

ki(') ( t )  consist of {a ri ; i = 1,. . . ,n,, t = 0,. . . , d). 

The canonical forms will correspond to a special choice of the 

complementaq spaces V,, which we will describe in the next two sections. 

4.3. Canonical descriptive form 

In section 5 we will define the descriptive complexity and misfit of models 

in terms of tightest equation representations of a special type. Note that 

proposition 4 - 5 characterizes the non - unicity of tightest equation 

representations in terms of the choice of the complementary spaces V, and 

bases of these spaces. The canonical descriptive form selects particular 

complementaq spaces, but the choice of bases is left arbitrary. The 

complexity and misfit in section 5 wil l  be defined independent of this 



choice of bases. 

We choose truly t-th order laws of B such that they are (Euclidean) 

orthogonal to the t-th order laws which are implied by lower order ones. 
D Formally, we define L;C& as follows. L: := &, and L C  := 

vil{ [ V ~ ( B + - ~  + s & - ~ ) ] ~  n [vt(&)] }. So, intuitively, the laws T E L: are 

orthogonal to those in B:.,+s&,. The orthogonality is imposed to ensure 

that laws in L? are "farn from being implied by laws of lower order. Of 

course, in some cases it could be sensible to choose other inner products 

than the Euclidean one. 

Now R is defined to be in canonical descriptive form if it is itself a 

tightest equation description of the corresponding behaviour B(R) and if 

the laws of truly order t are contained in L:. We will then say that laws 

of different order are orthogonal. 

Definition 4-6 R is in canonical descriptive furm (CDF) if 

( i)  R is a tightest equation representation of B(R); 

(ii) laws of different order are orthogonal. 

Proposition 4-7 (CDF) is a canonical form. 

Note that for R in (CDF) R~R9"4[s], i.e., R is a polynomial matrix in s. 

We will describe (CI)F) in terms of matrices as follows. Let R E R ~ [ S ]  
(1) and let R('):= col(ri ; i = 1,. . . ,n,) consist of the rows of R of order t, 

a0 

t 20, n,rO, ,&n, =g.  Let d be the highest power of s in R and for t 20 let 
~. 

(1) 
n,x(d+l)q 

Nt :=col(vd(ri ) ; i = 1,. . . , n,) E R correspond to the t-th order laws 

nt"4 in R. Let N = [ R t .  . R ]  with Rit)aR , i = 0 , .  . d .  Let 
(1) kt :=max{i; R~ P 01. ~ e t  L := co i (~p ) ,  . . . , RY)) E R ~  and L+:= 

CO~(R~; ) ,  . . . , RL:)) a R9"4. Define s: Rl~(d+lk+Rl~(d+l)g as follows. If 

v = (vo,. . . , V ~ - ~ , V ~ )  with vi= RlV, i=O,. . . ,d, then s(v):=(O,vo,. . . , v~ .~ ) .  Let 

Vo := No and define v, for t = 1,. . . ,d inductively by v, := c01(p,,~, sp,,,, N,). 

Findy, for matrices Al and A, let A l U 2  denote that every row of A, is 

orthogonal to any row of A,. 

Proposition 4-8 R is in canonical descriptive form if and only if 

(i) L+ and L, have full row rank; (this implies k,=t) 

(ii) N, I ~ o l ( ~ , , ~ , s ~ , - , )  for all t = l,.. .,d. 



So, whether R is in (CDF) or not can be checked by means of proposition 4 - 8  

in terms of matrices which can be easily calculated from R. These algebraic 

conditions will play a role in the algorithms of section 7. 

The next proposition describes the non-unicity of (CDF) 

representations of systems BE 8. 

Proposition 4-9 Let BEB, B=B(R) with d(R)=d and R in (CDF). Let the 

rows of R be ordered with increasing degree. Then B=B(R1) with R' in 

(CDF) if and only if there exists a permutation matrix 17 and a 
"tmt blockdiagonal matrix A = diag(Aoo, . . . ,Add) with A,, E R nonsingular 

such that R' = 17AR. 

4.4. Canonical predictive form 

The canonical predictive form also corresponds to  a particular tightest 

equation representation of the AR-equations describing a behaviour. Again, 

the complementary spaces V, of section 4.2 are chosen in a particular way 

and the choice of bases is left arbitrary. The spaces are intimately 

connected with the purpose of prediction and corresponding complexity and 

misfit maps, which will be defined in section 5. 

To define the canonical predictive form, we consider the (forward) 
m 

predictive interpretation of a law rERLV[s]. Let d(r)  = d, r =  C rgk with 
k = - a  

rk=O for k c  0 and k > d. The law r corresponding to r(u)w = 0 predicts that, 

given w(s) for s =  1-dl ..., t -1, w(t) will be such that rdw(t) = 
d -  1 - C rkw(t -d + k), t EZ. We call r a predictive law of order d, rd a predicted 
k-0 

d - 1  
functional of order d, and - ,g0rgk a prediction polynomial of order d. 

Intuitively speaking, we will choose the complementary spaces V, such that 

the predicted functionals of different order are orthogonal and such that 

prediction polynomials of a certain order are orthogonal to  predictive laws 

of lower order. This ensures that predictive laws of different order are 

"far" from each other. 

Formally, for BEB define L;C& as follows. Let F, := { F E R ' ~ ~ ;  ~TEB:, 
t 

r = E rtsk, such that rt = 7) denote the set of predicted functimals of order 
k-0 P 

at most t. Then Lo := B; and L: := vil{ [V,(F~.,. st)  + ~ , ( & - ~ ) ] ~ n  [V,(B:)] ). 

R is said to be in canonical predictive form if it is itself a tightest 

equation representation of the corresponding behaviour B(R) and if the 



P predictive laws of order t are contained in L, .  We will then say that 

predicted functionals of different order are orthogonal, corresponding to 
P v, (L , )  1 v,(F,-,.st), and that the prediction polynomials are orthogonal to 

P I predictive laws of lower order, corresponding to v,(Lt ) l v , ( B ,  -,). 

Defiliitioli 4-10 R is in canonical predictive fonn (CPF) if 

( i )  R is a tightest equation representation of B(R) ;  

( i i )  predicted functionals of different orders are orthogonal; 

( i i i )  prediction polynomials are orthogonal to predictive laws of lower 

order. 

Propositioll 4-11 (CPF) is a canonical form. 

Using the notation of section 4.3, proposition 4-12 gives simple algebraic 

conditions for R to  be in (CPF). These conditions will be used in the 

algorithms of section 7. 

Proposition 4-12 R is in canonical predictive form if and only if 

( i )  L+ and L- have full row rank; (this implies kt = 2 )  
( 4  (4 ( i i)  R, I R ,  for all t # s ,  t ,s=0 ,..., d ;  

( i i i )  N,  I PC-, for all t  = 1,. . . ,d.  

The non-unicity of (CPF) representations is exactly of the same kind as 

described for ( C D F )  in proposition 4-9,  i.e., the representation is unique 

up to a permutation of the rows and a choice of bases in the spaces L:. 

We conclude this section by giving a simple example illustrating the 

canonical forms ( C D F )  and (CFF). Consider BEE defined by B:={wE(R~) ' ;  

w l ( t )  +w2(t - 1)  = 0, wl( t )  +w,(t) + w2(t - 2 )  = 0, t  E 2). Then B = B(R) with 

1 0 0  

R:= 1 : :] + [O O].s + : :].s2. R is neither in ( O F )  nor in (CPF). 

Let Ul:= [ O ]  + [ O O ]  .s, U2:= [ O ]  + [ O O )  .s, Rl:= Ul.R and R2:= 
-H 1 -H 0 -H 1 -1 0 

U2.R. Then B = B(Rl)  = B(R2),  R1 = 

[ " l o ]  + [ '  "1 ~ 0 0 ] . s 2 i s i n ( C P ~ ) .  is in ( O F )  and R2= 
-45 -1 0 ' S + o o l  



5.. COMPLEXITY AND MISFIT 

5.1. Complexity 

As before, let B denote the class of linear, time invariant, complete 

systems in (R')'. Intuitively, a system is more complex if more time series 

are compatible with the system, i.e., if the system imposes less 

restrictions on the behaviour. A simple system is one with a few degree of 

freedom. In particular, if B,, B2sB and B, c B,, B, # B,, then we call B, less 

complex than B2. More general, we will call B, less complex than B2 if it 

allows less time series. The complexity of a system will express the 

magnitude of the set of time series compatible with the system. For BEB, 

let Bt:= BII0,,] denote the space of time series of length t + l  which are 

compatible with the system. By Z+ we denote the set Z+:= {0,1,2,3, ...}. We 

now define the complexity as a sequence of numbers ct(B), tsZ+,  where ct(B) 

measures the magnitude of B,. 

Definition 5-1 The complexity of dynamical systems is defined by 
1 

C:B+ (R+)'+, c(B):= (ct(B); t s Z+), where ct(B) := - t + l  . dim(Bt). 

It can be shown that the limits lim ct(B)=: m and lim t.{c,(B)-m}=: n exist 
t+ OD t+m 

and that m is the number of inputs in B and n the (minimal) number of state 

variables. 

A natural ordering of complexities is the partial ordering defined by 
1 )  (2) for all ~EZ,}. This ordering is related to {c 2 c  1: * {c, r c ,  

tightest equation representations. For BEB let e*=(e:; t rO)  denote the 

equation structure of a tightest equation representation of B. If B,,B,EB 

with equation structures e and e'(2) respectively, then 
t 

dim(Billo,tl) = ( t+ l )p -  li-o L (t+l-k)e;('), SO c(Bl) 2c(B2) if and only if for all 
t t 
L ( t  + 1 - k)e:(') 5 ,g0(t + 1 - k)e;('). So systems are complex if their teZ+ k-0 

behaviour is restricted by few laws which are of high order. 

In the approximate modelling procedures of section 6 we will use 

utility functions involving the complexity. These utility functions will be 

based on a total (lexicographic) ordering of complexities which is a 

refinement of the natural ordering, and which is defined by 
(1) (2) {c 2 c }: * {c") = c ( ~ )  or there is a t0eZ+ such that c!:) > c!:) and 

c!') = cjl) for t < to). 

We want to make some remarks on this ordering. 



First, in assessing the complexity of a system the number of short lag 

1 equations is decisive. Indeed, as c,= q - - a  C ( t  + 1- k)e:, it follows that 
I + '  k r O  

{ 2 c 2 }  { e l  = e 2  or there is a t o€  Z+ such that e;:') c e:;')and 

e 2  for all t t o  Note that this ordering of equation structures 

differs from the one described in section 4.2. 
(I) 

Second, it can be shown that for a system BEE there holds m = q -  C e: 
t-0 

(I) 

and n = C t. ef ,  where m denotes the number of inputs or unrestricted 
t-0 

variables, n the number of states and (ef ; teZ+) the tightest equation 

structure of B. A simple model is one which leaves little unrestricted, 
OD 

i.e., for which the total number of laws C ef is large, and which has 
1-0 

OD 

small memory, i.e., for which C t.ef is small. This amounts to preference 
1-0 

of many equations and of short lag, i.e., of small values of c,(B) for t 
. ,  

small. This is reflected by the lexicographic ordering of complexities. 

Note that the complexity is related to the system considered as a set of 

trajectories and not to the number of parameters needed to represent the 

system. 

Third, this lexicographic ordering allows for simple recursive 

algorithms, as will be seen in section 7. 

Finally, the reverse lexicographic ordering defined by 

{c") 2 c")}: * {c'l) = c ( ~ )  or there is a tOeZ+ such that c!:) > c!:) and 

c!') 2 ci2) for all t > to} seems more appealing. It is directly connected with 

m and n, as for this ordering {m, >q} * {c(')>c(')} and {m, =m2, 

n n }  * { c  > c 2 } .  This does not hold true for the lexicographic 

ordering. However, the construction of algorithms for modelling procedures 

based on the reverse lexicographic ordering seems to be difficult. 

We conclude this section by defining the (total) complexity ordering 

which we will use in the sequel and by expressing this ordering in terns of 

equation structures. 

Definition 5-2 The ordering of complexities of systems in B is defined 

by {c(B,) rc(B2)}: * {c(B,) =c(B2) or there is a toeZ+ such that 

cto(B,) > cto(B2) and ct(B1) = ct(B2) for all t < to}. 

Proposition 5-3 Let BieB have tightest equation structure 

e * ( ~ ~ ) : =  (e : (~~ ) ;  teZ+), i=1,2 .  Then c(B,)>c(B,) if and only if 

e * ( ~ , )  s e * ( ~ ~ )  in the lexicographic ordering, i.e., e * ( ~ , )  = e* (~ , )  or 



there is a such that e:o(~l)<e:o(~2) and e:(B1)=e:(B,) for all 

t < to. 

The complexity ordering can easily be characterized in terms of the 

canonical forms of sections 4.3 and 4.4 by using proposition 4 -3.  

Corollary 5-4 Let Bi E 4 Bi = B ( R ~ ) )  = B(R;)) with RY) in (CDF) and R:) 

in (CPF), i=1,2. Let e:) and e denote the equation structure of 

Rj') and R:) respectively, i 1 ,  Then {c(Bl) 2 c(B2)} cr 
(1)- (1) {e, - ed s e r )  = e:) in lexicographic ordering}. 

6.2. ' Descriptive misfit 

In this section we define the misfit of a model BEE in describing data 

consisting of a finite time series G=(G(t); t ~ 7 )  on an interval 7= [to,tl]. 

As in section 2.6 we first consider the case where B imposes one 

restriction, in the sense that B= B(r) for some r c ~ ' ~ [ s , s - ~ ] .  

As descriptive misfit we consider the average equation error. Let neZ,  
n + d  n t d 

d eZ+, r = C r k s  with rk€!?lXQ, rn # 0 # T,+~. We define ((rl12:= C (lrk112 and 
k-n k =n 
1 t l -n-d n + d  

~ ~ ~ ~ \ 2 : =  c { c rk9(t+k) 12. SO I I T G ~ ~  measures in how far 9 t l - t o -d t l  t-t 0-n k-n 

satisfies the restriction imposed by B(r) that ( 6 ) ( t )  = O  for 

t= to -n ,  ..., tl-n-d.Itisaasumedthatd(r)=d5tl-to. 

Definition 6-6 The descriptive misf it of r c R'~[S,  s-'1 with respect to  

data 9~(d)' is defined as the wan epucltion mor, i.e., 

eD(9,+):= l l ~ l l / l l ~ l l .  

We define the misfit of B(r) by E:,,(~,B(T)):= eD((a,r). 

Next let dim(&) 22. For re& we meamre the descriptive misfit by 

eD((0,+). The problem is to define the misfit of B, which imposes an 

infinite number of laws on the phenomenon. We wil l  define the misfit of B 

by choosing a canonical basis in &, using the canonical descriptive form 

(CDF). The idea is to  define a sequence of misfits, measuring the quality 

of laws of different order claimed by B. Note that using ( O F )  guarantees 

that laws of different order are orthogonal, so loosely speaking these 

quality measures become more or less independent. By this we mean that e.g. 



a first order law should not be judged as being of small misfit if this is 

due to the fact that this first order law is ("nearn to being) implied by 

good zero order laws. This is made explicit by the orthogonality conditions 

in ( O F )  as stated in section 4.3 and will be illustrated by means of 

examples in section 9. 

To define rD($ ,~) ,  consider the spaces L: of truly t-th order 

decriptive laws as defined in section 4.3. Let n, := dirn(v,(l:)), then nt =e, 

where (e,; t €2,) is the tightest equation structure of AR-representation of 

B. For n,>O define E?,,(Q,B) as the worst fit of the truly t-th order laws 
D D D claimed by B, i.e. r , ,,($, B):= max{e (0, r ) ;  raL,). 

Definition 6-6 For BEB, let L: denote the space of truly t-th order 

descriptive laws of B. For data ~E(RP)', the nzoin t-th desmiptive 
D D misfit is defined by r , ,,($, B):= max{eD(id, r) ; r E L, ) if dim(v,(l:) ) > 0, 

D else E, ,l(iii, B):= 0. 

If n,> 1, then we define E?,~(B,B) as the misfit of the worst-but-one t-th 
D D D order law, i.e., if E,,,(o, B) = eD($, rl), rl E L ,, then r , ,,(B, B):= max{e (0, r) ; 

r { v )  n [ v ( r 1 ) ] )  . For k = 2,. . . n ,  E?,~($, B) is inductively 

defined as the worst-but-(k-1) t-th order misfit, as follows. If r?,,(G, B) 
D = e (G,r,), I 

v v n s p v r l ,  . v 1  1 for j = 
D I , , .  , - I ,  then r , , k , ~ : =  max{eD(O,r); r ~ v ; l {  V,(L?) n [span 

I D (vt(rl), . . . , ~ ~ ( r ~ - ~ ) ) ]  ) ). For k =  nt+l,. .  . ,q, E , , ~ ( ~ , B ) : =  0. It can be shown 

that rYlk is well-defined in this way, i.e., independent of the maximizing 

arguments r,. 

Definition 6-7 The descriptive misfit is a map 8: (d)'x 8 + ( R : ? ~ ,  

where E:,~($, B) is the descriptive misfit of the worst - but - (k -1) law of 

the truly t-th order descriptive laws in L: claimed by B, ~ E Z , ,  

k=l,. ..,q. 

We remark that both the complexity and the descriptive misfit are defined 

in t e r n  of the spaces L:, hence in terms of (CDF), but independent of a 
D choice of basis in L:. A convenient basis for L, could be {r,, ..., rnt} as 

defined above. 
m 

Note that there are at most C e, = q-msq misfit numbers unequal t o  
t -0  

zero. These numbers give the equation error of a suitably chosen basis of 



all the equations which are claimed by the model. The numbers 
D 

{ E  ,k ; k = 1,. . . , q)  measure the quality of the t-th order equations, which 

are orthogonal to the lower order ones. 

We will impose the following lexicographic ordering on misfits. 

Definition 5-8 {c' = ( E ; , ~ )  2 E"= ( E ; , ~ ) )  : ++ { E '  = E";  or there exists 

toeZ+, ko s q  such that c; >E; and E ; , ~ = E ; , ~  for all t < to, 0' 0 0' 0 

k = 1,. . . , q and for t = to, k = 1,. . . , ko - 1; or there exists to E 2, such that 

E ; ~ , ~ > E ; ~ , ~  and E ; , ~ = E ; , ~  for a l l  t<to, k = l ,  ..., q). 

Note that if B1 has lower order laws than B2, then the misfit of B, in 

general will be larger than that of B,. On the other hand the complexity of 

B, is smaller than that of B2. In section 6 we will describe two procedures 

to balance the desires for low misfit and low complexity by fixing a 

maximal tolerated level for one of the objectives and optimizing with 

respect to the other one. These procedures correspond to the utilities 

defined in sections 2.3 and 2.4. We wi l l  do the same for predictive misfit, 

defined in the next section. 

6.3. Predictive misfit 

The one-step-ahead predictive misfit of a dynamical system in predicting a 

time series is based on the prediction error defined in section 2.7 for 

static prediction. Now the data consists of a finite time series 

iii = (i i i(t); t e 7 = [ to,t l ])  and the model class consists of the class of linear, 

time invariant, complete systems 8. 

Again we first consider the case where B = B ( r )  with T E R ' ~ [ S , S - ' ] .  Let 
n + d  

nEZ ,  d e 2+, t = *znrf lk with T ~ E R ~ ~ ,  rn # 0 # rn+d . Then B( r )  predicts that 
n + d-1 n + d-1 

~ , + ~ ~ ( t + n + d )  = - C rkw(t+k). Let rn+@(t+n+d) = - C tkG(t+k)+ 
h r n  k-n 

e( t+n+d)  for t=&-n,  ..., t l -n-d.  So e ( t )  is the error made at time t in 

1 ' 1 
the prediction of rn+&(t). Let !ell2:= C e2(t) denote the 

tl-tO-d+l t - t O + d  

1 ' 1  average prediction error and let ( ( T ~ + ~ G J J :  := c i rn+d~( t )12 
tl-(O-d+l t l - tO+d 

denote the average magnitude of the predicted functional. It is assumed 

that d I t1 - to. 
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Definition 5-9 The predictive misfit of r c ~ ' " ~ [ s , s - ' ] ,  with 

1s d( r )  i t t  - to and with leading coefficient vector r* E R'"~, with respect 

to data 4 ~ ( 6 ) '  is defined as the relative mean prediction error, i.e., 

P We define the predictive misfit of B(r) by c:,(~,B(r)):= e (G,r). 

Next we define the misfit for models with dirn(BL) 22. Again we will 

measure the predictive quality of a model by means of a sequence of numbers 

which measure the quality of predictive laws of different order. The 

quality assessment for laws of different orders is made independently by 

using the canonical predictive form (CPF). First of all we require the t-th 

order laws to be truly t-th order, i.e., the t-th order laws should not be 

implied by lower order ones. Second, we require predicted functionals of 

different order to  be orthogonal. This is essential to guarantee that good 

quality of one predictive law is not due to good quality of another 

predictive law. This is made explicit by the orthogonality conditions of 

(CPF) in section 4.4 and will be illustrated by means of examples in 

section 9. 

To define P(o,B), consider the spaces L: defined in section 4.4 and 
P let nt:= dirn(v,(L,)) =e, . We give the definition of predictive misfit in 

analogy with the definition of descriptive misfit in section 5.2 and with 
P D the same motivation. For t = 0 we define e ,lk(G, B):= a ,  ,k(G, B), as for d ( r )  = 0 

eP(4,r) = 1 for any 0, so the predictive misfit makes no sense for these 

static laws. In this case we measure the misfit simply by Ilelllllrll. 

Definition 5-10 For BEE, let L; denote the space of truly t-th order 

predictive laws of B. For data GE(R')', the main t-th mder predictive 

misfit for (21 is defined by a:ll(G,~):= max{ep(9,r);  EL:) if 
P dim(vt(L, ) )  > 0, else a;,,(9, B):= 0. 

P Moreover, a r ,k measures the predictive misfit of the worst - but - (k - 1) law of 

the truly t-th order predictive laws in L: claimed by B. If t 2 1 and n,> 1, 

then aTlk(9, B) for k = 2,. . .,n, is inductively defined as follows. If 
P P I 

E ,lj(O, B) = e (9, r,) with r , ~  vil{ v,(L:)n [span(v,(rl), . . . ,v,(r,-,))I ) for 
P P P j = 1,. . . , k - 1, then a ,  B):= max{e (B ,  r ) ;  t~v; ' {  v,(L, ) n [span(v,(r,), . . . , 

I P v,(rk,,))] ) ). For k = n,+l,. . . ,q we define a,lk(C,B):= 0. It can be shown 

that E:,~(G, B) is well-defined. 



q 7 l x q  z+ Definition 5-11 The predict ive mis f i t  is a map C P : ( ~  ) xEl+(R+ ) 
P D P where E ~ , ~ ( G , B ) : = E ~ , ~ ( G ,  B) and for t 2 1 E ,,k($,B) is the predictive 

misfit of the worst - but - ( k -  1) law of the truly t-th order predictive 
P laws in L,  claimed by B, k = l ,  ..., q. 

We order the predictive misfit sequences in the same way as the descriptive 

misfit sequences, i.e., lexicographically. Corresponding modelling 

procedures are described in the next section. 

6. MODELLING PROCEDURES 

6.1. Introduction 

In this section we describe four modelling procedures. Both for the purpose 

of description and for that of prediction we define two utility functions, 

corresponding to fixing the tolerated misfit or the tolerated complexity 

and optimizing complexity and misfit respectively. The correspondi,lg 

procedures lead to relatively simple algorithms, the details of which are 

given in section 7. 

6.2. Deterministic descriptive modellii~g procedures 

Let B consist of the class of AR-systems Bc(d) '  and let the set of 

conceivable data be D:= u{(R')"; neN), so the data consists of a finite time 

series % E (dl7 for some 7 = [to, t,]. 

First consider the case that a maximal tolerated complexity 
td ca:= (c, ; ~ E Z , )  is given. Fixing ca is interpreted as requiring that 

allowable models should satisfy ct(B) scta' for all ~EZ,., As 
1 t 

ct=q-  - C (t + 1 - k)e: this amounts to requiring ,g0(t + 1 - k)e;(B) 2 
t + l  k-0 

(q-cy).  ( t + l )  for all teZ+,  where (eZ(8); teZ+) is the equation structure 

of a tighest equation representation of B. So a maximal tolerated 

complexity amounts to requiring that B imposes a minimal tolerated number 

of (truly) t-th order restrictions. Under this requirement the descriptive 
lxq z+ misfit will be minimized. The misfit of B is the sequence rD(%,B).(R+ ) 

with lexicographic ordering as defined in section 5.2. The procedure 
B e a : ~ + 2  then is defined as in section 2.4, i.e., as follows. 



Definition 6-1 For 4~ D, etd(4):= argrnax{ uCtd (c (B ) ,  E ~ ( B ,  B ) ) ;  BEE! }, 

where the ordering for u:= uctd is defined by 
( i )  td 

( i )  { u ( c ( " , ~ ( ~ ) )  = u ( c ( ~ ) , E ( ' ) ) } :  - { 3 t i c Z +  c,, > ct i  , i  = 1,2; or 
(c ( l )  ( 2 )  € ( 2 )  

1 ) =  ( c  , 1 ) ;  
(2) ( i i )  { u ( c ( ~ ) ,  < u(c('), E " ) ) }  : cr { 3toE Z+ c::) > c:: and V t  E Z+ C, 

td ('I s c r  and 3t0eZ+ such that E(,:) > r!:) and s c ,  ; or V t e Z +  c, ,c, 
( 1 )  ( 2 )  E(,') = E ( , ~ )  for all t < to; or V ~ E Z +  c, , c, s c r , c ( l )  = E(') and 

3 t 0 c Z +  such that c!:) > c!:) and c y )  = c p  for all t < to} .  Here the 

vectors E ,  E RIXq are ordered lexicographically. 

Note that the requirement c ( B ) s c t d  is not interpreted in the lexicographic 

ordering, but in the pointwise ordering, i.e., c ( B ) s c d  if and only if 

C , ( B ) ~ C ~  for ~ E Z + .  

td Next suppose that a maximal tolerated misfit r td:= ( E ,  ; 
td - Ad t s Z + ) ~  ( R ' V ) ~ +  is given. We will invariably assume that E, - E ,  . (1,. . . , I) 

with ~ E R .  The requirement P(B,B)<c, also is not interpreted in the 

lexicographical sense, but pointwise. As E:,~(O,B) s E ~ ~ , ( Q ,  B )  for k 2 I, this 

means that a model B E B  is tolerated if and only if r y l l ( G , B ) < ~ y  for all 

t e Z + .  So fixing rtd amounts to requiring that the misfit of (truly) t-th 

order laws should be smaller than 5 7 .  One can impose an upper bound L on 

the order of equations by taking E ~ < O  for t > L. 

Under the requirement E : ~ , ( Q , B ) < F ~  the complexity has to be 

minimized. The complexity of a system is ~ ( B ) E ( R + ) ' +  with lexicographic 

ordering, as defined in section 5.1. Equivalently, under the misfit 

restriction the equation structure (ef ( B )  ; t 2 0 )  has to be maximized 

lexicographically. So the purpose is to find as many relationships of small 

order as possible. 

The procedure P : : ~ :  ~ + 2 ~  corresponding to the one describkd in 

section 2.3 for minimizing complexity given a misfit restriction is defined 

as follows. For QE D, P::~(G):= argmax{ u(c (B) ,P (~  B ) ) ;  B E B  }, with the 

ordering {u(c( ' )  ,r ('I ) = ~ ( c ( ' ) , a ( ~ ) ) } :  cr { 3 t j ~ Z +  r t i I l  (i) r e , . ,  i= 52;  or 

( c ( l )  ,r (1) = }, and {u(c(", r ( " )  < u ( c ( ~ ) , ~ ~ ) ) }  : cr { 3t0 E I+ 
1 (2 )  

r!:!,2C and V ~ E Z +  c!:! t e ;  or V ~ E Z +  ctsa c~~~ t r y  3 t o € z +  such 
1 ( 2 )  that c(,:)>c!:) and c!') = cj2) for all t t o  or v t ~ Z +  rt,Ll E , , ~  <r t  , 

c") = c ( ~ )  and r") > rO) in lexicographic ordering}. 
OD is difficult to implement algorithmically. We wi l l  However, P, , 



consider a slight variation etd of P We will illustrate the 

difference between these two procedures by means of a simple example in 

section 9. The procedure ed allows for a relatively simple algorithm, 

described in section 7. 

We now first define ed and subsequently give an interpretation. 

Definition 6-2 For $ED, ed($):= argmax{ U.~(C(B) ,~ ' (O ,B) ) ;  BEB} 

where the ordering for u:= ucd is defined by 
(1) (1) ( i )  {U(C , E  ) = U ( C  , E  (4 - 2 d  

(2))}: * t r r , i=1,2; or 
(c(l) , E (1) ) = (c(2)1 d2))}; 

(i i) {u(c(') , r ) <u(c(~) ,  rO))}: * (3 t o ~ Z +  (I) 2 Ad and VteZ, 
1 )  (2) fd (1) (1) (1) c ! z < e ;  or vt.2, 1 1 t a d  (CO ~ E ~ ~ l r . . . . c ~ ~ ~ ~ ) ~  

(1) 
C l  1 

(1) (1) (1) (1) (1) 
1 $Il l , . . - l  (11, C j  ,... ) >  

1, el 2, =2 

(2) (2 )  r . . . r c , . . . ) in the lexicographic ordering, where 

e'" is the tightest equation structure corresponding to c"), 

i = l,2}. 

This means that e, maximizes the number of zero order relations under 

the misfit constraint. Among solutions, which in general are highly 

non-unique, it chooses the one with minimal misfit. Subsequently the number 

of first order relations is maximized, and then the first order misfit is 

minimized, and so on. Note that these first order relations should be 

orthogonal to the zero order ones, as the utility is defined in terms of 

rD(i i ,~) which involves (CDF). The resulting model is optimal with respect 

to  the utility ucd. Proposition 5-3 indicates a close relationship 

between ed and P::~. However, e, need not always minimize the 

complexity with respect to the lexicographic ordering on (ct(B); teZ,), as 

will be illustrated by means of an example in section 9. Thk- is due to the 

auxiliary minimization of misfits, which is essential for obtaining simple 

(recursive) algorithms. 

Pmposltion 6-3 The procedures ed and ed are well-defined maps 
B from D into 2 . 

Finally, by etd(4) we denote the procedure which is defined in analogy 

with e,, but requiring E ~ ~ , ( % , B )  <dd in contrast with ed which 



D requires E , l(Q, B) < ~ 7 .  

6.3. Two deterministic predictive modelling procedures 

In this section we briefly describe two predictive procedures, 

corresponding to fixing a maximal tolerated complexity or misfit and 

minimizing misfit and complexity respectively. These procedures are 

analogues of the descriptive procedures defined in section 6.2 and are 

obtained by replacing the descriptive misfit P by the predictive misfit 
P 

E .  

Again, fixing a maximal tolerated complexity amounts to requiring of 

an allowable model B that it imposes a minimal tolerated number of (truly) 

t-th order restrictions on the phenomenon, teZ+. Under this requirement the 

relative mean prediction error cp is minimized lexicographically. So first 

the misfit of the zero order laws (in L:) is minimized, then the misfit of 

the truly first order laws (in L: hence orthogonal to the zero order 

laws), and so on. 

On the other hand, one can fix a mardmal tolerated relative mean 

prediction error ~TER for predictive laws of (truly) order t. The 

procedure P::~(G) corresponding to minimizing the complexity 
P lexicographically under the constraint E ,,,(G, B) < $, t E Z+, again is 

difficult to implement algorithmically. Therefore we will consider a 

slightly different procedure <, , in analogy with e,. This procedure 

corresponds to first finding a maximal number of zero order relations, then 

minimizing the misfit of these, subsequently maximizing the number of first 

order relations and minimizing their predictive misfit, and so on. Due to 

proposition 5-3 there is a close relationship between $, and P::~. 

However, they are not equivalent, due to the auxiliary rninimizatibn of the 

misfit. 

We define K, in analogy with <,, replacing the constraints 

E ~ , ~ ( Q ,  B) <e by c:,~(@ B) I EpI.  
For completeness we define Etol and <, explicitly. 

tol Definition 6 4  For given ctol E ( R + ) ~ , E ~  E (R'*)~+ with E# = 

. (l,..,l), ~ E R ,  the procedures SW: ~ + 2 '  and <,: ~ + 2 '  are 

defined as follows. For QeD, <tol(4):=ugmax{u,,(c(B), 

P(G,B));  BEB) and <,(B):= arpax{ue, (c (B) ,~(~ ,B) ) ;  BEB), with 



the ordering, for uCtd and ue defined as in the definition of EM 
td 

and etd respectively. 

We finally remark that for univariate time series, i.e., q = 1, the 

descriptive and predictive procedures are equivalent. That is, for GER 7 

for all 

7. ALGORITHMS 

In this section we describe algorithms for the four deterministic 

approximate modelling procedures of section 6. These algorithms basically 

consist of sequential application of the results stated in propositions 2-8 

and 2-9 in section 2.6 and propositions 2-13 and 2-14 in section 2.7. 

Before giving a detailed description of the algorithms we first introduce 

some concepts and notation and illustrate the approach by describing eal 
in general terms. 

Let the data consist of a finite time series 6e(Rq)' with 7 =  [to,tl]. 
n + d  

Let O<d<tl-to and r(7,d):=t l - to-dt l ,  then for rsR17s, i1 ] ,  r =  k=n E rksk, 

2 1 n + d  
r, E R ' ~ ,  +n t 0 4 + d ,  there holds ll*Il := . tzt { kgn rkG(t + k )  l2 = 

t 1 -d 
1 c (%(tlT, ..., ~ $ ( T ) s ( ~ ~ ) . v $ ( T ) ~  where s(G,~):= -. ~ ( t  t dlT)'. 

( ~ ( t ) ~ ,  . . . ,G(t t d)T) is the empirical covariance matrix of order d. 

The algorithms consist of constructing complementary spaces 

{V,; teZ+}. The corresponding models BeB are then defined in terms of 

L :  ( v )  by B:= { w e  (f?)'; ( o w  = 0 for e L ,  t .Z+}. Here L:'= {0} for 

t sufficiently large. 

The models identified by the algorithms coincide with the models 

corresponding to the procedures of section 6 for specifications of cw and 

ew which are in accordance with the number of observations and for 

generic data. In general terms, one should not allow laws for which the 

order is too large in comparison with the number of data. Moreover, the 

algorithms generate optimal models for A-generic data, i.e., non-optimality 



q ' only can arise in a subset N of (Rq)' for which (R ) \N contains an open 

set of full Lebesgue measure in (6)'. 
We will illustrate the foregoing by considering $?. We will make a 

sensibility assumption on c which is related to the number of 

observations. Moreover we will make some generic assumptions on the data. 

First, in order that the descriptive misfit eD(6,r):= llrGll/llrll is 

well-defined, it is required that d:= d( r )  5 t, - to. Moreover, { E ~ ( G ,  r)12 = 

~lrll-~. vd(r). S(O, d). vd(r)=, with rank(S(6, d)) 5 min{t, -to - d + 1, q(d + 1)). If 
9 7 t, - to - d + 1 < q(d + I), then for any GE (R ) there exists an r with d(r )  I d and 

D e (G,r)=O. To prevent overparametrization it is reasonable at least to 

require t, -to - d + 1 2 q(d + 1) ,i.e., d I 2(7):=(t, -to + 1 -q)/(q+ 1). This restricts 

the set of laws for which the quality can be reasonably assessed, and 

implies restrictions on the requirements in c? to be sensible. In order 

to state this exactly as well as some generic assumptions on the data, we 

consider for given c,E(R+)'+ the class of allowable models BEB for which 

c,(B)scY for all tcZ+ and the corresponding class of tightest equation 

structures E(c?):= {(ef ; teZ+) ;  B E E ,  c,(B) 5 cY for all t EZ+, such that 

(ef; ~ E Z , )  is the tightest equation structure of B). Equip E(cM) with the 

lexicographic ordering, and let e(c?) be the corresponding minimal 

element of E(c?). 

Definition 7-1 For given tolerated complexity c?, the equation 

structure corresponding to c? is defined as the minimal achievable 

tightest equation structure of tolerated models in B with respect to 

the lexicographic ordering. 

We will now first state the assumptions and then comment on them. 

7 Assumption 7-2 Let C ~ E  (R+)& and GE (@) be given. 

(i) max{t ; et(cd) # 0) I z(7):= (tl- to+ 1 - q)/(q+ 1); 

(ii) C?(Q) = {B), i.e., a singleton; 

(iii) B has tightest equation structure e(c?). 

Proposition 7-3 Given (i), then (ii) and (iii) hold true for generic 

data C. 

Assumption 7-2(i) expresses a sensibility requirement for c as 



equations of order more than Z ( T )  are not sensible. Assumption 7-2(iii) 

also expresses a sensibility requirement which we only illustrate in detail 

for c ; f ( ~ ) = e , ( c ~ ) ,  as the other requirements have a similar 

interpretation. The condition c o ( B ) ~ c p  implies that at least q-cid zero 

order laws need to be accepted. Let no denote the number of independent 

equations of order zero which are exactly satisfied by the data C. It is 

reasonable to suppose that q-dd >no. In this case any optimal model B has 

a tightest equation structure (e:(~) ; t €2,) with e:(~) = q- c r ,  which is 

minimal in view of the requirement co(B) s cid. That e;(B) = q-cid for 

optimal models B is seen as follows. Let e:(B) >q-  e r a n o .  It follows from 
D the definition of E~ in section 5.2 that eo,cdd-no+l (8,B) >O. As the 

ordering on E~ is lexicographic, an optimal model should satisfy 

e;(B) = q- c d ,  because models with e;(B) < q- c:d are not allowed and models 

with e;(B) >q-cid can be improved by deleting an equation. Similarly, once 

&., has been identified, the requirements in c d  imply a minimal required 

number e, of truly t-th order laws in the space vil{ [V,(&.~+S&.,)]' }. 

Let n, denote the number of independent t-th order equations in this space 

which are exactly satisfied by the data. Under the reasonable assumption 

that e, ln, it follows that for optimal models ef(B) = e,. Roughly stated, due 

to the lexicographic ordering it ie preferable to accept as few low order 

equations as possible, given the complexity constraint. 

It can be shown that for generic data il there holds n,=O for all 

t s a ( 7 ) .  So in this case assumption (iii) is satisfied 

Under assumption 7-2, due to the lexicographic ordering on P we first 

have to identify eo(cd) zero order equations of minimal misfit. In the 

following section it will be assumed that this problem has a unique 

solution. This holds true for generic data. Let the solution be Lo and 

define &:=Lo, Vo:= vo(Lo). Next we have to identify el(cd) equations of 

first order and minimal misfit, under the restriction that the equations 

are truly first order, i.e., orthogonal to &+s&. A second (generically 

satisfied) assumption is that this problem also has a unique solution, say 

Ll. Let V1:= v,(Ll) L vl(& + s&) and &:= & + s&+L,. In the same way we 

identify e,(cd) equations of truly t-th order of minimal misfit. It is 

assumed that this problem has a unique solution L,. Let V,:= v,(L,) and 

&:=&-l+~&_l+~t. 'he resulting model is then defined by 

B:= { re  (dlz ; r(o)+ = 0 for all re u & }. For thjs B there holds L, = L: of 
t r o  

(OF). Moreover, for generic data 8 the model B is uniquely defined by C 



and gives the optimal model eId(iZ). 
Note that the foregoing consists of sequential optimal choice of 

e1(ctd) descriptive equations of minimal misfit. Every step of this 

sequential optimization will be solved by means of an algorithm 

corresponding to proposition 2-8. 

In the next sections we describe computational details of this 

algorithm and the other ones. We specify input, initialization, recursive 

part, termination and output of the algorithms. Moreover, we state the 

optirnality properties of the resulting models in terms of assumptions on 

'the data which are generically satisfied. We refer also to Willems [IS] and 

Heij [4). 

In the algorithms we will use the notation A = col(A1,.. .,A,,) to 

indicate the matrix A E R ' ~  with blockrows A, E d.m, i = 1,. . . , n, where 

7.2. Descriptive modelling, given tolerated complexity 

In this section we describe an algorithm which for generic data GE (RqIT and 

sensible tolerated complexity cid generates the model {B) =eid(c) as 

defined in section 6.2. We first give the algorithm and subsequently state 

the generic conditions on the data. 

Algmithm for e,. 
1. Input. 

T 1.1. Data G=(G(t); t € ~ = [ t ~ , t ~ ] ) € ( @ )  . 
id 

1.2. Tolerated complexity cid = (4 ; t EZ+) E (R+)'+. 

Let eid:= e(cid) denote the equation structure corresponding to cid. 

2. Initialization (step 0). 

1 t 1 
2.1. Let S(C, O):= - . E ~ t ) G ( t ) ~ ,  the empirical covariance matrix 

t l - to+l :=to 

of order 0, have singular value decomposition (SVD) S(G,O) = UoE0U~, 

(0) (0) ( o r .  2.2. If Uo = (ul ,. . . ,uq ), U ~ ) E *  k=  1,. . . ,q, then define Yo:= span{uk , 
k r q - c r + 1 }  and &:= vi1(v0). 

2.3. Define pl:= 2eid and let {vr)'; k = 1,. . . ,pl} be an orthonormal basis 



o f  v , ( B ~ ~ s B ~ ) c R " ~ ,  e.g., v T  is the k -  th row o f  c )  where 
0 uo 

Id Do:= c o l ( ~ P ) ~ ;  t = q- e0 + I,. . . ,q). 

3. Recursion (step 2 ) .  

3.0. Input from step t-1: an orthonormal basis { v T  1 . p t  o f  

gL gL ) R l x q ( t + l )  vt( t-l+S t - I  c , where pt = dim(vt(&-, + sd. , ) )  = 
t - 1  
c ( t t l - k ) .  e?. 

k-0 
P t 

SVD: kgl v!Ov!t)T = v t & ~ : ,  Et = diag(ait), . . . , ~ : i + ~ ) ) ,  1 = = . . . = 

- ( t )  - ( t )  - ( t )  (1 )  ( 0  ( t )  ( t )  
opt >Opt+i=-.. ="r( t+ i )=O,  V t =  ("I ,..-,vPt , ~ p t + l , - - - , ~ g ( t + l ) ) -  Let qt:= 

(t)T qtx4(t+1) q(t+l)-pt and define P,:=col(vk ;k=pt+l,  ...,q( t + l ) ) ~ R  . So 

the rows o f  Pt form an orthonormal basis for [v~(&.,+s&.,)]~c 

t l - t  
3.1. Let S(8,  t):= 1 . E (6(klT, . . . ,6 (k  + tlTIT. ( ~ ( k ) ~ ,  . . . , 6 ( k  + t )  T ), 

t l-to-t+l k=tO - 
the empirical cob&iance matrix o f  order t ,  and let P&(G,t)P;. have 

( 4  ( 4  Qt 3.2. I f  Ut = (uy),.. .,uqt ), uk ER , k = 1 q then define Vt:= 

k ~ ~ a n { u ! ' ) ~ .  P,; k 2 qt - e r  + 1), LC:= v;'(v,) c { r  e R 1 q s ]  ; r = r g  , 
I 

k-0 

T~ER'" ,  k=O ,..., f )  and & : = & - l + ~ ~ t . l + ~ t .  
(t+l)T 3.3. Output to  step t t l :  an orthonormal basis {vk ; k=l , . . . ,~~+~) o f  

t Id vt+l(&+s&), pt+,:= k-o 6 ( t  + 2-k).  ek . 
bl Note that Or:= {vf) ' ;  k = 1,. . . , p t ) u {u f )?~ t ;  k = qt-e, +I,. . . ,qt) 

t 
forms an orthonormal basis o f  t+(&), with dim(Ot) = kgo(t + 1 - k)eld. Let 

0::= { (v ,  0 )  ; o t  Or, 0 t R14} and 'or:= {(0, v )  ; O E R ' " ~  o t Or), &en it 
td suffices to choose C ek orthonormal vectors in span orthogonal 

k=0 

to  0:. 

4. T m n i n u t h  (ut step to). 
t 

Either at t* = a(7):= ( 2 ,  -2 ,  + 1 - q)/ (q + 1), or at t* < Z ( T )  when g eid = q . 
1- 0 



5. Output. 
I Bases for V,, t i re, and <,. Define B:= {we (dlZ; r(o)o = 0, re B, ,}. 

We remark that the algorithm basically consists of sequential application 

of proposition 2-8 in section 2.6. In the initidzation the data is 

xi := 9(to+i) ,  i = 0,. . . , t, - to. In step t of the recursion the data consists 

of xi := P,. col(C(to + i), . . . , C(to + i + t)), i = 0,. . . , tl - to - t. The operators P, 

take care of the requirement that the new laws should be orthogonal to the 

old ones. Concerning step 3.1 note that for laws r with d ( r )= t  and 

v,(r) E [v,(*-~ + ]I there holds 11*11'= v,(r). P,.s(G,~). c. vt(rlT. 

Next we state the assumptions on C and ctd. 

7 As~umptlon 7 4  (Ff,). Let C,E (R+)'+ and Qt (d) be given. 

(i) assumption 7-2(i); 

(ii) do),d > ; in step t d') (:I 
Q-co -0 +1 qt-: t"l > uqt-cfd+l; 

(iii) for step t, let ~ 2 ) ~ .  P, = (ukIOl.. . ,ukIt), u ~ , ~ E R ~ ~ ,  and UO:= 
td tol 

c o l { ~ ~ , ~ ;  k 2 q, - e, + 1) , V ,  := col{ uk,,; k 2 q, -e, + 1) ; assume 
tol rank(Vo) = rank(V,) = e, . 

Assumption (i) expresses a sensibility requirement for ctol. Assumption 

(ii) is satisfied for generic data and guarantees the existence of a unique 

solution for the problem of optimal choice of e y  equations of order t, 
I orthogonal to + SB, -,. Assumption 7-4(ii) implies assumption 7-2(ii) and 

(iii). Assumption 7-4(iii) is satisfied for generic data and corresponds to 

requiring that the laws, identified in step t, really have order t, i.e., 

{0 # re L,) I, {d(r) = t). 

Theorem 7-5 Suppose assumption 7-4 ia satisfied, then 

(i) Fft0,(C) = {B), the model generated by the algorithm; 

( i i )  e * ( ~ )  =%; 
D 

(iii) &tIk(%B) k =l,...,e?; 

(iv) L, = L: for B, so the algorithm gives r O F  repreentation of B. 

Optimality of the model generated by the algorithm follows from proposition 

2-8, due to the lexicographic ordering on cD and assumption 7-4(ii). 

It can be shown that the algorithm always generates an allowable 



t d  model, i.e., ct(B) s c ,  for all tcZ. However, the generated model may be 

suboptimal in case assumption 7-4 is not satisfied, i.e., for non-generic 

data. 

7.3. Descriptive modelling, given tolerated misfit 

Next r e  describe an algorithm which for generic data OE(TP)* and sensible 

tolerated misfit generates the model ed(0) as defined in section 6.2. 

The algorithm basically consists of sequential application of proposition 

2-9. The (generic) optimality of the model generated by the algorithm is a 

consequence of proposition 2-9 and the special utility ued as defined in 

definition 6-2. 

Algorithm for ed. 
1. Input. 

T 1.1. DataG= (B(t); t c T =  [to,tl]) E (I?) . 
1.2. Tolerated misfit ~ ~ ' ( € 7 ;  ~ E Z + ) ,  E ~ = * . ( ~ , . . . , I ) E R ~ ~ ,  &ER. 

2. Initialization (step 0). 
(0) (0) ( 0 )  -tor 2 2.1. SVD: S(O, 0) = u ~ Z ~ U ~ ,  Zo = diag(ol , . . . , oq ), o(,O) 2 ... 2 oq-eo 2 (co ) > 

(0)  (0) uq-eo+'2.. . r u g  20. 
(0) (0)  2.2. If Uo = (uiO),. . . ,up ), uk ER', k = 1,. .. ,q, then define Vo:= 

~ ~ a n { u p ) ~ ; k  2 q- e,, t 1) and &:= v;'(v0). 

2.3. Define pl:= 2eo and let {vP)~; k = 1,. . . , f i )  be an orthonormal basis of 

vl(& t s&) cR1? e.g., vfIT is the k- th row of [:o io) where oO:= 
C O ~ ( U ~ ) ~ ;  k = q - e o t l ,  ...,q). 

3. Recursion (step t). 

3.0. Input from step t-1: an orthonormal basis k =l,. .. ,pt} of 
t - 1  

B~ ) R ' ~ ~ ' ~ ) ,  where pt =  dim(^^(&-^ t s&-~)) = E ( t  t 1 - k). ek, vt( t-1+s t-1 c k-0 
where ek is the number of accepted k - th order laws. Let qt:= q(t t l )  -pt, 

t - 1 
e;:= q- E ek and define Pi as in step 3.0 of the algorithm for 

k=O 

3.1. SVD: T T 0) (t) d 
P$(G,t)Pt=UtEJt, Et=diag(uit) ,..., uqt),  u1 L . . . ~ o  .r 

(t) 
qt-et 

(e)2>o;(;+12... 2% 20. 

(t) (t) ( t )  Qt 3.2. If Ut = (u, ,. . . u ), uk E R  , k = 1,. . . ,qt, then with et:= min{e;,e;) ' Qt 

define Vt:= ~ ~ a n { u f ) ~ .  P, ; k 2 qt - et t 1), Lt:= vil(vt) and B+:= 



I I Bt - l +~B t - l +L t .  
3.3. Output to step t +1: an orthonormal basis {V!"')~; k =  1, ... ,p ,+ , }  of 

I I t V,+~(B,  + sB , ), pt+,:= kgo(t + 2  - k). ek. See also step 3.3 of the algorithm 

for etd. 
4. Termination (at step t*). 

t A Either at  t* = a(7), or at  t* c a(7) when ,E et = q or E, 1 0  for t > t*. 
- 0  

5. Output. 
I Bases for V,, t j t*, and B:., Define B:= { r n E ( ~ ) ~ ;  r(u)w = 0, T E  B , .}. 

We will make the following assumptions on 9 and E ~ .  

7 Assumption 7-6 (cd). Let ($ ; t E z+) E R'+ and 9 E (d) be given. 

(i) *so for t > a ( T ) ;  

(ii) if at t* e;, > e;.( > 0), then assume dt*), > u" 8 j 
qt-et* !?t-et*+1 

(iii) assumption 7-4(iii), with e y  replaced by e,. 

Here ( i )  expresses a sensibility requirement for E ~ ,  (ii) is satisfied 

for generic data and guarantees the uniqueness of e d ( % ) ,  and (iii) is 

satisfied for generic data and amounts to requiring that the laws, 

identified in step t, really have order t. 

Theorem 7-7 Suppose assumption 7-6 is satisfied, then 

( i )  ed(%) = {B}, the model generated by the algorithm; 

(ii) e*(B) = (e,; t E Z+) ; 
D (t)  

(iii) c t  ,k(G,B)={uqt-et+k} , k = 1,. . 9%; 

( iv) L, = L: for B, so the algorithm gives a CDF representation of B. 

7.4. Predictive modelling, given tolerated complexity 

In this section we give an algorithm which for generic data G E ( R ' ) ~  and 

sensible tolerated complexity cd generates the model {B} =Xd(4) as 

defined in section 6.3. We first give the algorithm and subsequently state 

the generic conditions on the data. 



Algorithm for Ed. 
1. Input. 

AS for e,. 
2. Initialization (step 0) .  

2.1. AS for ed. 
2.2. AS for ed. 

td td ( 0 )  2.3. Define PO:= 4 , no:= eo and let { V L O ) ~ ;  k 2 q-eid+l) ,  up):= uk , 
k z - e p +  1, be M orthonormal b a h  o f  vo(&) and Fo = vo(&), where Fo 

is as defined in section 4.4. 

3. Recursion (step t ) .  

3.0. Input from step t -1: an orthonormal basis { v : " ~ ) ~ ;  k = 1,. . . , 
t - 1  td 

pt-I), pt-I:= *g0(t -k)ek , o f  v ~ - ~ ( & - ~ ) c R ~ ~  and M orthonormal 

basis {frl)T; k = 1,. . . , nt-l), ntd:= kgoek - td , o f  F ~ - ~ : =  { F E R ~ ~ ~ ;  
t - 1  k 

3r E dm,, T = E r g  , such that T,., = i ) .  
k=0 

SVD: pt - (t-1) (t-1)T - - pT -(t-1) -(t-1) 
E V k  Vk - t-1 t 1 t-1, k=l Ct-1 = diag(a1 , , Qq. t ), 

-(t-1) - ( t -1)  1 = 5jt-l) = . . - >uPt-l+l= .... =uq.t -(t-1) - -0, (t-1) ( t-1) - u~t - l  Vt-l=(vl ,*. . ,vpt- l ,  
( t - 1 )  ((-1) v~, - ,+~  , . . . , vq. ). Let qt:= q. t -pt-, and define Plt := 

qtx4'i 
~ o l ( v r " ) ~ ;  k =  pt-l+l ,..., q - t ) ~  R . 

- (t-1) (t-1)T - - 9 -(t-1) Similarly, SVD: E f k  f k  - v ~ ~ ~ ~ ,  = diag(ul , 
k-1 

-(t-1) =(t-1) - - -( t-1) -( t-1) -(t-1) - 9 

...,uq 1, l = u l  > u"t-l +I.=. . . =up  - 0, Vt-1 = - - ('3-1 

( Q - " ~ - ~ ) X ~  ( f l t - l ) ,  . . . ,$-')). Define ~ ~ ~ : = c o l ( f y ) ~ ;  k = nt-l +1, . . . , q )  ER 

Finally let PC:= . Then the rows o f  PC form an 

xQ(t+l) orthonormal basis for [v,(F~.,. st) +v,(&-,)]'cf? . 



( t ) +  + -  - ( t )  - ( t )  3.2. If ( s ) .  = ( ,  , )  and (S+ ) . U - ( u  , . . . , u ) ,  then 
tol -(,IT, ). p, R lxq(t+l) for k i e ,  let uflT:= (-q .uk 

bl Define V,:= ~ ~ a n ( u ; ) ~ ;  k 5 el ), L,:=v;'(v~) and & := &-I + 
s&-1 + L, . 

3.3. Output to step t + 1: orthonormal bases (up); k = 1,. . . , pt) of vt(&) and 

td bl 
(ffIT; k = 1,. . . ,n,) of F,. Here p,:= p,,+ ek and nt:= e, . 

-(,IT Note that a basis for Ft is {fk , k = 1,. . .,nt-l) u {uk .P2,; 
bl (k-1)T 0 k s et ). Further, let Or-,:= (vk ; k = 1,. . . ,P,-~), {(v,O); 

0 
V E  Or-,, OER'? and Obi:= ((0, v) ; O E R I ~ ,  VEO,-~). For v , ( ~ )  it then 

suffices to take o:-~, V,, and orthonormal vectors in span 00,-1, 

orthogonal to O;-,+V,. 

4. Termination (at step t*). 

AS for PDQ . 
5. output. 

Bases for V,, t i t * ,  and &.. t Define B:= {WE (Rq)'; r(u)w = 0, r~e*). 
We remark that the dgorithm basically consists of sequential application 

of proposition 2-13 of section 2.7. As a rough outline, ebl models data 

by successively minimizing the misfit of a required number e p  of zero 

order laws, then minimizing the predictive misfit of a required number eid 

of first order laws, and so on. In order to measure the misfit more or less 

independently, as made precise in section 5.3, the newly identified laws r 

of order t have to be elements of the space [v , (~~-~ .s ' )+v~(&.~) ]~ ,  see 

section 4.4. The operator Pt takes care of this requirement. The resulting 

optimization problem of step t of the recursion is of a static nature as 

described in section 2.7. The data consists of (xi,yi), i= O,.. . ,tl -to- t, 

with yi := P,,G(to + t + a )  and xi := Pl,.col(G(to+i), . . . , G(to+t - 1 + i)). 
Next we state the assumption on 8 and cbl. 

4 T Assumption 7-8 (etd). Let C ~ E  (R+ ?+ and BE (R ) be given. 

( i)  assumption 7-2(i); 



(ii) a") (') ; in step t 0 ( 1 )  to1 > Q ~ ~ I + ~  ( t )  ; 
q-eAol > Oq-eAd+ 1 t 

(iii) for step t ,  let uLt)'= ( u ~ , ~ , . .  . ,ukVt), u k , , ~ ~ 1 9 ,  and UO:= 
Id Id 

c o l { ~ ~ , ~ ;  k s e, ), Ut:= col{uklt; k s  e, ) ; assume rank(Uo) = 

rank(U,) = ep'; 

(iv) for step t, s!~) and sit) have full rank. 

Here (i) is a sensibility requirement for c .  Assumption (ii) is 

satisfied for generic data and implies assumption 7-2(ii) and (iii). 

Assumption (iii) also is satisfied for generic data and corresponds to 

requiring that the laws, identified in step t, really have order t, i.e., 

{O # re L,) 4 {d ( r )  = t). Also, given assumption (i), assumption (iv) is 

satisfied for generic data, which is seen as follows. For step t, the 
(q-nt-l)x(q-nt-l) 

number of data is t l - t o - t t l  and s ! ~ ) E R ~ ~ ~ ~ ,  S!')ER . As 

q, < q. t, q -nt-l s q. t, s?) and sit) generically have full rank if t, -to- 

t + 12 q. t, i.e., t < (t, - to + l ) / (q+ l ) ,  which is implied by assumption (i). 

The following theorem is a consequence of proposition 2-13 and the 

lexicographic ordering of eP. 

Theorem 7-9 Suppose assumption 7-8 is satisfied, then 

( i) K,(O) = {B), the model generated by the algorithm; 
* ( i i)  e (B) =ea; 

P 2 M td. (iii) e t ,k (O,~)={ l - (u~&-k+ l )  ) , k = l ,  ..., et , 

(iv) L, = L: for B, so the algorithm gives a CPF representation of B. 

7.5. Predictive modelling, given tolerated misfit 

Finally we give an algorithm which for generic data GE (Rq)= and sensible 

aa generates the model gu(~)  as defined in section 6.3. The algorithm 

basically consists of sequential application of proposition 2-14 of section 

2.7. The (generic) optimality of the model generated by the algorithm is a 

consequence of proposition 2-14 and the special utility uCu as defined in 

definition 6-2. 

1. Input. 

AS for $, 



2. Initialization (step 0). 

2.1. AS for eM. 
2.2. AS for ed. 
2.3. As for EW, with e p  replaced by e,. 

3. Recursia (step t). 
t - 1  

3.0. As for EM, with eid replaced ek, k i t  - 1; let e; := q- E ek 
k=O 

( t )  2 -Ld 2 3.1. As for E,. k t  ~ s l - ( u ~ ' ' ) ~ s . . .  s l - ( u  ,, ) < ( E ,  ) sl-(u':,) ) * s  ... s 
'=i e,+1 

3.2. As for <,, with e y  replaced by e,:= min{e;, e;). 

3.3. As for E,, with e r  replaced by e,. 

4. Tennirurtion (at step t*). 

AS for e,. 
5. o?Ltput. 

Bases for V,, t s t* ,  and &*. Define B:= {WE ( d l Z ;  r(u)w = 0, re&+). 

Assumption 7-10 (cid). 
(i) assumption 7-6(i); 

(ii) assumption 7-6(ii); 
id (iii) assumption 7-8(iii) with e, replaced by e,; 

(iv) assumption 7-8(iv). 

Again (i) is a sensibility requirement for ew. Given (i), the assumptions 

(ii), (iii) and (iv) are satisfied for generic data. 

Theorem 7-11 Suppose assumption 7-10 is satisfied, then 

(i) c w ( 4 )  = {B), the model generated by the algorithm; 

(ii) e * ( ~ )  = (e,; t c 2,); 

P 2 !h 
(iii) e,,k(~,~)={l-(o~:!k+l) , k=l, ..., e, ; 

(iv) L, =L; for B, so the algorithm gives a CPF representation of B. 
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7.6. Comments 

The algorithms described in the foregoing sections allow for a simple 

numerical implementation of the procedures of section 6. The computational 

complexity is mainly determined by singular value analysis of empirical 

covariance matrices and, in the case of predictive modelling, determination 

of the square root of positive definite matrices. The algorithms have been 

numerically implemented and employed, e.g., for the simulations described 

in section 9. 

The essential part of the algorithms is the construction of the 

complementary spaces V,, either generating a canonical descriptive form or 

a canonical predictive form. The operators P, guarantee that newly 

identified laws are "far" from being implied by the already identified 

laws. In this way the misfit is measured according to the principles of 

section 5. This perhaps is one of the main contributions of the paper. In 

assessing the quality of a model, the simultaneous nature of AR-equations 

representing a system is fully taken into account. The quality is measured 

by means of canonical pararnetrizations, which are not determined by 

(scientific) theory, but which are based upon the purpose of modelling, 

i.e. here, description or prediction. 

The identified models may be rather sensitive for changes in cd. For 

changes in E~ the identified models only change at  discrete critical 

values. This indicates that fixing the complexity (the structural form) 

leads to  non-robust identified models. Minimizing misfit of a given 

parametrized model hence often leads to models which are less robust than 

models obtained by minimizing complexity under the constraint of a maximal 

tolerated misfit. So in cases where one has no strong reasons to postulate 

the structure of a phenomenon, it seems preferable to infer approximate 

structure from the data by imposing a pragmatic requirement of fit. 

8. CONSISTENCY 

8.1. Definition of consistency 

The procedures of section 6 have a clear optimality property as data 

modelling procedures. The identified models' are optimal with respect to 

the utility uCa or uc The procedures give a solution for the 
tol' 
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identification problem, i.e., given data and the model class B, a model is 

chosen from the model class which is optimal in view of a criterion, based 

on the objective of modelling. It need not be assumed that the data are 

generated by a phenomenon of a certain structure. This pure data modelling 

is of interest e.g. in data compression, speech processing, econometrics, 

and so on. 

However, in other cases one wants to construct a good model of the 

phenomenon which generates the data. The identified model then should not 

only be good with respect to the particular data, but it should be good 

with respect to the generating system. 

In this section we will define a general concept of consistency, 

reflecting the purpose of constructing models which approximate the 

generating system in an optimal way. The approach is inspired by Ljung [9], 

[ l o ] .  We also refer to Heij and Willems [5]. 

Intuitively, a procedure is called consistent if the model, 

identified by the procedure, converges to an optimal approximatia of the 

generating system when the number of observations tends to infinity. So in 

the limit a consistent procedure identifies a model which, within the givdn 

model class, is as close as possible to the phenomenon. In this sense a 

consistent procedure gives a good model of the phenomenon, provided the 

number of observations is large enough. 

To define consistency we introduce some additional concepts. Let the 

set of conceivable data be D:= u{(R')";  EN), so data Q E D  consists of a 

finite time series Q = ( C ( t )  ; t E 7 = [to, t , ] )  in q variables. Let #(7):= t ,  - to  + 1 

denote the number of observations. Let M be a class of models and G a class 

of generating systems. It is assumed that the phenomenon generating the 

data corresponds to a system GEG. This means that there is a time series 
z 

W E  (p) compatible with G from which we observe Q = w 1 7 .  

Suppose that the objectives n have been used to construct a procedure 

P : D + ~ ~ .  Moreover, assume that n induces an optimal approximation map 
M A:G+2 . This means that, with respect to T, A(G) is the set of optimal 

approximations within the class M of the system GEG.  Often A(G) will 
M consist of a singleton. Further, let + be a concept of convergence in 2 , 

possibly also related to n. Finally, let n.a. denote a concept of "nearly 

alwaysn for systems GEG. Such a concept is crucial, as optimal properties 

of procedures can fail to hold true for nasty data which nearly never 

occur. 
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Consistency now is defined as follows. 

Definition 8-1 P is called consistent if for all GEG, n.a. in WEG, 

P(wIT) + A(G)  if #(T)+m. 

This means that, if the length of the observed time series tends to  

infinity, the set of models identified by a consistent procedure converges 

"nearly always" t o  the set of optimal approximations within M of the 

generating system C. 

In this paper, A(G) will consist of singleton , i.e., for GeG there 

exists a unique approximation ~ ( C ) E M ,  SO A(C) = {a(G)). In this case, let + 

be a concept of convergence in M. Then P : D + ~ ~  is called consistent if for 

all CEG, n.a. in WEG, P(wIT) = { M ( W ~ ~ ) ) ,  i.e., a singleton, for #(T)  

sufficiently large, and M(wIT)+a(C) for #(T)+m. By slight a b w  of notation 

we will indicatate this by P(w lT)+A(C). 

The consistency problem is depicted in figure 10. 

figure 10: consistency 

This concept of model consistency differs in some important aspects 

from the concept of parameter consistency in statistics, see e.g. Kendall 

and Stuart (8). In the latter case M = G = (M(8) ; 8 E 8 )  for some parametrized 

class of models (probability distributions). The data modelling problem is 

formulated as an estimation problem, and a modelling procedure is a map 

E:D+Q. The procedure is called consistent if (n.a.) E(wJT)+8 when #(T)+m, 

where 0 parametrizes the generating system. Model consistency differs in 

four main respects from this parameter consistency. First, it need not be 



assumed that M=G, i.e., that the generating system belongs to the model 

class. Second, convergence is defined in terms of models, not in terms of 

parametrizations. Third, parameter consistency raises problems in case of 

non-unique parametrizations, model consistency avoids these problems. 

Fourth, the models need not be stochastic. 

For the case of time series analysis, see e.g. Hannan, Dunsmuir and 

Deistler [3] for parameter consistency and e.g. Ljung and Caines [ll] for 

model consistency. 

In the next two sections we investigate consistency of some of the 

procedures of section 6 for certain classes of generating systems G. In 

section 8.2. we suppose G=B, i.e. the phenomenon itself is a Linear, time 

invariant, complete (deterministic) dynamical system. In section 8.3 we 

consider the case where G consists of stochastic ARMA models and the 

purpose ?r is prediction. For this case we define optimal deterministic 

approximations of stochastic systems. 

8.2. Deterministic generating AR-systems 

Let the model class M again consist of the AR-models, i.e., M:= B. Suppose 

that the data are generated by a system CEG = B, i.e., the generating system 

itself is an AR-system, so there exists an exact model of the phenomenon in 

the model class. In this case it is assumed that there is a system BEE such 
P that the data GE(R~)= is a finite observation of a time series w e ( R  ) 

generated by B, i.e., there is WEB with G=wI7. We restrict attention to 

so-called controllable systems B, cf. Willems [15]. 
M Let a= ~ { ( p ) " ;  neN) and P:D+2 a procedure. To define consistency we 

specify an optimal approximation map A:G+B and a concept of convergence on 

B. As G=B, an obvious choice for A is the identity map. Moreover, we take 

the discrete topology on B. A procedure P then is consistent if for all 

BEB, n.a. in WEB, there holds P(wlT)=(B) for #(7) sufficiently large. In 

this case, nearly always after observing a sufficiently large finite part 

of the time series the procedure identifies the generating system exactly. 

To define n.a., we use the concept of genericity. Let V c  (dl7 be a 

linear subspace. A subset V ' c V  is called generic in V if there is a 

polynomial p:V+R, p # 0 such that the complement of V' in V is contained in 

p"(~).  For BEE we call B'cB generic in B if B11TcB17 is generic in BIT for 

# (7)  sufficiently large. A property now is said to hold true n.a. for B if 



the set of points WEB where the property holds true is generic in B. 

In this setting of consistency we first consider the exact modelling 

procedure P,, as described in section 2.2.2, i.e., the procedure 

corresponding to undominated unfalsified modelling. So pUu:~+2', where for 

QE (RP)' BE Puu(G) if and only if BEB, B is unfalsified, i.e., GsBl7, and B 

is undominated, i.e., {Q E 8' I T ,  B' E 8, B' c B) - {B' = B). 

Proposition 8-2 Puu is not consistent. 

Z As a simple example, take B= (e) . For any WEB and any 7 of finite length 

there exist B' EB such that wI7s B'I7 and dim(B') 5q.#(7), hence Be P,(wI7). 

Next we consider the procedures described in section 6. We define two 

exact and sensible modelling procedures as follows. For kcZ+ let Fd(k) = 

( c ( k ) ;  teZ+)El?+ be defined by e ( k ) : =  0 for ~ ~ t s a ( k ) : =  (k-q)/(q+l)  and 
to1 c ( k ) : =  -1 for t >;i(k). kt cd(k):= (c:O1(k); ~ E Z + )  with ct (k):= 

I d  c (k).( l ,  . 1 )  The procedures e d ( * )  and Ed(k) as defined in 
sections 6.2 and 6.3 correspond to accepting only exact laws of order at 

most z(k). Now define p ( ~ l ~ ) : = ~ ~ ( ~ ( ~ ) ) ( w 1 ~ )  and P ' ( W ~ ~ ) : =  

) ) ( ~ 1 ~ ) .  So p and PP accept the exact laws which are significant, 

given the number of data. 

Proposition 8-3 pD and P' are consistent on controllable systems. 

For fixed c d  or c d ,  i.e., independent of the number of data, the 

procedures ed, ed, Ed, Kd, Ed and Ed are not consistent, 

in the strict sense of exact identification for generic finite time series. 

We illustrate this for ed and ed. Similar arguments hold true for the 

other procedures. First suppose c d  is given. Let ed :=e (cd ) ,  be the 

equation structure corresponding to cd. If ed=O, then ed is not 

consistent for the same reasons as given for P-. If there is teZ+ with 

e y  2 1, then BEE with e:(B) = 0 cannot be exactly identified, hence ed is 

not consistent. Next suppose c d  is given. If E:;SO for some t EZ+, then 

exact identification of BEE with e:(~) 21 is impossible. If c:i> 0 for all 

teZ+,then c d  does not satisfy the sensibility assumption 7-6(i) for any 
0 7 7. Moreover, as c;: > 0 ed(w17) will accept laws of order 0 for w (R ) 

of sufficiently small norm. Not having this sufficiently small norm is not 

a generic property for any BEE with B# (0). If BEB with ~;(B)=o, then ed 



in this case cannot exactly identify B generically, hence ew is not 

consistent. 

An interesting question is the relationship between consistency of 

PS), and gW and a definition of n.a. in terms of "sufficient 

excitation". Without going into details, the procedures are consistent for 

the class of controllable systems if n.a. is defined in terms of 

sufficient excitation of the inputs with respect to e .  Exact 

identification then is guaranteed provided the inputs are sufficiently rich 

with respect to EW. 

8.3. Stochastic generating ARMA-systems 

8.3.1. Introduction 

In this section we wi l l  consider the predictive procedures ed and 
to1 

in case the data consist of a finite part of a realization of a stochastic 

process. In section 8.3.4 we will define the optimal approximation of a 

stochastic process by a deterministic system, given c, or ew. Roughly 

speaking, the optimal deterministic approximation is described by the 

predictive relationships corresponding to c or e, in case the 

stochastic process were known. Note that both deterministic and stochastic 

systems generally can be given an interpretation in terms of (optimal) 

one-step-ahead prediction by means of deterministic equations. 

A similar exposition could be given for the descriptive procedures 

ed and eW. However, in general it seems difficult to give an 

interpretation of stochastic systems in tenns of deterministic descriptive 

relationships. Therefore we restrict attention to <, and cw. 
In the following we introduce a concept of convergence on 8, describe 

a class of generating ARMA-systems, define optimal approximation maps 
P P A,,and Aewand state consistency results. 

8.3.2. Convergence 

Let Bk e 8, k  e N, and B, E B. Then Bk is defined to converge to B, for k+co if 

there exist parametrizations Bk = B(Rk), k e N ,  and B, = B(R,) with the following 

properties. R, has full row rank over the polynomials, {d(Rk); k c N )  is 

bounded, and Rk+R, for k+oo in Euclidean sense. By this we mean that for k 

sufficiently large Rk has as many rows as R,, and if Rk= 
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This concept of convergence is analysed by Nieuwenhuis and Willems 

[13]. There it is shown that this convergence in terms of parametrizations 

is equivalent to a natural concept of convergence of systems, considered as 
Z subsets of (f?) . 

8.3.3. Generating stochastic systems 

We assume that the generating system belongs to the class G of stochastic 

processes w = {w(t) ; t E Z) which satisfy the following assumption. 

Assumption 8-4 (i) w is second order stationary with for all t c Z  
T Ew(t ) = 0, Ck:= Ew(t )w(t + k )  ; (ii) almost surely for realizations w, of w 

there holds for all kcZ+ 

A sufficient condition for the assumption to be satisfied is that w is 

strictly stationary and ergodic, e.g., that w is Gaussian with a spectral 

distribution @ which is continuous on the unit circle. We refer to Hannan 

[2]. This especially holds true for Gaussian ARMA-processes, in which case 
0) 

@(z):= E c ~ - ~  is a rational function with no poles on the unit circle. 
k - 4  

The process w then has a representation of the following form. There exist 

 EN, polynomial matrices N E R ~ [ S ]  and M E ~ [ S ]  with det(M(s)) # 0 on Is( 5 1, 

and an m-dimensional Gaussian white noise process n, i.e., En(t) = O  and 

~ n ( t ) n ( s ) ~  = 0 for t jt S, such that M(o-l)w = N(U-')n. 

The consistency result stated in section 8.3.5 is in terms of generic 

subclasses of G which we will define in section 8.3.4. Here genericity is 
z defined as follows. Define C C ( ~ )  as the collection of (Ck; kcZ) for 

which there e d d  WEG with ck = Ew(t)w(t + k)T, ~ E Z .  A subset C c  C called 

generic if for all-oo<tOstl< t o o  C'( is a A-generic set in CJ 
[to, t l l [to, tll' 

i.e., it contains an open subset of full Lebesgue measure in 
Cl[to,tll . 

A class of stochastic systems G' c G is called generic if C':= {(Ck; k c  Z) ; 

3 w ~ G '  with ~ ~ = ~ w ( t ) w ( t + k ) ~  for all ~ c Z )  is generic, i.e., if the 

set of covariance sequences in G' is A-generic. 

The classes G,, and G., of section 8.3.4 are generic. Moreover, 

the Gaussian ARMA-processes in G,, and GeM are generic in the class of 

all Gaussian ARMA-processes in G. So the consistency results of section 

8.3.5 in particular hold true for generic ARMA-processes. 



8.3.4. Approximation maps and the classes Gca,, Geld 

In this section we construct for a given stochastic process w optimal 

approximations in B. The optimality has to be understood in the sense of a 

utility corresponding to the purpose of modelling. For w we define the 
P optimal approximations AcM(w) and A ; ~ ( W )  as the models of optimal 

prediction of w for c, and respectively in case the generating 

system to were known. 

The foregoing is made precise as follows. For TER'~[S,S-'] with 

d(t)>O define the relative expected prediction error in analogy with 

section 5.3 as eP(to,r):= { (E((rw(J2) / ( E Y T * ~ ~ ( ( ~ )  lH, where f is the leading 

coefficient vector of T and ~~Jrw(J~:=~{ (+(o ,g- ' ) to ) ( t ) )~  which does not 

depend on t due to stationarity. If d(t)=O then define 

eP(w,r):= { E ~ J ~ I I ~  /  fir^^ 1%. For BEB we define rP(w,B) E (Rtg)'+ exactly 

analogous to P(G,B) in section 5.3. Hence E:,~(W,B) measures the largest 

relative expected prediction error of the truly t-th order predictive laws 
P P claimed by B, ~ E Z + ,  and SO on. We now define ACw(to) and AI,(w) as the 

predictive models which are optimal for cw and ew respectively, in case 

w were known. 

Definition 8-5 For w E G, A:~(W):= argmax{ ucw(c(B), 8 ( w ,  B) ) ; BE B ) 
P P 

and A,Jw):= a rpax{  uew(c(B), E (w,B)); BEB ). 

P P So A,, and ACw give deterministic approximations of stochastic 

processes which are optimal in terms of a utility on complexity and 

predictive quality of models described by (deterministic) autoregressive 

equations. 

In the sequel we will restrict attention to subclasses of G for which 
P A:, and Acw consist of singletons. For WEG define S(w,t):= 

E[col(w(t), . . . ,o(t  + k)). col(to(t), . . . , w(t +k))=], t EZ,. Now consider the 

algorithms of sections 7.4 and 7.5 with S(G,t) replaced by S(w,t). Note 

that any c, satisfies assumption 7-2(i) for #(7) sufficiently large. 

Suppose that EN is such that there is a t such that E ~ : L O  for s >  t. 

Definition 8-6 G%:={weG; assumption 7-8(ii), (iii), (iv) is 

satisfied); GIw:= {toeG; assumption 7-lO(ii), (iii), (iv) is satisfied 
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(0)  -td 2 (0)  ( t )  2 -td 2 ( t )  2 and  uq-co+l < (eo ) < up-,, , 1- (act < (er < l-(uet+i) 1. 

Proposition 8-7 ( i )  GC, and Gcw are generic in 6; 

(ii) for w e G C  A;,(W) is a singleton, generated by the algorithm 
td 

of section 7.4 with S(G, 2 )  replaced by S(w, t ) ;  

(iii) for w e G C  Aftd(tu) is a singleton, generated by the algorithm 
tol 

of section 7.5 with S(C, 2 )  replaced by S(w, t ) .  

Moreover, the Gaussian ARMA-processes in Gcd and Gc, are generic in the 

class of all Gaussian ARMA-processes in G. 

8.3.5. Consistency results 

Assume that the data % consist of a (finite) observation on T of a 
9 z realization w r e ( R  ) of a stochastic process to. As definition of n.a. in w 

we take as., i.e., "almost sure" with respect to the process . The next 

theorem states consistency results for ed and c,, with the 

approximation maps as in section 8.3.4 and the concept of convergence as 

defined in section 8.3.2. It is assumed that for etol there is a t such 

that $: 5 0  for s, t, in which case we call ew finite. 

Theorem 8-8 For every ca ,  Ew is consistent on Gcw. For every 

finite EM, Ed is consistent on Gltol. 

This means the following. Let w, be a realization of a stochastic process 
P toeGCw and let % = wrIT . Let Ac,(w) = BEE with corresponding predictive 

spaces c:= V,(L;) ,  where L; is as defined in section 4.4. Then almost sure 

Ew(c) is a singleton for #(T) sufficiently large. Denote the 

corresponding predictive spaces by c(T), the complexity by ~(7 ) .  and the 

predictive misfit by E(T). Then for #(T)+oo there holds a.s. that 

c,(T)+c,(B), c(T)+c in the Q-annian topology (i.e., there exist 

choices of bases of c(7) which converge to a basis of c), and 

t , k ( T ) , k ( ~ ,  B )  k = 1 . .  , t eZ+. A similar result holds true for Ed. 
The convergence c(T)+c implies convergence of AR-relations and of the 

corresponding models. So if the number of observations tends to infinity, 

the identified model a.s. converges to the optimal (prediction) model B 

which would be identified in case to were known. 

Roof of the theorem consists of using the ergodic properties of w and 



establishing continuity properties of the steps of the algorithms in 

sections 7.4 and 7.5 with respect to changes in S(G,t ) ,  ~ E Z , .  

We remark that also the procedure is consistent on G. 
td ' 

Moreover, CLY is not consistent if ct& is not finite. Note that such 

E~ is not sensible. 

We conclude this section by commenting on the optimality. Consider 
P e.g. <d and suppose that w.Gea is such that B=A,,(w) satisfies 

a0 

C e ; ( ~ )  = q. Then use of B leads to one-step-ahead pointpredictions, which 
t -0  

we indicate by G*. In this case a.s. and for #(T) sufficiently large 

cLY(6?) also leads to pointpredictions, indicated by 6(7). There holds 

EJJG* - ~ ( T ) I I  +O if #(T)+co. In this sense the one-step-ahead predictions 

converge to the optimal ones. However, if q > l  in general there does not 

exist a choice of EW such that 6. (and hence ;(T)) is close to the least 

squares (causal) predictor for w. So the optimality has to be interpreted 

in terms of u , ~ ,  not in terms of minimal mean square prediction error. It 

is not unreasonable to be slightly non-optimal in accuracy if the 

predictions can be made by much simpler models. 

9. SIMULATIONS 

9.1. Introduction 

In this section we will illustrate the modelling procedures of section 6 by 

means of four simple numerical examples. 

In section 9.2 we consider exact modelling. In this case only exactly 

satisfied laws are accepted. This corresponds to applying the procedures 

etd and Kw with ra= 0. The data consists of an exact observation of a 

time series generated by an AR-system. 

Section 9.3 gives an example of descriptive modelling of a time 

series, given a maximal tolerated complexity, i.e., of the procedure etd. 
The data consists of a noisy observation of a signal generated by an 

AR-system. We will compare the (non-causal) impulse response of the 

generating system with that of the identified model. 

In section 9.4 we illustrate the difference between descriptive and 

predictive modelling. For a given time aeries we compare the models 

identified by the procedures eW and 
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Finally section 9.5 contains a simulation illustrating the fact that 

the procedures for modelling, given a maximal tolerated misfit, need not 

generate models of minimal complexity. This indicates the difference 

between the procedures PSIU (eW) and P:: (P:Yd) as defined in 

sections 6.2 and 6.3 respectively. We also illustrate consistency of CU. 

9.2. Exact modelling 

9.2.1. Data 

In the first simulation we consider exact modelling of a signal generated 

by an AR-system. The signal consists of two components, each being a sum of 

two sinusoids. To be specific, let fl:= 27r/100, f2:= 2~1120 and f3:= 2n/150. 

Define sc(t):= sin(fk t), k = 1,2,3, t cR, and wl(t):= s1(t)+s2(t), 

w2(t):= sl(t)+s3(t). The data consists of observations of the signals w, and 

2 300 w2 on times t=1, ..., 300, i.e., G = ( p ( t ) ] ;  t=1, ..., 300) c ( R )  . The 
w2( t 

signals are given in figure 11. 

r2 

figure 11: data for aimdrtlon 9.2. 

9.2.2. System 

Both wl and w2 are periodic, with period 600 and 300 respectively. Hence 

600 -1 w r B(R)  with R-= 1 o3 el]. However, there m o r e  powerful models for 
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w. Observe that for s ( t )  = sin(f. t )  there holds s(t t 2)  t s ( t )  = 2cos(f). s ( t  t l ) ,  
2 i f  hence s s B ( r )  with r(s):= s -2cos(f).st 1 = ( s -e  )(s-a- l f ) .  Defining pk(s):= 

i f k  -ifk 
( s -e  ) (s -e  ) k = l ,2,3, we conclude that G s B ( R o )  with Ro:= 

9.2.3. Model identification 

Exact models for the data Q are obtained by applying the procedures e, 
and z, with r, = 0. We denote the resulting models by B(RD):= e(4) and 

B ( f ) : = K ( i Z ) .  These models are identified by using the algorithms of 

section 7 with e, = 0. Both models consist of one second order laws and one 
P 

fourth order law. Let RD and f have elements r:,,, and rl,,, respectively, 

l ,m= 1,2. The identified laws are given in table 1. 

table 1: ldentlfled AR-lam for rimulatlon 9.2. 

laws : 
D 

T l l  
D 

l. 12 
D 

' -2  1 
D 

' 2 2  

P 
f l l  

P 
f. 12 

P 
'-2 1 

P 
f 22 

0.2.4. Model validation 

coefflclentr of: 
0 1 2 3 

0 0 0 0 0 
4 

0.5007 -1 .  OQOO 0.5007 0 0 

-0.2754 0.5502 -0.2754 0 0 

0.4637 -0.9568 0.5746 -0.1319 0.0507 

-0.0352 -0.3517 1.0000 -0.8055 0.1920 

1.2392 -2.4750 1.2392 0 0 

-0.6815 1.5618 -0.6815 0 0 

0.8815 -2.7224 4.0818 -2.7223 0.8815 

1.2392 -4.9490 7.4196 -4.S489 1.2391 

Two questions arise, namely, whether these AR-laws are equivalent and 

whether they are equivalent to Ro, i.e., if B ( R ~ )  - B(#) - B(Ro). 

Direct calculation shows that there exist a constant ar#0 and 
P 2  a P 3  

unimodular matrices f and f l  such that f R D  = f l f  = R~:=  



indeed B(#) = ~( f l ) .  As 0 1 Rz = [i z] Ro it follows that B(Rz)cB(Ro), but 

B(Rz) + B(Ro). So the identified laws # and R' are equivalent, but not 

equivalent to R,. This is due to the fact that B(Ro) is not the most 

powerful unfalsified model for G. Indeed, a short calculation gives that 

p2+ ap3 = alp1, where a:= {cos(f,) - cos(f2))/{cos(f3) -cos(f,)) and a':= 

{cos(f3) - cos(f2))/{cos(f3) -cos(fl)). Stated otherwise, the space of 

polynomials {$+ c. s+ 1; CER) has dimension two. The most powerful 

unfalsified model for the generating system is B ( R ~ )  with R;:= Pf2 pypd. 

~t easily ~ O U O W ~  that B ( R ~ )  = B ( R ~ )  = B ( R ~ )  = B(R~) .  

The foregoing shows that the identified models correspond to the 

(most powerful unfalsified) model for the generating system. Hence the 

generating system is exactly identified. This illustrates the consistency 

result stated in proposition 8-3. 

9.3. Descriptive modelhg 

9.3.1. Introduction 

In the second simulation we model a time series by minimizing the 

descriptive misfit, given a maximal tolerated complexity, i.e., we use the 

procedure ed. We will first describe the data and the system generating 

it, then present the identified model and finally compare this model with 
the generating system. 

9.3.2. Data 

2 1000 The data consists of a two-dimensional time series G= E (R ) and is 

depicted in figure 12. 

9.3.3. System 

The data C is generated by the system shown in figure 13. Here s, is the 

noise-free input, n, the noise on the input, and w,:= s,+n, the exactly 

observed input. The signal s2 is the output generated by the input to,. The 

observed output is w2:= s2+5 .  

The signals s,,s2 and the noise n l , 5  are given in figure 14. For a 



-2 1 I 
o 100 zoo ' 3 0 0  400 600 aoo 700 am 900 IOOO 

figure 12: data for simulation 9.3. 

figure 13: generating system for slmulation 9.3. 

flgure 14: signals and noise for slmulation 9.3. 



signal S E R ~  and noise n s ~ *  we define the signal to noise ratio in s t n  as 
T T 

Ilslllllnll:= { , ~ , s ( t  ) 2 / ~ l n ( t ) 2  lW. In this simulation the signal to noise 

ratio for w, is V2, for w, 100. 

The system generating s2 from w, is a (symmetric) exponential 

smoother. For 0 < a  < 1 we define the exponential smoother e, as follows. Let 
2 .  1, denote the set of bounded sequences, i.e., I,:= {WER , 

sup(Jw(t) I ; ~ E Z )  < OO). Then e :  l m m  is defined by e,(u):= y, where 

1-a 17) y(t):= - . C a u(t t r). Note that for u a constant signal, u(t) = c for 
1+01 7 - 4  

all t e Z, the output is y = u. 
2 We will embed the graph of e, gr(e,):= { (u,y)~ l , ;  y=e,(u)) in an 

2 Z 1-a AR-system Bu c (R ) . In order to describe B,, let y = e,(u) = - .(y, + u + y+), 
1 +a 

r r where y.(t ):= C a u(t -r) and y+(r):= E P u(t + r). Then (u -o)y- = au and 
r=1 

(1 - au)y+ = w u ,  hence (u -a)(l - w) (y ,  + u + y+) = [(1 - w)a + (u - a)(l- w) 
2 1-01 2 + ( a - a ) w ] u  = (1-a )uu. Define p,:=(s-a)(l-as) and q,:= - .(l-a )s= 

1 +a 
2 (1 -a) s,then gr(e,) c Bu:= B(R,) where R,:= ( - q,, p,). 

In the simulation the signal s, is the exponential smoothing of w, 

with a = 0.95. Hence the (most powerful unfalsified model of the) generating 

system is B(Rg) with Rg=(-qg,pg):= (-qo.os,po.w). We remark that in 

identifying the model there is no prior knowledge that w, is the input and 

w2 the output. 

9.3.4. Model identification 

Next we analyse the data Q by means of et,. We consider models of 

decreasing complexity, corresponding to requiring one AR-relation of order 

5,4,3,2,1 and 0 respectively. For order k the resulting model is indicated 
2 z 

by Bk:= B(( - P(~))) := {(u, y) E (R ) ; p(k)(u)y = p("(u)u), k = 5,4,3,2,1,0. 

See table 2. This table also contains the roots of the polyno&als p(k), 
D dk', and the descriptive error C ~ , ~ ( Q , B ~ ) .  

The results in table 2 indicate that little descriptive power is lost by 

reducing the order from 5 to 2. Moreover, two of the roots of the 

identified polynomial p turn out to be rather invariant under different 

orders, while the roots of the identified polynomial q seem to be quite 

random, although generally one of them is close to 0. It seems reasonable 

to take c d  such that the corresponding equation structure is e(cd) = 

(0,0,1,0,0,0,. . . ), i.e., to require one second order relation. 



table 2: Identified AR-laws for simulation 9.3. 

0 r d e r 5 : ~ ' ~ )  

q ( l )  

order 4: P(4'  

q (4 )  

order 3: p(') 

q(') 

order 2 :  p(') 

q(2)  

order 1: p ( ' )  

q( ' )  

order 0: p(O) 

0.3.5. Model validation 

The identified model B(( - q ~ , p ~ ) ) : =  B2 is compared with the generating system 

B ( ( - q g , p g ) )  in table 3 This indicates that the AR-law of the 

identified system is close to the law 'of the generating system. 

error 

0.0154 

0.0113 

0.011B 

0.0119 

0.0178 

0.7190 

coef f  l c i en tn  o f :  

0 1 1 3 4 5 
8 8 8 8 8 8 

0 .4471  0.08Bl  -0.1111 - 0 . 3 M l  0.1161 0.4293 

0.0001 -0.0010 -0.0023 -0.0023 -0.0014 -0.0003 

0.1481 -0.3488 -0.4063 -0.3417 0.1440 

0.0003 4 . 0 0 1 4  -0.0018 4 . 0 0 1 7  4 . 0 0 0 1  

0.1417 4 , 8 7 1 3  -0.1884 0.4144 

0.0001 4 . 0 0 1 4  -o.oooo 4 . 0 0 0 3  

0.4061 -0.8168 0.4099 

0.0001 4 . 0 0 1 1  0.0001 

0 .7073  4 . 7 0 8 8  

o.oo11 -o.oooe 

0.8808 

0.1962 

table 3: mystan and Jdentlfied model. 

r w t n  

P 9 

O.BSl8 0 .11  

1 .0148 -0 .84 t l  .Or1 

- 1 . 0 3  -1.SJiO.831 

4 . 8 l t 0 . 7 8 1  -18 

1.0114 0 . 1 1  

-8.8@i0.731 -0.18iO.881 

0.8101 0.037 

1. 0537 
- 1 . a l i l . w I  

-1 .31  
0.e11B 8 .14  

1 . 0 3 w  0 .16  

1.0008 1.10 

rystem: pg 

Q9 

model : PI 

QI 

We next want to compare the model and the system with respect to their 

input-output behaviour. So we now will use the prior knowledge that w, is 

eocff i eientr of : 
0 1 2 

u u u rooto 

1 -2.0026 1 0.95 1.0526 

0 -0.0026 0 0 

0.9906 -1.9925 1 0.9529 1.0396 

0.0004 -0.0020 0.0005 0.1537 8.2435 



an input and w, an output. We will compare the impulse responses of the 

model and the system. 
2 z 

For B = { ( u , y )  c (R ) ; p(a)y  = q ( a ) u )  we define the impulse response of B 

with respect to u as B ~ : =  { ( u , y )  E B ;  u  = 61, where 6(0):= 1 and 6(t):=O for all 
6 t  g 0. It can be shown that B contains exactly one bounded element if q # 0, 

p  + 0 and p has no roots on the unit circle. In this case we call the time 
6 series isf? such that (6 , i )  E B nl. the stable impulse response. The modek 

B( ( - q,, p,) ) and B(( - qz, pz) ) satisfy these conditions. We denote their 
l - Q . a l t l  and stable impulse responses by ig and iz respectively.Here i g ( t )  =- 
,+a 

iz is determined as follows. There exist unique real numbers a,, %, b,, 
b  

b2, d with (a l l  t l ,  l% I>1  such that u =  -+&+ d. Define iZ(0):= P I  8 - 4 ,  8-a2 
t-1 d - , iz(t):=bl. a  for t>O and iz(t):= -b24-l for t  < 0. I t  then is a 

4 2  
matter of simple calculation to verify that p z ( ) i Z = q z ( ) 6 .  This 

b corresponds to a causal interpretation of the transferfunction and an 
b s - a ,  

anticausal one for 2. s - a 2  
The stable impulse responses ig of the system and iz of the identified 

system are given in figure 15. 

figure 15: Impulse rerponses for rimulrtlon 9.3. 

0.3.6. Scaling and sampling 

We conclude this section with some remarks. 

First, the stable impulse response of a system is a highly sensitive 

function of the AR-coefficients describing the system. For example, in the 

system ( u  - 1 - c ) y  = u with I c I < 1 the stable impulse response is causal if c < 0,  



anticausal if r > 0. 

Second, the result of the identification algorithm depends on scaling 

of the variables. Ln order to illustrate this, consider scaling of the 

output in the system B(Rg) by a factor c tO.  Let B;= {(u,~)E(R') ' ;  
D 

pg(a)y= c.q,(a)u). Let r:= e (G,(-qz,pz)) denote the descriptive misfit of 

the identified law ( - qI,  pz) with respect to the data 9 = 1 .  Denote the 

transformed data by C,:= EkJ. From definition 5-4 it follows that 

D 
e (Qc,(-cqz,pz)) = ~ . ( Y P Z ~ ~ ~ + I I P Z ~ ~ ~ ) ~ I ( U ~ ~ ~ I ~  + C-'.UPIII~)~. Using the results 
in table 3, it follows that the descriptive misfit of (.-cqz,pz) with 

respect to the scaled data f, is approximately C.E. So, e.g., if c is very 

large then the law u=O has smaller error. In the next section we will 

illustrate that the predictive procedures prevent these problems of 

scaling. 

Finally, autoregressive modelling is subject to problems of fast 

sampling. Consider the case that a continuous time system is sampled at  a 

certain sample rate A-'. The magnitudes of the AR-coefficients of the 

sampled system depend on this sample rate. This affects the descriptive 

quality of the AR-laws, as indicated above. The constant c is related to A 

as c=A.  It especially seems difficult to identify good approximations of 

infinite dimensional systems by means of autoregressive modelling in case 

of high sample rate and small noise. This is only partly due to the 

smoothness of the resulting signals. It seems contradictory that having a 

large amount of data, i.e., fast sampling, and good data, i.e., small 

noise, would be undesirable in identification. 

To illustrate this we refer to table 2, where the best AR-law of order 

1 is close to (0-l)w2= 0 with a small descriptive misfit of 0.0176. If we 

scale the output appropriately this effect is reduced. For example, 
D e (G,(O,u-l))=c.00176, while ~(4c,(-c.qz,pz))=0.0159.(~qz~2+[pI(~2)H/ 

(~qz l~2+c~2 [Pz~2)?  So for c sufficiently large the law ( -cqz,pz) has much 

better descriptive fit than the law corresponding to smoothness. We remark 

that decrease in the signal to noise ratio of the output hardly helps in 

discriminating ( q , )  from (0,u-1). This is due to the fact that 

I P Z U ~ ( U ~ Z U ~ + I P Z O ~ ) ~ = ~ .  If o= gi) with w;=s2+c.n, c> l ,  then eD(4', 

( P = 0.0159+(~-1). M ~ U .  I P ~ I I I ( U U I I ~ +  I I P ~ I ~ ) ~  m d  eD(~*, (o,u- l ) )  
ss 0.0176 + (c - 1). 1)nJ, so for c large the errors are nearly the same. 



0.4. Predictive modelling 

0.4.1. Introduction 

In the third simulation we illustrate the difference between descriptive 

and predictive modelling. We will see that the predictive procedures suffer 

less from scaling problems. On the other hand, the imposed asymmetry in 

time, due to  the one-step-ahead prediction criterion, sometimes is 

artificial, in which case the descriptive procedures seem preferable. 

We will now first describe the data and the generating system and 

subsequently analyse the data by means of descriptive and predictive 

procedures. 

9.4.2. Data 

The data consists of a three-dimensional time series C = col(wl, w2,, w,,) E 

( R ~ ) ~ " .  We will investigate the effect of scaling. In order t o  illustrate 
-(k).- this we will scale w,, and identify models for the scaled data w .- 

-(k) -(k) -(k) co1(w1 , w2 , w3 ):= col(wl, wZ1, k. w2,) k~ R+. 

9.4.3. System 

The data is generated by the system shown in figure 16. 

figure 18: genu8tmg ryrtaa for rlmd8tion 9.4. 

Here sll is the noise-free input, nll noise on the system input, 

sl:= sll+nll the input for the system, n1 noise on the observed input, 

to1:= s1+nl the observed input,s2 the output of the system, and %, noise 

on observed outputs, to2,:= s2+%, and to2,:= s2+n, the observed outputs. The 

signal t o  noise ratios are 1 sll 0 / 11 nll 1 = lo, Is1 1 /\Inl 1 = 20, [ s211 / llnll 11 = 10 and 
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I lsz l l l l lnzz l l  = 2. 

The signals, observed data and noise w e  given in figure 17 for the 

case k = 1 (no scaling on w,,). 

figure 17: data, rignalr and noire for rimdatlon 9.4. 
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2 The system relating s2 to s, is described by a s2 = ( 2 0  - l)sl. This 

corresponds to a simple linear extrapolator s2(t):= sl(t-1) 

+ (sl(t - 1) - sl(t - 2)). 

9.4.4. Model identification and validation 

In order to identify a model, we have to reconcile the desires for low 

complexity and for low misfit. In the simulation we identified the 

AR-models with best descriptive and predictive fit for orders from 0 up to 

4 and for data dk) corresponding to various scaling constants k. In order 

to choose a model we compared the increase in fit due to increase in 

complexity. It turns out that the descriptive misfit decreases only 

slightly for orders larger than two. Moreover, the results for k > l  nearly 

coincide with those for k = 1. 

The main results of the simulation are summarized in tables 4 and 5. 

Table 4 contains the best predictive models of orders from 0 up to 4 and 

for various values of k. Table 5 contains the best descriptive models of 

orders 0 and 2 and for various k. Specified are the AR-coefficients in 

r,(o)%Y) + r21(o)%r) + r 2 2 ( o ) ~ r )  = 0, some of the roots of r,, r2,, r,, and 

the misfits. 

From table 4 it is dear that the model identified by the predictive 

procedure does not depend on scaling of w,,. Moreover, considering the 

predictive misfits it seems very reasonable to choose a second order model, 

with predictive misfit 0.12. The model for data dk) then becomes 
( 1  ( k )  (k)  (k )  (k) 2 

rY)(o)wl + r2, (o)w2 + rZ2 (o)wr) = 0, where r, (s) = 0.08s - 1.99s + 0.96, 
(k)  2 r2, (s) =S -0.05st 0.01, rg)s k-1(0.01~-0.03). SO this law is close to the 

generating system ( - 20 + l)s, + o?s2 = 0. The procedure identifies the relation 

between w1 and w2, as its misfit is due to the noise on w1 and w,,, which 

is much smaller than the noise on Note finally that, even if dk) is 

observed instead of Q-Q"), the predictive procedure for all k identifies 

the same AR-relation for the unscaled variables (w1,w2,,wm). 

On the other hand, as shown in table 5, the model identified by the 

descriptive procedures depends strongly on scaling of w2,. Roughly 

speaking, for values of k larger than 0.1 it seems reasonable to choose a 

model of order 2, which model turns out to be relatively close to the 

generating system. For values of k smaller than 0.1 it seems reasonable to 
(k )  choose a model of order 0, approximately corresponding to wr)  = k.w2 . 



table 4: predict ive AR-laws for simulation 9.4. 

k= l  
~ 0 e l l . U  

1 
8 

2 
8 

3 
8 

4 
o 

? O O C l  

m l r l l C  

ks0.1 
c o e 1 f . o  

1 
8 

2 
o 

1 
o 

4 
o 

r o o t s  

m l  r f l t  

ko0.01 
c 0 e f f .  8 

1 
0 

1 
0 

1 
8 

4 
8 

r o o t #  

m l r f l t  

order 3 

71 711 fa2 

order  1 

+I 721 fa2 

0.96 0.01 -0.03 

-1.99 -0 .00 0.01 

0 .01  1 0.00 

0.49 0 . 0 2 t  1 . a  

0.111 
2S.2 -10.1 

0.1161 

0.96 0.01 - 0 . U  

- 1 . 9 ) - 0 . 0 5  0.14 

0 .09  1 0.02 

0.49 O.02f 1.85 

0.111 
20 .1  -10.3 

0.1161 

0 .96  0.01 -2.70 

-1 .99 -0.00 1.40 

0.08 1 

0.49 O.02t 1.80 

0.111 
20.2 -19.1 

0.1169 

order 0 

f1 f21 fa1 

-0.60 1 - 0 . 4 4  

- 

0.3WO 

-0.60 1 - 0 . 4 4  

- 

0.3150 

- 0 . 6  1 - 0 . 4  

- 

0.3WO 

order  4 

f1 fa1 712 

order 1 

f l  f 2 l  f a1  ----- 
-1.12 0 . 4 1 - 0 . 0 5  

0 .40  1 -0.04 

4 .62  -0.41 - 1 .  

0.2103 

-1.12 0 . 4 8 - 0 . 4 6  

0 . 4 0  1 4 . 3 1  

4 . 6 2 - 0 . 4 8 - 1 . 1 5  

0.2153 

- 1 2  0 .48  -4.07 

0 . 4 0  1 -3 .60 

4 .62  -0.48 - 1 .  

0.2103 

0.11 0.01 -0.02 -0 .11  0.05 -0.00 

0.69 -0.02 -0 .02 0:30 0 .07  -0.01 

- 1 . H  0.09 0.01 0 .73  -0 .09  -0 .02 

0.01 1 -0.00 -1.99 0.07 0.01 

0.07 1 -0.00 

0 .03  0 . 4 1 9 . 2 1 1  

-0.17 -0 .43 

24.4 

0.1149 

0 . 1 1  0.01 -0 .19 

0 . 6 9 - 0 . 0 3  -0.21 

-1.99 0.09 0 .14  

0.08 1 -0.02 

0 . 0 3  

-0.17 

24.4 

0.1149 

0 .18  0.01 -1.)) 

0.89 -0.02 -2.14 

0 . 1 6 - 1 . 9 9  0.09 4 

0.01 1 -0.17 

0 .03  

-0.17 

24.4 

0.1149 

26 .6  

0.1134 

-0.18 0.0.5 -0.00 

0 .30  0 .07  -0.18 

0 . 1 3  -0 .09 -0.19 

-1.99 0 . 0 7  0.13 

0 . 0 7  1 -0.04 

0 .4 l fO .211  

-0 .43  

26 .6  

0.1134 

-0.1)  0 . 0 5  -0.0) 

0 .30  0 . 0 7  -1 . I1 

0 .73 -0 .09 -1.93 

-1.99 0 . 0 7  1.19 

0.07 1 -0.42 

0.41tO .211 

-0 .43 

26 .6  

0.1134 



table 5: descriptive AR-lam for slmularlon 9.4. 

k=1: 

f l  

f2i 

f22 

kr0.2: 

fl 

f21 

'-22 

b . 1 4 :  

fl 

T2i 

'-22 

k-0.12: 

fl 

f21 

'-22 

k-0.11: 

fl 

f21 

'-22 

kS0.1: 

fl 

f21 

'-22 

k=o. 09: 

fl 

'-22 

b0.01: 

fl 

f21 

2 

roots 

0.020.57;87.70.0561 

0.24i4.12 

4.92; 1.99 

0.57; 89.5 

0.20;-0.08 

3.06; 2.49 

0.57; 91.8 

0.07f0.091 

1.98f1.091 

056; 89.6 

0.08fO.231 

1.43f1.151 

0.55; 76.9 

0.11f0.341 

1.10f1.061 

0.53; 49.4 

0.17fi.481 

0.88&0.941 

051; 30.3 

0.24&0591 

0.79fi.871 

0.40; 8.64 

0.44fO.771 

0.70~.781 

coeff. order 2: 

0 1 2 
u u u 

1.13 -1.99 

-0.03 -0.12 1 

-0.03 0.02 -0.00 

1.13 -1.99 0.02 

-0.02 -0.13 1 

-0.19 0.14 -0.02 

1.11 -1.98 0.02 

0.01 -0.14 1 

-0.43, 0.33 -0.08 

1.08 -1.95 0.02 

0.06 -0.17 1 

-0.80 0.68 -0.24 

1.02 -1.88 0.02 

0.13 -0.22 1 

-1.37 1.29 -0.59 

0.90 -1.72 0.03 

0.26 -0.33 1 

-2.54 2.71 -1.54 

0.76 -1.52 0.05 

0.40 -0.47 1 

-4.06 4.66 -1.96 

-0.01 0.01 -0.00 

-0.01 0.01 -0.02 

1.10 -1.39 1 

order0 

1.36 

-2.28 

I 

-0.00 

-0.21 

I 

-0.01 

-0.14 

I 

-0.01 

-0.12 

I 

-0.01 

-0.11 

I 

-0.01 

-0.10 

1 

-0.01 

-0.09 

I 

-0.00 

-0.01 

I 

misflt 

0.0559 

0.0555 

0.0547 

0.0535 

0.0505 

0.0461 

0.0052 

mlsflt 

0.3250 

0.1137 

0.0804 

0.0691 

0.0634 

0.0577 

0.0520 

0.0058 



Ln this way the simulation clearly indicates the effect of scaling of 

data on the resulting model identified by the descriptive procedures. The 

model identified by the predictive procedures is invariant under scaling. 

9.4.5. Effects of scaling fo r  SISO systems 

We conclude this section with a few remarks on the effect of scaling on the 

identification of single-input single-output (SISO) systems. 

In table 6 we give the main results of the simulation experiment 

consisting of modelling the data $(*I:= c o l ( ~ ~ , k . w ~ ~ )  for various k by means 

of the descriptive procedures. From the table of misfits it seems 

reasonable to accept a second order law , as the second order laws have 

considerably better fit than lower order laws and nearly as good fit as 

higher order laws. The table indicates that scaling has little influence on 

the model for (w,,w2,), as for scaling constant k the identified AR-law 
(k) (k) (1) (1) (r, ,r,, ) is approximately equal to (kr, ,r2, ). 

On the other hand, it turns out that by decreasing the signal to noise 

ratio for w2,, the identified model becomes more sensitive to scaling. 

Moreover, in section 9.3 we concluded that for the exponential weighting 

system the identified model is sensitive to scaling. It hence appears that 

scaling sometimes has influence on the identified model, but that the 

effect need not always be large. Here we onIy will give a sketch of an 

explanation. 

For simplicity, consider a second order system B = {(w,, w2) ; p(a)w2 = 

q(a)w,) with degrees d((p,q)) =d(p) =2. Assume that w2 is scaled in such a 

way that 1lPl2= %.Let the data consist of C=(C,,C2), C,=W,+E,, 

G2 = w2 + e2, where el and e2 are uncorrelated white noise with a,:= ( I € , ( I  and 

a :  e .  To investigate the effect of scaling, suppose we observe 

(c,G,, c2C2), c,. c2 # 0. As the identified models are invariant undek a data 

transformation ( &GI, + 12), c # 0, we may consider dk):= (GI, k. q), with 

k:= I c2/c1 I .  
First let k = l  and let a denote the descriptive misfit of (-q,p), i.e., 

1 2 % a:= (Ifi2 -qElll m 1V2. (u:+u2) . Moreover, let ,9 and y denote the descriptive 

misfit of the best first order law for G, and C2 respectively. For k let e: 

denote the descriptive misfit of the best first order law for G ( ~ ) ,  and ak 
D -(k) the misfit of ( - kq,p), i.e., ak:= e (w , (-kq,p))y..kV2/(l+k2)fi. A relevant 

indication for the sensitivity to scaling is the influence of k on ak and 



misfit 

k-100 

k-10 

k-1 

k-0.1 

k-0.01 

= ( k )  table 8: descriptive mlrflt and AR-lam for W . 

order 

0 1 2 3 4 

0.4812 0.1587 0.0616 0.0564 0.0554 

0.4798 0.1585 0.0616 0.0564 0.0554 

0.3726 0.1370 0.0565 0.0528 0.0520 

0.0544 0.0245 0.0134 0.0127 0.0125 

0.0055 0.0023 0.0014 0.0013 0.0013 

AR- 1 aw 

- 

k-100 : ?- 1 

T21 

k-10 : f 1 

f 21 

k= l  : 7- 1 

f 21 

k = o . l :  f 1 

f21 

k - 0 . 0 1 :  f 1 

f- 21 

k-1: 

p r e d i c t i v e :  f l  

f 21 

1 ek. We assume that for small k e: = k.y and for large k e:=p.  This seems 

often to be the case. Now if a V 2  < min{p ,y )  we may expect little 

sensitivity to scaling, as it seems probable that in this case e : > a k  for 

all k€R+ .  

In the case of data g(*):= c o l ( ~ ~ , ~ ~ , )  in this section the underlying 

system is described by p(s) = s2 and q(s) = 2s-1.  So for k =  1 N 5  we have 

c o e f f .  o f :  

0 1 2 
v v v 

118 -202 3 .37  

-0 .07 -0 .12 1 

11 .8  -20 .2  0 .34 

-0.07 -0.12 1 

1 .15 -2 .OO 0 .02  

-0 .06 -0.11 1 

0 .10  -0 .19 -0 .OO 

-0 .03 -0.05 1 

0 .01 -0 .02  -0.00 

-0 .02 -0.05 1 

0.97 -1.99 0 . 0 8  

-0 .02 -0.04 1 

roo ts  

0.59 59.1 

0.33 -0.21 

0.59 59.3 

0.33 -0.21 

0.58 80.0 

0.31 -0.20 

0.52 -111 

0.19 -0.14 

0.51 -98.0 

0.18 -0.13 

0.10 33.8 

0.17 -0.13 



llkq11 = 11pll. Form this we get a a 0.04, 8 u 0.28, y u 0.27. So indeed 

aV2 < min{B,y). 

On the other hand, for the exponential weighting system of section 9.3 

we have (1 pg (I>> lJqg ( 1 .  It can be calculated that for c = 850 we have Ilcqgll = 11 po 11 
and a u 9.5, t9 u 1.82, y u 15.3. So in this case B < aV2 < y.  For large values of 

k we will be unable to identify the generating system. The simulation of 

section 9.3 corresponds to small k (kn1/850). 

Finally, if w, and w2 are very smooth we will always have problems in 

identifying the relationship between w, and w .  In this case 
D 2 % Bne  ( ~ , u - l ) n u l  and 7 n P ( q , u - 1 ) n u 2 ,  while aka(u:+ui)V1. k/(l+k ) . 

In this case we may expect &<ak  for all k. 

8.6. An example illustrating non-optimality 

8.5.1. Introduction 

In the fourth and final simulation we illustrate the fact that the 

procedures for modelling, given a maximal tolerated misfit, need not 

generate models of minimal complexity. This then shows that the procedures 

e, and <, differ from the (optimal) procedures P: :~  and P: :~  
respectively, as indicated in sections 6.2 and 6.3. 

We first describe the data and the generating system, then analyse the 

data by means of the procedures ed and Ed, and comment on the 

identified models. We finally illustrate the consistency of Ed. 

8.5.2. Data and system 

The data 4 = co1(Gl,G2,&) E (R~)'" is generated by an ARMA-system 

M(U-')w = ~ ( u - l ) n ,  where n = col(n,, %, %) consists of three uncorrelated white 

noise processes with Enk = 0, ~ n :  = 1, k = 1,2,3. The matrices M and N bSe given 

0 % O O  

by,=[, : 1 au - j m d N = [ :  : ; ] w i t h r r = l N u m d ~ = ~ l . l .  

This corresponds to w1 = H. n, , ow3 = ano, +% , w, = w3 +& . Figure 18 shows 

the data iri, generated by a realization of n. 



flgure 18: dab  for r lm~t lon  0.5. 

9.5.3. Model identification 

We will identify a model for 6 by means of descriptive and predictive 

procedures with (unfavourable) given tolerated misfits. 
Id -to'.- First we consider pb with cbl=( E (111) ; teZ+) ,  E,, .- 

-tor.- 2 
ef:= 1.6, E,  .- e::= 1.2, and E ,  := -1 for t > 1. This means that only zero 

order and first order laws may be used in the identification of a model. 

The identified model is given in table 7, along with the best 

(not-allowable) first order law. 
Id P Next we consider Kw with EM = ( E~ . (l,l,l) ; teZ+) ,  zio':= e,:= 

P 1.6, zto':= e l :=  0.95, and &:= -1 for t > 1. The identified model is given in 

table 7, along with the best (not-allowable) first order law. 

0.6.4. Model validation 

The identified models are not of minimal complexity, given the maximal 

tolerated misfit. This is also indicated in table 7. It turns out that both 

for descriptive and predictive tolerated misfit as given before the model 
3 z B*:= {w E (R ) ; w, = 0, w, = 0, (u - a)q = 0) satisfies the misfit constraint. This 

model has complexity C ( B ) = ( , , , , . ) ,  which is smaller than the 

complexity of the identified models, which is (l,l,l,l,.. . ) It easily 

follows that c(B*) is the lowest achievable complexity, given the misfit 

constraints. However, among these allowable models of lowest complexity 

there exists none of minimal misfit. For the procedures and Kw 



table 7 :  deauiptlve urd predictive AR-laws for rkulatlon 9.5. 

descr. AR 
order 0 

0 
order 1 : o 

1 
o 

pred. AR 
order 0 

0 
order 1 : o 

1 
o 

there exist models of lowest complexity and minimal misfit, but they seem 

difficult to compute. Their identification involves the question what is 

the lowest possible zero order misfit such that there exist first order 

relations, satisfying the misfit constraint and the orthogonality 

conditions of the (descriptive or predictive) canonical form. 

The procedures ed and Ed first determine as many zero order 

laws as possible. Requiring three of those laws results in a zero order 

misfit (1.7197, 0.6562, 0.4992), which is more than tolerated. Hence two 

zero order laws are accepted. Moreover, the best two laws are chosen. This 

implies conditions, due to the canonical form, on first order laws. In this 

simulation there is no allowable first order law satisfying these 

conditions. The model B* shows that it is profitable not to take the best 

two zero order laws in order to get allowable first order laws, i.e., with 
P misfit less than ey or el. 

ldent l f led model 

'4 w 2  W3 misfi t  

We finally consider increase of the number of data generated by the 

ARMA-system. In table 8 we summarize results for the procedure Ctd in 

0. 9978 -0 . 0364 0. 0 552 

-0.0661 -0.5347 0. 8425 

-0.0012 -0.8443 -0. 5 359 

0 .0012 0 .a439 0. 5 356 

0.0978-0.0384 0.0552 

-0.0661 -0.5347 0. 8425 

-0 .OOO4 -0 .2937 -0. 1865 

0.0014 1 0.8348 

model B* 

Wl W 2  W 3  misfi t  

0 .dB92 

0 .US62 

1.7197 

1.4470 

0.4092 

0 .M62 

1.7197 

0.9559 

1 0 0 

0 1 0 

0 0 -a 

0 0 1  

1 0 0 

0 1 0 

0 0 -a 

0 0 1  

0 .SO00 

1 .dB38 

0 .9S74 

0.5000 

1 .dB38 

0.9301 



table 8: comirtency of <d. 

o r d e r  0 :  

AR-coef f . 
'"1 

'"2 

'"3 

m i s f i t  

AR-coef f . 
'"1 

w2 

'"3 

m i s f i t  

AR-coef 1 .  

w 1  

'"2 

w3 

m i s f i t  

o r d e r  1 :  

AR-coef f . 
0 

a : W1 

'"2 

w3 
1 

a : Wl 

w 2  

w3 

m l s f i t  

P 
*e t o ,  

1 

0 

0 

0 .SO00 

0 

- 0 .5257 

0 .a507 

0 .6482 

1 .6970 

0 

- 0 .2182 

- 0  .I348 

0 

1 

0 . e l 80  

0 .9759 

I den t l f l ed  models 
T-SO 

0 .9999 

0 .OO19 

0 .0161 

0 .5620 

-0 .a127 

-0 .5286 

0 .8488 

0 -6593 

-0  .0102 

0 .8489 

0 .S285 

1 .5920  

- 

T- 100 

0 .9824 

0 . I422 

-0 . I210 

0 -5161 

0 1 7 9  

-0 .5440 

0 .El96 

0 .6621 

> 1 , 6  

0 -0228 

-0 ,3708 

-0 .2511 

-0 .0614 

1 

0 6 7 7  

0 .9296 

T-400 

0 .9978 

-0 .0364 

0 .0552 

0 .4992 

-0 .OM1 

-0 .5347 

0 .8425 

0 .6562  

> 1  .6  

-0 . 0004 

-0 .2937 

-0 . I865 

0 -0014 

1 

0 .6348  

0 . 9SSS 

T-800 

0 .996l  

-0 .0234 

-0 .0346 

0 .4994 

-0 .OW7 

-0 .S246 

0 .847l 

0 .6429 

> 1 . 6  

-0 .a004 

-0 .2874 

-0 .1772 

0 .0014 

1 

0 . e l 64  

0 .B578 
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case of T=50,100,400 and 800 observations. We also calculated the best 

first order laws. Observe that for T=50 the procedure for this simulation 

would accept three zero order laws, while for T=  100 it would accept a first 

order law. We also give the optimal approximation A:~,, corresponding to 

the optimal predictive model for ctd in case the generating system were 

known. This model can be calculated from covariance matrices, derived from 

M and N. 

The results in table 8 illustrate consistency, as defined in section 

8. Note especially that in the limit the best first order law which 

satisfies the orthogonality conditions of the canonical predictive form has 

predictive misfit 0.9759 > cy = 0.95. Hence, almost sure, for a sufficiently 

large number of observations the procedure <w wi l l  only accept two zero 

order laws. 

10. CONCLUSION 

In this paper we have described some procedures for approximate modelling 

of a time series, along with corresponding algorithms. The procedures have 

been illustrated by means of some numerical simulations. 

The procedures determine a deterministic dynamical system which for 

given data is optimal with respect to  a utility of models, depending on the 

objective of modelling. This utility is expressed in terms of a complexity 

of models and a measure of fit between data and models. The utility 

reflects a compromise between the generally conflicting objectives of 

identifying a simple model and a model which fits the data well. The 

utility is numerically expressed in terms of canonical parametrizations of 

dynamical systems. These canonical forms are determined in accordance with 

the objective of modelling. 

The procedures form part of a more general deterministic approach to 

approximate modelling, as extensively discussed and illustrated in the 

paper. 

The procedures have a clear optimality property as data modelling 

procedures, in terms of the corresponding utility. A procedure also has an 

optimal performance as a method of modelling phenomena if it is consistent. 

This means that nearly optimal models of the phenomenon are identified if 

the number of observations generated by the phenomenon is sufficiently 

large. This has been investigated for certain classes of data generating 



systems and some of the procedures. 

We finally mention some topics for future research. 

( i )  The construction of algorithms for utilities other then u, and 
t d  

u , ~ ,  especially for minimizing the number of unexplained variables 

(inputs) under a misfit constraint. 

(ii) Utilities and algorithms when the purpose of modelling is control. 

(iii) Consistency analysis for generating systems of ARMAX type, i.e., with 

inputs, and the related issue of sufficient excitation. 

(iv) Definition of approximate structure of a phenomenon, and 

corresponding interpretation of stochastic systems, especially of 

ARMAX type. 

(v)  Definition of the amount of confidence in identified models, 

sensitivity with respect to changes in data and tolerated levels of 

complexity or misfit, and robustness. 
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