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FOREWORD

Existence of viable (controlled invariant) solutions of a control problem
regulated by absolutely continuous open loop controls is proved by using
the concept of viability kernels of closed subsets (largest closed controlled
invariant subsets). This is needed to provide dynamical feedbacks, i.e., dif-
ferential equations governing the evolution of viable controls. Among such
differential equations, the differential equation providing heavy solutions (in
the sense of heavy trends), i.e., governing the evolution of controls with
minimal velocity is singled out.

Among possible applications, these results are used to define global con-
tingent subsets of the contingent cones which allow to prove the convergence
of a modified version of the structure algorithm to a closed viability domain
of any closed subset.

Alexander B. Kurzhanski
Chairman
System and Decision Science Program
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Dynamic Regulation of Controlled Systems,
Inertia Principle and Heavy Viable Solutions

Jean-Pierre Aubin & Hél®ne Frankowska

Introduction

Let us consider two finite dimensional vector-spaces X and Z, X being
the state space and Z the control space and a closed subset K of the state
space X.

We define the control system (f,U) by a set-valued map U : K ~ Z
associating with each state z the set U(z) of feasible controls (subject to
state-dependent constraints) and by a single-valued map f : Graph(U) — X
describing the dynamics of the system

(f) for almost all t > 0, z'(t) = f(z(t), u(t)) where u(t) € U(z(t))
Viable solutions are the ones which satisfy
Vt>0,z(t) e K

We recall that the contingent cone to K at z € K is the set

.. di(z+ hv) }
T =<veX 1 f———==0
o= frex | e
We introduce the regulation map Ry associating with every state z € K
the subset of controls u € U(z) such that the corresponding velocity is
contingent to K at z:

Vze K, Ry(z) = {veU(z)| f(z,u) € Tk(z)}

The Viability Theorem states in essence that under adequate assump-
tions, for any initial state o € K, there exists a viable solution to the control
problem if and only if Ry(z) # @ for any z € K. (This property enjoyed
by K is called controlled invariance.) Furthermore, if this is the case, the
viable solutions are regulated by controls satisfying the regulation law

for almost all t > 0, u(t) € Ry(z(t))



In this paper, we are looking for a system of differential equations or a
differential inclusion governing the evolution of both viable states and con-
trols, so that we can look for

—  heavy solutions, which are evolutions where the controls evolve
with minimal velocity

—  punctuated equiltbria, i.e., evolutions in which the control @ re-
mains constant whereas the state may evolve in the associated viability cell,
which is the viability domain of z — f(z, @),

The idea which allows to achieve these aims is quite simple: we differen-
tiate the regulation law. This is possible since we know how to differentiate
set-valued maps. The idea is very simple, and goes back to the prehistory
of the differential calculus, when Pierre de Fermat introduced in the first
half of the seventeenth century the concept of a tangent to the graph of a
function:

We regard the contingent cone to the graph of the set-valued map F :
X ~ Y at some point (z,y) of its graph as the graph of the associated
“contingent derivative” of F at this point (z,y):

Graph(DF(z,y)) = TGraph(r)(%:¥) (1)

If a viable control u(-) is absolutely continuous, we deduce then from the
regulation law that

(¥¢) for almost all t > 0, u'(t) € DRy(=z(t),u(t))(f(=(t),u(t)))

This is the second half of the system of differential inclusions we are looking
for.

We observe that this new differential inclusion has a meaning whenever
the state-control pair (z(-), u(:)) remains in the graph of Ry. Fortunately,
by the very definition of the contingent derivative, the graph of Ry is a
viability domain of the new system (i),(ii).

Unfortunately, as soon as viability constraints involve inequalities, there
is no hope for the graph of the contingent cone, and thus, for the graph
of the regulation map, to be closed, so that, the Viability Theorem cannot
apply.

We also observe that if the contingent derivative of U obeys a growth
condition of the typel

(9) V (z,u) € Graph(U), lloll < e(llull +{l=]l + 1)

inf
vEDU(z,u)(f(z,u))

lwhich follows for instance from the boundedness of the contingent derivative:
[[DU(z,4)|| € c and the linear growth of f.



then absolutely continuous controls verify the growth condition

(#59) W' (@)l < e(llu@ + (=)l + 1)

So, a strategy to overcome the above difficulty is to introduce? the a
priori growth condition (iii) and to look for the viability kernel of (i.e., the
largest closed viability domain contained in) Graph(U) of the system of
differential inclusions (i),(iii). Such a viability kernel does exist (see Theo-
rem 1.5 below).

If we regard this viability kernel as the closed graph of a (possibly empty)
set-valued map denoted by Rf; : X ~ Z, then we infer from Theorem 1.5
that whenever the initial state zo s chosen in Dom(R§;) and the initial
control up in Rf(zo), there ezists a solution to the system of differential
tnclusions (i) and

(iv) W'(t) € Ge(z(t), u(t)) := DRy ((2), u(t))(f(z(2)), u(t))

This is how we shall obtain absolutely continuous viable state-control
solutions to our regulation problem3.

As an example, we shall compute the regulation maps R¢ for one dimen-
sional affine system in section 2.

We observe for instance that by taking ¢ = 0, inequalities (iii) pro-
vide constant controls ug, and thus solutions z(-) to the problem z'(t) =
f(z(t), up) which are viable in the closed subset U ~!(up) whenever this sub-
set is not empty. If this is the case, we shall say that up is a punctuated
equtlibrium and that Rg—l(uo) is its associated viabtlity cell, which is the
closed subset of states regulated by the constant control ug.

Instead of looking for closed loop control selections of the regulation map
Ry, we shall look for selections g(-,:) of the set-valued map G.(-,-) defined
above, which we shall call a dynamical closed-loop.

Naturally, under adequate assumptions, Michael’s Theorem implies the
existence of a continuous dynamical closed loop. But under the same as-
sumptions, we shall show that we can take as dynamical closed-loop the

2even if growth conditions on the contingent derivative of U are absent.

3We remark that the above growth condition (§) means that the graph of U is a
viability domain of the system of differential inclusions (i),(iii}, and consequently, that it
coincides with its viability kernel, i.e., that R, = U.

Therefore, growth condition (§) implies that absolutely continuous wable state-controls
do exist for every initial state 2o € Dom(U) and initial control uo € U(zo). But this
property (and thus, condition (§)) is too strong in the framework of viability (or controlled
invariance) problems, where we look only for the existence of af least a conirol providing
a given condition.




Figure 1: Heavy Viable Solutions
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minimal selection g°(-,-) defined by

9%(z,u) € G.(z,u) & ||¢°z,u)||:= min ||v]
vEG(z,u)
We shall call the smooth viable control-state solutions to the system of
differential equations

2'(t) = f(2(t), u(t)) & o'(t) = ¢°(=(t), u(t))

heavy viable solutions to the control problem, heavy in the sense of heavy
trends. They are the ones for which the control evolves with minimal velocity.
In the case of usual differential inclusions* z' € F(z), where the controls are
the velocities, they are the solutions with minimal acceleration, or maximal
inertia.

They obey the tnertia principle:

“keep the controls constant as long as they provide viable solutions”

because g°(z,u) = 0 when 0 € G.(z,u). Indeed, if the velocity O belongs
to G¢(z(t1), u(t1)), then the control will remain equal to u(t;) as long as
for t > t;, a solution z(-) to the differential equation z'(t) = f(z(t), u(t1))
satisfies the condition 0 € G (z(t), u(t1)).

If at some time ty, u(ty) is a punctuated equilibrium, then the solu-
tion enters the viability cell associated to this control and may remain in
this viability cell forever® and the control will remain equal to this punctu-
ated equilibrium. Viable heavy solutions are studied in the general case in
section 3 and in the case of smooth viability constraints, in section 4.

We already mentioned that in general, the graph of the contingent cone
map Tk(-) is not closed. In order to obtain this property, we suggest in
section 5 to replace the contingent cone Tk (z) by the subset T (z) of direc-
tions v € Tk(z) such that there exist a measurable function z"(-) bounded
by the constant ¢ satisfying

t
V>0, z(t):=z+tv +/ (t-7)2"(r)dr € K
0

We shall see that the graph of the set-valued map Tg(:) is the viability
kernel of the closure of the graph of the contingent cone map Tk(-) of the

‘we tker U(z) = F(z) and f(z,u) = u.
%as long as the viability domain does not change for external reasons which are not
taken into account here.




map (z,v) ~ {v} X cB. It is therefore closed. These subsets, which can be
interpreted as global contingent sets, enjoy properties that the contingent
cones may not have.

These properties are used in section 6 to prove the convergence of a
modified version of the Byrnes-Isidors zero dynamics algorithm® to a closed
viability domain (instead of the viability kernel).

In this paper, X, Y, Z denote finite dimensional vector-space and B the
unit ball of any of these spaces.

1 Smooth State-Control Solutions

Let us consider a control system (U, f) defined by a set-valued map U : Z ~»
X and a single-valued map f : Graph(U) — X, where X is regarded as the
state space of the system, Z the control space, f as describing the dynamics
and U the a priori feedback. The evolution of a viable state-control pair
(z(+), u(-)) is governed by

{.-) (1) = f(z(t),ult)) (@)
1) Vt>0, u(t) € U(z(t))

We shall say that it is smooth is both z(-) and u(:) are absolutely continuous
and that they are ¢-smooth if they are smooth and satisfy

for almost all t > 0, ||u'(t)|| < @(=z(t),u(t))

We can obtain smooth viable solutions by setting a bound to the growth
to the evolution of controls. For that purpose, we shall associate with this
control system and with any non negative continuous function (z,u) —
©(z, u) with linear growth? the system of differential inclusions

{,-) 2(t) = f(a(t),u(t)) @)
iW) w(t) € p(a(t),u()B

We observe that any solution (z(-),u(-)) to the system of differential snclu-
stons (8) which 1s viable in Graph(U) s a p-smooth solution to the control
system (2).

Swhich is a generalisation of the structure algorithm introduced by Silverman in [27]
and Basile & Marro in [7] for linear control systems.

Twhich can be a constant p > 0, or the function ¢||u||, or the function (z,u) — ¢(||u| +
lizll +1).



Let us recall the statement of the Viability Theorem. We say that a
set-valued map is a Peano map if it is upper semicontinuous with nonempty
compact convex images and with linear growth?®.

A subset K C Dom(F) is called a viability domain of F if and only if

Vze K, F(z)NTk(z) #0

Theorem 1.1 (Viability Theorem) Let us consider a Peano mapF : X ~
X and a closed subset K C Dom(F) of a finite dimensional vector space X.

If K s a viability domain , then for all initial state zo € K, there ezists
a viable solution on [0, 00 to differential inclusion

2'(t) € F(z(t))

We thus deduce from this Viability Theorem applied to the system (3)
on the graph of U the following Regularity Theorem:

Theorem 1.2 Let us assume that the graph of U 18 closed and that f 1s
continuous and has linear growth.

Then for any initial state zo € Dom(U) and any initial control uy €
U(zo), there exists a -smooth state-control solution (z(-), u(-)) to the control
system (2) starting at (zo, ug) if and only if the set-valued map U satisfies

V (z,u) € Graph(U), DU(z,u)(f(z,u)) N @(z,u)B # 0 (4)

Proof — The conclusion of the theorem amounts to saying that the
closed subset Graph(U) enjoys the viability property. By Viability Theo-
rem 1.1, which we can apply since the set-valued map (z,u) ~ {f(z, u)} x
¢(z,u)B is upper semicontinuous with compact convex values and has lin-
ear growth, this is the case if and only if it is a viability domain, i.e., if and
only if

V (z,u) € Graph(U), Tgraphy)(z,u) N ({f(z,u)} x ¢(z,u)B) # @

By the very definition of the contingent derivative of U, this is the necessary
and sufficient condition of the theorem. O

We know that whenever the right-hand side of an ordinary differential
equation is differentiable, its solutions are twice differentiable. The extension
of this property to the case of differential inclusions is just a consequence of
the above theorem when we take f(z,u) = u:

%or equivalently, in the case of finite dimensional state spaces, closed set-valued maps
with convex values and linear growth.



Corollary 1.3 Let F: X ~ X be a closed set-valued map such that
VY z € Dom(F), Vv e F(z), DF(z,v)(v)Ne(z,v)B#0

Then, for any zo € Dom(F) and vo € F(zo), there exists a solution z(-) to
the differential tnclusion

Z'(t) € F(z(t)), z(0) = zo & £'(0) = wo
such that both z(-) and z'(-) are absolutely continuous.

The assumption of the above theorem is too strong, since it requires that
property (4) is satisfied for all controls u of U(z) (so that we have a solution
for every initial control chosen in U(zg)). We may very well be content with
the existence of a smooth solution for only some initial control in U(zo).

So, we can relax the problem by looking for the largest closed set-valued
feedback map contained in U in which we can find the initial state-controls
yielding smooth viable solutions to the control system. This amounts to
studying the viability kernels of Graph(U) for the system of differential
inclusions (3), where the viability kernel is defined as follows:

Definition 1.4 (Viability Kernel) Let K be a subset of the domain of a
set-valued map F : X ~ X. We shall say that the largest closed viability
domain contained in K (which may be empty) is the viability kernel of K
and denote it by Viabp(K) or, simply, Viab(K).

We recall that such a viability kernel does exist and can be characterized.

Theorem 1.5 Let us consider a nontrivial Peano map F : X ~ X. Let
K C Dom(F) be closed. Then the viability kernel of K ezists (possibly
empty) and is the subset of initial states such that at least one solution
starting from them s viable in K.

Remark — When K := h~!(0) is defined by equality constraints
(where h : X — Y is an observation map), the restriction of the control
system to the viability kernel of h=1(0) is called zero dynamics. See the
series of papers [21,9,10,11,13] devoted to this question. In this case, the
viability kernel is obtained by the zero dynamics algorithm described in
section 6. 0O

This leads us to introduce the following



Definition 1.6 (p-growth regulation map) Let us consider the control
system (2). We shall denote by R := Rf the set-valued map whose graph
ts the viability kernel of Graph(U) for the system of differential inclusions
(8). We shall call it the p-growth regulation map to the control system (2).
If o =0, we shall say that R, is the punctuated regulation map. Controls
u such that (R°)™)(u) are not empty are called punctuated equilibria.

We thus deduce from Theorem 1.5 the following result on the existence
of smooth viable solutions.

Theorem 1.7 Let us assume that the graph of U is closed and that f s
continuous and has linear growth.

Then for any initial state zo € Dom(R¥) and any initial control up €
R¥(zp), there exists a smooth state-control solution (z(-),u(-)) to the con-
trol system (2) starting at (zo,up), where the solution z(-) is regulated by a
control u(-) starting at up through the smooth regulation law:

Ve>0, ult) € R®(z(t) (5)

Remark —  We observe that the graph of Rf is also the viability
kerne] of the graph of the regulation map Ry and that the regulation maps
R¥ are increasing with . O

The case when the growth ¢ is equal to 0 is particularly interesting,
because it determines areas where the evolution of the control is constant.

Proposition 1.8 The subset (R°)~!(u) ts the viability kernel of U~1(u) for
the differential equation
z'(t) = f(=(t), u)

parametrized by the constant control u.

Proof — Indeed, (R°)~!(u) describes the subset of Dom(U) which is
controlled by the constant control u because for any initial state zo given in
(R®)7(u), there exists a solution z(-) to the differential inclusion

{i) Z'(t) = f(z(t),u) u remains constant
i) v'(t) = 0

i.e., of the differential equation z'(t) = f(z(t), u) which is viable in (R°)5;(u).
0O

Naturally, when (R%);1(u) is reduced to a point, this point s an equilib-
rium.



2 Example

We illustrate these concepts of regulation maps in the case of the simplest
dynamical economic model (one commodity, one consumer).

Let K := [0,b] the subset of a scarce commodity z. Assume that the
consumption rate of a consumer is equal to a > 0, so that, without any
further restriction, its exponential consumption will leave the viability subset
[0, b]. Hence its consumption is slowed down by a price which is used as a
control. In summary, the evolution of its consumption is governed by the
control system

for almost allt > 0, z'(t) = az(t) — u(t), where u(t) >0
subjected to the constraints
Vt>0, z(t) €[0,b]

The a priori feedback map U is defined by U(z) := R;. Hence the
regulation map is given by the formula

Rk (0) = {0}, Rk(z) =Ry when =z €0,b] & Rk (b) = [ab,+oo|

Its graph is not closed, and its closure is the graph of U, equal to [0, b] x
R,

We see at once that the viable equilibria of the system range over the
equilibrium line u = az. Viability is guaranteed each time that the price u(t)
is chosen in R(z(t)), i.e., u = O when z = 0 (and thus, the system cannot
leave the equilibrium because negative prices are not allowed “to start” the
system) and u > ab when z = b, so that the price is large enough to stop or
decrease consumption.

Assume that the system obeys the inertia principle: st keeps the price
constant as long as it works. Take for instance zp > 0 and up € [0, azp|.
Then the consumption increases® and when it reaches the boundary b of the
interval, the system has to switch very quickly to a velocity large enough to
slow down the consumption for the solution to remain in the interval [0, 3].

But there is a bound to growth of prices (and inflation rates), so that
we should set a bound!® on price velocities: |u'(t)| < c. We shall associate
with such a bound a “last warning” threshold to modify the price: there
is a level of consumption after which it will be impossible to slow down
the consumption with a velocity smaller than or equal to ¢ to forbid it to
increase beyond the boundary b.

®it is equal to (e**(azo — ¥o) + u0)/s.
%we take p(z,4) = c.
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Figure 2: Evolution of a Heavy Solution
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We shall find this bound!! and introduce heavy solutions which will be
studied in full generality later for building this regulation law. They are the
one whose controls evolve with the “smallest velocity”. It may be useful to
be acquainted with this concept on an example, and this one illustrates well
how heavy solutions evolve.

We thus consider the c-bounded state-control solutions, which are the
solutions to the system

{) for almost allt > 0, z'(t) = az(t) — u(t
{tz) and —cSu'(t)Scz() ® ® (6)

which are viable in Graph(U).
We introduce the functions p! and p* defined on [0, oo[ by

) A = Sl -1+ ) g

i5) pl(u) = —ece?(v=)/¢/a? 4 y/a +c/a?
and the functions r! and r* defined on [0, b] by

§) r’(z) = u if and only if u = p’(z)
i) A@)=0 if 2 0,/0)] (510) = &(1 - ee))

i11) r¥(z) = u if and only if u = p'(z) when z € [p!(0), ]

Proposition 2.1 The c-bounded growth regulation map of system (6) is
defined by
Vze0,b], R'(z)=[r'(z),r(z)] (7)

Proof — Indeed, set u!(t) := up + ct and w’ := ug — ct and denote by
z!(-) and z’(-) the solutions starting at z; to differential equations

' = az — ul(2)

and

2 =az - ()
respectively. Then any solution (z(-), u(-)) to the system (6) satisfies u*(-) <
u(-) £ W!(-) and thus, z!(-) < z(-) < z*(-) because

t
z(t) = e*zp — / *t=*)u(s)ds
0

Mprovided by the c-regulation map R..

12



We also observe that the equations of the curves t — (z!(-), u!(-)) and
t ~— (z*(-),u*(:)) passing through (zo,uo) are solutions to the differential
equations

1
dp' = ;(apI —u)du & dp' = —%(apb - u)du
the solutions of which are

i) pl(u) = edlv—uo)/e(zy — up/a — ¢/a?) + u/a + c/a?
i) p'(u) = e2(vo—u)/e(z — uy/a+ c/a?) + u/a — ¢/a?
Let p* be the solution passing through (0,0), which is equal to
b _ S ¢ -ay a
pe(u) = (7™~ 1+ —u)

and
p!(u) - _cea(u-—ab)/c/az +u/a+c/az

be the solution passing through the pair (ab, b).
—  We check that the viability kernel is contained in the graph of R®
by contraposition.
If ug > r*(zo), then any solution (z(-), u(-)) starting from (zo, ug) satisfies

2(t) < 2'(2) = pL(u*(2)) < pe(u(®))

because p'(-) is nondecreasing. Hence, when z(t;) = 0, we deduce that
u(t1) > 0, so that such solution is not viable, and thus, (zo,uo) does not
belong to the viability kernel.

If 0 < ug < r¥(zp), any solution (z(-), y(-)) satisfies inequalities

z(t) > 2'(t) = pl(wh(2)) 2 Ph(u())

Therefore, when z(t;) = b for some time t,, its velocity z'(t1) = ab — u(t;)
is positive, so that the solution is not viable.

— It remains to prove that the viability kernel is equal to the graph
of R° by constructing particular viable solutions starting from any point
(20, uo) of this graph. We choose the heavy solutions.

The equilibrium line u = az is contained in the viability kernel: if we
start from an equilibrium, both the state and the controls can be kept con-
stant.

We shall now investigate the cases when the initial control ug is below
or above the equilibrium line.

13



Consider the case when zo > 0 and the price ug € [r¥(z¢), azo[. Since we
want to choose the price velocity with minimal norm, we take!? u'(t) = 0
as long as the solution z(-) to the differential equation ' = az — ug yields
a consumption z(t) < p!(up). When for some time t;, the consumption
z(t1) = p!(uo), it has to be slowed down. Indeed, otherwise (z(t; + €), uo)
will be below the curve p! and we saw that in this case, any solution will
eventually cease to be viable. Therefore, prices should increase to slow down
the consumption growth. The idea is to take the smallest velocity u' such
that the vector (z'(t1), u') takes the state inside the graph of R¢: they are the
velocities u' > z'(t1)/p¥ (uo). By construction, it is achieved by the velocity
of zI(-), which is the highest one allowed to increase prices. Therefore, by
taking

z(t) == 2(t) := 2t (2(t)) — wo/a — ¢/a?) + ¢(t — t1)/a + uo/a + c/a?

and u(t) := up+c(t—t;) for t € [t1,t1+ (ab—ug)/c|, we get a solution which
ranges over the curve z!(t) = p!(u*(t)). This a heavy solution because,
for the same reason than above, the smallest velocity of the price (which
is unique along this curve) is chosen. According to the above differential
equation, we see that z(t) increases to b where it arrives with velocity 0 and
the price increases linearly until it arrives to the equilibrium price ab. Since
(b, ab) is an equilibrium, the heavy solution stays there: we take z(t) = b
and u(t) = 0 when t > t; + up/c. So we have built a viable solution starting
from (zo, up), so that the region between the “curve p*” and the equilibrium
line is contained in the viability kernel, i.e., the graph of R°.

Consider now the case when ug € [azo, *(20)], where we follow the same
construction of the heavy viable solution. We start by taking u'(t) = 0, and
thus, u(t) = ug, as long as the solution z(-) to the differential equation z' =
az — ug, which decreases, satisfies z(t) > p’(ug). Then, when z(t1) = p%(uo)
for some t;, we take

z(t) = 2*(t) := €%(t — t;)(2(t1) — wo/a + ¢/a?) — ¢(t - t;)/a+ wo/a — c/a*

and u(t) := ug — c(t — t) for t € [t1,t1 + uo/c| in order to avoid leaving the
viability kernel. Finally, for t > t; + ug/c, we take z(t) = O and u(t) = 0.
This particular solution, is viable, so that the pairs (zg,ug) where up €
[azo, r*(z0)] belong to the viability kernel. O

1%and realize in this case the dream of economists, which, despite the teachings of
history, are looking for constant prices and commodities ...
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Remark — We observe that for any z €]0, }],
. b _ . 1 _ . ] _ . b _
cl_1‘r51+ r'(z) = cl_{r51+ ri(z) = az, limr (z)=0& lim r (z) = +oo

In other words, the graph of R¢ starts from the equilibrium line when ¢ =0
and converges in some sense to the graph of U when ¢ — +oco. O

3 Heavy Viable Solutions

Let us consider a control system (U, f) which has a nontrivial ¢-growth
regulation map Rl"; for some @ > 0.

Proposition 3.1 The smooth viable state-control pairs (z(-),u(:)) to the
control system (2) are also solutions to the system of differential inclusions

) ) = f)u) ©)
i) u'(t) € DRy(=(t), u(t))(f(=(¢), u(t)))
Proof — Indeed, since the absolutely continuous function (z(-),u())
takes its values into Graph(R), then its derivative (z'(-),u/(-)) belongs
almost everywhere to the contingent cone

TGra.ph(Rg) ((t),u(t)) := Graph(DRg(z(t),u(t)))

We then replace z'(t) by f(z(t), u(t)).

The converse holds true because equation (8) makes sense only if (z(t), u(t))
belongs to the graph of Rf. O

The question arises whether we can construct selection procedures of the
control component of this system of differential inclusions. It is convenient
for this purpose to introduce the following definition.

Definition 3.2 (Dynamical Closed Loops) We shall say that a selec-
tion g of the contingent derivative from the p-regulation map RY in the
direction [ defined by

V (z,u) € Graph(Rf), g(z,u) € DRf(z,u)(f(z,u)) (9)

18 a¢ dynamical closed loop.
The system of differential equations

) 2'(t) = f(=z(t),u(?))
{"") u(t) = g(=(t), u(t)) (10)

18 called the associated closed loop differential system.
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Therefore, a dynamical closed loop being given, solutions to system of
ordinary differential equations (10) (if any) are smooth viable state-control
pairs of the initial control problem (2).

Such solutions do exist when g is continuous (and if such is the case,
they will be continuously differentiable). But they also may exist when ¢ is
no longer continuous, as is the case of slow solutions (see [14,3,4,6]) closed
loop controls. This is the case for instance when g(z, u) is the element of
minimal norm in DR (z, u)(f(z,u)).

In both cases, we need to assume that the right-hand side of this system
is lower semicontinuous with closed convex images. This happens when we
posit the following condition:

Definition 3.3 We shall say that a control system (U,f) is p-dynamically
regular if

i)  the domains of U and R} coincide
1) the p-regulation map RY is sleek (11)
i11) SUP(; u)eGraph(rf) ||DR§(z,u)|| < +o0

Indeed, assumptions (11)ii) and iii) imply that the set-valued map (z, u, v) ~
DRf(z,u,v) is lower semicontinuous (see [5] for more details).

Then we begin by deducing from Michael’s Theorem (see [1]) the exis-
tence of continuously differentiable viable state-control solutions.

Theorem 3.4 Let us assume that the graph of U 18 closed and that f is con-
tinuous and has linear growth. If the control system (U, f) is p-dynamically
regular, then there ezists a continuous dynamical closed loop. The associ-
ated closed-loop differential system regulates continuously differentiable vi-
able state-control solutions.

Since we do not know constructive ways to built continuous dynamical
closed loops, we shall investigate whether some explicit dynamical closed
loop provides closed loop differential systems which do possess solutions.

The simplest example of dynamical closed loop control is the map g
associating with each state-control pair (z, u) the element of minimal norm
of DRE(z,4)(f(2,u)).

Definition 3.5 (Heavy Viable Solutions) We denote by g¢(z, u) the el-
ement of minimal norm of DR (z,u)(f(z,u)). We shall say that the solu-
tions to the associated closed loop differential system

{,-) 2(t) = f(z(t),u(t))
iW) u(t) = go(2(t),u(t)
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are heavy viable solutions to the control system (U, f).

Theorem 3.6 (Heavy Viable Solutions) Let us assume that the graph
of U 18 closed and that f 18 continuous and has linear growth. If the con-
trol system (U, f) is p-dynamically regular, then for any initial state-control
(7o, uo) n Graph(RY), there exists a heavy viable solution to the control
system (2).

Remark — If for some t;y > 0, u(ts) is a punctuated equilibrium,
then u(t) = u;, for all t > t; and z(t) remains in the viability cell N(u(ty))
forallt>t;. DO

The reason why this theorem holds true is that the minimal selection is
obtained through the selection procedure of a set-valued map F : X ~ Y
we are about to describe.

Let F : X ~ Y be a set-valued map with closed convex values. The
projection of 0 onto the closed convex set F(z) is the element u := m(F(z)) €
F(z) such that

lul|? +o(~F(z),u) = sup <u—-0,u—y><0 (12)
veF(z)

If we introduce the set-valued map Sr : X ~» Y defined by
u € Sp(z) if and only if |lu||®+ o(—F(z),u) <0 (13)
then we observe that the graph of the minimal selection is equal to:
Graph(m(F)) = Graph(F) N Graph(Sr)

Therefore, the minimal selection is obtained through a general selection
procedure defined as follows (see [3,4]):

Definition 3.7 (Selection Procedure) Let Y be a Banach space. A se-
lection procedure of a set-valued map F : X ~ Y ts a set-valued map
Sp : X ~ Y satisfying

{ i) VzeDom(F), S(F(z)):=Sr(z)NF(z)#0
11) the graph of Sp 1is closed

We can easily provide other examples of selection procedures through
optimization thanks to the Maximum Theorem.
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Proposition 3.8 Let us assume that a set-valued map F : X ~ Y 18 lower
semicontinuous with compact values. Let V : Graph(F) — R be continuous.
Then the set-valued map Sr defined by:

Sr(z):={yeY | V(z,y)sv f: V(z,y")}

in
1€F(z)

18 a selection procedure of F. Consequently, if the graph of F 1s also closed,
80 18 the graph of the selection S(F) equal to:

S(F@) =y F@) | V()< it V()
For simplicity, we set
GP(z’u) = DRg(z,u)(f(z,u))

Theorem 3.9 We posit the assumptions of Theorem 1.7. Let Sg, be a
selection procedure of the set-valued map G, with convez values. Then,
for any initial state (zo,uo) € graph(U), there ezists a viable state-control
solution starting at (zo, uo) to the associated closed loop system of differential
tnclusions

i) () = 1 (=(t), u(t))
) W) € Gyle(t),u(®) N Sa, (2(0),u(t))
In particular, if for any (z,u) € Graph(U), the intersection
Gy(z,u) N Sg,(z,u) = {s(DR;(z,u)(f(z,u))}

ts a singleton, then there exists a viable state-control solution starting at
(zo0,u0) to the associated closed loop differential system

i) 2(t) = f(=z(t),u(t))
iW) u'(t) = s(DRY(z(t), u(t))(f(=(t),u(t)))

Proof — We shall replace the system of differential inclusions (8) by
the system of differential inclusions

i) 2'(t) = f(=(2),u(?))
{ii) W(t) € Sa,(z(t),u(®)) (15)

(14)
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Since the convex selection procedure Sg, has a closed graph and convex
values, the right-hand side is upper semicontinuous set-valued map with
nonempty compact convex images and with linear growth. It remains to
check that GraphR{ is still a viability domain for this new system of dif-
ferential inclusions. Indeed, by construction, we know that there exists an
element w in the intersection of Gy, (z,u) and Sg,(z,u). This means that
the pair (f(z,u),w) belongs to f(z,u) x Sg,(z,u) and that it also belongs
to
Graph(G,) := TGraph(R{;)(”“)

Therefore, we can apply the Viability Theorem. For any initial state-control
(zo, uo), there exists a solution (z(-), u(:)) to the new system of differential
inclusions which is viable in Graph(R{7). Consequently, for almost all ¢ > 0,
the pair (z'(t), u'(t)) belongs to the contingent cone to the graph of R at
(z(t), u(t)), which is the graph of the contingent derivative DR (z(t), u(t)).
In other words,

for almost all t >0, u'(t) € G, (z(t), u(t))

We thus deduce that for almost all ¢ > 0, u'(t) belongs to the selection
S(Gy)(z(t), u(t)) of the set-valued map G,(z(t),u(t)). Hence, the state-
control pair is a solution to the system of differential inclusions (14). O

4 Heavy Viable Solutions on Smooth Viability
Domains

Consider the case when K is a smooth viability domain defined by
K := A"}(0)

where A : X — Y is a twice continuously differentiable map such that A'(z)
is surjective for every z € A~1(0).
Since Tk (z) = ker A'(z), we deduce that the regulation map is equal to

Rk (z)={u€e U(z)| A'(z)f(z,u) =0}
We begin by computing its contingent derivative:

Proposition 4.1 Assume that A'(z) € L(X,Y) is surjective whenever A(z) =
0, that the graph of U 1is sleek and that for anyy € Y and v € X, the subsets

DU (z,u)(v) N (4'(z)fu(z,6)) " (y — A"(2)(f(z, u),v) — A'(z) f(z, u)v)
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are not empty. Then the contingent derivative of the regulation map 1s equal
to

{ DRy(z,u)(v) = DU(z,u)(v)N
—(4'(2)fulz, w))TH(A"(2)({ (2, u),v) - A'(2) fz(z, u)v)

when A'(z)v = 0 and DRy(z,v) = @ if not. In particular, if U(z) = Z,
then it 18 sufficient to assume that A'(z)f!(z,u)- 18 surjective and we have
in this case

DRy(z,u)(v) = —(4'(z)fu(z, 4)) (4" (2)(f (2, 6),v) — A'(2)1;(z, u)v)
when A'(z)v =0 and DRy(z,v) = 0 if not.

Proof — The graph of Ry can be written as the subset of pairs
(z,u) € Graph(U) such that C(z, u) := (A(z), A'(z)f(z,u)) = 0. We apply
[5, Theorem 4.3.3.], whcih states that since the graph of U is closed and
sleek, the transversality condition

C'(z, “)TGraph(U)(z: u) = C'(z,u)Graph(DU (z,u)) =Y x Y

implies that the contingent cone to this closed subset is the set of elements
(v, w) € Graph(DU(z, u)) satisfying

{ C'(z, u)(v,w) =
(4'(z)v, A'(z) fi(z, w)w + A'(z) fi(z, w)v + A"(z)(f(z, u),)) = O

But the surjectivity of A'(z) and the non emptiness of the intersection
imply this transversality condition. O

Therefore, the set-valued map G defined by
G(z,4) == DRy(z,u)({(z,u))
is equal to right-hand

{ G(z,u) = DU(z,u)(f(z,u))N
—(A'(2)ful=z,u)) "1 (A"(2)(f (2, u), f (2, u)) — A'(z) f1(z, v) f(z, 1))

When we take U(z) = Z, we have explicit formulas for computing the
dynamical closed loop yielding heavy solutions.
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Corollary 4.2 Assume that U(z) = Z, that the regulation map
R(z) == {ue Z | A'(z)f(z,u) =0}

has non empty values, that A'(z) is surjective whenever z € A~1(0) and that
A'(z)fl(z,u) € L(Z,Y) is surjective whenever u € R(z).

Then there ersst heavy solutions viable in K, which are the soluttons to
the system of differential equations

{) z'= f(z,u)

1) u' =—fl(z,u)*A'(z)*
(A'(2) filz, u) fulz, u)* A'(2)*) 1 A (z) f2(z, u) f (2, u)
Proof — The element g(z, u) € G(z, u) of minimal norm is the unique
solution to the quadratic minimization problem with equality constraints:

[lwl?

inf
Al(2)fi(zu)w=—A'(2)[](z,u)f(z,u)-A"(2)(f(z,u).f (z,u))
It is equal to

9(z,v) = —fu(z, u)* A'(2)*(A'(2) fi(=, v) fu(z, u)* A (2)*) !
(A'(2)f2(2, u)f(z, u) + A"(2)(f (2, u), (2, u)))

because the linear operator B := A'(z)f!(z,u) € £(Z,Y) is surjective!3.
Example: Heavy viable solutions in affine spaces. Consider the
case when K := {z € X | Lz = y} is an affine subspace, with Az = Lz — y
where L € L(X,Y) is surjective.
Let us assume that

{) VzeK, R(z):={u€ Z suchthat Lf(z,u)=0}#0
#1) Vze K,Vue R(z), Lfl(z,u) is surjective

Then, for any initial state zg € K and initial velocity ug satisfying L f(zo, ug) =
0, there exists a heavy viable solution of the control problem, obtained as a
solution to the system of differential equations

i) z'=[(z,u)

i) o' =—fu(z,9)* L*(Lfi(z, u) fi(z, w)* L*) 'Ly (2, u) f (2, u)

13Recall that the unique element which minimizses z — ||z|| under the constraint Bz =y,
where B € L(X,Y) is surjective, is equal to B*y, where Bt = B*(BB*)™! denotes the
orthogonal right-inverse of B.
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When Y :=R and K := {z € X | < p,z >= y} is an hyperplane, the above
assumption becomes

i) VzeK, Rz):={ueZ| <p, f(z,u) >=0}#0
) Vze€ K, Vue R(z), fl(z,u)'p#0

and heavy viable solutions are solutions to the system of differential equa-
tions
i) 2'=f(z,4)
4
—-Zp '!,.’:u’{:’" 2 f!(z,u)*p
Example: Heavy solutions viable in the sphere. Let L € £(X, X)

be a symmetric positive-definite linear operator, with which we associate
A(z) :=< Lz,z > —1 and the viability subset

i) u' =

K ={z€eX| < Lz,z>=1}
We assume that

i) VzeK, R(z):={u€Z| <Lz, f(z,u) >=0} #0
i) Vz€ K,Vu€e R(z), fl(z,u)*Lz#0

Then there exist heavy viable solutions in the sphere, which are solutions to
the system of differential equations

i) z' = f(z,u)
Il (z,u)*Lz

.. "
") u = fi(z,u)*Lz

(< Lf(z,u), f(z,u) > + < Lz, fi(z,u) f(z,u) >)

5 Application: Global Contingent Sets

Definition 5.1 Let K C X be a closed subset of a finite dimensional vector-
space X and ¢ > O be a positive constant. We shall denote by T (z) the
subset of elements v € Tk(z) such that there exists a measurable function
z"(-) bounded by c satisfying

t
Vt>0, z+tv +/ (t — r)z"(r)dr is viable in K
0
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Figure 3: The Graph of Tj,(-)

4

P

We introduce the Peano F from X x X to itself defined by F(z,v) :=
{v} x ¢B. The functions t — z(t) := z(0) + tv(0) + Jo(t — r)z"(r)dr where
|[="(7)|| £ ¢ are solutions to the differential inclusion ||z"(t)|| < ¢, as well as
solutions to the differential inclusion

(='(2),v'(t)) € F(z(t), v(t)

We remark at once that the graph of the set-valued map T is the viability
kernel of Graph(Tk) for the set-valued map (z,v) ~ {v} x c¢B.
Observe that 0 € T§(z) for all z € K.

Example
We can check easily that for K := [0,1], the contingent cone Tx(z) is
defined by

R, if z=0
Tx(z) = { R if z€]0,1]
R. ifz=1

and the global contingent set is equal to

vze,l, Ti(e) = [-var, Vell-2)| O

We deduce from the properties of the viability kernels the following state-
ments.
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Proposition 5.2 The graph of the set-valued map z ~> T§(z) 18 closed. Let
K :=limsup,_,,, K, denote the (Kuratowski) upper limit of a sequence of
closed subsets K,. Then the (Kuratowski) upper limit of the graphs of T
18 contained in the graph of Tf,.

Proof — It follows from the fact that the viability kernel of a closed
subset is closed and that the (Kuratowski) upper limit of a sequence of closed
viability domains is a viability domain.

Let us consider any element (z, v) of the (Kuratowski) upper limit of the
sequence of viability kernels Viab(Graph(Tk,)). Then (z,v) is the limit of a
subsequence (z,, v,) of elements of Viab(Graph(Tk,)), so that there exist
solutions z,(-) to the differential inclusion ||z"|| < ¢ satisfying the initial
conditions

za(0) = z, & z,(0) = v,
and converging to some function z(-) satisfying z(0) = z and z'(0) = v.
Since z,(t) € K for all t > 0, then z(t) € K! for all t > 0. Therefore,
z'(t) € Txa(z(t)). Hence, the pair (z(t),z'(t)) is a solution which is viable
in Graph(Tki) and consequently, (z,v) € Viab(Graph(Tk)). O

Obviously, if ¢; < ¢z, then Tg} c Tg?. Also, we deduce from the upper
semicontinuity of the solution map that for any € > 0, there exists n > 0
such that TR c T + ¢(B x B).

We also observe that

Vze K, VveTig(z), DTg(z,v)(v)NcB # @

Proposition 5.3 Let A€ L(X,Y) be a linear operatorand KC X, M CY
be closed subsets. Then, setting d := c||A|| and L := A(K),

Vze K, A(Ti(z)) c TE(Az)

and thus
Vxe AT (M), Th-ipg(z) ¢ 71 (Tl (42))

If we assume furthermore that A is surjective, then there ezists a constant
p > 0 such that

vee ATH(M), AT (Tyi(Az)) C Tioip(2)

Proof — Let v € Ti(z). Then there exists a solution z(-) to ||z"|| < ¢
viable in K and satisfying (z(0),z'(0)) = (z,v). Then y(t) := A(z(t)) is
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solution to the differential inclusion y'(t) = w(t) and w'(t) € cA(B) C
c||A|| B, viable in A(K), such that (y(0),y'(0)) = (A(z), A(v)).

The second statement follows by taking K := A™!(M).

To prove the last one, consider w € Tas(y) and a viable solution

y(t) =y +tw+ /(:(t —1)y"(r)dr

Since A is surjective, there exists a constant p > 0 and solutions z and
v to the equations Az = y and Av = w satisfying inequalities ||z|| < p||y||
and |lv|| < p|lw||. By the Measurable Selection Theorem, there exists a
measurable selection z(-) to the equation Az(r) = y"(r) satisfying inequality
=l < plls" ()] < pe.

Then z(t) := z + tv + [§(t — 7)2(r)dr is a solution to the differential
inclusion ||z"|| < pc which is viable in A"}(M). O

6 The Modified Zero Dynamics Algorithm

The zero dynamics algorithm has been devised to obtain the viability kernel
of closed subsets defined by equality constraints, i.e., subsets of the form
K := h71(0) where h is a map from X to a finite dimensional vector-
space Y. It is shown to converge for linear control systems (see [7,27]) and
for smooth nonlinear control systems (see [9,10,11,13]. In this framework,
viability property is called controlled invariance and the restriction of the
control system to the viability kernel is called zero dynamics).

In the general case, let us consider a closed subset K of the domain of a
set-valued map F: X ~ X.

We start with Kg := K and we construct

K, := Dom(Rg,) where Rk, (z) := F(z) N Tk(z)

Since the viability kernel Viabg(K) is contained in K and since Tp(z) C
Tk (z) whenever K C L, we infer that Viabp(K) C K,

Assume that a decreasing sequence of subsets K; satisfying Viabp(K) C
K; C K;_; C K has been defined up to n. We then set

Rk,.(z) = F(z)NTk,(z)

define K1 := Dom(Rg,) and we observe that Viabp(K) C Kp41.
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Therefore -
Viabp(K) ¢ [ Kn
n=0

The problem is to show that equality holds true. Several requirements have
to be met to solve the problem. The first one is that the subsets K, should
be closed. The second one is that the (Kuratowski) upper limit of the con-
tingent cones Tk, (z) is contained in the contingent cone to the (Kuratowski)
upper limit of the subsets K, (which, in this case, is the intersection of the
decreasing sequence of the subsets K,).

These conditions are not met for finding the viability kernel of K :=
[0,1] x R for the system F(z,v) := {v} X ¢B since

= {0} xR;UJ0,1[xRU{1} x R_

, K1 = Ko and since the viability kernel is the graph of T§(-).

Thanks to Proposition 5.2, by replacing the contingent cones Tk (z) by
the subsets T§(z) in the structure algorithm, we can prove that the modified
version converges to a closed viability domain.

Let us set K§ := K. For defining Ki C K§, we introduce the set-valued
map R§ defined by R§(z) := F(z)n TKc (z) and set K¢ := Dom(R§).

If the subsets K have been defined” up to n, we set

Ri(z) = F(z) N T (2)

and we defined
Ky1:= Dom(Ry)

Proposition 6.1 Assume that K is compact and that F : K ~» X 18 upper
semicontinuous with nonempty closed values. Then either K{ 1s empty for
some step 1 or Ko, := (2, K{ 18 a nonempty closed viability domain of F:

Vz€ Ko, F(z)NTg (z) # 0

Proof — First, since the graph of R is the intersection of the graph of
F and the graph of T§. which are both closed, it is also closed. Furthermore,
the subset K¢ is closed since F(K) is compact (If z, € K¢ converges to z,
the sequence of elements v, € F(z,) N Tk:_ (z,.) lying in a compact set, a
subsequence (again denoted by) v, converges to some v. Since the graphs
of F and Tk;_ (-) are closed, we infer that v € F(z) N T : (:t:) ie., that z
belongs to K, °) Then the K{’s form a decreasing sequence "of closed subsets
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of a compact subset. Either one of the K{’s is empty or the intersection Ko,
i8 not empty. In this case, let z be chosen in K,,. For any n, there exists
vn € F(z) N T, (z). Since the v,’s remain in the compact subset F(K), a
subsequence (again denoted) v, converges to some v. Since (z,vy,) belongs
to the graph of T%., we know that (z,v) belongs to the graph of T _,
because K, is the (Kuratowski) upper limit of the decreasing sequence of
the subsets K7. Hence v belongs to F(z) NTk_(z). D
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