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FOREWORD 

The authors provide several characterizations of optimal trajectories for the classical Meyer 
problem arising in optimal control. For this purpose they study the regularity of directional 
derivatives of the value function: for instance it is shown that for smooth control systems 
the value function V is continuously differentiable along an optimal trajectory x : [to, 11 + 

Rn provided V is differentiable a t  the initial point (to,x(tO)). Then they deduce the upper 
semicontinuity of the optimal feedback map and address the problem of optimal design, obtaining 
sufficient conditions for optimality. Finally it is shown that the optimal control problem may be 
reduced to  a viability problem. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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Some characterizations of optimal trajectories in 
control theory 

Piermarco Cannarsa 
& 

Halina f iankowska 

Introduction 

Consider the optimal control problem 

minimize g ( ~ ( 1 ) )  

over all solutions of the control system 

(1) 2' = f (t, 2, u(t)), u(t) E U 

satisfying the initial condition 

(2) ~ ( 0 )  = €0. 

We recall that by a simple change of variables the classical Bolza problem in control 
theory 

1 

minimize { p(z(1)) + / L(t, r(t), u(t))dt 
0 

over the trajectory-control pairs (z, u) of (I),  (2) may be reduced to the one under 
consideration. 

The goal of the optimal control theory is to find necessary and sufficient con- 
ditions for optimality and to construct optimal trajectories. While several results 
establishing necemary conditions are available in the form of maximum principle, 
it is difficult to complete these conditions to sufficient ones. In this paper we show 
that this additional information may be obtained from some properties of the value 
function defined by 

V(to, zO) = inf{ g(z(1)) ( z is a solution of (1) on [to, 11, z(to) = zo ) 



When the data of the problem are Lipschitz, then the value function is locally 
Lipschitz. When it is differentiable it satisfies the Hamilton-Jacobi equation: 

where the Hamiltonian H is defined by 

In general, even in very regular situations, the value function is not differentiable. 
But still it solves the Hamilton-Jacobi equation (3) in the viscosity sense (see [12], 

[I31 ). 
Furthermore V can be characterized as the unique viscosity solution of (3). So it 

inherits many qualitative properties of this class of solutions, such as stability and 
comparison theorems and also enjoys some numerical advantages (see for instance 

191 1. 
Although, as we have just recalled, the value function is not necessarily differ- 

entiable, we prove in this paper that the differentiability of V is preserved along 
optimal trajectories. More precisely, we show that if V is differentiable at  some 
point (to, zo) and f denotes any optimal solution starting from zo at time to, then 
for every t E [to, 11, V is differentiable at (t, ~ ( t ) )  (see Corollary 4.3). Actually, the 
derivative -V.(t, ~ ( t ) )  is equal to the cestate of the Pontriagin maximum principle, 
which we recall in Section 3. 

The value function is also a good tool to characterize optimal trajectories. It is 
well known that V is nondecreasing along trajectories of (1) and is constant along 
optimal trajectories. 

When the Hamiltonian H is smooth enough and the value function is differen- 
tiable at  (0, €01, then the following necessary and sufficient condition for optimality 
holds true (Lemma 3.5): 

Let z(.), p(-) solve the Hamiltonian system 

Then z is optimal if and only if z(0) = b, p(0) = -V:(O, €0) (see Theorem 3.4 for 
a more general statement.) 

Even when the Hamiltonian is not smooth, the value function may still be used 
to construct the optimal feedback map: 



Namely the following property holds true: a trajectory Z of (1) is optimal for our 
optimization problem if and only if it is a solution of the differential inclusion 

We refer to [16], [4] for some developments in this direction. 
To investigate regularity properties of the set-valued map G we prove the ex- 

istence of the directional derivatives of V. For this aim we show that under very 
general assumptions on the control system the value function is semiconcave (see 
Theorem 4.1). 

As a consequence of the semiconcavity of V, we obtain that the feedback map 
G is upper semicontinuous and has nonempty compact images (see Theorem 5.1). 

In particular whenever the feedback map G is single-valued, it is continuous. 
From the above it follows that in this particular case optimal trajectories are con- 
tinuously differentiable. 

Moreover if the data are convex, then G has convex values and the inclusion (6) 
fits the well investigated framework of upper semicontinuous convex valued maps. 
In particular solutions of (6) can be obtained as limits of Euler curves. 

When the map G does not have convex images the above characterization of 
optimal trajectories is not easy to apply. To overcome this difficulty we provide an 
alternative approach based on viability theory. 

Namely we observe that solving the optimal control problem is equivalent to 
solving a control system with state constraints: 

I i )  t ' =  1 
i i) 2' = f ( t , z , u ) , u  E U 
iii) z' = 0 

iv) (t, ~ ( t ) ,  ~ ( t ) )  E Graph (V) 
v) t(O) = 0, z(0) = €0, z(0) = V(O,€o) 

The last problem is a viability one and may be approached using many results of 
viability theory (see [19], [2], [:I.] and bibliographies contained therein). In particular 
solutions of such system can be constructed using Euler curves. We underline that 
in this case dynamics i )  - iii) remain regular, but we have to keep trajectories in 
the set Graph(V) according to the relation iv). 

Finally, we treat the case involving the end point constraints (z(1) E K1) via 
penalization techniques. We show that the value function of such problem may be 
approximated by the value function of problems with free end points (see Theorem 
7.1). A result of the same nature holds true for optimal trajectories. 

The plan of the paper is as follows. Section 1 contains basic material on the 
value function. In Section 2 we recall some definitions of set-valued gradients and 



investigate properties of semiconcave functions. Necessary and sufficient conditions 
for optimality are described in Section 3, while Section 4 is devoted to the semi- 
concavity of the value function. The optimal feedback map is studied in Section 5 
and viability theory is applied to optimal trajectories in Section 6. In Section 7 we 
a d d r w  the problem with end point constraints. 

1 Value function in optimal control 

Consider a complete separable metric apace U and a continuous function 

We associate with it the control system 

(7) zl(t) = f (t, z(t), u(t)), u(t) E U almost everywhere 

An absolutely continuous function z : [to, tl] + Rn is called a trajectory of (7) if 
there exists a measurable function u : [to, tl] -, U such that zl(t) = f (t, z(t), u(t)) 
almost everywhere in [to, tl] . 

Throughout the whole paper we impose the following assumptions on f 

i )  3 k ~  L1(O,l;R+), V ( t , u ) ~ [ O , l ] x U ,  f ( t , - ,u)  is k(t)-Lipschitz 

i i) 3 7 > 0 such that V (t, u) E [ O , l ]  x U, I l f  (t, z, u)(( L r(llzII + 1) 

Let g : Rn 4 R be a locally Lipschitz function and €0 E Rn be given. 
We investigate the minimization problem 

(9) minimize {g(z(l)) I z is a solution of (7) on [O, 11, z(0) = to} 

The dynamic programming approach associates with this problem the value function 
defined by 

(10) V (to, zo) = inf {g ( ~ ( 1 ) )  I z ia a solution of (7) on [to, 11, z(to) = 20) 

Our assumptions allow to  apply the relaxation theorem from [2] to show that V is 
actually equal to the value function of the relaxed problem: 

Consider the convexified differential inclusion 

(11) zl(t) E ZZ f (t, z(t) , U) almost everywhere 



We recall that an absolutely continuous function z : [to, t l] +t Rn is called a trajec- 
tory of (1 1) if for almost every t E [to, tl] , zr(t) E 5 f (t, z(t), U). We associate with 
(1 1) the following minimization problem 

(12) minimize (g(z(1)) 1 z is a solution of (1 1) on [0, 11 , z(0) = €0) 

The corresponding value function is given by 

Veo(to, zo) = inf (g(z(1)) ( z is a solution of (11) on [to, 11, z(to) = zo) 

Theorem 1.1 For all (to, zo) E [0, 11 x Rn we have 

V(to, zo) = Veo(to, zo) = min(g(z(1)) I z is a solution of (1 1) on [to, 11, z(to) = zo) 

Proof - From the relaxation theorem (see [2]) and the parametrization theorem 
[2] we know that the closure in the metric of uniform convergence of trajectories 
of (7) defined on the time interval [to, 11 is equal to the set of trajectories of (11) 
defined on [to, 11. This ends the proof. 

It is well known that the value function is nondecreasing along trajectories of (7) 
and therefore a trajectory z : [to, 11 + Rn satisfies V(to, z(to)) = g(z(1)) if and only 
if V(t, z(t)) = g(z(1)). This leads to a verification technique in optimal control: 

A trajectory z : [O, 11 -V Rn of the control system (7) is optimal for the problem 
(9) if and only if z(0) = €0 and V(t, z(t)) = const (in this case V(t, z(t)) = g (~ (1 ) ) )  

Hence instead of looking for an optimal trajectory for the problem (9) one can 
search a trajectory of (7) satisfying the initial condition and such that the value 
function ie constant along it. 

We recall that the directional derivative of a function p : Rn -V R at  zo E X in 
the direction 8 E X (when it exists) is defined by 

a~ - p ( z o + h e ) - ~ ( z o )  -(zo) = lim a e  h+O+ h 

Proposition 1.2 The value function V i s  locally Lipschitz. Furthermore for every 
trajectory z of (7) on [0, I.] and for almost every t E [O , l ]  there ezists the directional 
derivative 

Proof - Local Lipschitz continuity of V is a well known result. It can be checked 
by the arguments similar to  [15, Theorem 4.2, p.851 (see also [16]). 



Fix a trajectory z(.). Then the function t -+ p(t)  := V ( t ,  z ( t ) )  is absolutely 
continuous. Fix t such that p and z are differentiable at  t .  Then 

lim 
V ( t  + h, z ( t )  + hzl( t ) )  - V ( t ,  z ( t ) )  = lim 

V ( t  + h, z(t  + h ) )  - V ( t ,  ~ ( t ) )  
h+O+ h h+O+ h 

and the proof follows. 

When the value function is differentiable it has many properties related to dy- 
namics of system. 

For instance 

Propoeition 1.3 If for some (to, zo) E [0, l.[xRn and v E i5f (to, zo, U) ,  V has the 
directional derivative at (to, zo) in the direction (1, v )  then this directional derivative 
ie nonnegative. 

Proof - Consider a solution z ( - )  of the differential inclusion (11) satisfying 
z(to) = zo, zl(to) = v (by [2] such solution does exist). Since V is locally Lips- 
chitz at ( to,zo) and nondecreasing along trajectories of ( l l ) ,  thanks to  Theorem 
1.1, we obtain 

V(to + h, zo + hv) - V(to, 20) 
= lim V(t0 + h, z(to + h ) )  - V(t0,  20) > 0 

lim 
h+O+ h h+O+ h 

Unfortunately in the great majority of cases the value function is not differ- 
entiable and many attempts to overcome this difficulty recently appeared in the 
literature (see [12], [13], [4], [16] and bibliographies contained therein). In the Sec- 
tion 4 we provide sufficient conditions for the value function V to  have directional 
derivatives in all directions. 

To characterize optimal trajectories we introduce two following feedback maps 
G : [0,1] x Rn -u Rn and GeO : [0,1] x Rn -u Rn defined respectively by 

and 

Then we have the following characterizations of optimal trajectories: 

Theorem 1.4 The following two etatemente are equivalent: 
i )  z w a trajectory of the differential inclusion 



defined on the time-interval [to, 11. 
ii) z ie a trajectory of the control crycrtem (7) defined on the time-interval [to, I.] 

and for every t E [to, 11, V ( t ,  z ( t ) )  = g(z(1.)). 
For the relazed sycrtem (11) the following two statements are equivalent: 
iii) z ie a trajectory of the differential inclusion 

defined on the time-interval [to, 11. 
iv) z ie a trajectory of the differential inclucrion (11) defined on the time-interval 

[to, I.] and for every t E [to, 11, V ( t ,  z ( t ) )  = g(z(1)).  

Proof - Fix a trajectory z of (7) defined on time interval [to, 11 and set p(t )  = 
V ( t ,  z ( t ) )  for every t E [to, I . ] .  f iom Proposition 1.2 for almost all t E [to, 11 

Assume that i) holds true. Thus pl(t) = 0 almost everywhere in [to, 11. Consequently 
p is constant equal to V ( 1 ,  z(1))  = g(z(1)). Assume next that ii) holds true. Then, 
differentiating the map t -+ p(t ) ,  we obtain that for every t E [to, 1[ ,  pl(t) = 0. 
Thus 

almost everywhere and therefore for almost all t E [to, 11, z l ( t )  E G(t ,  z ( t ) ) .  The 
proof of the second statement is analogous and is omitted. 

Corohry 1.5 A trajectory z : [0,1] + Rn i8 an optimal crolution of the optimal 
control problem (9) i f  and only i f  it icr a crolution of the differential inclucrion (13) 
and z(0) = c0. An analogoucr statement hold8 true for the relazed problem (12) and 
the differential inclucrion (14). 

Proof - Since V is nondecreasing along trajectories of the control system (7)  we 
deduce that z(-) is optimal for the control problem (9) if and only if V is constant 
along 55. Theorem 1.4 ends the proof. D 

Theorem 1.6 For every to E [0, 11, zo E Rn inclusion (14) has at lecret one crolution 
craticrfying z(to) = 20. 

Proof - Consider the optimal control problem 

minimize g ( ~ ( 1 ) )  



over the solutions of the differential inclusion 

By Theorem 1.1 it has at least one optimal solution 5. Furthermore V ( t , ~ ( t ) )  
= g(~(1)).  Theorem 1.4 ends the proof. 

The map G introduced above, in general, does not enjoy any regularity properties 
and this is why it is difficult to obtain solutions of the differential inclusion (13). In 
Sections 4 and 5 we provide some sufficient conditions for upper semicontinuity of 
G and in section 6 we reduce the problem to a problem with state constraints. The 
advantage of this approach lies in the possibility to exploit results of viability theory 
and, in particular, to get solutions of (14) as limits of Euler curves. 

2 Some preliminaries on nonsmooth functions 

Consider an open set f2 c Rn and a function p : f2 + R. When it is not dif- 
ferentiable it is possible to define its gradient taking weaker limits of differential 
quotients. 

Definition 2.1 Let zo E f2. The superdifferential of p at zo i s  the closed convez 
set defined a8 follows: 

~ + p ( z ~ )  = { p E an I lim sup p(z) - ~ ( 2 0 ) -  < P, z - 20 > 
z+zo 

5 0) 11% - 2011 

where < a , .  > denotes the scalar product. 
The subdifferential i s  defined i n  a similar way: 

D-p(zO) = { p E Rn I lim inf 
~ ( 2 )  - ~ ( 2 0 ) -  < P, 2 - 20 > 

z+zo 11% - zoll 

It is not difficult to show that p is F'rChet differentiable at zo if and only if both 
super and subdifferentials are not empty at zo. In this case 

We always have D+p(zo) = - D- (-p) (zo). 
The super and subdifferential may also be characterized using the Dini direc- 

tional derivatives, which are defined in the following way: 



Definition 2.2 The lower Dini derivative of p at zo in the direction 8 ie given by 

and the upper Dini derivative of p at zo in  the direction 8 ie defined by 

(15) a+p(zo)(8) = limsup 
p(z0 + he') - p(zo) 

h+O+, 8'+8 h 

Clearly 

(16) 

When p is Lipschitz at  zo then the definition may be simplified as follows 

a-p(z0)(8) = lirn inf p(zo + he) - ~ ( z o )  
h+O+ h 

and 

a+p(zo)(B) = limsup 4 2 0  + he) - dzo) 
h+O+ h 

From [16, Lemma 2.71 we know that 

and 

(17) ~ + p ( z o )  = { p E Rn I V 8 E Rn, a+p(zo)(8) 5 < p, 8 > ) 

Definition 2.3 Aeeume that p ie Lipschitz at zo E fl. The regularized lower deriva- 
tive of p at zo in  the direction 8 E Rn ie defined by 

pO_(zo, 8) = lim inf p(z + he) - ~ ( 2 )  

h-+O+, z+zo h 

This notion is a 'lower versionn of Clarke's definition of directional derivative. In- 
deed it can be easily checked that 

where pO(zo, 8) denotes the directional derivative from [lo]. 

Proposition 2.4 Let p : Rn + R be Lipechitz at zo E Rn. Then the function 
8 + pO_ (zo, 8) ie concave. 



This result may be deduced from [lo, Proposition 2.1.11. 
We investigate next the closedness of the level sets of the regularized lower deriva- 

tive. 

Propoeition 2.5 Let p : Rn + R be a locally Lipschitz function and define the 
set-valued map Q : Rn - Rn by 

Then Q has nonempty closed images and the graph of the map Q i s  closed. 

Proof - Clearly for every z, 0 E Q(z). It remains to show that for every sequence 
(zn, 8,) E Rn x Rn converging to some ( z ,8 )  and satisfying 8, E Q(zn) we have 
8 E Q(z). Fix such a sequence and let en + 0. By the definition of pO_(zn, 8,) 
there exist hn + 0+, z: + z be such that for every n 

Consequently 

This ends the proof. 

Definition 2.6 Assume that cp i s  Lipschitz at zo E Sl. The generalized gradient of 
p at zo i s  defined by 

W e  denote by D*p(zo) the set of all cluster points of gradients pl(zn) when zn 
converge to  zo: 

D*p(zO) = { lim pr(zn) 1 zn + z0 & pr(zn) does exist and is converging ) 
n 4 m  

In view of (18) the above definition of the generalized gradient is equivalent to 
the one given by Clarke. 

It is clear that D*p(zo) is compact. From [lo, Theorem 2.5.11 follows that 

where co denotes the convex hull. 
Let us denote by B the closed unit ball in Rn. 



Definition 2.7 Coneider a convex eubeet K of Rn and a function (p : K + R. It 
ie called eemiconcave i f  there exiete a function w : R+ x R+ + R+ euch that 

and for every R > 0 ,  X E [0,  11 and any pointe z,  y E K n R B  

W e  say that (p ie eemiconcave at zo i f  there e&te a neighborhood of zo euch that 
the reetriction of (p to i t  ie eemiconcave. 

W e  call the above function w a modulue of semiconcavity of (p. 

Usually in the definition of semiconcavity w(r ,  t )  = ct for a nonnegative constant c 
(see [20],  [21]) ,  or w(r ,  t )  = cta for c > 0 and a ~ ] 0 , 1 ]  ( [ 7 ] ) .  We observe that every 
concave function (p : K -, R is semiconcave (with w equal to zero). Furthermore 

Proposi t ion 2.8 Let K be a convex eubeet of Rn and (p : Rn -, R be continuously 
diflerentiable on a neighborhood of K .  Then (p i s  eemi-concave. 

This is a well known result, we provide its proof for the seek of completeness. 

Proo f  - Fix R > 0 ,  z,  y E K n R B  and X E [O,  11. From the mean value 
theorem there exist t ,  t l  E [O,1] such that 

and 
p ( X z  + ( 1  - X ) Y )  = P(Y) + P'(Y + t l q z  - y) )X(z  - Y )  

Multiplying the above equalities by X and ( 1  - A) respectively and adding them 
yields 

Then taking w ( R ,  .) equal to  the modulus of continuity of (p' over K n RB we end 
the proof. 

Example  1. Consider a subset K of Rn and let d ie t (z ,  K )  denote the distance 
from a point z E Rn to K .  Define the function (p : Rn -, R+ by p ( z )  = d i s t ( z ,  K ) 2 .  
We claim that (p is semiconcave. 



Indeed fix z, y E Rn, A E [ O , l ]  and set zx = Az + (1 - A)y. Let a E X (the 
closure of K) be such that llzx - all = dist (zx, K ) .  Then 

On the other hand 

112- yl12 = 112 - all2 + lly- all2 - 2 < z - a,y- a > 

Hence 

2A(1 - A)  < z - a, y - a > = A(1 - A) (112 - all2 + lly - all2 - 112 - yl12) 

This and (22) imply 

Consequently p is semiconcave. 

In general a Lipschitz function does not have directional derivatives. Our next 
aim is to show that for a semi-concave at  zo function p the directional derivatives 
exist and coincide with regularized lower derivatives. This result was proved in [7], 
[8]. We provide a different proof of this fact for the seek of completeness. 

Theorem 2.9 Let zo E Rn and p : Rn + R be Lipschitz and semiconcave at zo. 
Then for every 8 E Rn the directional derivative %(lo) er*ts and is equal to the 
regularized lower derivative pO_ (zo, 8) : 

Consequently D+p(zo) # 0 and 

Proof - It is enough to consider the case ((81( 5 1. Let 6 > 0 be such that 
p is semiconcave on Bza(zo) with semiconcavity modulus w(-) := ~ ( 2 6 , ~ ) .  Fix 
z E Ba(zo), 0 E B and observe that for all 0 < hl 5 h2 5 6 we have 



Consequently for all 0 < hl 5 h2 1 6 

and we proved that for every z E Ba(zo) 

Thus for every 0 < h 5 6 

lim inf 
p(20 f h'e)  - ~ ( z 0 )  ~ ( ~ 0  + he) - ~ ( z o )  - _(h \ [el l )  

h' 2 
hl-rO+ h 

Taking l i m s ~ p ~ , ~ +  in the right-hand side of the above inequality yields that the 
directional derivative %(zoo) does exist. Clearly g ( z o )  2 p? (20, €3). To prove the 
opposite fix s > 0 and 0 < X < 6. h o m  the continuity of p i t  follows that there 
exists 0 < a < 6 such that for all z E B,(zo) 

Thus, using (25), we obtain that 

Letting B, a and X converge to zero we end the proof of the first statement. The 
second one results from (23) recalling (17), (19) and (20). 

Proposition 2.10 Let p : Rn -, R be Lipschitr and semiconcave at zo. If D+p(zo) 
i s  a singleton then p i s  differentiable at zo and 

In particular, if D+p(z)  i s  a singleton for all z near zo, then p is continuously 
differentiable at zo . 

The proof follows by exactly the same arguments ae the ones in [7, Corollaries 
4.11, 4.121 

Definition 2.11 Let K c Rn be convez and p : K -, R be given. It ie called 
semiconvez (respectively semiconvez at zo) whenever -p ie semiconcave (respectively 
semiconcave at 20). 



Proposition 2.12 Let p : Rn -, R, zo E Rn. If p is  Lipschitz at zo and both 
semiconvez and semiconcave at zo, then p is continuously diflerentiable on a neigh- 
borhood of zo. 

Proof - Since p and - p  are semiconcave at  zo, by Theorem 2.9, there exists a 
neighborhood U of zo such that for all z E U 

Furthermore 

the last equality being a straightforward consequence of (20).  Hence both D + p ( z )  
and D - p ( z )  are nonempty and therefore p is differentiable on U. The conclusion 
follows from Proposition 2.10. 

3 Necessary and sufficient conditions for optimality 

We provide next a sufficient condition for optimality which involves the superdiffer- 
ential defined in the previous section. 

Theorem 3.1 Assume that (8) hold true and let Z : [O, 1.1 4 Rn be a solution of the 
control system (7), ~ ( 0 )  = co and ii be a corresponding control. If for almost every 
t E [0, I ]  there ezists p(t)  E Rn such that 

then f is  optimal for the problem (9). 

Proof - Consider the absolutely continuous function $( t )  = V ( t , ~ ( t ) )  and let 
t E [O,1] be such that the derivatives $'(t) and Z'(t) do exist. We first observe that 
(16) and (17) imply that 



This yields that t/~ is nonincreasing. Since the value function is also nondecreasing 
along trajectories of the control system (7) (see Section I ) ,  we deduce that the map 
t -r V(t, F(t)) is constant. So H is optimal. 

The above map p may be constructed using the cestate variable of the Maximum 
Principle which is stated below. 

We associate with the control system (7) the Hamiltonian H : [O, 11 x Rn x Rn -, 
R defined by 

H(t, 2, P) = sue < P, f (t, 2, u) > 
uE 

Under the assumptions of Section 1 it is continuous, locally Lipschitz with respect 
to (z,p) and convex with respect to the third variable. 

Theorem 3.2 Assume that (8) hold true and that f is diflerentiable &th reepect to 
z and g is diflerentiable. A trajectory-control pair (%ti) of control system (7) with 
~ ( 0 )  = e0 ie optimal for the problem (9) if and only if the solution p : [O, 11 -, Rn 
of the adjoint equation 

satisfies the man'mum principle 

and the traneversality conditions 

(30) ( H  (t, ~ ( t ) ,  p(t)), -p(t)) E D+V(t, ~ ( t ) )  a.e. in [O, 11 

(31) - p(t) E Df V ( t , ~ ( t ) )  for every t E [0, 11 

where Df V(t,Z(t)) denotes the superdiflerential of V(t, a )  at ~ ( t ) .  
Furthermore if V is semiconcave, then (SO) holds true everywhere in [O, :I.]. 

Remark - The above condition is a joined form of the maximum principle and 
the cestate inclusions (30), (31). The necessary condition of the above type was 
proved in ([16]) under somewhat different assumptions. An inclusion on cestate p 
similar to (31) in non-smooth case was derived in [ll]. 

Proof - Sufficiency is a straightforward consequence of Theorem 3.1 and 
(29), (30). The fact that (28) and (29) are necessary is the well known Pontriagin's 
maximum principle. 



To prove the necessity of (30) fix t  E [O,l[ such that Z'(t) = f ( t ,~( t ) ,T i ( t ) )  and 
the equality (29) holds true and let 8 E Rn. Consider the solution w(-)  of the 
linearized along (Z ,  E) system 

For every h > 0, let zh be the solution to the differential equation 

From the variational equation we know that the quotients 

Zh - Z 

h 

converge uniformly to w. Fix a E R. Hence from (28)  and (29), using that V is 
nondecreasing along trajectories of (7) and constant along Z, we deduce that 

a+V ( t ,  ~ ( t ) )  (a ,  a2( t )  + 8) 

= lim suph40+ (V (t + ah, ~ ( t )  + h(aZ'(t) + ~ ( t ) ) )  - V (t , ~ ( t ) ) )  / h  

= l i m s ~ p ~ ~ ~ +  (V(t  + ah, Z(t + ah) + hw(t + ah)) - V( t ,  ~ ( t ) ) )  /h  

= lim suphdo+ (V (t + ah, z h ( t  + ah)) - V ( t ,  ~ ( t ) ) )  / h  

Hence we deduce that for every el E Rn 

Consequently, ( H  (t  , Z(t) , p(t)) , -p(t)) E D+V ( t ,  ~ ( t ) )  and the proof of (30) follows 
from (17). To prove (3.1.) observe that for every t  E [0, I.], 8 E Rn and the solution 
w of (32) 



This and (17) imply (31). When V is semiconcave, then the last statement follows 
from (30), continuity of H (.), p(-), 2(.) and (24). 

Remark - When the Harniltonian H is differentiable with respect to (z,p), 
then from arguments similar to [18, Remark 4.101 it follows that Z and the cestate 
p of the last theorem satisfy the Harniltonian system 

It is well known that for every (t, z) E [0, I.] x Rn at  which V is differentiable we 
have 

(34) 

When V is not differentiable at ( t ,z)  the above equation has to be understood in 
the viscosity sense (see [12], [13]). 

Since the Hamiltonian is continuous we immediately deduce from (34) that 

We show next that in Theorem 3.2 whenever p(0) = -VL(O, to), we have the 
equality in the inclusion (31). 

Theorem 3.3 Assume that (8) hold true and that f is differentiable uith respect to z 
and g is differentiable. Suppose further that the derivative V,'(to, zo) does ezist and let 
Z be an optimal ~olut ion for the problem (10). Consider the co-state p : [to, 11 + Rn 
correqonding to Z and given by Theorem 9.2, where the interval [O, 11 is replaced by 
[to, 11 and €0 by zo. Then 

-p(t) = D,+v(~,z(~)) for all t E [to, 11 

In the next Section we show that under some additional regularity assumptions on 
f for all t ,  p(t) is equal to the derivative of the value function V:(t,~(t)) whenever 
Vi(to, zo) does exists. 

Proof - We already know from Theorem 3.2 that 

-p(t) E D;V(~, ~ ( t ) )  for all t E [to, I.] 

Thus p(to) = -V:(to, zo). 



Let ii be an optimal control corresponding to Z. Fix 8 and let w, z h  have the 
same meaning as in the proof of Theorem 3.2 with t replaced by to. Then, since V 
is nondecreasing along trajectories of the control system (7) and constant along 35, 

for all t E [to, 11 

v ( t  ,Z(t)+hw ( t ) )  -V(t ,Z( t ) )  = - lim suph4o+ h = -a tv ( t ,z ( t ) ) (w( t ) )  

where a$V(t,Z(t))(w(t)) denotes the upper Dini derivative of V(t,.) at  Z(t) in the 
direction w (t) . 

Using (17) we deduce that for every q E D$V(t,z(t))  we have 

where X denotes the fundamental solution of 

Since 8 E Rn is arbitrary, we have  to) = -X(t)*q. On the hand, p(-) being 
a solution of (28), we know that p(to) = X(t)*p(t). Since for every t E [to, I.], the 
matrix X(t)  is nonsingular we proved that -p(t) = q. This yields that Df V(t ,  Z(t)) 
is single valued and ends the proof. 

Whenever H happens to be more regular we can prove the following theorem 
concerning optimal design. 

For every (to, zo) we define 

where W is given by W(z) = V(to, z). 

Theorem 3.4 Assume that (8) holds true, that f is diferentiable with respect to z, 
g is diflercntiable and for every R > 0 there eai8ts a nonnegative integrable function 
lR E ~ ' ( 0 , l ;  a+) 8uch that for dl z, y, p, q E RB 



Let (to, zo) E [O,1] x Rn and po E Rn be such that 

If z(-), p(.) solves the diferentid equation 

i zf(t)  = % (1, z(t), ~ ( t ) )  
(39) 

pf(t) = - E ( t ,  z(t),p(t)), t E [to, 11 

and 

(40) 

and if the sets f (t, z, U) are convez and compact, then z(.) is an optimal solution of 
problem (10). 

Remark - The above theorem extends a result of [8] which concerned a 
problem in Calculus of Variations. For such problems condition (37) is natural. 
It is much more restrictive for nonlinear control systems. We observe that (37) is 
satisfied whenever the variables z and u are 'separatedn: 

where p( t ,  -) has kR(t)-Lipschitz gradient and the boundary of +(t, U) is sufficiently 
smooth. 

L e m m a  3.5 Under all assumptions of Theorem 8.1 suppose that the derivative 
BY =(to, zo) does ezist. Then z(.) is optimal for the problem (10) if and only if there 
ezists an absolutely continuous p : [to, 11 + Rn such that (z,p)(.) solves (99) and 

Proof - Assume that z(.) is an optimal solution of (10). By Theorem 3.2 applied 
with the interval [0, 11 replaced by [to, 11 and b by zo and by the remark following 
it, there exists an absolutely continuous p : [to, 1] -+ Rn such that (z, p)(-) is a 
solution of (39) and -p(to) E D;V(to, 20). Since V is differentiable with respect 
to  z at (to, zo) we deduce that -p(to) = %(to, 20). Conversely, let (z, p) solve the 
Hamiltonian aystem (39) and 



Let if be an optimal solution of (10) and fi be the corresponding cestate given by 
Theorem 3.2. Then for the same reasons as before 

So, (z, p) = (5, fi) by uniqueness. 

Proof of Theorem 3.4 - By the very definition of DiV(to, zo) it follows 
that there exists a eequence zk converging to zo such that V(to, .) is differentiable 
at  zk and 

av 
-PO = lim -(to, zk) 

k-+- az 
Let Zk be an optimal trajectory for the problem (10) with zo replaced by zk. 
Then from Lemma 3.5 there exists fit such that (Zk,pk) solves (39) and -fik(to) = 
g ( t o , z k ) .  By the continuous dependence of solutions on the initial conditions we 
obtain that the sequence (zk,fik) converges uniformly to a solution (5,fi) of (39) 
satisfying 

- 
z(t0) = 20, fi(t0) = Po 

So z = 5 by uniqueness and 

V(to,zo) = lim V(to,~k(to)) = lim g(~k(1))  = &(I)) = g(z(1)) 
k-+m k+oo 

and therefore z is optimal. 

Remark - 
i )  By minor modifications of the above arguments it is easy to show that condition 

(38) may be replaced by the following one 

In general (38) and (41) are not comparable. If V is semiconcave, however, then 
(38) is more restrictive than (41) in view of Proposition 4.2 below. 

ii) In general we do not know if either (38) or (41.) is necessary for z(.) to be 
optimal. This is the case for (41) in Calculus of Variations (see [8]), since, then, 
for any optimal trajectory F(-), V is differentiable at  every point (t,5(t)) with 
to < t < 1. 

Other examples of problems for which (38) is necessary, are given by optimal 
control problems having unique optimal trajectory for the initial state (to, xo). 



4 Semiconcavity properties of the value function 

We provide a sufficient condition for semi-concavity of the value function V : [O, 11 x 
Rn + R introduced in the first section. Throughout the whole eection we suppose 
for simplicity that f does not depend on time. Moreover we assume 

i) f : Rn x U + Rn is continuous 

ii) 3 M > 0 such that V (2 ,  u) E Rn x U, 11 f (2, u)ll 5 M(llz(( + 1)  
iii) 3 L > O,Vzl,z2 E En, u E U, Ilf(z1,u) - f(~2,u)II 5 L 1121 - 2211 

iv) 3 w : R+ x R+ + R+ such that (21)  holds true and 
VX E [ O , l ] ,  V u  E U, V R > 0, Vzo, zl E RB 
I(xf(z0,u) + ( 1  - X)f(z1,u) - f(Xz0 + ( 1  - X ) ~ l , t O l l  
5 X ( l  - A)  1121 - 2011 w(R,  1121 - z010 

v) g : Rn + R is locally Lipschitz and semiconcave 

Remark - 
1)  Assumption iv) holds true in particular when f is continuously differentiable 

with respect to z uniformly in u: 
There exists a function w : R+ x R+ + R+ satisfying (21)  such that 

V u E U, V zl,z2 E RB, l l g ( z l ,  u)  - 5 w(R, 1/21 - 2211) 

It can be proved in a way similar to Proposition 2.8. 

2 )  Vice versa, Proposition 2.12 implies that if f satisfies iv) ,  then f is continu- 
ously differentiable with respect to z. 

The main result of this section is the following: 

Theorem 4.1 If (42) hold true, then the value function is semi-concave on [0, 11 x 
Rn . 

Proof - For every t E [O,1] and measurable function u : [t, 11 + U, we denote 
by y (.; t ,  z ,  u)  the solution of the system 

The Gronwall lemma implies that 

(43) V z E RB, V o E [ t , l ] ,  ( (y(s)J(  5 CR := (R+A4)eM 



moreover for all t  E [0, 11, 8 E [t, 11, zo, 2 1  E R" and all measurable functions 
u :  [t,1] -* U we have 

Step 1. We claim that there exists wl : R+ x R+ + R+ satisfying (21) such that 
for all 0 5 t  5 8 < 1, R  > 0, 20, 2 1  E RB, X E [ O , l ]  and a measurable function 
u :  [ t , l ]  --, U we have 

Indeed set z~ = Xzo + (1 - X)zl and define 

Then 

! / : (TI = 
X f  (y( r ; t ,  2 1 ,  4, u(r ) )  + (1 - X ) f  (y(r;  t,zo, 4, u(r))  - f (y(r; t ,  ZA,  4, u(r)) 

= 0 

Thus by assumptions (42)  iii) and i v )  and (43) 

and our claim follows from (44) and the Gronwall lemma. 

Step 2. We claim that there exists w2 : R+ x R+ -, R+ satisfying (21) such that 
for all t  E [0, 11, X E [ O , l ] ,  R > 0 and 20, z1 E RB the following inequality holds 
true 

W t ,  21)  + (1 - X)V(t, 20) - V ( t ,  Xzl + (1 - X)zo) 
5 4 1  - 4 l l ~ l  - zollw2(R, 1121 - 2011) 

Indeed define zx as above, fix E > 0 and a control uc such that 

Let wg denotes a modulus of semiconcavity of g and LR a Lipschitz constant of g on 
the ball of radius CR. Then from (44) and Step 1 we get 



Since s > 0 is arbitrary our claim follows. 
Thus we proved the semiconcavity of V(t, -). 

Step 3. Consider next 0 I t l  < to 5 1, R > 0 and let zo, zl E RB,  X E [0, I.]. 
Define 

zx = Xz1 + (1 - X)zo, tx = Atl + (1  - X)to 

Pick any 8 > 0 and let u, be such that 

Define 
X s  + (1-X)to, if t i  5 8 < to ~ ( 8 )  = 

otherwise 

Since the value function is nondecreasing along trajectories of our control system we 
have 

Set yl (8) = y(8; t i ,  zl, u, o r ) ,  yx (8) = y(s; tA ,  zA, u,). Let KR denote the Lipschitz 
constant of V on [0, I.] x CRB. By (46) and Step 2 we obtain 

On the other hand from assumption (42) i i )  follows that 

where MR = M ( 1 +  CR). Set 

and notice that z(tx) = 0, z(to) = Xyl (to) + (1  - A)zo - yA (to). Furthermore, using 
(42) i i i ) ,  we obtain the following estimates 

Therefore from the Gronwall inequality and (48) we deduce that 

,491 { Ilz(to)ll S L.&?(I - A) llyi or-'(8) - zoll eL('-t~)d8 
5 L@X(l- X)(to - t i )  (((zi - zo(( + M R ( ~ o  - t i ) )  

Inequalities (47), (48) imply the conclusion. 



Proposition 4.2 Aeeume that the value function ie  eemiconcave at a point ( to, zo) E 
[O, 11 x Rn. If DfV( to ,  zo) ie a eingleton, then V ie differentiable at (to, zo) and 
D*V (to, 20) = { V1(to, zo) ) . 

Here at boundary points (to E { 0, 1 )) the above differentiability of course has to 
be underatood in one sided sense. 

Proof - Let xz : R x Rn -, Rn denote the projection on Rn. Since 

by (35) and (24) we conclude that 

( ~ t  , P Z )  E D*V(to, 20 )  = Pz = po, Pt = H(z0, -PO) 

Hence D+V(to, zo) is a singleton. The conclusion follows from Proposition 2.10. 

Corollary 4.3 Aesume (42)) that g ie differentiable and that the derivative Vi( to, zo) 
doe8 eziet, and let Z be an optimal solution of problem (10). Then for all t E [to, 11, 
V ie diferentiable at ( t ,  f ( t ) )  and 

D*V ( t ,  ~ ( t ) )  = { ~ ' ( t ,  ~ ( t ) )  ) 

Conversely assume that z : [to, 11.1 -, Rn ie a eolution of (7) and that for every 
t E [to, 11, V is  differentiable at ( t ,  z( t ) ) .  If the eete f ( z ,  U) are convez and compact 
and av av 
(50) - -( t ,z(t))zl( t)  az  = H a.e. in [to, 11 

then z M optimal for problem (10). 

Proof - The first statement follows immediately from Proposition 4.2 and The* 
rem 3.3. To prove the second one fix i E [to, 11 and let Z : [T, 11 -+ Rn be an optimal 
solution of problem (10) with (to, zo) replaced by (5, ~ ( 9 ) .  

We already know that V is semiconcave. By Theorem 3.2 there exists p(9 E Rn 
such that 

( H ( z ( 9 ,  PO), - ~ ( 9 )  = V1(5, z 0 )  

Since i E [to, 11 is arbitrary, assumption (50) and Theorem 3.1 end the proof. 

Usually the value function is not everywhere differentiable. However that is 
always the case for uconvexn problems and continuously differentiable cost, as we 
prove below (see also [5], [6], [7]). 



Proposit ion 4.4 Assume that (42) holds true, g is convez and 

(51) Graph( f (., U)) is closed and convex 

Then V is continuously diflerentiable on [O,1] x Rn and convez with respect to the 
second variable. 

Proof  - By Theorem 1.1, assumption (51) yields that for every (to, zo) E [0, 11 x 
Rn there exists a solution Z of the control system 

satisfying V (to, zo) = g (~ (1 ) ) .  
Fix to E [O,1.], zo, z l  E Rn, X E [O,1] and consider trajectories z : [to, 11 + Rn 

and y : [to, 1) + Rn such that V (to, 20) = g ( ~ ( l ) ) ,  V(to, zl) = g(y(1)). Define the 
trajectory a : [to, 11 + Rn by a(t) = Xz(t) + (1 - X)y(t). Then, using (51), we obtain 
that a is a solution of the control system (7). Thus, by convexity of g, 

and therefore V(to, a )  is convex. 
Next, aa V(t, .) is both convex and semiconcave for all t E [0, 11, Proposition 2.12 

yields that V(t,.) is continuously differentiable on Rn. The conclusion now follows 
from Proposition 4.2. 

5 Optimal feedback 

One of the major issues of optimal control theory is to find an "equationn for optimal 
trajectories. Theorem 1.4 provides an inclusion formulation. However in general the 
set-valued map G is not regular enough to make us able to solve the inclusion 
(13). The situation is comparable to having an ordinary differential equation with 
nonsmooth right hand side: it may have solutions, but this solution can not be 
obtained as say limits of Euler curves. 

That is why we have to investigate regularity properties of G. In this section we 
show that under the assumptions of Theorem 4.1, the feedback map GCO is upper 
semicontinuous and that so is G if we assume in addition that the eets f (z, U) are 
closed. 

In this section we assume again that the control system (7) is atonomous, i.e., f 
does not depend on time. 



Results of Sections 2 and 4 imply that under assumptions (42) the feedback maps 
G : [O, I.] x Rn H Rn and GCO : [O, 11 x Rn H Rn defined in Section 1 are respectively 
equal to 

G(t ,  z )  = { v E f ( z ,  U )  I V_O(t, z ) ( l ,  v )  = 0 ) 

and 
GCO(t, z )  = { v E Gf (2,  U )  1 V f ( t ,  z ) ( l , v )  = O 

Theorem 5.1 Let us assume that (42) holds true. Then GCO has compact nonempty 
images and ie upper semicontinuous. The same holds true for the map G i f  we 
assume in addition that the sets f ( z ,  U )  are closed. 

Proof - From Theorems 4.1 and 2.9 we know that for every ( t ,  z )  E [0, l [ x R n  
and every 9 E Rn the directional derivative &(t, z )  exists and is equal to the 
regularized lower derivative V_O((t, z ) ,  (1 ,g) ) .  Define the set-valued map 

From Proposition 2.5 we know that the set ~ r a ~ h ( ~ )  is closed. On the other hand 
Proposition 1.3 implies that for every v E Gf ( I ,  [I), &(t, z )  2 0. Thus 

This and the assumptions on f imply that graphs of the set-valued maps G ,  GCO are 
closed. Furthermore GCO takes its values in a compact set. From [2, p.421 follows 
that G and GCO are upper semicontinuous. 

Corollary 5.2 Let ue assume that (42) holds true and that the sets f ( z ,  U) are 
closed. If the map G ie single-valued, then the function ( t ,  z )  -r G(t ,  z )  is continuous. 

A typical example of a nonlinear control system with closed convex images is the 
afFine system: 

where f and gi are continuous functions from Rn to itself. 

The feedback map G defined above, in general, does not have convex images 
because the map of directional derivatives is concave. 



For this reason, in general, the feedback inclusion (13) is very difficult to inves- 
tigate. When V happens to be differentiable and the sets f (z, U) are closed and 
convex, then for obvious reasons the map G has convex compact images. Proposition 
4.4 provides a sufficient condition for continuous differentiability of V. 

Theorem 5.3 Aeeume that (I$), (51) hold true and that g is convez. Then G has 
convez compact image8 and is upper eemicontinuoue. Furthermore if for every z the 
set f (z, U) is strictly convez, then G is single valued and continuous. 

Proof - By Proposition 4.4 we know that V is continuously differentiable. This 
yields that for all (t, z)  E [0, l [ xRn  the set 

is convex. Theorem 5.1 ends the proof of the first statement. From Proposition 1.3 
it follows that for all (t, z) E [0, l [ xRn  

This and strict convexity of f (z, U) imply that G is single valued. Corollary 5.2 
completes the proof. 

Let us assume that G is upper semicontinuous and has convex compact images. 
We have already mentioned that solutions of (13) may be constructed as limits of 
Euler curves. 

An alternative approach comes from Cellinass approximate selection theorem 
(see 12, Theorem 1.12.1, p.841). Namely this theorem states that for every E > 0 and 
R > 0 there exists a locally Lipschitz map g , ~  : [0,1] x RB + Rn satisfying 

With every E > 0, R > 0 we associate the solution z , ~  of the differential equation 

Then from assumptions (8) follows that for some R > 0, z , ~  are defined on the 
whole interval [O,l] and the sequence { z , ~  )eElO,l) ie bounded in C(0,l). Hence 
also { g o z , ~  )eEIO,ll is bounded and therefore the functions z , ~  are equicontinuous. 
This and the Aecoli-Arzela theorem imply that for some sequence e, + 0+, the 
subsequence { z , , ~  )rill converges to an absolutely continuous function z : [0,1] + 
Rn. From (52) we deduce that z is a solution of the feedback inclusion (13) and 
thereby i t  is optimal. 



6 Viability approach to optimal control 

In this section we provide an alternative approach to optimal trajectories based on 
viability techniques. 

We first observe the following characterization of optimal trajectories: 

Theorem 6.1 Assume that f satisfies (8). Then a solution f of the control system 
(7) defined on the time interval [O, 11 is optimal i f  and only i f  the function t -+ 
( t ,  ~ ( t ) ,  V ( 0 ,  €0))  a solution of the viability problem 

t f  = 1 
zf ( t )  = j ( t  , z( t )  , u( t ) )  , u( t )  E U is measurable 
zf ( t )  = 0 
( t ,  z ( t ) ,  z ( t ) )  E Graph ( V )  for all t E [0, 11 
t (0)  = 0,  z(0) = €0, z(0) = V(O,€o) 

Proof - We already observed that Z(.) is optimal if and only if the map t -+ 

V ( t ,  ~ ( t ) )  is constant on the time interval [0, 11. On the other hand t -, ( t ,  ~ ( t ) ,  r ( t ) )  
is a solution of (53) if and only if z( t )  = V ( t ,  ~ ( t ) )  z const and f (-) is a solution of 
(7) satisfying f (0 )  = €0. 

Inclusion (53) is a viability problem which may be approached using many results 
of viability theory. Actually viability technique may be applied not only to  the value 
function V but also to any continuous function W satisfying some inequalities from 
[16]. To state results in this direction we need the following definition. 

Definition 6.2 Consider a function W : [O,1] x Rn + R and let ( t ,  z )  E [ O , l ]  x Rn. 
The contingent derivative of W at ( t ,  z )  in the direction ( w ,  v )  E R x Rn is a subset 
of R defined b y  

DW(t ,z) (w,v)  := 
W(t+hw', z+hu')-W(t,t) ( u  E R I lim infh4~+,(w~,u~,+(w,u~ dist (u ,  h 

Theorem 6.3 Consider a continuous function W : [O, 11 x Rn -+ R and assume 
that f satiefies (8). If for every ( t ,  z )  E [0, 11 x Rn 

then for all ( to,  zo) there eziets a solution Z of the diferential inclusion 

such that W ( t ,  ~ ( t ) )  G W ( 1 , ~ ( 1 ) ) .  



Proof - It is not restrictive to assume that to = 0. We extend W on R+ x Rn 
by setting for all t > 1, W(t, z) = W(1,z). Define the closed set K =Graph(W) and 
the map Fl(t,z) = (1) x =f( t ,z,U) x (0). Set 

Then for every (t ,z) E R+ x Rn, the contingent cone TK(t,z,W(t,z)) to K at 
(t, z,  W(t, z)) is equal to Graph(DW(t, 2)). Hence, by our assumption, for every 
(t ,z) E [0, l [ x R n  there exists u E Fl(t,z) such that [l,u,O) E TK(t,z, W(t,z)). 
Furthermore, for every t 1 1 and z E Rn, we have 0 E F(t, z). This proves that 

By the assumptions P is continuous and has closed convex images. Consequently, 
by the Haddad viability theorem [19], the constrained system 

~ ' ( t )  E P(t,y(t)) almost everywhere 
~ ( t )  E K for all t 
~ ( 0 )  = (o,zo, W(0, zo)) 

has a solution jj = (zO,z, z) : [to, tl] + R x Rn x R for some tl > to. Using 
the assumptions on f and Haddad's theorem, we extend this solution on the time 
interval [to, 11. Then, from definition of K and P, zo(t) = t, z(t) = W(t, z(t)). On 
the other hand zl(t) = 0 almost everywhere in [to, 11 and therefore z const. This 
ends the proof. U 

Theorem 6.4 Consider a continuous function W : [O, 11 x Rn + R and assume 
that f does not depend on t and satisfies (8). IfW(1, -) = g(.) and 

sup infD(-W)(t,z)(l,v) 5 0 
uEWf ( z , U )  

then for every solution y (.) = (t, z, z) (-) of 

t' = 1 
zl(t) = f (t, z(t), u(t)), u(t) E U is measurable 
zl(t) = 0 
(t, z(t), z(t)) E Graph (W) for all t E [O , l ]  
t(0) = 0, z(0) = €0, ~ ( 0 )  = W(O,€o) 

defined on the time interval [O, l ] ,  the trajectory z(.) is optimal for the problem (9). 

Proof - F'rom [16] we deduce that W is nondecreasing along trajectories of (7). 
On the other hand if y(-) = (t,z, z)(-) is a solution of (54) defined on the time 
interval [O,1] then W (t, z(t)) const. 0 



7 Problem with end point constraints 

In this section we investigate the case when the additional end point constraint is 
present : 

4 1 )  E K1 

where K1 is a given closed subset of Rn. The corresponding value function is defined 
by 

v(to,  zo) = in f (g(z(1)) 1 z is a solution of (7) on [to, 11, z(to) = zo, z ( l )  E Ki) 

We obeerve that V(to, zo) = +OD whenever no trajectory starting at zo at time to 
hits K1 at time one. 

In this more general case the value function may be discontinuous and one has 
either to develop a verification technique for a larger class of functions (some results 
in this direction were obtained in [16] or to try to reduce the problem to a new one, 
where the data fits the Lipschitzian framework. We shall follow this second strategy 
and apply the penalization technique. 

We provide only a convergence result showing that the problem with end point 
constraints may be approximated by free end point ones. Further developments are 
left to future work. 

We impose on the functions f and g the same assumptions as in Section 1 and 
we consider the family of penalized problems: with every e > 0 we associate the 
minimization problem 

1 
(P,) minimize {g(z(l)) + -dist(z, e K ~ ) '  1 4 . )  is a solution of (7), 4 0 )  = b }  

Define functions g, from Rn to R by 

The value function V, corresponding to the problem (P,) is defined by (10) with g 
replaced by g,. 

Since g, is locally Lipschitz we deduce that V, is also locally Lipschitz continuous 
with the Lipschitz constant depending on 5.  Hence the results obtained in previous 
sections may be applied to V,. 

Furthermore if g is semiconcave, then, using Example 1 from Section 2, we show 
that also the functions g, are semiconcave. This and Theorem 4.1 yield that under 
assumptions (42) for every e > 0 the value function V, is semiconcave on [ O , l ]  x Rn. 
Consequently, results concerning regularity of optimal feedback may be applied to 
penalized problems. 

The aim of this section is to prove the convergence of V, to V. 



Theorem 7.1 Assume that f satisfies (8). If the sets f (t, z,  U) are closed and 
convez, then for every (t, z) E [0, 11 x Rn the function R+ 3 e -, Ve(t, z) is nonin- 
creasing. Furthermore for every e > 0, Ve(t, z) 5 V(t, z) and 

lim Ve(t,z) = V(t,z) 
e+O+ 

Proof - The first two statements are obvious. Fix (t, z) E [0, 11 x Rn and set 
W (t, z) = l i n ~ , ~ +  Ve(t, z). Clearly W (t, z) 5 V(t, z). To show the opposite it is 
enough to consider the case W (t, z) < +oo. Consider trajectory control pairs (ye, uC) 
of control system (7) satisfying 

(they exist by Theorem 1.1). Then, by the relaxation theorem [2], there exists a 
sequence en + 0+ and a trajectory y(-) of (7) defined on [t, 11 such that yen -, y 
uniformly on [t, 11. On the other hand 

and therefore, taking the limit in the above inequality, we obtain y(1) E K1. Fur- 
thermore from the inequality 

we deduce that W (t, z) 2 g(y(1)) 1 V(t, z). I7 

Corollary 7.2 Under all assumptions of Theorem 7.1 consider a sequence en -+ O+ 
and let zen(-) be an optimal solution to the problem (Pen). If problem (P) has at 
least one solution, then every cluster point z(.) of {zen(-)) in the metric of uniform 
convergence is an optimal solution of (P). 

Proof - Indeed, since (P) has a solution, by Theorem 7.1, for all n > 0, 

VCn(t, zCn(t)) = const 5 V(0, to) < +oo 

and taking limit we deduce that V(t, z(t)) const < +oo. Thus z(1) E K1 and z 
is optimal. 

The above results imply that to find an optimal solution of the problem with end 
point constraints we can take any cluster point of solutions of penalized problems 
when e -+ O+. On the other hand penalized problems may be addressed using 
theorems of previous sections. 
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