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Abstract. The present  paper is concerned w i t h  optimizat ion 
problems i n  which the  da ta  a re  d i f f e ren t i ab le  funct ions having 
a continuous o r  l o c a l l y  L ipschi tz ian gradient  mapping. I ts 
main purose i s  t o  develop second-order s u f f i c i e n t  condit ions 
f o r  a s ta t ionary  so lu t ion  t o  a programm with ~ 1 , 1  da ta  t o  be 
a s t r i c t  l o c a l  minimizer o r  t o  be a l o c a l  minimizer which is 
even strongly s t a b l e  with respect  t o  c e r t a i n  per turbat ions of 
t he  data. It tu rns  out t h a t  some concept of a set-valued 
d i rec t i ona l  der iva t i ve  of a Lipschi tz ian mapping i s  a su i tab le  
t o o l  t o  extend well-known r e s u l t s  i n  the  case of programs with 
twice d i f f e r e n t i a b l e  da ta  t o  more general  s i t ua t i ans .  The 
l o c a l  minimizers being under considerat ian have t o  s a t i s f y  the  
Mangasarian-Fromoviltz CQ. An. appl icat ian t o  i t e r a t e d  l o c a l  
minimization i s  sketched. 
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1 

1 . Introduction 

Optimality conditions and sensitivity analysis of optimal solu- 
tions play an important role in theory and applications of non- 
linear optimization problems. Motivations for the study of 
sensitivity and stability of optimization problems come from the 
development of numerical methods, from the convergence analysis 
of solution procedures, from semi-infinite programming and from 
the analysis of inexact models. The aim of the present paper is 
to give second-order sufficient conditions for optimality and 
for strong stability of local minimizers (under data perturba- 
tions), where the optimization problems being under considera- 
tion include functions for which twice differentiability fails. 
Our main tool used in the following is a set-valued directional 
derivative of Lipschitz continuous mappings, which was intro- 
duced by Kummer [19]. The second-order conditions concern 
optimization problems in which the data are differentiable func- 
tions having a locally Lipschitzian gradient mapping (so-called 
c1 *'-functions). 

Given a metric space T, an open subset Q of R~ and functions 
fix QxT-R (i=O,l,...,m), we consider the following family 
of optimization problems, 

where the multifunction A!: T Rn is defined by 

Throughout the paper we shall suppose that for each i E [0,1, ... ,m) 
and for each t€T, 

fi(.,t) is ~r6chet differentiable on Q, and 
(1 01) 

fi and Dxfi(.,.) are continuoue on Q xT , 
where Dxfi(x,t) denotes the gradient of fi(.,t) at x for fixed t. 
put for (x,u,t) E Q x R ~ X  T, 

Given t E T, each point x E Q  satisfying with some U E R ~  the 



Karush-Kuhn-Tucker system 

Dx l ( x , u , t )  = 0 9 f i ( x , t )  = 0 , (i= 1 ,..., p) , 
( 1  a 2 1  

f j ( x , t ) t . o  I u j 2 0  , ~ . f . ( ~ , t )  J J = o ,  ( j = p + ~  ,..., x u ) 9  

i s  se id  t o  be a s ta t i ona ry  so lu t ion of P ( t ) ,  i n  symbols: 
x € S ( t ) .  For each ( x , t ) ,  the  s e t  of a l l  vectors  u with the  prop- 
e r t y  t h a t  ( x ,u , t )  s a t i s f i e s  (1.2) w i l l  be denoted by LM(x,t). A 

point  x ~ M ( t )  i s  sa id  t o  be a l o c a l  minimizer of P ( t )  if there  
i s  some neighborhood V of x such t h a t  f o ( x , t ) L f o ( z , t )  f o r  a l l  
z € M ( t ) n V  holds, A s ta t ionary  so lu t ion x ( o r  a l o c a l  minimizer 
x )  of P ( t )  i s  ca l led  i so la ted  if there  i s  some neighborhood of x  
which does not contain any o the r  s ta t i ona ry  so lu t ion  ( o r  l o c a l  
minimizer) of ~ ( t ) .  An i so la ted  l o c a l  minimizer of P ( t )  is  a lso  
s t r i c t ,  i .e. ,  f 0 ( x , t ) ~ f 0 ( z , t )  f o r  a l l  z € Y ( t ) n V ,  zfx. 

I n  t h i s  paper, the  not ion of a s t rong ly  s tab le  s ta t i ona ry  so- 
l u t i o n  plays a c e n t r a l  ro le .  Let B(y,r)  and g(y, r )  denote the  
closed and the  open r-neighborhood of y, respect ive ly ,  where we 
use the  same notat ion no mat ter  whether y E R~ o r  y E T. Adapting 
Kojimavs d e f i n i t i o n  115 ] t o  t he  parametric problem [ ~ ( t )  , t  C TS, 
we s h a l l  say t h a t  a s ta t i ona ry  so lu t ion x0 of the  problem P( tO)  
f o r  f ixed t=to i s  st rongly  s t a b l e  ( w a r .  t o  [ ~ ( t )  , t  E T I )  i f  f o r  
some r e a l  number r > 0 and each r g € ( 0 , r l  , t h e r e  e x i s t s  a r e a l  
number a = a ( r v  ) such t h a t  whenever t t B ( t O ,  a ) ,  B(xO, r1 ) contains 
a s ta t i ona ry  so lu t ion  of t he  problem P ( t )  which i s  unique i n  
13(x0,r). A l o c a l  minimizer which is  a lso  a s t rong ly  s t a b l e  sfa- 
t ionary  so lu t ion  w i l l  b r i e f l y  be ca l led  a st rongly s t a b l e  l o c a l  
minimizer, 

The concept of s t rong s t a b i l i t y  has been e s s e n t i a l l y  used i n  
homotopy methods, mul t i - level  methods and statements on l o c a l  
convergence i n  nonl inear opt imizat ion, c f , ,  f o r  example, Guddat, 
Backer and Zulehner [a], Jongen, Wber t  and Tammer 11 11, KO jima 
[15 1, Lehmann 1203. It has been introduced and developed by 
Kojima [ 15 1 f o r  opt imizat ion problems w i t h  twice d i f f e ren t i ab le  
data.  We note t h a t ,  i n  t h i s  case, s t rong s t a b i l i t y  is  c lose ly  
r e l a t e d  t o  the  concept of s t rong regulax i ty  i n  Robinson's sense 
1221, provided t h a t  t he  corresponding s ta t i ona ry  so lu t ion  sat- 



isfies the Linear Independence Constraint Qualification, we 
refer to [Ill. 

2 In the case of non-C or non-differentiable data there are 
several approaches to sensitivity studies in nonlinear program- 
ming via nonsmooth analysis, These concepts are often based on 
implicit function theorems for nonsmooth functians. Robinson 
1251 gives an implicit-function theorem for B-diff erentiable 
functians. Based on tbese fdeas, Newton type methods for non- 
smooth functiarrs are developed, cf. Robinson [26] and Pang [211. 
A n  implicit-function theorem for Lipschitzian mappings under the 
basia assumption that Clarke's [6] generalized Jacobian matrix 
is nonsingular is presented in Jongen, Klatte and Tammer (107. 
1% has applications in the sensitivity analysis of programs 

2 with C -data. Generalized Newton methods for various classes of 
nonsmooth functions are also given by Kojima and Shindo I1 61 and 
Kummer 1183. Second-order sufficient condif&xns for optimality 
and strong stability in c1 *'-optimization problems, by using 
Clarke's concept of a generalized Jacobian matrix, can be found 
in Klatte and Tammer 1147 and Klatte [13], second-order necessary 
optimality conditions are presented in Hiriart-Urruty, Strodiot 
and bTguyen[91. More general results cancerning the sensitivity 
of local minimzers and stationary solutions in the non-C2 case, 
but without aiming at the s t r o n g  stability, are published, 
e,g., in Robinson [233, Alt 11'3, Auslender C27, Klatte 112 3 
and Kummer 1171. 

The paper is organized as follows. In Section 2, we shall de- 
rive simple consequences of the strong stability of atatianary 
solutions and local minimizers, using only first-order infor- 
matian. For motivation and application of strong stability we 
in particular give a theorem on iterated local minimization, 
extending a result of Jongen, Wdbert and Tammer [ 1 1  1. In 
Section 3, we present the main results of the paper: second-or- 
der sufficient'condithons for a stationary solution to a 
pmgram with C data to be isolated or to be even a strongly 
stable local minimizer, Using Kummerls concept [I97 of a set- 
valued directional deriirative, we ex%end second-order condi- 
Mons well-known for programs wit,h twice differentiable data. 



We have chosen a unified approach to both optimality and sta- 
bility results. Finally, Section 4 discusses some particular 
cases of the (rather abstract) conditions given in Section 3. 

Now we introduce some further notation. In what follows each 
T x ERk is considered to be a column rector, x y is the scalar 

k product of x , y ~ R  . If X and Y are subsets of Rk, then conv X 
(bd X , cl X) denote the convex hull (the boundary 
resp. the closure ) of X, and, w i t h  ~ E R ,  we mite BX+Y 

to denote the set / =EX,  y c ~ j .  For x6Rk and X ~ R ~  we 
often use the symbol x + X instead of 1x3 + X. Bn and gn are 
the closed and the open unit ball of Rn. The linear space of 
(m,n)-matrices ie identified with Itrn * 

1 We use the symbols C (Y), c'(Y,R'), c2(y) and c2(y,RB) to 
denote the classes of functions f: Y c  Rn - R or F=(F1,. . . ,Fs) 
with Fir Y c Rn 4 R (i=1 ,. . . ,s) , respectively, which are once 
or twice continuously differentiable on Y. By Df(x), DF(x) and 

2 D f(x) we symbolize the corresponding first and second deriva- 
tives, where DF(x) is considered to be an (s,m)-matrix with the 

T row rectors DFi(x) (i=l,...,s). If f is a function of two 
variables x and y, we also take the notation f(*,*), and we de- 
note by f(.,y) the function x c-. f(x,y) for fixed y. 

A multifunction F: T Rn is said to be closed at to if 

~~ sup t ,to F(t) c F(tO), or equivalently, if for any two 
sequences [tk3 c T and fxk$ cRn, tk +to, rk +xO and 
xkc p(tk) (Vk) imply that xOE~(tO). F is said to be locally 
bounded at to if for some neighborhood U of to, the union of 
all sets F(t), tc U, is a bounded set. A alosed and locally 
bounded at to multifunction is also upper semicontinuous (u.s.c.) 
in Bergevs sense, i.e., for each open sat Q 3F(t0) there is 
some neighborhood U of to suah that F(t)c Q holds for each t € U. 
We shall say that F is closed (locally bounded, u.s.c.) on 
TocT if F has this property at each element t of To. For a 

discussion of semicontinuity of multifunctions we refer, &go, 
$0 the book [3], Section 2.2 . 



2. Strong s t a b i l i t y  of s ta t ionary  so lu t ions  under the  
Mangasarian-Fromovitz Constraint Qual i f icat ion 

Throughout this sec t ion  we consider t h e  parametric program 
[ ~ ( t ) ,  t € 1 3  introduced above, and we suppose that the  general  
assumption (1 . I )  i s  s a t i s f i e d .  We note t h a t  t he  ana lys is  of 
per turbat ions v i a  a parametric program a lso  al lows t o  t r e a t  

2 spec ia l  c lasses  of per turbat ions,  such a s  the  c lasses  F (C - 
per turbat ions of a l l  data)  and F' (per turbat ion of t he  ob- 
j ec t i ve  funct ion by a quadrat ic  funct ion and right-hand s ide  
per turbat ions of t h e  cons t ra in ts )  which appear i n  Kojimals 
paper [15]. This means t h a t  our  s tud ies  of. this s e c u o n  and of 
t h e  fol lowing ones can be appl ied t o  many quest ions a r i s i n g  
i n  programs w i t h  c2 data,  which a r e  considered i n  [15], [22 , 
231,171, b1J .  

I n  Sect ion 2, we first r e c a l l  some bas ic  s e n s i t i v i t y  re- 
s u l t s  f o r  s ta t i ona ry  so lu t ions  and l o c a l  minimizers. Then we 
show t h a t  t he  property of s t rong s t a b i l i t y  of s ta t i ona ry  solu- 
t i o n s  p e r s i s t s  under small perturbat ions.  F ina l l y  we give an 
i n t e r e s t i n g  motivation and appl icat ion of s t m n g  s t a b i l i t y :  
t h e  extension of a r e s u l t  of Jongen, Kdbert and Tammer [ 11 3 
on l o c a l  i t e r a t e d  minimization, which i s  c ruc ia l  f o r  decompo- 
silkLon m e t h ~ d s  i n  nonconvex opt imizat ian, A s  a common 
regu la r i t y  assumtion i n  Wese inves t iga t ions ,  we requ i re  t h a t  
t h e  Mangasarian-Eromovit z  Constraint Qua l i f i ca t i on  holds a t  
t h e  po in ts  of i n t e r e s t .  

Given f o r  f i xed  t=to t h e  nonl inear program p( tO)  introduced 
i n  01, we s h a l l  say t h a t  xOE hi(t0) s a t i s f i e s  t h e  Mangasarian- 
Fromovitz CQ (war. t o  i ( t O ) )  if 

(a )  D,fl ( xO, tO) ,  . . . ,D  f (xO, tO)  a r e  l i n e a r l y  independent, = P 
and 

(b)  t he re  i s  some hfO sa t i s f y ing  hTDXfi(x0,t0)= 0,  i = l , . . . , p ,  
T and h Dxfj(x0,to) L 0 f o r  a l l  ~ c { p + l , ~ , , , m 3  with 

f3 (x0 , t0 )  = 0, 

It i s  well-known t h a t  if x0 i s  a l o c a l  minimizer of p ( tO)  which 
s a t i s f i e s  t h e  Mangasaria-Promovitz CQ, then x0 € s ( t O ) .  



However, t h i s  CQ i s  a l s o  an important s t a b i l i t y  condit ian: 
Robinson [ 2 3 ,  Th. 2.31 has shorn t h e  fol lowing bas ic  p roper t ies  
of f eas ib le  po in ts  and s ta t i ona ry  so lu t ions of p( tO)  under 
perturbat ions. 

Proposit ion 2.1 : Consider t h e  parametric program { ~ ( t )  , t  € ~3 , 
suppose (1.1), l e t  to€ T and xO€ AU(t0). Suppose t h a t  x0 s a t i s -  
f i e s  t h e  Mangasarian-Promovitz CQ w.r. t o  &I(t0). 

Then the re  ex i s t  neighborhoods U1 of to and V1 of x0 such t h a t  
f o r  each t EU1 and f o r  each x €M( t )n  V1, x s a t i s f i a s  t h e  
Mangasarian-Fromovite CQ w.r. t o  M(t). Moreover, i f  x0 E s ( t O )  
then the re  a r e  neighborhoods U2 of to and V2 of x0 such 
t h a t  t h e  mul t i funct ions 

t 6 U 2 B  S ( t ) n V 2  and ( x , t )  ~ V ~ x U ~ B = t ( x , t )  

a r e  closed and l o c a l l y  bounded (and hence u.s.c.) on U p  and 
V2xU2, respect ively.  

Purther,  we r e c a l l  a r e s u l t  on the s t a b i l i t y  of s t zdc t  l o c a l  
minimizers under perturbat ions.  It is, i n  f a c t ,  an adaptat ion 
of Bergef s c l a s s i c a l  cont inu i ty  theorems (cf . ,  e.g., [ 31, 
$4.2) concerning g loba l  minimizing s e t s  to- t he  s i t u a t i o n  of 
l o c a l  minimization. The formulation of t h e  fol lowing pmposi- 
t i o n  i s  a p a r t i c u l a r  case of Th. 4.3 i n  Robinson [ a 4 3  and of 
Th. 1 i n  [12]. For X C R ~  and t E T ,  denote t h e  s e t  of a l l  
global  minimizing po in ts  of fo(.,t) subject  t o  t h e  f e a s i b l e  
s e t  M( t )nX by ar5inx{f0(x,t) / X E P ( ~ ) A X ~ .  

Proposit ion 2 . 2 ~  Consider t h e  parametric program { ~ ( t )  , t ~  TI, 
assume (1.1), l e t  tog T, and l e t  x0 be a s t r i c t  l o c a l  minimizer 
of p ( tO)  which s a t i s f i e s  t h e  Mangasarian-Fromovitz CQ w a r .  t o  
Id(t0). Then f o r  some 5 > 0 and f o r  each r~(O,5 ] t he re  i s  some 
a = a ( r ) >  0 such t h a t  f o r  each t €B(tO.a) ,  X(t):= a r g m i n d f o ( x , t ~  
x €M(t) n B(xO,r)] i s  nonempty, and each element of X( t )  i s  a 
l o c a l  minimizer of P ( t ) .  

Note: By t h e  first p a r t  of Proposit ion 2.1 and by t h e  f a c t  t h a t  
7 

under Mangasarian-Fromovitz CQ, a l o c a l  minimizer i s  a lso  a s ta -  
t ionary  so lu t ion,  we have X ( t ) c S ( t )  f o r  t € ~ ( t ' , a ) i f  5 i s  small. 



Lemma 2.3: Consider ( ~ ( t )  ,t q T],  assume (1  . I ) ,  l e t  to€ T and 
x0 c s(tO) . Suppose tha t  x0 s a t i s f i e s  the Mangasarian-Fromovitz 
CQ r.r. t o  ]d(to). Then x0 is  strongly s tab le  w.r .  t o  { ~ ( t )  , t € T ]  
i f  and only i f  there are  rea l  numbers r o > O  and ao>O and a 
mapping x( 0 )  : B ( t O ,  a,) ( x 0  r which i s  continuous on 
B(t0,a0) and which f u l f i l s  

x ( tO )  = x0 and s ( t ) n  B(x0,r0) = {x( t ) ]  (b ' t€B(t0,a0)) .  (2.1)  

Proof: The " i fw-d i rect ion of the proof i s  t r i v i a l .  Now l e t  U2 

and V2 be as i n  Proposition 2.1, and l e t  r, be small enough 
such tha t  ~ ( r O , r , )  c V 2 .  I f  r0 i s  strongly s tab le  w.r. t o  
( ~ ( t )  , t TI, then there  ex is ts  some a( ro)  and some mapping x(  0 )  

with x( tO)=xO and 

Choose a. r a( ro )  such tha t  ~ ( t ' , a  ) c U 2 .  Hence, by Proposi- 
Oo t i on  2.1, x ( * )  i s  continuous on B ( t  a ,  and so the "only i f t t -  

d i r e c a o n  of the lemma i s  shown. // 

The very simple f ac t  s ta ted i n  Lemma 2.3 ( i .e.,continuity of 
x(.) a t  to implies continuity of x( 0 )  i n  some neighborhood of 
to) turns out t o  be useful i n  many s i tuat ions,  such as  i n  the 
proof of the following two theorems. The next theorem says 
tha t  the strong s t a b i l i t y  property pers is ta  under small perturba- 
t ions ,  provided that the Mangasarian-Fromovitz CQ holds. This 
f a c t  has been already observed i n - t h e  case of programs with 
twice d i f fe rent iab le  data, cf.  Robinson 122 , Th. 2.4 1 and 
KO jima [ I  5, Corollary 7.83. However, our argumenta use only 
firrst-order ihfornnation. 

Theorem 2.4: Consider { P ( t ) , t € ~ ] ,  assume (1.1), l e t  to€ T and 
xO€ s(tO). Suppose tha t  x0 i s  strongly s tab le  w.r. t o  {P(t) , tcT) 
and s a t i s f i e s  the Mangasarian-Fromovitz CQ. Then there ex is t  
r ea l  numbers r1 > 0 and a1 > 0 and a continuous mapping x(  ) 

from T to-  R~ with x ( t o )  = x0 such tha t  f o r  each t g  E B ( t O , r l ) ,  

x ( t f )  i s  a stat ionary solut ion of P ( t l )  whLch is  strongly 
s tab le  w.r. t o  { ~ ( t )  ,t e T 3 too. 



Proof: By Lemma 2.3, there  a re  numbers ro> 0, ao>O and a 

continuous mapping x ( * )  from B(tO,ao) t o  B(xO,ro) sa t i s f y ing  
(2.1). Choose a, i n  such a way t h a t  f o r  t € ~ ( t O , a , ) ,  x ( t )  
s a t i s f i e s  the  Mangasarian-Fromovitz CQ w.r .  t o  E ( t ) ;  t h i s  can 

1 be done because of  Proposit ion. 2.1. Let r l0-  . - 7  r,. By t h e  con- 

t i n u i t y  o f  x(.) there  is  some 0 La l  & a. such t h a t  

x ( t ) € S ( t ) n B ( x O , r l )  f o r  a l l  t € B ( t 0 , 2 a l ) .  

Let t f 6 ~ ( t o , a 1  ) and x f : =  x ( t f ) ,  hence x f € ~ ( x 0 , r l ) .  Then 

f o r  each t E B ( t f  , a l ) ,  one a l so  has x ( t )  E S ( t )  n B ( x O , r l ) ,  and 
therefore x ( t )  E S ( t )  n B(xf ,2r l  ) . On the  o the r  hand, s ince 
B(xf , 2rl  ) C B(xO,rO) holds,  

follows. Using the  " i fw-par t  of Lemma 2.3 with x f  ins tead of 
x0 and wi th 2r l  and a l  ins tead of ro and ao, we obta in  the  de- 
s i r e d  r e s u l t .  // 

I n  order t o  motivate the  etudy of s t r o n g  s t a b i l i t y  and, 
moreover, t o  show t h e  app l i cab i l i t y  of t h e  r e s u l t s  which w i l l  
be presented i n  t h e  fol lowing sect ions,  now we give a theorem 
on a general  p r i nc ip le  of i t e r a t e d  l oca l  minimizetion. It ex- 
tends Th. 3.1 i n  [11]. We note t h a t  Theorem 2.5 does not  remain 
t rue ,  when s t rong s t a b i l i t y  of x0 f a i l s .  An example i l l u s t r a -  
t b g  this f a c t  cen be found i n  [11J, $1 ; t he re  the  da ta  a re  
polynomial funct ions i n  two var iables.  

Given the  funct ions fo,  f l ,  ..., f a s  above, w e  consider the  m 
optimizat ion problem 

which is  intended t o  be solved by a two-phases method, and 
where we look f o r  l o c a l  minimizers of (P).  Further,  l e t  p ( tO)  
and { ~ ( t )  , t E T 3 be given a s  i n  Sect ion 1, and suppose t h a t  
t h e  general  assumption (1.1) i s  sa t i s f i ed .  

We emphasize t h a t  t h e  fol lowing theorem holds without 

additi ional assumptions on T. 



Theorem 2.5: Let to T,  and l e t  x0 be a loca l  minimizer of 
p ( tO) .  Suppose tha t  x0 i s  a stat ionary soluttion of p ( tO )  being 
strrmgly s tab le  w.r. t o  { ~ ( t )  ,t c ~3 and sat is fy ing  the 
Mangasarian-Fromovitz CQ. Further, l e t  U be a neighborhood of 
to, and l e t  i(.) : U - R~ be a vector funotian which i s  con- 
tinuous a t  to and which f u l f i l s  i ( t ) €  S ( t )  f o r  t € U  and 
z( tO) = xO. 
Then (xO, tO) i s  a loca l  minimizer of (F) i f  to i s  a local  
minimizer of the problem ( 5 ) :  fo ( f ( t ) , t )  -min s.t. t ET. 

Proof: By the  assumptions on x0 and by Lemma 2.3 there are 
r e a l  numbers a 7 0 and r o 7 0  and a continuous mapping x(.)  f r o m  

Oo B(to,a0) t o  B(x ,ro) such tha t  

We may assume tha t  U i s  a subset o f  B(to,a0), without l oss  of 
general i ty  l e t  U = B(tO,ao). Hence, ?( .) and x ( * )  coincide on 
B(t0,a0). Taking Proposition 2.1 and the continuity of x( * )  

i n t o  account, we may fu r the r  assume that a, and ro are  small 
enough t o  ensure tha t  both the property (2.2) holds and f o r  
each t B ~ ( t ' , a ~ )  and f o r  each x ~M( t )n  B(x0,r0), the Bbngasarian- 
Fromovitz CQ i s  sa t i s f i ed  a t  x  w.r. t o  ?L(t). 

I n  par t icu lar ,  i t  follows tha t  x0 i s  a s t r i c t  loca l  minimizer 
of p ( tO)  . Moreover, the continuity of x( ) , P m p o s i t i w  2.2 

and the note following hoposilkion 2.2 provide t ha t  t h e e  ex is ts  
some a = a( ro )  L a, such tha t  f o r  a l l  t E B(tO,a), 

Thus, we obtain f r o m  (2.2) 

~ ( t )  = {x(t)') f o r  a l l  t €B( tO,a) ,  

and hence, 

f o ( x ( t )  , t )  L fO (x , t )  for- a l l  t 4B(t0,a)  and x ~ M ( t ) n  B(x0,r0). 

Since to is a loca l  minimizer of (5, there i s  some neighborhood 
Uo of to, Uo c B(to,a), auch tha t  

f o r  a l l  t f  Uo, and so r e  have f o r  a l l  t EU, and f o r  a l l  x  w i t h  



xaM(t) n~(xO,r,), i,e., for all feasible points (x,t) of (P) 
which belong to the neighborhood Uo c ~(x', ro) of (xO, to), 

f0(~O,t0) = fo(~(tO),tO) Lfo(~(t),t)Lfo(~,t)m (2.3) 

This completes the proof, // 

By (2,3), we have that, under the assumptions of Theorem 2,5, 
(xO, to) is even a strict local minimizer of ( 2 ) .  A careful 
inspection of the proof shows that the differentiability assump- 
tions on fi(.,t) could be omitted, if we would require that for 
each t near to, x(t) is a local minimizer of P( t) being 
isolated in some neighborhood of x0 (fndependent of t), In 
order to remain within the framework of this paper, we have 
preferred the formulation used above. 

3, Second-order sufficient conditions for optimality and 
strong stability 

The main purpose of this section is to give a second-order 
sufficient condition for strong stability of local minimizers 
to nonlinear optimization problems, avoiding the assumption of 
twice differentiability of the problem date, Before presenting 
this result, we shall study the related question of second- 
order sufficient optimality conditions. Using a concept of ti 

set-valued directional derivative for Lipschitzian mappings 
(,'cf, [19j) and assuming generalized second-order conditions, 
we extend existence and stability results which are known from 
the case of nonlinear progrms with twice differentiable data, 
cf,, e.g., Fiacco and McCormick 1 7 1 , Robinson [ 22 , 23 1 , 
Kojima [I 53) to c1 ~~-o~timization problems, Concerning C' 'l- 
programs our approach allows to modify and to generalize the 
results in 1 1  3 3 and r143. Similar to Section 2, we again use 
the Mangasarian-Fromovitz CQ as first-order regularity 
condition if necessary, 

Given an open set Y C  R ~ ,  Clsl(Y) rill denote the class of 
all functions f: Y j R which are differentiable on Y and 
whose gradient mapping Df(*) is locally Lipschitzian on Y. 



Throughout th is secbian we consider the parametric program 
[ ~ ( t ) , t  c T ] introduced i n  Sect ion 1,  and we suppose t h a t  (1 . I )  

holds and t h a t  t he  fol lowing assumption is  a d d i t i m a l l y  
s a t i s f i e d :  

Q is  convex and f i ( * , t ) ~ ~ 1 9 1 ( ~ )  (vie{0,1, ..., ~ ] v ~ E T ) .  (3.1) 

The convexity of t he  open s e t  Q is reqwired i n  view of the  
use of some second-order Taylor expansion, It i s  easy t o  ver i -  
f y  t h a t ,  under (3,1) ,  for-  a l l  t eT  t h e  lagrange funct ion 
l( , * , t )  belongs t o  C 1 # ' ( Q x  p). I n  order t o  analyze the  sta- 
b i l i t y  of t h e  Karush-Kuhn-Tucker system of P ( t )  under (1 . I )  and 
(3.1), we need some concept of general ized der iva t i ve  of vector  
functirms. I n  th is  context,  Clarke's concept [63 of a genera- 
l i z e d  Jacobian matf ix was used tn [g], L131 andl141: Given 

d some open s e t  Y C R ~  and a mapping F: Y 4 R which is l o c a l l y  
L ipschi tz ian on Y (;i.e,, f o r  each x t  Y there  i s  some neighbor- 
hood Vx of x and some modulus L(x)>O such t h a t  f o r  a l l  x ' ,xn  
i n  Vx , 1) F(xt )-F(xw) ll h L(x) 11 x' x , t he  s e t  of (d,q)-matrices 

J,.,F(X~) := conv {M: 3 x k  -9 x0 with xkt. Ep (m), D F ( X ~ )  + ~3 
i s  ca l led  the  general ized Jacobian matr ix of F at xo E Y ( i n  
Clarke's sense) ,  where E F c Y  denotes t h e  s e t  of a l l  po in ts  x 
f o r  which t h e  usual  Jacobian DF(x) e x i s t s ,  The idea  and the  
j u s t i f i c a t i o n  of this concept is given by Rademacher's theorem 
which ensures t h a t  a l o c a l l y  L ipschi tz ian mapping is  almost 
everywhere d i f f e r e n t i a b l e  on i ts  domain. We note that iTC1~(x0) 
i s  a nonemptg compact convex subset of R~ , t h e  multi- 
f m c t i a n  JCIF(e)' is  closed and l o c a l l y  bounded at xO, and i f  

F i s  continuously d i f f e ren t i ab le  at x0 then J~,F(XO) = { D B ( X ~ ) ~ ,  

cf .  Clarke [6 , 52.61. 
Recently, i n  [19], the fol lowing not ian of a set-valued 

(keneral ized) d i rec t i ona l  der iva t i ve  of a ccmtinuous funct ion 
d F: R~ 4 R was introduced, The se:t 



i s  ca l l ed  t h e  d i r e c t i o n a l  d e r i v a t i v e  of F at x0 i n  d i r e c t i o n  h. 

For s imp l i c i t y ,  we use t h e  no ta t ion  
T v A F ( x ; ~ )  : {vTz / z E 0 ~ ( x ; h ) 3  

d T i f  (x,h,v)  g R~ x Rq x R  , and we a l s o  w r i t e  v F(x;h) 2 c 
T (wi th  c € R )  t o  symbolize that v z k c  f o r  a l l  Z E  AF(x;h) 

holds. 
I n  t h e  fo l lowing we eummarize seve ra l  p rope r t i es  of t h i s  

d i r ec t , i ona l  de r i va t i ve ,  the -  proofs can be found i n  [ I  97. Let 
d cO~'(Y,R ) denote t h e  s e t  of  a l l  f unc t ions  F: Y x  Rq + R  d 

which a r e  l o c a l l y  L ipsch i t z ian  on Y e  Given F,G c cog' (y,Rd], 

Y c Rq open, x t Y,  h E Rq, t h e  fo l lowing p r o p e r t i e s  hold: 

( P  1)  A F ( x ;  13h) = 13DF(x;h) f o r  1320, 
b (F + G) (x;  h )  C DF(x; h) +bG(x; h) ; 

( P  2) A F(x; h) i s  nonempty and compact, 
AF( . ; . )  i s  closed and l o c a l l y  bounded at  ( x ,h ) ;  

d 
( P  3) if Z E C O * ~ ( Y , R ~ ) ,  F(x,u) := uTC(x) ( , V ( X , U ) E Y ~ R  1, 

if G Y x Rd , ( h , ~ )  E R~ x Rd, t hen  F 6c0*' (Y x Rd,R) 

and ~ ( ~ ( . , i i ) ) ( Z ; h ) =  b ( ~ ( . , . ) ) ( ( ? , G ) ; ( h , o ) ) ;  

(P  5) D F ( x ; ~ )  c ( J ~ ~ F ( x ) )  h := [ ~h / M E  J~,F(X)~ ; 
(P  6)  i f  F d cl(y,Rd),  then  F(x; h) = [DF(X) h 3 ; 
(P  7)  i f  F has  a ( l o c a l )  L ipsch i t z  modulus L(x) t o  some neigh- 

borhood V of x, t hen  AF(x; h' ) c AF(x; hw)  + L(x) I( h9-hnl! B~ 
ho lds  f o r  a l l  h* ,hlt E R ~ .  

Based on a mean-value theorem f o r  cog -mappings, a second-order 
Taylor  expansion f o r  c1 - funct ions holds,  namely 

Lemma 3.1 ( [19 . Propos i t ion  5.13): Let Y be any open subset  
of R ~ ,  l e t  f E C' (Y) and l e t  canv{x ,x+h~c~.  Then t h e r e  is  
some 8 ~ ( O , l )  such t h a t  

f (x+h) h f (x) + Df (x)  h + p hT 4 D f ( x + e h ;  h). 

Now we pass over  t o  t h e  p resen ta t ion  o f  second-order condi t ions.  
Consider ing t h e  parametr ic  op t imiza t ion  problem { ~ ( t ) ,  t E ~ 3 ,  



we put for (x,u,t) Q x R~ x T, 

Now we formulate two types of second-order sufficient condi- 
%ions for optAmality or strong stability, respectively, The 
first condition is an immediate extension of the usual second- 
order sufficient optimality condition for c2 data, cf., e,g., 
Fiacco and McCormick [7], Robinson 1231, 
Let l(*,uO,tO) denote the function x E Q o l(x,uO,tO) for 
fixed (uO,tO)€~~x T. 

Condition 3.2: Given p(tO) for to€ T, xO€ s(tO) and 
u0 b LE(xO,tO), we shall say that (xO,uO) setisfies 
Condition.3.2 with modulus c>O if for each vector h with 
h~~ f ( x~ ,u~ , t~ ) ,  one has 

T h A(D~~(.,UO,~~))(X~;~) 2 c I I ~ I I ~ .  
The condition introduced next is a uniform strong second-order 

2 regularity condition which is, in the case of C data, related 
to the corresponding canditions of Robinson [22] and Kojima 
115 , Condition 7.31, 

Condition 3.33 Given {~(t) ,t C TJ, to€ T and xO& s(to), we shall 
say that Condition 3.3 holds on [x03 x m(xO,tO) rith modulus 
c > 0 if there exist a neighborhood U of to, a neighborhood V 

+ 0 of x0 and open sets ~ ~ U d ( x ~ , t ~ )  and A ' D W  (x ,uO,tO) r\ bdBn 
such that one has 

hTp(~xl(.,u,t))(x;h), c for all (x,u,t,h) E v X N  * u ~ w .  

Obviously, if Condition 3.3 holds on [x03 x LM(xO,tO), then for 
each u0 € I&l(xO, to), (xO,uO) satisfiee ConditAon 3.2. 



The following technical lemma allows a unif ied approach t o  
derive the second-order existence and s t a b i l i t y  r esu l t s  of 
t h i s  section. The proof i s  modeled a f t e r  an idea used by 
Robinson 123,  Theorems 2.2 and 2.43 i n  the case of c2 data. 

Lemma 3.4 : Consider the parametric program { ~ ( t )  , t € ~1 assume 
(1.1) and (3.1). Given t O € T ,  xO€ s(tO) and uoE LM(xO,tO), l e t  

{ t k ] c T ,  {xkI, [yk]CQ and {uk]cy(m be any sequences such tha t  
k k xk€ s(tk) , ukg  m(x ,t ) and $ E  ~ ( t ~ )  f o r  a l l  k 

hold, and such tha t  
k k k  k 

(X ,U , t )  (xO,uO,tO) and y -xO 

a re  f u f i l l e d .  Moreover, suppose tha t  f o r  some posit3ve rea l  
number c and f o r  a l l  k the following holds: 

k k k k 
fo (y  ,t 1 - fob ,t 1 4  Q 11 yk- xk II *. 

Then the sequence [hkj with hk := 11 yk - xk I (  -' (yk - xk) has an 
accumulation point h 6 w+(xO,UO, t o ) ,  and f o r  a l l  k ,  

k there are  r e a l  numbers Bk > 0 and vectors z e R~ such that 
ek + +O and 

k k k k k z € A ( ~ , l ( * , u  ,t ) ) ( xk+ekh  ;h ) and h k T z k L $  . (3.2) 

Further, i f  tk I  to and x = - x , then {hk] even hae an 
accumulation point i n  w(xO,uO,tO). 

k Proof: F i r s t  we show tha t  {h 1 has an accumulation point h 
belonging t o  W + ( X ~ , U ~ ,  to). Since {hk] c bd Bn, w e  may assume, 
without l o s s  of general i ty ,  tha t  {hk] converge8 t o  some 
hEbd Bn. By the continuity of the funetiorre f , ,  ..., fm, the 

k k k assumptian ( x  ,u ,t ) -+ (xO,uO,tO) implies tha t  
+ 0 + k k k I ( U  )c I  (U )c I (x  ,t )cI(x',~') f o r k  large. (3.3) 

+ 0 For j~ I (u ) and f o r  su f f i c ien t l y  large k, we thw obtain 
k k k T f j ( y  ,t ) = ( y k - x  ) ~ = f ~ ( + , t ~ )  + o( 11 yk-xk1l 1. (3.4) 

Since hk -+ h and $ E  hI(tk) ( k the continufty of 

D x f i ( * ,  9 , . m ,  then y ie lds t ha t  



+ 0 (xO,uO) E s(tO) x LM(xO,tO), thua we have, with J:=I (u ) , 

Further, by hypothesis, we know that for all k, 

which implies 

hTDxf0(x0,t0) L 0, 

k where h -+h , yk - xk + 0 and the continuity of Dxfo( , * )  

were takerr i&o account. Hence, 

and so, by (3.5) and in view of u O > O  for j EI~+(u'), 

hT~x~j(xO,tO) = o , ~ E J .  

Thus, we have shorn h ~ ~ + ( x ~ , u ~ , t ~ )  with h tbd  B,. 
k k At this place, we note that in the case (x ,t ) 5 (xo,tO) 

+ 0 one has for all j ~ 1 ~ ( x ~ , t O ) \  I2 (U ), 

k 0 0,fj(y ,t ) = ( y k - x O ) T ~  f (xO,tO) + o(II y k - x O ~ ~ )  ('Vk), 
x 3 

which implies, by arguments similar to those used above, 

hTD f ( xO , tO )~  0 , j C I ~ ( X O , ~ O )  \ lp+(uO). 
x 3 

This means that in our special case h e ~(xO,uO,t~) holds. 
k k Bow we show (3.2). By hypothesis, conv [x ,y 3 c Q (b'k). 

k k Let k be fixed. For simplicity, we put lk := l(.,u ,t ), and 
we denote by ~(x;;) the eet A (Dlk) (r;i) of directional deriva- 

tives of Dlk at x in direction 6. Assumption (3.1) then allows 
k a second-order Taylor expansian of lk at x according to 

Lemma 3.1. By hypothesis and taking y k ~  u(tk), xk € s(tk) and 



k k  uk f Ud(x ,t ) i n t o  account, Lemma 3.1 hence implies the exist-  
k & ence of some Gk E (0 ,  1 ) and of some zk c H(X +ek( yk-xk) ;$-xk) 

such tha t  

Set t ing Bk := gk I( yk - xk1l, we obtain, by property (P 1) of 
d i rect ional  der ivat ives,  

k "  k k k k k k H(x  +ek(y -I ) ; 9 -X ) = 11 7 -X 11 ~ ( X ~ + e , h ~  ; hk), 

and so, with zk I= )I yk - xk l lo l  ;k, the re la t ians  

and T k  c hk z L T  

follow. Obviously, (yk - xk) -+ 0 implies tha t  Bk + +0, hence 
(3.2) is shown. // 

I n  the following theorem, Condition 3.2 turns out t o  be a 
second-order su f f i c ien t  opt imal i ty condition f o r  ~ ~ * ~ - o ~ t i m i -  
zat ion problem. T h i s  theorem modifies a r e s u l t  i n  1141 and 
general izes h o r n  r e s u l t s  i n  the c2 case which i s  discuseed 
i n  Section4below. 

Theorem 3.5: Consider f o r  f ixed t o €  T the nonlinear program 
p( tO)  introduced in Section 1. Suppose tha t  the  funations 
f i ( * , tO) :  Q - R  (i=O,l,...,m) belong t o  the  c lass  C ' V ' ( Q ) ,  

where Q i s  some open convex subset of R ~ .  

I f  (xO,uO)E Q * satisfies both the  Karueh-Kuhn-Tucker 
condit ions (1.2) w i l i b  t=tO and Condition 3.2 with some 
modulus c>O,  then t b r e  ex is ts  a real number r 0 such tha t  

holds, i.e., x0 i s  a s t n i c t  loca l  m inh i ze r  with order 2 of 
p ( tO) .  



Proof: If (3.6) i s  not t rue ,  then we have the s i tua t ion  of 
k k k Lemma 3.4 i n  the case (x ,u ,t ) I (xO,uO,tO) w i t h  some 

k sequence l y  sa t i s fy ing  y k ~  ~ ( t ' )  f o r  a l l  k and $ 4 xO. 
k -1 k 0 Hence, the sequence {h  with hk:=llyk-x0 11  (y  -x ) has an 

accumulation point h E w(xO,uO, tO)n bd Bn, and there ex is t  
sequences [ B ~ ~ C R  and [zk3 c R~ such tha t  Ok + +O and such tha t  
for-, a l l  k 

m 

k k k kL- k z E 6 ( ~ , l ( * , u ~ , t ~ ) ) ( x ~ + 0 ~ h  ;h ) and h z L $ . 
By property (P 2) of directdanal der ivat ives,  [zk3 has an 
accumulation point z i n  ~ ( ~ , l ( ~ , u ~ , t ~ ) ) ( x ~ ; h ) ,  and hence 

holds, and t h s  theorem now follows by contraposieon. // 

However, Theorem 3.5 does not give an answer t o  t h e  question 
whether the s t r i c t  loca l  minimizer x0 i s  a lso  an iso la ted one. 
In general, the assumptions of Theorem 3.5 a re  not su f f i c ien t  
t o  ensure tha t  thare is some neighborhood of x0 i n  which no 
other loca l  minimizer of P( tO)  ex is ts  : Robinsont s counter- 

2 example 123 , p.206] presented i n  the case of programs with C - 
2 data a lso appl ies t o  our problem. A s  h the C case one has t o  

add a constraint  qual i f icat ion and t o  require tha t  Condition3.2 
is sa t i s f i ed  on [x03 x LM(xO, to). 

Corollary 3.6: Assume the hypotheses of Theorem 3.5, and 
f u r t he r  suppose tha t  x0 s a t i s f  i e s  the Mangasarian-Fromovitz CQ. 

I f  f o r  each u0 E JiM(xo, t o ) ,  (xO,uO) s a t i s f i e s  Condition 3.2 
with some modulus c(xO,uO) > 0, then x0 i s  an iso lated s tat ionary 
solut ' ion of p( tO).  

Note: Since the  langasarian-Fromavitz CQ i s  sa t i s f i ed  at xO, - 
by Proposition 2.1, then x0 is also an iso lated loca l  minimizer 
of p ( tO) .  

Proof: By contraposit ion. Suppose there is some sequence WC s ( t O )  with vk#xO f o r  a l l  k and vk -+ xO. Since x0 i s  a 
e t r i c t  loca l  minimizer of p ( tO)  became of ?hearem 3.5, then 



there i s  some index k1 such tha t  
k 0 f o ( v  ,t ) > f o ( x o , t o )  f o r  a l l  k ? k l .  

k For each k ,  l e t  u be a Lagrange mnl t ip l ie r  vector of p ( tO)  
k associated with v . Since t h e  mapping x LN(x,tO) is  

closed and loca l ly  bounded a t  r0 (Proposit ion 2.1), then by 
passing t.0 a subsequence: i f  necessary we have 

k u *uO E m ( x O , t O ) .  

Now we can apply Lemma 3.4 (put there c=c(xO,uO), t k z  to, 
xk:=$, yk= x0 f o r  a l l  k 2 k *  ) , and we obtain tha t  the se- 

-1 0 k quence {hkl with hkz= I1 xO-vk 11 (x  -v ) has an accumulation 
po in t  h E w+(x0 ,uo ,to) n bd Bn, and there a r e  sequences [ B ~ ~ C R  
and {zk3c R~ such tha t  Bk -+ +O and suoh tha t  f o r  k su f f i -  
o ient ly la rge 

k k 0 k k k kT k z € A(Dxl(*,u , t  ) ) ( v  +Bkh ;h ) and h z L 5 
hold, Hence, the propert ies (P 2)  and ( P  3) of d i rect ional  de- 
r i va t ives  ensure the existence of some 

z E d ( ~ ~ l ( * , u ~ , t ~ ) )  (xO;h) with hT% L 5 , 
By property ( P  41, 

T -z E ~ ( ~ ~ l ( ~ , u O , t ~ ) )  (xO;-h) with (-h) ( - a )  L $ ( 3 . 7 )  

holds. Obviously, we have -h E w+(xO,UO, to). Moreover, taking 

(Yor a l l  k and a l l  j C l ( x O ,  to) ) i n t o  account and passing t o  
the limit, we obtain tha t  

T (-h) D f (xO, tO)  L o f o r  a l l  j c ~ ( x O , t O )  
x 3 

i s  f u l f i l l e d ,  Hence, 

-h E ~ ( x ~ , u ~ , t ~ ) n  bd B,. 

Put t ing th is and (3,7) together, we f ind a contradict ion t o  
Condition 3,2 and thereby complete the proof, // 

We note that Corollary 3,6 is a modif icat im and exbns ion of 
Theorem 2 i n  [141, 



Now we prove t h e  main r e s u l t  of t he  paper: the  s t rong 
s t a b i l i t y  of l o c a l  minimizers of c1 l-programs under the  
Mangasarian-Promovitz CQ and under Condition 3.3. However, 
Condition 3.3 looks r a t h e r  stmmg and hardly pract icab le ,  
but me had t o  by-pass the  d i f f i c u l t y  t h a t  the  w p a r t i a l  
d i rec t i ona l  HessianN b (D, l ( *  , u , t ) )  (x ;  h) i s  not i n  general  
U.S.C. w.r. t o  a l l  va r iab les  (x ,u , t ,h) .  The discuasion i n  
Sect ion 4 w i l l  provide severa l  spec ia l i za t ions  and s impl i f i -  
ca t ions which make more p laus ib le  and b e t t e r  usuable this 
second-order condit ion. 

Theorem 3.7: Consider the  parametric program { ~ ( t )  ,t E T3,  
and suppose (1.1) and ( 3 . 1 )  Given t o €  T, l e t  x0 be a 
s ta t ionary  so lu t ion  of P( tO) .  Suppose t h a t  x0 8 a t i s f i . e ~  the  
Mangasarian-Fromovitz CQ nor .  t o  H( t o )  and *hat. Condition 3.3 
holds on { xO~xLM(xO, tO)  with some modulus co>O. 
Then 

(1)  x0 i s  s t rong ly  s t a b l e  no r .  t o  {P(t) ,t t5 T i  , 
and there  e x i s t  r e a l  numbers r > O  and a >  0 and a mapping 
x(*) from !I! to  R~ such that for. sach t € ~ ( t ' , a ) ,  
~ ( t )  n ~ ( x O , r )  = ( x ( t ) ]  and 

f o r  a l l  x  ~M(t)n B(x( t )  , r ) ,  

(3)  x ( t )  i s  a s t rong ly  s t a b l e  l o c a l  m i n h i z e r  of P ( t ) .  

Proof: By Theorem 3.5, x0 i s  a s t r i c t  l o c a l  minimizer of 
P( tO) .  Consequently, t he  assumptions of Pcoposit ion 2.2 and 
o f  t h e  note fol lowing Proposit ion 2.2 a re  s a t i s f i e d .  T h i s  en- 
t a i l s  t h a t  f o r  eome r1 > 0 and each s € ( O , r t J  t he re  exists 
some a ( s )  > 0 such. t h a t  f o r  t E ~ ( t O , a ( s ) ) ,  S ( t ) n  ~ ( x O , s )  i s  
nonempty, Later  on, th is  f a c t  w i l l  be indicated by (+). 

To ehow (1) and (2) i t  i s  s u f f i c i m t  t o  prove t h a t  f o r  
some r > 0 with r L_rc and some a > 0 wi th  a L_a(rl ) , t h e  
inequa l i t y  (3.8) holds: 



1 f o ( x , t )  - f o ( z , t )  2 (7 co) I \  X -  2 1 1  2 

f o r  a l l  t t B(tO,a) 
and a l l  z E S ( t ) n  B(xO,r) (3.8) 
and a l l  x  E K ( t )  n ~(x ' , 2 r ) .  

Assume, f o r  the moment, (3.8) i s  shown. Then f o r  each 
1 t t B(to,a) and any two points x ( t ) ,  x2 ( t )  E S(t)n B(xO,r) 

w i t h  x l ( t )  # x 2 ( t ) ,  r e  have 

and 
1 fo(x2(t)  ,t) - fo(k ( t )  ,t) 2 (; c0) l lX1 ( t )  -x2( t ) l l  2 , 

which is  impossible. Thus, f o r  each. t E B(tO,a), there is  some 
point x ( t )  such tha t  

Property (+) derived before y ie lds that x(.) is  continuous 
a t  xO, hence (1) is  ahown. Since x €M(t)n B ( x ( t ) , r )  f o r  
t E ~ ( t ' , a )  belongs to M ( t )  nB(x0,2r) ,  assert ion ( 2 )  i s  a 
special caee of (3.8). 

Now we complete the proof of (1 ) and (2 )  by demonstrating 
(3.8). If (3.8) is  not t rue,  then there ex is t  sequencef3 
Itk3 C T , k 

[xk3 and fyk]  such tha t  x k c s ( t k )  and  EM(^ ) 
k f o r  a l l  k and both I23 and {y 3 converge t o  xO, and such 

tha t  f o r  a l l  k 

k k k k 1 fo(y  ,t ) - fo(k ,t L ( p o l  11 yk-xkll . 
k k k For each k ,  l e t  u E LM(x ,t ). Due t o  Proposition 2.1, the  

Mangasarian-Fromovitz CQ implies that LM(.,.) i a  closed and 
loca l l y  bounded a t  (xO, tO).  By using this f ac t  and by passing 
to a subsequence i f  necessary, w e  have that [uk3 converges t o  
some uOc LM(xO, to). Pat c:= 2 co , then Lemma b 4  appl ies t o  
our s i tuat ion.  Using the same notat ion as  i n  the  statement of 
Lemma 3.4, we have th t  f o r  eu f f i c ien t ly  la rge k ,  

k k k x k + g k h k f ~ , u C N , t  C U  and h E W  

and property (3.2) hold, where V,X?,U and W are  taken from 
Condition 3.3. However, this provides us with a contradict ion 



t o  Condition 3.3. Hence (3.8) and s o  (1) and (2 )  are 
shown. 

Final ly,  we note tha t  (3) i s  an immediate consequence 
of (1) and (2 ) ,  one has t o  apply Theorem 2.4. This completes 
the proof. // 

4. A discussion of second-order su f f i c ien t  condit ions 

In t h i s  sect ion we discuss how t o  replace the uniform strong 
secund-order condit ion formulated i n  Condition 3.3 by require- 
ments which contain only information taken from the i n i t i a l  
problem p( tO) .  Further, we reca l l  a special  c lass  of c'*'- 
optimization problems f o r  which the  ver i f i ca t ion  of the 
Conditions 3.2 and 3.3 reduces t o  checking whether f i n i t e l y  
many matrices are p o ~ i t i v e  def in i te .  

Throughout this sect ion we consider the parametric problem 
{ ~ ( t ) ,  t f T 3 introduced i n  Section 1, and we suppose tha t  (1.1 ) 
and (3.1) a re  sa t is f ied .  Now we study a ser ies  of special  
C 8 S 8 S .  

4.1. We reca l l  t ha t  the complicated form of Condition 3.3 
i s  due t o  the f a c t  tha t  the multifunction which assigns t o  
each (x,u, t ,h)  the s e t  d (Dx l ( . ,u , t ) ) ( x ;h )  i s  not u.s.c., i n  
general. We can meet t h i s  d i f f i cu l t y  even i n  the case tha t  the 
mapping D l ( * ,  , * )  i s  Lipschitz continuous with respect to- the  

k t r i p l e  (x ,u , t )  of var iables ((and T c R  ), cf. an example i n  

C191. However, we succeed i n  by-passing t h i s  d i f f i cu l t y  and 
i n  formulating a second-order conditjion i n  terms of the i n i t i a l  
problem, i f ,  f o r  example, an imbedding of t h i s  "badm m u l t i -  
function i n to  a su i tab le  u.s.c. mult i function i s  possible; 

Let to€ T, x0 E s(tO) and suppose tha t  f o r  some bounded open 
s e t  N ~ L M ( x O , ~ O ) ,  eome open e a t  W containing 

and some multifunction 



22 

the following hold: 

H is closed and loca l ly  bounded on { x O ] x I & ( x O , t O ) x [ t O ~  Bn 

(4.1) 
and 

A(Dx1(',u,t)) ( x ; ~ ) c  E ( x , ~ , t , h )  ( v  ( ~ , ~ , t , h )  E Q X N  X T X  W). 

Condition 3.3' 8 For each u0 E LM(xO,tO), f o r  each 
h E W + ( X ~ , U ~ , ~ ~ )  n bd Bn and f o r  each e g ~(xO,uO,tO,h), one has 
hTz>O. 

Proposition 4.1: Assume (4.1) and (4.2). Then Condition 3.3' 
and Condieion 3.3 are equivalent. 

Proof ; It suf f i ces  t o  show tha t  Conditdon 3.3' implies Con- - 
d i t i on  3.3. Indeed, the  general assumptions (1.1) and the 
boundedness of the  se t  N ensure tha t  LM(xO,tO) i s  a compact se t .  
By (3.3), the multi function l + ( xO ,@, tO)  i s  closed on LM(xO,tO), 
hence 

i s  a campact: set .  By (4.1 1, H i s  closed and loca l ly  bounded 
on { x O ~ x ~ ( x O , t O ) x  { tO j  x W, , thus 

i s  a oompact s e t  too. Consequently, there ex is t  open s e t s  
Wl 3 Wo and H1 3 Ho and some c z 0 such that 

T h z 2 c  f o r a l l h E W l  a n d f o r a l l  z€H1. (4.3) 

Since (4.1) includes that H i s  u.8.c. on [xOj x LM(xo,to) x[t03x'8,, 
there  are  neighborhoods V of x0 and U of to and open s e t s  
B1 3 LM(xO, to) and W2 3 WO suck tha t  

H(x.u,t,h)CH, ( V ( ~ , u , t , h ) ~ V x ~ ~ ~ u ~ w ~ ) .  

Hence, (4.3) and (4.2) imply tha t  



holds f o r  each (x,u, t ,h) E (V Q) x ( N l  n N )  x U x (W2 n W )  , 
i .e., Condition 3.3 i s  s a t i s f i e d  on {x03x LM(xO,tO) with 

modulus c. // 

4.2. Now we consider the  case. of twice d i f f e r e n t i a b l e  
data. The given parametric program s a t i s f i e s ,  a s  assumed 
above, t he  requirements (1.1). Addittiarnally, we suppose that 
f o r  each i€ [o, l , . . . ,mJ,  

f i ( . , t )  i s  twice d i f f e ren t i ab le  on Q ( V t e T ) ,  (4.4) 
2 D X f i ,  i s  continuous on QxTc .  

By property (,P 6) of d i r e c t b n a l  der iva t i ves ,  then we have 
f o r  (x,u, t ,h) E Y r R~ r 2 ' x  R ~ ,  

which M e d i a t e l y  impl ies t h a t  C a d i t i o n  3.2 reduces t o  the,  
well-known secand-order eu f f i c ien f -  opt imal i ty  condi t ian i n  
t h e  standard book of FXacco and YfcComick [7]. 

Moreover, (4.1 ) and (4.. 2) a r e  automatical ly f u l f i l l e d  with 
T 2 H(x,u,t ,h) := ( h  Dx l ( x ,u , t - )  h 3 and w i t &  any bounded open 

s e t  N DLM(XO,U~) (provided that LM(xO,tO) i s  bounded, which 
i s  equivalent t o  t h e  assumption t h a t  the Mangasarian-Fromovit z 

CQ holds a t  xO) and If=Rn. Thus, Condition 3.3 passes t o  a 
spec ia l  version of Condition 3.3' which i s  a lso  known, cf .  
Robinson 122 , 941 and Kojima [15 , Condition 7.37 . 

4-3. The previous remarks immed&ately al low t o  specify 
Conditian 3.3 i n  the case t h a t  a ~ ~ ' ~ - o ~ t i m i z a t i o n  pmblem 

n 

i s  perturbed by cL-funotions. Fon tlr. given parametnic 
progrram, consider the case that forr each (x , t )  c Q x T and f o r  
each i c {0, 1,. . . ,m 3 , fi has t h e  rapresentat ion 

where gi s a t i s f i e s  t h ~  a s s u m p t i a s  1 . 1 ,  (4.4) and (4.5). 
and ii 8 Q + R belongs t o  the c l a s s  C' *' (Q) . Then re have, 
obviously, 



where for (x,u,t)€ Q XR*X T, 

In virtue of the properties ( P  2) and (P 3) of generalized 
directional derivatives, the multifunction which assigns to 
(x,u,h) the set D l 1  *,)(x;h) is closed and locally 
bounded on Q x e x  R ~ ,  and Hence, by (4.7) and by the discussion 
in $4.2, the multifunction H(x,u,t,h) I= A(Dxl(-,u,t))(x;h) 
satisfies (4.1) and (4.21, and we can again replace 
Condition 3.3 by Condition 3.3'. 

We note that liiterature on decomposition methods pays a 
special attention to optimization problems in which the 
objective function is separable were to two groups of varia- 
bles (cf., for example Bank, Mandel and Tammer [43 or Beer 

0 

[5J) ,  i.e., in (4.6) one has fo(x,t) = go(x) + go(t). 
Assuming that zi(x)aO (i=l,...,m), we obtain a particular 
form of Condition 3.3' with 

4.4. The discussion in the previoua special cases 
suggests to look for general conditions which guarantee 
directly the closedness of the multifunction A (Dxl) ( ; ) . 
To do this, we suppose again (1.1) and (3.1) for the given 
parametric program, and we addit3onally suppose that for some 
tOcT and some xO€ s(tO), there are a constant D>O and 
neighborhoods Uo of to and Vo of x0 auch that for i€[0,l ,,,ml 

and 
lim sup t + A(~*f~(*,t) - DXfi(*,t0))(x;h) = 103 (4e9) 

x -+ x (for all h L bd Bn) . 



2 We note  t h a t  i n  t h e  case of C da ta  (4.9) corresponds t o  
(4.5). I n  t h e  fo l lowing propos i t ion  we handle s p e c i a l  
problems f o r  which the con t inu i t y  and d i f f e r e n t i a b i l i t y  
requirements on the d a t a  (1 . I ) ,  t h e  C ' 9 '  proper ty  (3.1) and 
both (4.8) and (4.9) a r e  s a t i s f i e d .  

Proposi t ion 4.2: Consider { P ( t ) , t ~ ~ j ,  l e t  t06 T,  xO€ s ( t O )  
and suppose t h a t  (1.1), 1 ,  (4.8) and (4.9) hold. 
Fur ther ,  suppose t h a t  t h e  Kangasarian-Fromovitz CQ i s  
s a t i s f i e d  a t  x0 w.r. t o  Id(t0). 
5 e n  Condit ion 3.3' and Condit ion 3.3 a r e  equiva lent .  

Proof: By Propos i t ion  4.1, i t  s u f f i c e s  t o  show that (4.1) and 
(4.2) a r e  f u l f i l l e d .  Put 

f o r  ( x , u , t , h ) g  Q r R m x T x R n ,  whXch imp l ies  that, by proper ty  
( P  1)  of genera l ized d i r e c t i o n a l  de r i va t i ves ,  the fo l lowing 
i nc l us ions  hold: 

where uo:= 1. Let Uo and Vo be as i n  (4.8). 
By t h e  p r o p e r t i e s  ('P 2) and (,P 3) of genera l ized d i rec-  

t i o n a l  de r i va t i ves ,  t h e  mul t i func t ion  H( , , , t o )  i s  closed 
and l o c a l l y  bounded on [xO 3 x LM(xO, t o )  x bd Bn. A s  LM(xO,tO) 
i s  bounded (because of the. Mangasarian-Fromovit~e CQ which i s  
s a t i s f i e d  at xO) ,  hence t h e r e  e x i s t  an open neighborhood 
V1 c Vo of  xO, open bounded s e t s  N1 3 UI(xo,t0) and W l  3 bd B,, 
and a bounded s e t  X c R n  such that 

~(x ,u , t ' , h )  c X f o r  a l l  (x,u,h) L V, x N~ x wl . (4.1 1)  

Bow l e t  i€(O,l, ..., m3,  t E U d x E V I  and h e l l  be f ixed.  
For  s i m p l i c i t y  o f  no ta t i on ,  we put  



By de f i n i t i on  of b ~ ~ , ~ ( x ; h ) ,  we then have 

z E A F ~ ,  (x; h) i f  and only i f  z = l i m  xk Ax Bk -1 Z ( X  k +Bkh) 

elr + +o 
k k k w i t h  Z(X +ekh) := FiPt(x +Bkh) - Fi t t (x  ). Hence, (4.8) and 

and (4.1 2) then imply t h a t  

II z ( s + e k h ) l l  6 Bk D I1 hl l  

and there fo re  (with d(W1):= Sup [ ~ h  11 / ~ c - w ~ S  1, 

11 z 1l-L D-d(wl) ( V Z  G A F ~ , ~ ( x ; . ~ ) ) *  (4.13) 

Property ( P  7)  and assumption (:4.8) y fe ld  that f o r  
any hO€ W1 th-e inc lus ion 

dFi , t (x ;h)  C b F i , t ( ~ l h O )  + D ilh-h" l lBn (4.14) 

holds. born (4,10), (4.11) and (4.13) then we obta in  t h a t  
f o r  a l l  ( 'x,u,t,h)E V l x  N1 xUox W1, one has the  boundedness: 

H(x,u,t,h) C X  +pd(Wl)( l+md(N1)) Bna 

To show t h a t  f o r  any u0 E LM(xO, t o )  and any h0 E bd Bn, H i s  
a lso  closed a t  (xo,uo,to,hO), we s h a l l  use the  closedness 

0 of H(* , * , . , t  ) and apply (4.1:0), (4.9) and (4,14). These 
f a c t s  imply the  h -c lus ions  

C l i m  sup (x,u,h) + (xO,uO,hO) ~ ( x , u ,  t",h) 

+ l i m  sup (X m 
u O ~ ~ , ~ ( x i h O )  ,u , t )  ->(XO,uO,tO) t i o l  i 

- - ~ ( r ~ , u ~ , t ~ , h ~ ) ,  

This completes t h e  proof, // 

4.5. Now we r e c a l l  a broad class of ~ ~ ' ~ - f u n c t i o n a  g, 

f o r  which a simple representat ion of Clarke's general ized 
Jacobian of Dg is poasib le,  and which i s  of p a r t i c u l a r  i n t e r -  
e s t  i n  severa l  app l icat ions of c1 *l-optimization, cf. t h e  
d iscussions in [13], Remark 4 and [14], 44 , 



2 Given an open set Q C Fin and functions gi E C (Q) , i=1,. . . ,a, 

let g be a continwus selection from Igl,. .. ,gs 3 satisfying 
the following properties: 

(a) For each x E Q  there is erne i(x)c{l, ..., s3 such that 

g(x) gi(X) (XI ,  
(b) g is continuous on Q, 

(c) for each pair i,j~[1. ,..., 83 and each X G Q ~ ~ Q  one has 

Dgi(x) =Dgj(x), where Pi*= (xt Q / g(x) = gi(x$ 

Proposition 4.3 ( 614 , Th. 47)  r The function g belongs to the 
class c l * l  (Q), and for each x 6  Q, tfrere exists an index set 
J(X) c{ir[l,. . . , s 3 / g(x) = %(x)3 such that 

JC1 Dg(x) = conv { ~ ~ ~ ~ ( x )  / i E ~ ( ~ 1 3 .  
In what follora, g will be called a c1 *l-selection of [gl,, ,gB\. 

Returning to the parametric problem (~(t), t E ~3 , chosing to€ T, 

xO& s(tO) and assuming that the Mangasarian-Fromovitz CQ holds 
at xO w.r. to ht(t0), we now consider the following special case: 

(1)  For each i €to, 1,. . . ,m3 , fi is a continuous selection from 

fgl..*.,gs2j where gj: Q I T  -+R (J=l,...,s) are 
corrtinuous functions which are twice continuously differ- 

entiable with respect to x, 

(2) for each i €{0,1, ..., m 3  and each t GT, fi(*,t) is a 
c1 ,'-selection of [gl ( *, t) , . . . ,gs(*, t) 3 , 

2 
(3) D g . ( . , * )  and Dx gj(*,*): are continuous on Q w T  (j=-l,...,~), 

X J  

(4) with l(fi,x,t) := [ j ~[l.,...,s3 / fi(x,t) = gj(x,t)3 and 
2 

Hi(x,t.h) I =  conv {D, gj(x.t) h / 3 ~I(f~,x,t)], 
i=O,l,...,m, set 

m H(x.u,t,h) := Ho(x,t,h) + iPl, ui Hi(x,t,h) • 

As a direct consequence of the assumptions ( 3 )  ... (4) we obtain 

that H is closed and locally bounded on {xol rLM(xo,to)x[tO{xbd Bn. 
Hence, (4.1) holds. Property (4.2) follows from Proposition 4.3, 

property (2 5) of directional derivativee and assumption (4). So, 
ConditLon 3.3 may be replaced 'tbg' Condition 3.3'. 



Now consider the case p=O, i.e., thre are no equality 
constraints, In order to verify in Condition 3,2 or Condi- 

T t im  3.3' that for some (!r0,uo,t0), h z >  0 holds for all h 
belonging to some set W and for all z c ~(x',uO, tO,h), the 
following condition would suffice: 
For some i E [o] u l+(uO) and some j €1(%,xo,to) and for 

T 2 each h ~ l ,  one has h D, g.(xO,tO)h>O and 
T 2 3 h Dx gk(~O,tO)h?~ if k C[I.,.~.,S~\ 3 

This reduces the expense to the verfificati'on of positive 
(semi-)definiteness of finitely many matrices, 
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