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Foreword

The paper extends the previous results of the authors on quantitative stability for
chance constrained programming in two directions: it gives verifiable sufficient conditions
for Lipschitz property and it indicates the possibility of using the results in connection
with a stochastic load dispatch model. The research was carried out in the frame of the
IIASA Contracted Study “Parametric Optimization and its Applications.”
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Chairman
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Distribution sensitivity for a chance
constrained model of optimal load dispatch

*
Werner ROmisch and Ridiger Schultz

Abstract:

Using results from parametric optimization we derive for
chance constrained stochastic programs (quantitative) stabi-
lity properties for (locally) optimal values and sets of
(local) minimizers when the underlying probability distribu-
tion is subjected to perturbations. Emphasis is placed on
verifiable sufficient conditions for the constraint-set-
mapping to fulfill a Lipschitz property which is essential for
the stability results. Both convex and non-convex problems
are investigated.

We present an optimal-load-dispatch model with considering

the demand as a random vector and putting the equilibrium
between total generation and demand as a probabilistic
constraint. Since in optimal load dispatch the information on
the probability distribution of the demand is often incomplete,
we discuss consequences of our dgeneral results for the sta-
bility of optimal generation costs and optimal generation
policies.

Key words: Parametric optimization, chance constrained
stochastic programming, sensitivity analysis,
optimal load dispatch.

1. About the Load Dispatch Model
The problem of optimal :load dispatch consists of allocating
amounts of electric power to generation units such that the

total generation costs are minimal while an electric power

¥ Sektion Mathematik, Humboldt-Universitét Berlin, DDR-1086
Berlin, PSF 1297, German Democratic Republic.




demand is met and certain additional constraints are satis-
fied. Our purpose is to obtain an optimal production policy
for an energy production system consisting of thermal power
stations, pumped storage plants and an energy contract for

a time period up to one day with a discretization into

hourly or half-hourly intervals. Unit commitment and net-

work questions are excluded.

Of course, there is plenty of literature on optimal load
dispatch reflecting work beginning with models much more
compreﬁensive than the one presented here and ending with
adapted solution procedures and computer codes to find opt-
mal schedules (cf. [9],[10),[11] ,[19],[32],(34)).

Disregarding a quadratic term in the objective and one non-
linear constraint our model is a linear one. From practical
viewpoint, however, an incorporation of further nonlinearities
would improve the reflection of the reality. Such nonlineari-
ties, if not being too curious, even not destroyed the basis
of our distribution sensitivity analysis.

Nevertheless, we prefered to keep the model linear wherever

it is possible, since we wanted to have a practicable model
also from numerical viewpoint. Due to the number of time
discretization intervals, we will face a large-scaled prob-
lem already for a comparatively low number of generating
units.

A special feature of our model is that we take into account
the randomness of the electrical power demand. The equilibrium
between total generation and demand is modeled as a pro-
babilistic (or chance) constraint, thus obtaining a high
reliability for the equilibrium to hold when the demand is
considered as a random vector. Since in practice in general
the probability distribution of this random vector is not
completely available, the question arises whether our model is
a proper one in the sense that optimal solutions behave stable
under perturbations of the probability distribution of the
demand. For this reason in Section 2 we study qualitative and
quantitative aspects of solution stability in chance con-
strained programming where the entire probability distribution




is considered as a parameter the optimization problem depends
on. We use a parametric programming framework and we are
aiming at comprehensible and verifiable sufficient conditions
for stability.

Let K and M denote the number of thermal power stations and
pumped storage plants, respectively, the system comprises and
N be the number of subintervals in the discretization of the
time period. The (unkhown) levels of production in the ther-
mal power stations and the pumped storage plants are

yi (i=1,...,K; r=1,...,N), 82 (J=1,...,M; r=1,...,N) (genera-
tion mode) and wg (j=1,...,M; r=1,...,N) (pumping mode).

By z_ (r=1,...,N) we denote the (unknown) amounts for energy
purchased or sold according to the contract.

The total generation costs are given by the fuel costs of the
thermal power stations (which are assumed to be a strictly
convex quadratic function of the generated power, cf. (31],
[32]) plus the costs (respectively takings) according to the
energy constract (which are a linear function of the power).
Concerning pumped storage plants we remark that sometimes
({91,(101) the stock in the upper dam is evaluated by a certain
function such that another term enters the objective, which
reflects the costs and takings, respectively, according to
the change of stock caused by the operation of the plant.

In our model, however, we do not pursue this, and hence the
objective becomes

YTHY + hTY +'9TZ (1.1)

where yelRKN, zeRN, HE L(RKN,RKN) is positive definite and

diagonal, he RN and gerNV.

According to the discretization of the time period we have a
demand vector d (of dimension N) which is understood as a
random vector with distribution p € P®Y) - the set of all
Borel probability measures oanN. Claiming that a generation
(y,s,w,z) fulfills the demand with probability poe.(O,l) then
means that




- 4 -

TSR A I
p({deRr™: Ypt :E:(er-wr)+zrédr,r-1,...,N})épo. (1.2)
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1

In addition to this probabilistic constraint we take into
account conditions which characterize the operation of the
different plants:

a, €y£a,0£fs€4a, 0€wte 8g: 8, €2 & 8y (1.3)
0o o 0 j 11£590 (o . .

S] - Sj € '§1 (Sr-’qur)ﬁsj (j 1,000,M, \ lpoco,N), (1.4)
N : N

p (s'],-nng) =byy Uslieeod, 2z = b, (1.5)
= r=

Restrictions for the power output are modeled in (1.3). The
inequalities (1.4) reflect the balance between generation
and pumping (measured in energy) in the pumped storage
plants, s9° and s9 denote the initial respectively maximal
stocks (in energy; in the upper dam. For each pumped storage
plant we assume that the maximal stock (in water) of the

upper dam equals that of the lower dam and that no additional
in- or outflow occurs. We then put the pumping efficiency,
denoted 'qj, as the quotient of the energy that is gained

when letting the full content of the upper dam go down and

the energy that is needed when pumping the full content of the
lower dam upward. A further refinement of the model is possible
if the pumping efficiency is not put as a constant but as a
function of the actual stock in the upper dam (cf. [16]).

The equations (1.5) are balances over the whole time period

for the pumped storage plants and according to the energy
contract, respectively. The model can be supplemented by
further linear (non-probabilistic) constraints, for instance
those reflecting fuel quotas in the thermal power stations.

Due to the practical background (generation costs in each
thermal plant are strictly monotonically increasing) the
function yTHy + hTy is strictly monotonically increasing in
each component of y with respect to the corresponding one-
dimensional projeétion of the KN - dimensional interval

Ea_l ' 51] .




A special feature of the above model is that different
variables have been introduced for the pumping and the
generation modes in the pumped storage plants. For this
reason there should be additional constraints to exclude
situations where for some j€ {1,...,M} and re {1,...,N}
both sg:>0 and wl>»0. However, such constraints can be
omitted which might be seen as follows:

Let (y,s,w,z) be an optimal solution to the problem given
by (1.1) - (1.5) and let there be j€{1,...,M} and

re {1;...{N} such that sg'>0 and wg >0. According to

WEFEher sg -'qug 2 0 or sg -'ijg‘<o we construct a point
(y,s,w,z) which differs from (y,s,w,z) only in the components

s) )
Sk and Wee We put

32 1= sl -.njwl, Wg :T 0 if sg -'qul 2 0 and

s .= = .o _1 ] j
Sr := 0, wr := ﬁ? sr + wr else.

In both situations we then have

gg -:qug = sl -fnng and (1.6)
3 ) :
s, - W, s .

) RS
r r
From this we conclude that (y,s,w,z) fulfills (1.2) - (1.5).
Furthermore, the objective values for (y,s,w,z) and (y,s,w,z)
are the same. hence, if (y,s,w,z) is optimal so is (y,s,w,z),
and the latter point can be obtained from the former one

very easily.

In the case y = y ¥ a, the argument can be extended:

Consider one component, say 7;, of Y in which y differs from
a;. Then there exists £>0 such that the point (V,3,w,2)
whose components. coincide with those of (y,s,w,z) with the
exception of 7: where we put 7: -& instead fulfills con-
straint (1.2) (note that (1.6) holds) and - of course - the
remaining constraints. Due to strict monotonicity, however,
the objective value of (y,3,w,Z) is less than that of

(y,s,w,z). Hence (y,s,w,z) cannot have been optimal.




From the formal point of view our model can be expressed as
min {f(x): XEX p({deIRN: Ax 2 d}) Po I or
min §F(x): x€X_, Fp(Ax) 2p,} (1.7)

where x = (y,s,w, z)eR™ with m:= N(K+2M+1), f(x) is defined
by (1.1), X CIR is the bounded convex polyhedron given by
(1.3) - (1. 5) AelLR"R N) is a suitable matrix, p is the
probability distribution of the (random) demand and Fp its
distribution function.

2. Sensitivity Analysis

Let us consider the following general chance constrained
model

min [f(x): xeR"™, H({z eR®: xeX(z)P) 2p 7] (2.1)

where f is a real-valued function defined on R™, X is a
set-valued mapping from R® into R™, Po e (0,1) is a prescrlbed
probability level and p is a probability distribution on R®
For basic results on chance constrained problems consult
(131, [36] and the references therein.

We are going to study the behaviour of (2.1) with respect to
(small) perturbations of the probability distribution p. Our
approach relies on stability results for parametric optimi-
zation problems with parameters varying in metric spaces (see
[15] for quantitative and [1], [25] for qualitative aspects).
As parameter space we consider the space P(R®) of all Borel
probability measures on R® equipped with a suitable metric.
We are aiming at (quantitative) continuity properties for the
mappings assigning to each parameter the (local) optimal
value and the set of (local) minimizers, respectively.
Because of its central place in the convergence theory for
probability measures it seems appropriate to study stability
with respect to the topology of weak convergence on P (R®).
This has been done in the analysis carried out in [14] (using
the results of [25]) and in [35]. An example in [28] indicates
that stability of (2.1) with respect to the topology of weak




convergence cannot be expected in general without additional
smoothness assumptions on the measure p. It turned out in [29],
(27) and [28] that the so-called 3 -discrepancy

a%(p,o ):= sup {| p(B)- v(B)] : BER (b, ve P(R%)), (2.2)

where 3 is a proper subclass of Borel sets in IRS, is a
suitable metric on P(R®) for the sensitivity analysis of
(2.1). In the following, 3 will be chosen such that oty forms
a metric on P(R®) (i.e. 3 is a determining class [8]) and
that it contains all the pre-images X (x) :={zeR®: xex(z)}
(xe R™). We also refer to [5] where sensitivity of optimal
solutions to chance constrained problems involving parameter-
dependent distributions is investigated by an approach via
the implicit function theorem (cf. [7]). Stability in chance
constrained programming is studied also in [30) and [33].
Whereas the results of [30] are relevant for approximation
schemes, [33]) deals with a statistical approach.

Next we introduce some basic concepts and notations which are
used throughout. For y e P (R®) we denote by F‘., the distri-
bution function of v and set for p € [0,1]
C (v ):= IxeR™: v (X7(x)) 2 p} , hence problem (2.1) becomes
min {f(x): xecpo(p)}. Given V € R™ and ve P(R®) we denote
¢y(v):= inf‘{f‘(x): xeCpo(Q)f\ cl v} and
Wy (v ):={xecpo(\7 Jacl Vi £(x) =@, (V)},
where we employ the abbreviation cl for closure. Following
(25],[15] we call a nonempty subset M of R™ a complete local
minimizing set (CLM set) for (2.1) with respect to Q if Q
is an open subset of R™ such that Q> M and M =\VQ(p).
Later onwe will briefly say that '\VQ(p) is a CLM set for (2.1)
which means that the set in question is a CLM set for (2.1)
with respect to Q. Examples for CLM sets are the set of
global minimizers (which we shall denote by W(p) and,
accordingly, the global optimal value by ¢(p)) or strict

local minimizing points.
We call a multifunction [ from a metric space (T,d) to R™
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closed at t e T if t, >t , x, —>x_, x € ["(t ) (ke N)
imply xoe,r'(to),l“ is said to be upper semicontinuous (usc)
at t € T if for any open set G D tho) there exists a neigh-
bourhood U of t_ such that M(t)c G whenever teU, and [

is said to be pseudo-Lipschitzian at (xo,to)e r“(to)x'r

(cf. [26]) if there are neighbourhoods U and V of to and x _,

(o]
respectively, and a constant L> O such that

Ce)av € M) + Ld(t,T;)Bm whenever t,tecuU,

where'Bm is the closed unit ball ianm. For xoe,Rm and £>0
we denote B(xO,E.):={x<iRm:Hx-xoné £f(thus B, = B(0,1)),

where ||.|] is the Euclidean norm on R™,

The following theorem asserts in a fairly general frame
sensitivity properties for solutions of a parametric chance
constrained problem. The proof which relies on stability re-
sults for abstract parametric programming problems obtained
by D. Klatte in [15] can be found in [27] (Theorem 5.4).

Theorem 2.1:
Let in (2.1) pe PR®), Po€ (0,1) and {X7(x): xeR"} € .
Let further X be a closed multifunction and f be locally
Lipschitzian. Assume that there exists a bounded open set
VCR™ such that W,(p) is a CLM set for (2.1). Let the multi-
function p+— Cp(p) be pseudo-Lipschitzian at each
(xgep)e W (WX {p .
Then 7y, is usc at p with respect to the metric otqg on P (R®)
and there exist constants L >0 and J>0 such that

va(o ) is a CLM set for (2.1). and

| (_Pv(p) "FV(‘_) )| £ Lo(.%(lln? ) whenever a%(u, )<,

Under more restrictive assumptions it is possible to quantify
also the upper semicontinuity of the solution set mapping.

Theorem 2,2:
Let p, po,X,QB and f be as in Theorem 2.1. Let further I.l* be
a (non-trivial) semi-norm on R™,

Assume that there exist x_€ Cp (p) and constants ¢>0, ¢ >0
)




and q 2 1 such that for all xe Cp (p)n B(xo,?) we have
o

F(x) 2 fx ) + clx-xolﬂ. (2.3)

Further, let the multifunction p h+Cp(p) be pseudo-Lipschitzian
at (xo,po).

Then there exist £€(0,q], L>0 and 8 >0 such that with Vv
taken as the open ball in R™ around X, with radius £ the set
\VV(O ) is a CLM set for (2.1) and

|x.-x°|ﬂ £ th% (e, V) for all x eV, (v),
whenever ot%(p,\?)<d' , vePR®.

To prove the above theoremone proceeds in principal as in

[27] (Theorem 5.4), i.e. first derive continuity properties

for the constraint set mapping v HCp (v ) at p (with respect
o

to the distance O, on P (R®)) and then apply a quantitative
stability result for parametric programs which is a slight
relaxation of a theorem due to D. Klatte [15] and quoted as
Theorem 2.6 in [27] . The relaxation concerns condition (2.3)
where, compared to (15] and [27], we use a semi-norm rather

than a norm. A direct inspection of the proof given in [15] then
shows the validity of the result.

Remark 2.3:

The above results may also be viewed as stability results with
respect to perturbations of p in the space P(R®) equipped
with the topology of weak convergence if 3y is a p-uniformity
class of Borel sets in R®. Recall that % is a p-uniformity class
ifo (pn,p)-—->0 holds for every sequence (pn) converging
weakly to p ([2]). If3 is a subclass of %C:={BCIRS: B is
convex and Borelj, the following result is known (Theorem
2.11 in [2)):% is a p-uniformity class if p(3B) = O for all
Be (here OB denotes the topological boundary of B). Hence,
the class C%R:= {ﬂ, (=00 ,2z] : zele} is a p-uniformity class
if the distribution function Fp (of p) is continuous on R®,
and %C is a p-uniformity class if p has a density (with
respect to Lebesgue measure on IR®). We note that
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d. (p,v )=y (g, v )= sup _IF (2)=-F,(z) | is the so-called
K R ze R® ¥ v

Kolmogorov distance on ¥ (R®).

We now reveal conditions on the measure p and on the multi-
function X to have the mapping pr—bcp(p) pseudo-Lipschitzian
at some point (xo,po)elf“x [(0,1], thus arriving at stability
results which are specifications of the Theorems 2.1 and 2.2.
The first part of our analysis concerns the special case where
the sets Cp(p) (pe.[O 1]) are convex.

We say that p e P (R®) belongs to the class M, (re[-OO,+oO))
if for all 2€[0,1] and all Borel sets B;, B, CIR

(A By+(1-2)8B,) * {a[p(B )] s (1-7\)[;:(32)] }1/". (2.4)

Here 1B, + (1-1)B,:=[Ab,+(1-A)b,: b, €B,, i=1,2] . In the
case r = 0 and r = -0 the right-hand side of (2.4) is inter-
preted by continuity as [p(Bl)]1 [p(Bz)]l-l and
min{p(Bl),p(Bz)} . respectively. The classes M have been
introduced and studied in [3],[17], [22]. Clearly, we have

2 -0 €
NI ,.1 = Mrzl o0 Pl -4 P2< +00 . Measures belonging to
(/W._«)) are called logarithmic concave (quasi-concave).

Ji{, was first and extensively studied by.Prékopa [17],[18].

It is known (cf. e.g. Theorem 1 in [22]) that p belongs to

M. (re[-®,0]) if p has a density Fp and f:/(l-rs) is convex
(-0 € r<0), log £, is concave (r=0).

It is well-known that the (non-degenerate) multivariate normal,
the multivariate beta, Dirichlet and Wishart, a special multi-
variate gamma, &nd the multivariate Pareto, t and F distri-
butions (cf. [12]) belong to JKr for some r € 0 (see [3], [17],
L18], [20]).

For convex chance constraints we now have the following
corollary to Theorem 2.1.

Corollary 2.4:
Assume that in (2.1) p e s for some re(-00,0], p, € (0,1),
X has closed convex graph and f is locally Lipschitzian.

Let { X7(x): xe RM&c % ¢ %C and UR X(z) be bounded. Assume
el
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that there exists X €IR™ such that p(X~(x)) > Po (Slater con-
dition).

Then Y is usc at p with respect to otp on P (R°) and there
exist constants L> 0 and Jd>0 such that Y (v ) # @ and

[ @p) -Q(v)I £ La% (4, v ) whenever oc%(p, v)<d,

v e P(R®).

Proof:
Since A{, € ‘M'r for each r € (-0 ,0), we assume w.l.0.g. that
re(-¢0,0) and write (2.1) in the equivalent form

min{f(x): xeR™, [p(X~(x))]" ¢ p:; }- (2.5)

Since the constraint set of (2.5) is closed (see [27]) and

bounded (according to the assumptions), we have that the set
of global minimizers W(p) to (2.5) is nonempty and that the
assumptions in Theorem 2.1 concerning the CLM set may be ful-

filled with a bounded open set Vo U/ o X(z) (hence the
ZeER

mappings ¥ and VY, , @ and ¢, coincide).
We define the function g(x):=[p(X"(x))]" from R™ to (-o0,00]
and have for all x,, xzelRm and A€ [0,1] that

g(A x+(1-2)x,) = [p(XT (A xg+(1-2)x,0)]"
€ [ p(A XT(x)+(1- )X (x,))]"

él[P(X-(Xl))]r + (1-1)[P(X-(X2))]r-
(Here we used in the first inequality that X has convex
graph, and in the second that (2.4) is valid.)
Hence g is convex and the multifunction I" (from R to iR™)
defined by [M(t):={xeR™: g(x) € t} (teR) has closed convex
graph. Due to Theorem 2 in [23],[" is pseudo-Lipschitzian at
each (x_,t ) with x_€ " (t,) and t, belonging to the interior
of {telR:["(t) # ﬂ} . Since g(x)<¢ p:;, p:; is an interior
point of {teR: [M(t) # ﬂ}. Therefore, " is pseudo-Lipschitzian
at (xo,p:;) for each x_€ I"(p';). In view of Cp(p) =(p"), this
means that there exist positive constants L, d and a neighbour-

hood V of x_€C_ (p) such that
o~ p,
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c r~r
Cp(p)(\v = Cﬁ(p) + Llp -p |Bm

whenever p", P'e B(p:;,cf). Since the function € ¢ is
locally Lipschitzian for positive ¥ , we obtain that the multi-
function pt+>C_(p) is pseudo-Lipschitzian at each (xo,po)
€ Cpo(p) x{po}. The assertion now follows from Theorem 2.1. 0O

The above corollary entends results obtained by Salinetti ([30],
Corollary 3.2.2) and Wang ([35], Theorem 6).

We remark that the Lipschitz modulus L in Corollary 2.4 can

be estimated above provided that d (which restricts ag%(p,§>))
is sufficiently small. According to [15] such a bound for L

is given by Lo(L,+1) where L. is the (local) Lipschitz modulus
for f and L. the modulus we have for pr—>Cp(p) since it is
pseudo-Lipschitzian (cf. the proofs of Prop. 5.3 and Th. 5.4 in
[27])). Starting from results of e.g. Robinson ([23], Theorem 2)
or Psheni&nyi ([21], Theorem 1.2, p. 100) a further estimation
of Lo is possible. This would exploit the uniform compactness
of the sets Cp(p) (pe (0,1)) and explicit knowledge of the
Slater point X.

Remark 2.5:
Let, additionally to the assumptions of Corollary 2.4, there

exist x € Cp (¢) and ¢ » 0 such that
o
F(x) > f(x ) + c|x-x |4 for all xe c, (1), (2.6)
o
where | .|, is a (non-trivial) semi-norm on R™. Then, using

Theorem 2.2, we arrive at the following quantitative stability
result for the global minimizers:
There exist constants L> O and d >0 such that

Ix-xoliéLu% (p, ) for all xe Y (V)
whenever o(% (u,v)<d , v e PR®).

We proceed with the non-convex case. Here we assume that the
multifunction X is given by

X(z) :={xe X_: Ax 2 2} (zeR®) (2.7)
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where X _ € R™ is a nonempty closed set and A€ L(R",R®).

Again, sufficient conditions are essential under which the
multifunction p'-->Cp(p) is pseudo-Lipschitzian at certain
points (xo,po). From the literature it is known that constraint
qualifications are such sufficient conditions (cf.[24], [26]).
As an example for results that can be derived in this way we
present the following:

Proposition 2.6:

Let the distribution function F_ of p € P(R®) be locally Lip-
schitzian, Po€ (0,1), X, be a closed set and x_€ X such that
Fp(Ax ) 2 Po+ In case F (Ax ) = P, let further

DF (Ax N Nx (x,) = B, where 3 denotes the Clarke generalized

gradlent of F (A ) and NX (x ) is the Clarke normal cone to
Xo at X ({4]).
Then the multifunction pt——»{xexo: Fp(Ax) 2 p} is pseudo-

Lipschitzian at (x_.p.).

Proof:
Define [ (p):={x: p-Fp(Ax) £ 0, (p,x)ER xXo}. According to
Theorem 3.2 in [26] the multifunction [" is pseudo-Lipschitzian
at (xo,po) if the following holds:

If there are y,zelR such that

y 20, y(p,-F,(Ax_)) = 0 and

(0,2)e {y(x 1§ + (x 0): -x€ OF (Ax ), xeNx (x )}

theny = z = 0.

Now assume that in our situation the above did not hold. Then

there were y>0, X€ an(Ax ) and xeNx (x ) such that

-yX + X = 0. The last identity, however? 1mplies X €Ny (xo)
o

which contradicts an(Axo)n Nxo(xo) s f. O

Of course, making use of Proposition 2.6 hinges upon whether
one is able to check the constraint qualification

an(A"o)” Ny (x)) = P. In applications this may be a formi-
o
dable task, especially when exploiting the result in its

fullest generality.
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Therefore, in the following we establish by an alternative
way sufficient conditions which are easier to verify and
similar to that given in [29].

Corollary 2.7:

In (2.1) let p € PUR®) have a continuous distribution function
Fp’ further let p_e€ (0, 1) and the multifunction X be given by
(2.7) where the set X, is convex and closed.

Suppose there exists a bounded open set vcR™ such that
b4 y(B) is a CLM set for (2.1). For each x_ e W, (p) with
F (Ax ) = p, let there exist reals & o> 0 and ¢ >0 such that
f-‘or any x€e X, r\B(x £ ) there exists xeX with the property

F (Ax+tA(x-x)) 2 F (Ax)+ct for all te[o,l]. (2.8)

Then Wv is upper semicontinuous at p with respect to the
metric dk on ?(IR ) and there exist constants L> O, d >0 such
that Wv(o) is a CLM set for (2.1) and

ICFV(P) -‘PV(Q N £ LdK(p,\))
whenever dK(p, v)<d , ve PR®).

Proof:

Once more we apply Theorem 2.1. We merely have to check whether
the mapping p»—)Cp(p) is pseudo-Lipschitzian at each

(xgePgde Wy (m)x fp,}.

Let x e\yv(p) and consider at first the case where F (Ax )>p,-
Then there exists cf > 0 such that F (Ax > P, *+ 9, and due

to the continuity of Fp we have £ >0 such that

F (Ax) Po +J for all x €B(x_, & ).

Hence c_(Wn B(x ' €, € d’ (p) for each pe (p - ,po] and
each & e(0, & ) Ther‘ef‘ore the multifunction p—>C (p) is
pseudo-Lipschitzian at (x_,p, ). Now let Fp(Axo) = p,. Take
£o>0 and ¢ > 0 according to the assumption and define

§_ :=c and L:= ¢™l. we will show that

(o)
Cp(p)ﬂ B(x,, €,) € Coed (p) + LdBm

for each pe(po- ‘So'po] and each d € (0, Jo), which yields
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the desired pseudo-Lipschitzian property.
Let pe (p- Jo,po] , de(o, do) be chosen arbitrarily and
consider xeCp(p)n B(xo, 50). Due to the assumption there
exists §exo such that (2.8) holds. In view of the convexity
of X, without loss of generality, it is possible to select
this X in a way such that we additionally have lix-xl¢ 1.
Consider y:= x + Jc'l(f-x)exo. Now

Ix-yll € LS and

Fp(Ay) = Fp(Ax+ d'c-lA(i-x))-‘-‘F”(Ax)+cdﬁc-1 2 p+d .

Hence y€Cp+d.(p) and xeCp+d (p) + LJBm.
The assertion finally follows from Theorem 2.1. ]

Remark 2.8:
If Fp is continuously differentiable at Ax  then (2.8) implies
the constraint qualification used in Proposition 2.6.

Remark 2.9:
Corollary 2.7 is a generalization of Corollary 2.4 when X is

given as in (2.7).

To see this suppose that p G’Mr for some r € (=00 ,0] and assume
that there exists ?exo such that FP(A§)> Po (Slater condition).
Then the distribution function F_ is continuous, since p is
absolutely continuous with respect to the Lebesgue measure

on IR® ([3]). Now let x € X, such that Fp(Axo) =p,-

There exist & >0 and &, > O such that

0<p -9, € Fp(Ax) € p, + J°<FP(A>.<) for all x€B(x_, €).

We are going to show that, with a suitable ¢ >0, condition
(2.8) is fulfilled for any x€X N B(xo, &o).

For this, let w.l.0.g. r< O and define

a:= p_-d_ >0 and b:=[Fp(A§)]r-(po+ d‘o)r<0.

We obtain for arbitrary te[0,1]:
Fp(Ax+tA(§-x))r t F (AX)" + (1-t)F _(Ax)F
at + t(Fp(A)’()r-(p°+ ) )=a"+tb

IN IN

and therefore
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F (Ax+tA(x-x)) 2 (a +tb)1/r

-1, 1-p

2 a+tr "ba for all te€ [0,-arb'1].

The last inequality holds since the function g(t):= (ar+tb)1/r

is convex for te [0,-arb-1] and consequentl
q Y

g(t) 2 g(0) + g'(0)t for te.[b,-arb-lJ.
Taking finally into account that -a"b"1> 1 we obtain (2.8)

with ¢ := r~1pal™",

The following lemma is very useful when verifying the uniform
growth condition (2.8). Its proof is essentially based on an
idea that has already been developed in [29], Lemma 4.9.

Lemma 2.10:

Let pe ?(IRS), Xo be a closed convex set and fix some xoexo.
Assume that p has a density fp and that there exist A>0,
Q)O such that

fp(z) 2N for all ze B(Axo,? ).

Furthermore, assume that there exists 3?5 Xo such that
AiéAx andAx;!Ax .

Then there exist £ >0 and ¢ >0 such that (2. 8) holds for
each x¢ X N B(Xo, E o)

Proof:
First one confirms that, without loss of generality, it is
possible to suppose AXe B(Ax_, §,) and Cax], > [Ax ]1
where @,:= §/4 and [z'_]1 denotes the i-th component of zelRR®
Now we choose €0 0 such that on the one hand there exists
T€ R such that [AXx],>¢ 2 [Ax], for all xe B(x,, &)
and on the other hand

max | l}\x]i '[Axo]il 4 ©, for all xe B(xo, &o).
i=1,...,s
Denote a:= [AY:I:1 -§>o0.
Then we have for arbitrary x€ X N B(x, & ,) and t ¢ (0,1]
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Fp(Ax+tA(§-x))-F (Ax) 2
[Ax] +ta  [Ax], [Ast

* .. f,(zy0000,2)dz 00002,
[Ax]]_ "{.w "'-{‘ﬂ g S S
. [ASX]1+ta [Axo'] =94 [Axo—_ls- ®, ( )
) f yeee,Z )dZ_...dz
[Ax]1, [Ax 1,729, [Ax ),-zg, M 1/7TeTTert
*taglT O

Hence, the desired result follows with c:= ([Ai]l-‘g)A (3)3-1.'3

We remark that Corollaries 2.4 and 2.7 also represent quali-
tative stability results with respect to weak convergence of
probability measures. This is mainly due to the smoothness
assumptions imposed on the measures which led to p-uniformity
classes (cf. Remark 2.3). On the other hand, also without
such smoothness assumptions conclusions from Theorem 2.1 may
be drawn, as can be seen by the following remark where we
deal with discrete distributions.

Remark 2.11:
Let p € P(R®) be a discrete measure with countable support,
consider (2.1) with X given by (2.7). Let p_e (0,1) be such

that inf _| F (z)-p_| > 0.
ze R® H °
Then there exists a neighbourhood U of p_ such that

Cp (p) = Cp(p) for all pe U and, consequently, the mapping
)
pr>C_(p) is pseudo-Lipschitzian at each (x_,p ) with

C .
X, € po(p)

If the objective in (2.1) is locally Lipschitzian and if there
exists a bounded open set VCIR™ such that Yy(p) is a CLM

set for (2.1), we now obtain the stability assertions of
Theorem 2.1 with respect to the Kolmogorov metric di -

In what follows we indicate the potential of our general
results for the situation of unknown distribution p.
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Let 31} §2,... be independent random variables on a probabllity
space ({2,.A,P) with values in IR® and common distribution H.
Consider the empirical measure Hp, which is given by

= nl S
p,(@):=n 1§1J§i(“’) (we £2,neN),

where 6; € P(R®) denotes the measure with unit mass at zelR®.
Then it is known that (see e.g. [8] and the references therein)

d,(p (W), p) = o((de9 1og ny1/2y p_.1nost surely (2.9)
K*'n n

and

P({w: d(p (L), W)>EF) &, exp (-C,E°n) (2.10)
where Cl> 0 and 0< Cz< 2 are some constants.
Inequality (2.10) often is referred to as Dvoretzky-Kiefer-
Wolfowitz inequality.
Our quantitative stability results together with relation (2.9)
now give rise to rates for the almost sure convergence of
optimal values and optimal solutions if the unknown distribution
H is estimated by empirical distributions.

Let us finally illustrate how to combine our Lipschitz (or
Holder) stability results with inequality (2.10). Suppose for
instance you have a result of the type

1¢ () =@, (0)] & Ld(p, V) whenever dK(p,\))<cf
(Corollary 2.7, Remark 2.11). Then we obtain
P({w: | ¢y Cu, () -‘f’v(ll)|>f—} )
€ P({w: £<LdK(pn(bO).|J)k)+P(qu :d (p, (O), 1) >d )
and in view of (2.10) we can continue
€ 2c exp(-C,(min{ -E,J})zn).

Following the above way, in principle, it is possible to derive
corresponding estimates for optimal solutions or feasible sets.
In the latter case one then arrives at results which are in

the spirit of Theorem 3 and Proposition 1 in [33].
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3. Conclusions

To ensure a certain level of reliability for solutions to
optimization problems containing random data it has become

an accepted approach to introduce probabilistic (or chance)
constraints into the model. In applications, however, one is
often faced with incomplete information on the underlying
probability distributions. Therefore, applicable models

should at least enjoy some kind of stability with respect

to variations of the distributions involved. This gives rise
to investigating distribution sensitivity of the models.
Compared to earlier work ([29],[27],[28]) the present paper
deals with more practicable models, and it gives sufficient
conditions for (also quantitative) stability of optimal values
and optimal solutions which are easier to verify.

For a quite large class of distributions (Corollaries 2.4

and 2.7, Lemma 2.10, Remark 2.11) we obtain upper semiconti=-
nuity of the optimal-set-mapping and Lipschitz continuity of
the optimal value function. Under more restrictive assumptions

it is possible to quantify the upper semicontinuity of the
optimal-set-mapping (Remark 2.5).

The material developed in Section 2 applies to a number of
practical models which are known from the literature (the
STABIL model (19], a flood control model [20], a model for
water resources system planning [6])).

For the load dispatch model presented in Section 1 we may

derive the following conclusions:

If we assume that we have approached the true distribution of

the demand with sufficient accuracy then the optimal production

policies behave upper semicontinuous and the optimal costs are

Lipschitz continuous if either:

- we know that the true distribution has a certain convexity
property (cf. (2.4)) and there exists a Slater point
(Corollary 2.4), or

-~ the true distribution is a discrete one (Remark 2.11), or

- the true distribution has.a density which is uniformly boun-
ded below by a positive number on some neighbourhood related
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to the set of optimal solutions and among the optimal policies
(with respect to the true distribution) there is no one
which exhausts the full generation capacity (see constraint
(1.3)) (Corollary 2.7, Lemma 2.10). (In practice, the
latter requirement on the optimal generation policy is
always fulfilled, since, due to lower demand during the night,
there is usually at least one power station which, during
at least one hour, does not work with maximum capacity.)
An examination of the objective in the optimal-load-dispatch
model shows that is possible to fulfil condition (2.6) with
q = 2 and |xl, :=llyll, (here lI'l, is the Euclidean norm on
RNK). Hence, in presence of the assumptions made in Corollary
2.4, Remark 2.5 applies, and we have HOlder continuity (with
exponent 1/2) of the optimal generation policies in the thermal
plants.
When the original distribution is estimated by empirical ones
then the presented stability results together with the con-
siderations at the end of Section 2 yield rates of convergence
for optimal values and optimal solutions.
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