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Foreword

Many problems arising in optimization and control theory can be studied using ap-
propriate inverse function theorems. In this paper the author proves several first and high
order theorems and provides applications to questions of controllability and stability.
The proofs rely on the variational principle due to Ekeland and the (constructive)

Ljusternik’s scheme.

Results of this paper were exposed during the Conference on Applied Nonlinear

Analysis in Perpignan, June 1987.
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HIGH ORDER INVERSE FUNCTION
THEOREMS

Halina Frankowska
CEREMADE
Université de Paris-Dauphine

December 22, 1987

Abstract  We prove several first order and high order inverse mapping
theorems for maps defined on a complete metric space and provide a number

of applications.
Key words Inverse function theorem, open mapping principle, set-
valued map, controllability, reachable set, stability.

1 Introduction

Inverse function theorem is a natural tool to apply to many problems aris-
ing in control theory and optimization. The classical theorems, such as
Ljusternik’s theorem, are not always sufficient , and this because the data
of the problems often happen to be “nonclassical” ones.

Such “unusual” situation does arise when one deals with

i) A map whose domain of definition is a metric space

ii) A map which is not single-valued

iii) A map for which the first order conditions are not sufficient to solve
the problem.

This is why one has to look for different inverse function theorems
adapted to new problems. During the last twenty years this task was un-
dertaken in many papers (see for example [6], [5], [8], [9], [14], [21], [22] and
bibliographies contained therein).

Let us recall first the Ljusternik theorem proved in 1934 in [23]:

Theorem 1.1 Let f : U — X be a continuously differentiable function from
a Banach space U to a Banach space X and U € U. If the derivative f'(u)



is surjective, then for all h > 0, f(u) € Int f(Bx(u)) and there ezists L > 0
such that for all z € X near f(4), dist (¥, f~}(z)) < L |f(8) - 2|

As it was observed in [9] the assumptions of theorem imply much stronger
conclusions. In fact Ljusternik’s proof allows to go beyond the above re-
sult and to prove the uniform open mapping principle and regularity of the
inverse map f~! on a neighborhood of the point (f(u),%u).

Furthermore the surjectivity assumption of the above theorem may be
replaced by the assumption

(1) 0 € Int (@) (B)

Several extensions of Theorem 1.1 were derived in [9] via the same
Ljusternik’s idea. Assuming that the space U is just a complete metric
space and some “covering assumptions” on f one can obtain a result similar
to Theorem 1.1. However verification of covering assumptions is not always
simple.

In this paper we prove a High Order Uniform Open Mapping Principle
for maps defined on a complete metric space. That is, we provide a suflicient
condition for the existence of £ > 0, k > 1 such that

(2) Vunear @and VA>0, f(u) + Lh*B€ Int f(By(u))

To get regularity of the inverse map f~! we use a high order analogue of
Ljusternik’s theorem proved in [19] (using again Ljusternik’s scheme):

Theorem 1.2 (a general inverse function theorem). Let G be a set-
valued map from a complete metric space (U,d) to a metric space (X,dx)
having a closed graph and let (u,Z) € Graph G. Assume that for some k >
0,p>0,6>0,0<a<1 andalluec B(u), z€ G(u) N B(T), h€[0,¢]

(3) sup dist (b,G(Bx(u))) < aph*
bEB'h,,(z)

Then for every h > 0 satisfying h/(1 — ¥a) + 2ph* < €/2 and all u €
Bej2(1), z € G(u)N B,/3(T), y € B,px(z) we have

dist (u,GN(y)) < —

T 1= Ya
In particular, for all (u,z) € Graph G near (4,%) and all y near G(u)

(4) dist (v,G"(y)) < 1 dx(z,y)

S Y- e




When X is a Banach space, assumption (3) can be formulated as z+phtB C
G(Bn(u)) + aph*B. In particular it holds true for a map satisfying the Uni-
form Open Mapping Principle (2) and therefore the two theorems together
bring a sufficient condition for the regularity of f~!. The Uniform Open
Mapping Theorem is proved via the Ekeland variational principle. The cu-
rious aspect of this approach lies in the use of an apparently first order result
(Ekeland’s principle) to derive high order sufficient conditions.

Let us explain briefly the main ideas. When the space U is just a metric
space then one can neither differentiate the function f nor speak about
the continuity of the derivative. In [18], [19] we proposed to replace the
derivative by the variation of the map (which can be single-valued or set-
valued). The first order variation f (1)(@) of a single-valued map is defined in
such way that for a C! map f between two Banach spaces the set f/(7)B is
equal to it. Condition (1) together with continuity of the derivative inherit
then their natural extension

0 € Int Ueo Nafua)ce €0 f (1)(“)

High order variations were introduced in [13] (see also [19], [14], [16]),
where several sufficient conditions for regularity of the inverse map f~! were
proved. When one restricts the attention to single-valued maps only, then
results of [19] can be improved and proofs can be made simpler. In this
paper on one hand we prove more precise results for single-valued maps on
the other we overview the applications of the inverse function theorem given
in [15], [17]-[19] and provide its several new consequences.

The plan of the paper is as follows: Variations are defined in Section 2
where also several examples are given. Sections 3 and 4 are devoted to first
and high order inverse function theorems for a single valued map. In Section
5 we state several theorems for set-valued maps. Their proofs can be find
in [19]. Examples of applications are provided in Section 6.

2 Variations of single-valued and set-valued maps

Consider a metric space (U, d) and a Banach space X with the norm Gateaux
differentiable away from zero. For all u € U, h > 0 let Bj(u) denote the
closed ball in U of center u and radius h.

We recall first the notions of Kuratowski’s limsup and liminf:
Let T be a metric space and A, C X, r € T be a family of subsets of X.



The Kuratowski limsup and liminf of A, at ry are closed sets given by

limsup,_,,, A, = {v€X : liminf,,,, dist (v,A,) =0}
liminf,,,, A, = {veX : lim,,, dist (v, 4,) = 0}
Definition 2.1 Consider a function G : U — X and letue U, k> 0.
i) The contingent variation of G at u is the closed subset of X given by

V(y) = Limego 2Ba(4)) — G(u)
M) := h;r_x.z\ip A

15) The k-th order variation of G at u ts the closed subset of X given by

Gk(u) = h—lo‘o’.r'."l“rll.{.u G(Bh(u'])l)k-_c(u')

In other words v € G(l)(u) is and only if there exist sequences h; —
0+, v; — v such that G(u)+ h;v; € G(By,(u)). The word contingent is used
because the definition reminds that of the contingent cone of Bouligand.

Similarly v € G'“(u) if and only if for all sequences h; — 0+,u; — u
there exists a sequence v; — v such that G(u;) + h¥v; € G(By,(w)).

Clearly, G(1)(u) and G*(u) are closed sets starshaped at zero. When U
is a Banach space and G : U — X is a Gateaux differentiable at some u € U
function, then G'(u)(B) ¢ G()(u). If moreover G is Fréchet differentiable
at u then G'(u)(B) = G(u) = G(V(u).

The notions of variation extends to set-valued maps in a natural way.
Let G : U — X be a set-valued map, that is for all u € U, G(u) is a (possibly
empty) subset of X. The domain and the graph of G are given by

Dom G = {u € U | G(u) # 8}, Graph G = {(u,z) | u € Dom G, z € G(u)}

Definition 2.2 Let (u,z) € Graph G, k > 0.
i) The contingent variation of G at (u,z) s the closed subset of X

GM(u) = limsup G(Ba(u) ~ =
h—0+4 h

i) The k-th order variation of G at (u,z) is the closed subset of X

Gk(u) = liminf M
) (o', 2') =g (v,2) h*
h — 0+

where —¢g denotes the convergence in Graph G.



When G is a single-valued map the point (u,z) € Graph G if and only if
G(u) = z and therefore in this case the variations in the sense of the first
and the second definitions do coincide.

Variations of all orders can be used to prove sufficient conditions for the
existence of a Holder inverse for a single-valued and a set-valued map. They
describe a local expansion of a map at a given point.

Definition 2.3 Let G : U — X be a set-valued mep and (u,z) € Graph G.
The ezpansion of G at (u,z) 1s the cone spanned by all variations

G®(u,z) = U AGHy,z)
A20, k>0
Let co (¢6) denote the convex (closed convex) hull and B the closed unit
ball in X. The following result was proved in [19]:

Proposition 2.4 For every (u,z) € Graph G we have
i) Forall 0<k< K, 0€G¥(u,z) c G¥(u,z)
i) Forallk >0, )\; 20, v; € G¥(u,z), 1 =0,...,m satisfying T X, =1

i;\f v; € G"(u,z)

=0

iii) For all k > 0, v € co G¥(u,z) there exists € > 0 such that ev € G*(u, z)
iv) For all k > 0, Uy5pAco Gt(u,z) = Uiso AG¥(u, z)
v) The expansion cone G®(u,z) s convez and equal to

G®(u,z) = J AecoGHu,z) = (] U AcoGH(y,2)
A20, k>0 n>0 220, k>n

vi) If G®(u,z) = X then forsome k>0, UysoAG*(u,z) = X.

Proposition 2.5 Let k > 0. The following conditions are equivalent:
1) U‘\ZOJ\G"(u,z) = X
#i) 0 € Int co G¥(u,z)
Moreover for all k > 0, s > 0, Ry G*(u,z) ¢ G¥**(u,z) and therefore
if 1) or ii) holds true then G¥+*(u,z) = X.

Remark Observe that when X is a finite dimensional space then,
by the Caratheodory theorem, ii) is equivalent to

3 vy,...,¥p € G¥(u,2) such that 0€ Intco {v1,...,vp}



Proof  Assume that i) holds true. Since G¥(u,z) is starshaped at
zero, for all 0 < A < p, AG¥(z,y) C pG*(u,z). Thus Ujez AGH(u,z) = X.
Using Baire’s theorem we prove that G*(u,z) has a nonempty interior
and therefore also coG*(u,z) does. Assume for a moment that zero is not
an interior point of coG“(u,z). By the separation theorem, th?e exists

+
a different from zero p € (co G"(u,z)) = (U,\zo Aco G"(u,z)) = {0}.
This proves that i) implies ii). By Proposition 2.4iv), ii) implies i). Fix
k>0 8>0,v€ G"(u,z), A2>0andset k =k+s Let (u,x;) —¢
(u,7), hi = 0+, b, = &/X h¥/%. Then for all large i, k! < h;. Let v; — v be
such that z; + hl*v; = z; + hfdv; € G(Bp(w)) € G(Bn,;(w)). This implies
that Av € G*(u, z) and ends the proof. DO

Example 1. First order variation of a set-valued map

Consider Banach spaces P, X, Y, continuously differentiable functions
g:PxX =Y, h:PxX— R" and the set-valued map G : P x X —
P xY x R" defined by

G(p,z) = {(p, 9(p,2), h(p,2)+p)|p€R}}

Then a direct calculation yields that for all (p,z,q) € P x X x R?

G(p,z,p,9(p,2),h(p,z) +q) D
{(v, 32(p,2)v + 3L(p, 2)w, 32(p, 2)v + 52(p, z)w + p)|||(v, w)[| < 1,p € R}

Example 2. Contingent variation of end points of trajectories
of a control system

Let U be a topological space, X be a Banachspaceand f : X x U — X
be a continuous, differentiable in the first variable function.

We assume that f is locally Lipschitz in the first variable uniformly on U,
i.e. for all z € X there exist L > 0 and ¢ > 0 such that for all u € U, f(-, u)
is L-Lipschitz on B,(z):

|/ (2 u) = f(z",u)]| < L|2' — 2"||, for all 2',z" € B,(z)

Fix T > 0 and let ¥ denote the set of all (Lebesgue) measurable functions u :
[0,T] — U. Define a metric d on U by setting d(u,v) = p({t € [0, T] | u(t) #
v(t)}), where u denotes the Lebesgue measure. The space (U, d) is complete
(see Ekeland [10]).



Let {S(t)}¢>0 be a strongly continuous semigroup of continuous linear
operators from X to X and A be its infinitesimal generator, zo € X. Con-
sider the control system

(5) { o

Recall that a continuous function z : [0,T] — X is called a mild trajectory
of (5)ifforsomeuc U andallO<t<T

Az(t) + f(z(t),u(0), wel
To

z(t) = S(t)zo + /(;tS(t-s)f(z(s),u(s))ds

We denote by z, the trajectory (when it is defined on the whole time interval
[0,T] and is unique) corresponding to the control u. Define the map G :

U— X by

G(u) = {zu(T)}
Let z be a mild trajectory of (5) on [0,T] and % be the corresponding control.
Consider the linear control system

(6) Z' = AZ + g—i(z(t),'ﬁ(t))z

and let Sg(t;s) denote its solution operator, where Sg(s;s) = Id, t > s.
Then for all u near U, G is a well defined single-valued map. Moreover for
almost all t € [0,T] and forall ue U

(7) Sa{Tst)(f(2(t), ) - f(=(t),8(1))) € GM(w)

We refer to [11], [18] for the proof of this result.

Example 3. First order variation of end points of trajectories
of a differential inclusion

Let X be a finite dimensional space, F be a set-valued map from X to
X. We associate with it the differential inclusion

(8) z' € F(z)

An absolutely continuous function z € W11(0,T), T > 0 (the Sobolev
space) is called a trajectory of the differential inclusion (8) if for almost all
s € [0,T], ='(8) € F(z(s)). The set of all trajectories of (8) defined on the



time interval [0, T] and starting at £, (z(0) = £) is denoted by Sjo,14(£). The
reachable map of (8) from £ is the set-valued map R : R4 — X defined by

R(t) = {=(t)] =€ Spn(6)}

Assume that

H)) Vz€ Xnear§, F(z) is a nonempty compact set and 0 € F(¢)
H,) 3 a neighborhood N of £ and L > 0 such that
Vz,ye N, F(t,z)c F(t,y)+ L||z—y|| B

Hypothesis H2) means that F is Lipschitz in the Hausdorff metric on a
neighborhood of . Hypothesis Hy) implies that z = £ € Sjo,00)()-

The derivative of F at (£,0) is the set-valued map CF(£,0) : X — X
defined by

VeeX, CF(£0)u =  liminf w
(z,y) —r (£,0)
h — 0+

Fix T > 0 and consider the single-valued map G : W11(0,T) > Sjo,7(€) —
X defined by G(z) = z(T'). Let K C coF(€) be a closed convex set having
only finite number of extremal points. Then there exists M > 0 such that
for every trajectory w € W1(0,T) of the differential inclusion

(9) w € CF(Ow + K, w0 =0
we have Eg-l € G(€). The proof follows from the results of [15].

Example 4. High order variation of reachable map
Let F be a set-valued map satisfying all the assumptions from the Ex-

ample 3. Consider again the differential inclusion (8) and the reachable map
t — R(t). It was shown in [17] that for all integer k > 1
. .. R(A)=¢
k =
(10) R*(0,§) = liminf —-3

A very same proof implies that the above holds true for all k > 0.



3 First order inverse of a single valued map

Consider a complete metric space (U, d), a Banach space X and a continuous
map G : U — X. We assume that the norm of X is Gateaux differentiable
away from zero. Let @ € U be a given point. We study here a sufficient
condition for:

Vh>0, G(u) € IntG(Bx(u)) (open mapping principle)
and the regularity of the inverse map G~!: X — U defined by
G Yz) = {velU|Gu)==z)}
on a neighborhood of (G(%),u).
Theorem 3.1 (Inverse Mapping Theorem) If for some ¢ >0, p >0

pBc [ w@GM(u)
d(u,d)<e
then for every u € Bg(u) and h € [0,5], G(u) + hp BC G(Bn(u)), (where

B denotes the open unit ball in X). Moreover for every u € Bg (@), ze
B (G(u))

(11) dist (u,GY(z)) < ;1’-||G(u)—:t||

Corollary 3.2 Assume that X 1s a finite dimensional space and that 0 €
Int liminfug & G(™(u). Then there ezist € > 0, p > O such that all
conclusions of Theorem 3.1 are valid.

Proof (of Theorem 3.1)  Fix u € Bg(u), 0 < h < § and assume for
a moment that there exists z € X satisfying

(12) lz - G(u)ll < hp, z¢G(Ba(u))

Set ©% = ||z — G(u)|| /hp. Then 0 < © < 1. Applying the Ekeland varia-
tional principle [10] to the complete metric space By (u) and the continuous
function y — ||G(y) — z|| we prove the existence of § € Bgx(u) such that
for all y € By(u)

(13) IG®) - =l < [IG(y) - =zll + € d(y,7)



Observe that ¥ € Int Bj(u) and, by (12), z # G(y). Hence, by differ-
entiability of the norm, there exists p € X* of |p|| = 1 such that for all
h; — 04, v; — v we have

(14)  [IG(@) +hjvi — =l = IGE) —=ll + <p, hjv; > + o(hy)

where liminf;_e 0(hj)/h; = 0. Fix v € G(1)(g). Then from (13), (14) and
Definition 2.1 we obtain 0 < < p,hjv; > +6ph; + o(h;). Dividing by h;
and taking the limit yields < p,v > > —Bp. Hence

(15) Vv e wG@), <pv>> —-6p
Since d(¥, B) < d(¥, u)+d(u,u) < Oh+4 < ¢, by the assumption of theorem,
pB c ©6 G)(F). Hence (15) yields that

- > inf <p,uv>> -6
p2 inf o <Pv>2 -6
But 0 < © < 1 and p > 0 and we obtained a contradiction. The second
statement follows from the first one and Theorem 1.2. 0O

Remark  Inequality (11) means that G is pseudo-Lipschitz at (G(u), 7)
with the Lipschitz constant p~! (see Aubin [1]). O

As one should expect sufficient conditions for an Open Mapping Principle
to hold true are weaker than those implying the regularity of the inverse.
We prove next

Theorem 3.3 (Open Mapping Principle) Assume that there exist a com-
pact set Q C X, € > 0 such that

(16) mt () (@6W(w)+Q) # 0
d(u,u)<e

1If

(17) 0 € Int liminf & G()(u)

then for every h > 0, G(u) € Int G(Bx(u)).

Proof  The proof is similar to that of Theorem 3.1. We assume for a mo-
ment that for some h > 0, G(u) is not an interior point of G(By(u)) and we
consider a sequence T; € X, T; ¢ G(B)(0)), ||Z: - G(B)|| <72, ¢ =1,2,....
Applying the Ekeland variational principle to the continuous function u —

10



||G(u) — %]|| on the complete metric space B,(@) we prove the existence of
u; — U such that for all u € By(u)

(18) I6(w) - =l < IGW)-Fl + 3 dlu,w)

By differentiability of the norm for some p; € Y*,||pi]| = 1 and for all
h; — 0+,v; — v we have

IG(w) + hjv; =l = |IG(w) -]l + <pi,hjv> + ou(hy)

where lim;_e 0;4(h;)/h; = 0. Fix v € G)(w;) and let h; — 0+,v; —
v, U; € By, (w;) be such that G(u;) + hjv; = G(4;). Then replacing in (18)
u by ©; we obtain

(19) 0 < <p.~,h,-v> + o,-,.,(h,-) + L:l

Dividing by h; and taking the limit when 5 — oo yield

(20) Vee 6W(w), <p; v> > -’1,

From the Alaoglu theorem, taking a subsequence and keeping the same
notations, we may assume that {p;} converges weakly in X* to some p.
Then (20) implies that for all w € liminf,.g @ G()(u), < p,w > > 0.
This and the assumption (17) yield that p = 0. To get a contradiction we
show next that p can not be equal to zero. Indeed let z; € X, ||z|| < 1 be
such that < p;,z; > > 1- % Consider z € X, p > 0such that the ball z4pB
is contained in the left-hand side of (16). Let a; € @6 G()(w;), ¢; € Q such
that for all large f, z—pz; = a;+¢;. Hence (20) yields < p;, z—pz—¢; > > —1
and therefore < pj,z—¢q; > > p— & — 1. Let {gi;} be a subsequence

converging to some ¢ € @. Then, taking the limit in the last inequality we
get < p,z—q¢> > p> 0. This implies that p 0 and ends the proof. O

Corollary 3.4 Let X be a Hilbert space, H be a closed subspace of X of
finite co-dimension. Assume that there exist p > 0, z € X such that

Vuneard, z+pBg C @ GW(u)

where By denote the closed unit ball in H. If 0 € Int liminfy_g & G()(u)
then for all h > 0, G(u) € Int G(By(u)).

Proof Observe that pB C pBy + pBgi. Thus for all u near 4,
2+ pB C z+ pBy + pBy1 € & G()(u) + pBgi. Since By is a compact
set, Theorem 3.3 ends the proof. 0O
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4 High order inverse of a single valued map

Let U be a complete metric space, X be a uniformly smooth Banach space
(see [7] ) and G : U — X be a continuous function. In this section we prove
higher order sufficient conditions for openness of G and regularity of the
inverse map G~1.

Theorem 4.1 (Inverse Mapping Theorem) Let @ € U and assume that
for somek>1, M >0, p>0 and for all u € U near u and all smallh >0

(21) pBC (G(B“("zz ~6() B+ G("(u))

Then there exists L > O such that for all u € U near u, for all x € X near
G(u) and all h > 0 small enough

G(u) + Lh B c G(Bi(v)); dist (4,G7(z)) < —= —z||'=

G (u)
J_
Corollary 4.2 Assume that X is a finite dimenstonal space and for some
k > 1, the convez cone spanned by G"(ﬁ,':‘:) 18 equal to X. Then the conclu-
stons of Theorem 4.1 hold true.

Proof  From Proposition 2.5 and the Remark following it we deduce that
for some v; € G%(,%), { = 1,...,p we have 0 € Int co{vy, ...,vp}. Then for
some € > 0 and for all v} € B,(v;) we have 0 € Int co{t1,...,v,}. On the
other hand, by the definition of variation for every 1 < ¢ < p there exists
§; > 0 such that

d@,u) + h < & => dist (v;, G(B“("ZZ—G(")) <

Hence the assumption of Theorem 4.1 is satisfied. O
Proof(of Theorem 4.1) Assume for a moment that there exist

T — 4, hy = 0+, z; € G(w) + 2"‘:’"‘%,’-‘3 satisfying
(22) z; ¢ G(Bj,(w))

Applying the Ekeland variational principle to the complete metric space
By, (u.) and the continuous function u — ¢/[[G(u) — ;]| we prove the exis-
tence of y; € Bx K () such that for all u € B, (%)

(23) VIG(w) - =il < {flIG(u) - =l + ;d(u,uf)

12




By (22) and the smooth differentiability of the norm, there exist p; € X* of
llps]l = 1 and a function o : Ry — R4 satisfying limy_.o+ o(h)/h = O such
that for all u € By (%;) we have

IG(v) = zll < |IG(w) - =l + < pi, G(u)-G(w) > + o(||G(u) — G(u)l)

Hence
( YIG(u) — zi|| <

Yelw) - zll+ <pi, Gu) - Gw) > +o(|G(u) - G(w)ll) =
VNG (w) - =il (1+ < pi, Tol=Cle) 5y olClu-Slu, )l/k <
| TGy == (1+4 < p f852S > + o (FRGEA))

where 6 : R4 — R satisfies limp_0+ 6(h)/h = 0. This and (23) yield that
for all u € By (W)

0 < LI - =it <pi,G(u) - Glw) > +
IG(w) - zll* & (=Pl + 1d(u, we)

Glus)—=;

Hence for all u € By (i)

24) { 0 < <pi, G(u) - Glw) > + [G(us) - = & (IELSEL)

+ 3G (w) - =)' d(w,w)

Fix v € GM(u;) and let h; — O+,v; — v be such that G(u;) + hjv; €
G(Bh;(%))- Then from (24) we obtain

k k=1
0 < <pi hjv; > + ofhj)+ < |IG(w) — =] = h;
Dividing by h; and taking the limit yields
(25) VveGOw), <p,v> > —l:,-"G(u.-) -l

On the other hand, by (24), for k; = ¥/[[C(w;) — =[[/ %¥iand forallv €
(G(Ba () — G(w))/hE we have

(26) 0 < <pi,v> +ﬁ5(1|/‘i.!|) + ki
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Adding (25) and (26) yields

o Vv e SO0 n a8 + G(uy)
(@) { <piv>2>-% ||G(u,)—:r:.||l‘7l —\/-o( ) — ki h

Observe that for all large 1, d(u;, @) < d(v;, @) +d(;,¥) < hi/2+d(;,8) <
¢. Hence assumption (21) of theorem contradicts (27). This proves that (22)
can not hold. The second statement of theorem follows from the first one
and Theorem 1.2. O

Theorem 4.3 (An Open Mapping Principle) Assume that there exist
p>0, M >0 k2>1 and a compact subset Q C X such that for allu € U
near U and all small h > 0

(28) pB C @ (G(B"(“ZZ 6 nmp + G(l)(u))

If G™(u) =X, then for all h > 0, G(u) € Int G(By(u)).

When the space X is finite dimensional then the assumption (28) is always
satisfied with Q equal to the unit ball.

Proof By Proposltlons 2.4vi) and Proposition 2.5 there exists k' > 0
such that 0 € Int coG¥ (%,Z). Set k = max(k, k). Then, by Proposition
2.4i), 0 € Int co G¥(u, Z). Moreover for all u € U near @ and all small h > 0
and h' = h¥/k we have

pB c w(SEullCW npmp + GU(w)) + @
C ©o (ﬂ?l.('_".lt):.‘?.(ﬂ). NnNMB + G(l)(u))
Hence we may assume that k in the assumption (28) is so that
(29) 0 € IntcoGHu,z

Assume for a moment that there exist i; — O+, z; € G(@) + 2~ *~*A; B
satisfying (22). Setting %; = # in the proof of Theorem 4.1 from (27) we get

Vveco (M NMB+ G(‘)(u..-))

(30) _
<piv> 2> -t ||G(w) - 5T —Viz (\%) ~ s
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Let z; € B be such that < p;,z; > >1— 1 and

G(Bh,(w)) - G(w)
h¥

% €Q, v.-EHS( nMB+G(1)(u,.))

be such that —pz; = v; + ¢; (they do exist because of (28)). Then

p(l - 3) + <pigi> < <pipzi+g>
k—
< G — =T +Vis () + k%

Taking subsequences and keeping the same notations we may assume that
¢; — g and p; converges weakly in X* to some p. Thus p+ < p,¢ >< 0 and
consequently p # 0. On the other hand (30) implies that for all v € G*(g, T)
of |jv]| < %’— we have < p,v >> 0. This and (29) yield p = 0. The obtained
contradiction ends the proof. O

5 Inverse of a set-valued map

Consider again a complete metric space (U,d) and a Banach space X with
the norm Gateaux differentiable away from zero. Let G be a set-valued map
from U to X, whose graph is closed in U x X. Consider a point (%,%) €
Graph G. We proved in [19] a sufficient condition for

(31) Vh>0, zZ € IntG(Bp(u))
and the regularity of the inverse map
G Yz) = {ueU:zeG(u)}

on a neighborhood of (Z,%). In this case the results are more restrictive, we
only state them (the corresponding proofs can be found in [19]).

Theorem 5.1 (Open Mapping Principle) Assume that for some ¢ >
0, M >0 and a compact setQ C X

(32) Int N (@ (W (u,2)nMB)+Q) # 0
(u,z) € Graph G
d(u, @) < ¢ |z—-ZF|| <L ¢

If
Ocht liminf & (GM)(u,z)n MB)

u,x)—g(u,z

then for all h > 0, Z € Int G(B)y(u)).

15



Observe that when X is a finite dimensional space then the condition (32)
is always satisfied with Q equal to the unit ball and M = 1. Hence

Corollary 5.2 Assume that X 1s a finite dimensional space and for some
M>0
Oet liminf & (GM)(u,2)nMB)
z)

(u,z)—o(u

Then for all h > 0, T € Int G(By(T)).
Theorem 5.3 (Inverse Function Theorem) If for some e >0, M >0

0 € Int N @ (¢™(u,z) N MB)
(u,z) € Graph G
dww) <6 lo-2 <

then there exists L > O such that for all (u,z) € Graph G neer (4,%) and
aellye X near T
dist (v, G7'(y)) < L [lz—yll

The high order results also have their analogs in the set-valued case.

Theorem 5.4 (High Order Open Mapping Principle) Assume that X
1s a uniformly smooth Banach space and that there exist p > 0,k > 0, M > 0
and a compact subset Q C'Y such that for all (v,z) € Graph G neer (4, )
and all small h > 0

pB C w(%nMB+Gm(u)nMB) + Q

If G*(u,z) = X, then for all h > 0, T € Int G(By(u)).

Theorem 5.5 (High Order Inverse Function Theorem) Assume that
all the assumptions of Theorem 5.{ are satisfied with k > 1 and Q = 0.
Then there ezxists L > O such that for all (u,z) € Graph G near (4,Z) and
Jorallye X near T

dist (u, G™'(y)) < L {fllz-ll

Corollary 5.6 Assume that X 1s a finite dimenstonal space and that for
some k > 1 the convez cone spanned by G*(¥,%) is equal to X. Then the
conclustons of Theorem 5.5 are valid.
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6 Applications

6.1 Taylor coefficients and inverse of a vector-valued func-
tion

Consider a function f from a Banach space X to a Hilbert space Y and
a point T € X. We assume that f € C* at T for some k > 1. Then
for a neighborhood N of T and for al all z € N there exist i-linear forms
Ai(z), 1 = 1,...,k such that A‘-_(-) is continuows ol X ond

k ]
. h*
hll.rg+ “::.ﬁgl ([(z + hw) — f(z) - ,-E_-_l -‘TA,(:)ww) JhE=0
uniformly in z € N.

Theorem 6.1 (Second order invertibility condition) Assume that f €
C? at %, that Imf'(Z) is a closed subspace of Y and for some a >0, ¢ > 0
and all z € B,(Z) the following holds true

(33) Yyelm f'(Z)L of |ly| =1 3w e X of ||w]| <1 such that
<y, MBww>> a, <y, f(z)w> > aff(z)v]

Then there exists L > O such that for all z near T and for all y near f(ZT)

dist (z, 7' (y)) < Ly/|If(z) - vl

Proof It is not restrictive to assume that & < 1. Since f € C? at %,
there exists a function o : R4 — R4 such that limp_g4 o(h?)/h? = 0 and
for all z near % and all w € X of |Jw|]| < 1 we have

f(xw | 1, 1(Bn(z)) - f(=) o(hz) n " (=
1@ L piayow ¢ LBEL=IE) (0D 4 oy s} 5

Hence, by the separation theorem and Theorem 4.1 it is enough to show that
for some M >0, p>0,é>0andallyeY of [ly|| =1, z € B(z), h >0

oup {<ye>|ce {’—‘h)—‘”-+ S/ Eww ]| ol < l}nMB+f'(z)B} > p

Set H = Imf'(Z), M = 1+ |[f"(z)|| and let ¥ > O be such that yBg C
f'(Z)B. Then for some 0 < € < ¢ and all z € B¢(z)

(34) VyeH of |ly=1, suppypc <9 f'(z)w>23
v y€E H-L of ”y” = 1’ supn-;nSI <y, f'(z)w >< i%
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Set p = min{ﬁ;,%}. Fix z € B(z), h >0, y€ Y of |ly]| = 1 and let
y1 € H,y2 € H~ be such that y = y1 + y3. If ||y1]| > 57 then from (34) we
obtain

8UD||w||<1 < y,f'(z)w > 2 BUD|jw]|<1 < yl,f'(z)w > —8up|y|<1 < yg,f'(z)w >
2 3 llnll - 1637 2 »

If [lysll < &7 then Jlwa]l > 1 — §7 and, by (33), for some w € X of |Juw|| < 1
<w,f'(@w> 2 alvll [f'(@vf, <un /"@ww>2 ol
If | f'(z) 2] < 1 then |£'(2)% + 1/"(2)ww| < M and
<uf @R+ @ew> 2 <y, "Fww > - lullM
28 nll-% 2 S8 2»
If |/'(z) %] 2 1 then setting
hw
I/ (=) wl|

we obtain [@]| < 1, |£'(z)E + 1/"()T T < M and

<uf'(@)F + 'ETT>2<n,l(@)F>~nlM >
a a

allpll-F 2e(1-F)-52»
The proof is complete. O

Theorem 6.2 (A high order condition) Assume that for some A > 0
and for all  near T and y €Y of ||y|| < 1 there exists X' > X such that

My € o {Ai(z)w..w| |Jw]| £ 1, Aj(z)w..w=0 for 1 <j<i<k}

Then f~1 is pseudoholderian on a neighborhood of (f(Z),Z) with the Holder
ezponent } in the sense of Theorem ¥ 1,

Proof Observe thatforallze N, w e X of ||w]| <1

P h;f;;az)w...w c ](B;.(:c,)ll- f(=z) + O(h’f)B
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where limp—.04 ‘1(,{‘,51 = 0. Hence, by Theorem 4.1,it is enough to show that
for some M > 0, p > 0, € > 0 and all z € B(%), all small A > 0 and every
veEY of Jly =1

sup {<y,e> | ee{f: i‘i“(’)ﬂ| ||w||$1}nMB} > »

I' k
=1 ith

Let € > O be such that max;¢ick 8up.ep,(z) [|Ai(z)w...w|| < oo and such
that the assumption of theorem is satisfied on B,(Z). Fixy€Y of |ly|| =1
and z € B,(Z), 0 < h < 1 and let w, € B, 1 < 8 < k be such that
< y,A,(z)ws...wz; >> X and for all 1 < 5 < 8, Aj{z)w:...wz = 0. Setting
w = h*~lw, we obtain [Jw,|| < 1 and

LR A (D) wews 1 N SO
E _—A‘(:);:; hud =;'-A,(z)w,...wz + E m Ai(z)wz...ws
ie1 : : i=s+1 )
Then
kK A(z)we...w, A EopT
<y,§ — a2 @ ‘El O

Since the right-hand side of the above inequality converges to A/k! when
h — 0+ uniformly in z € B, (%) we end the proof. [

6.2 Stability

Consider a Banach space X, finite dimensional spaces P, Y and continuously
differentiable functions g : Px X — Y, h: Px X — R". Forallpe P
define the set

(35) D, = {zeX| g(p,z)=0, h(p,z) <0}
Let (p,Z) be such that
9(p,®) =0, h(p,Z) < O
We study here the map p — D,, on a neighborhood of (p, ).

Theorem 6.3 (first order condition) Assume that for some w € X
99, .\ _. _ oh, _. __
2, PET = 0, &-(p,zw <0
Then there exist e > 0, L > O such that for all p, p' € B(P), z € DpNB,(T)
dist (z,D,;) < Llp-7¢|
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Remark  The above result is the well known Mangasarian and Fromowitz
condition for stability (see [24]). It was also proved in [25] via an inverse
mapping theorem involving the inverse of a closed convex process. The proof
given below uses the variational inverse function theorem (Corollary 4.2).
Proof  Define the set-valued map G: Px X -+ P xY x R" by

G(p,z) = {(p, 9(p,2), h(p,z)+p)| PERL}
and set £ = (pT,E,ﬁ,g(pT,E),h@,i))’.‘Then, by Example 1,

G'(€) >
{(”: g‘;(ﬁ,f)”'*' (p,z)w, ,’:(p’z)”+ (p,z)w+p)l ”(”’ w)” <lp€ R"
Let w be as in the assumptions of theorem Without any loss of generality

we may assume that ||[@|| < 1. Then (0,0, 32(5,%)w) € G(£). Hence for all
p>0andall (vyw)e PxX

{(v, 52 D)v + 3£ (5, D)w, 2 (5, Z)v + 52(5,2)(w + 1®) +p)| p € R}}

HH

C Usso Aco G1(€)

Fix (v,y,z) € P xY x R". Since g‘-(ﬁ,i) is surjective, there exists w € X
such that

_ dg,_ _
y ) _’a_::(:zw

On the other hand, since E(p,z)w < 0 thére exists u > 0 such that
oh,_ _ oh, _ oh, _._ n
- a_p'(”' - o-(pF)v € po-(pz)T + RY

Therefore Jy»o AcoG'(€) = P x Y x R" and we may apply Corollary 4.2.
Thus there exists L > 0 such that for all (p,z) near (p,Z) and all z near

(p,9(p, z), h(p, z))
dist ((p,2),G'(2)) < L |I(p,9(p,z), h(p,z)) - <]

Fix (p, z) sufficiently close to (5, %) with = € D, p' sufficiently close to § and
z = (p',0,h(p, z)) and let (p", ') € G~1(z) be such that ||(p,z) — (p", 2')|| <
L|lp - p'|| Then z € G(p",2') = (p",9(p",2'),h(p",2')) + R}. This yields
that p” = p', ¢(p',2') = 0 and h(p, z) € h(p',2') + R". Therefore h(p',2') <
h(p,z) < 0. Consequently 2’ € D,y and

"-‘l‘ - z'" < "(p,z) = (P':z')" < L"p— p'"
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Second order sufficient conditions require a more fine analysis. Theorem
6.1 can be applied to the case when equality constraints only are present.
We state next a result for inequality constraints.

Theorem 8.4 (Second order condition) Assume that ¢ =0, h € C? at
(P,Z) and let H be the largest subspace contained in Im %(ﬁ,’f) +RY. If
there exists o > 0 such that for all (p,z) near (p,Z)

{ Vye Hof ||y =1, JweX, |w[|<1, peRE, i=1,2, |p] <1,

<vBEDwtn>2e <y REvten>2 a0

then there exist € > 0, L > O such that for all p, p' € B(P), = € DpyN B,(Z)
dist (z,Dpr) < Ly/llp- Pl
Proof  Consider the set-valued map G : P x X — P x R" defined by
G(p,z) = {(p, h(p,z)+»)| PER}}
Then for all e > h(p, z) and for all (p, z) near (p,Z), t >0
{(v,8(p,2)0+ 2(p,2)% + 1522 (5,7)ww +p) ||[(v,w)]| < 1,p € RY}
- 2 — —
c G((p.=)+‘¢,B) (e} (g(‘_t,_l_*_ %%(P,z) - %(p,z)") B
where o(t?)/t? — 0 when t — 0+ and
h
(0, g;(p,z)B + R'l) c 6W(p,z,p,¢)
Let § > 0 be such that

oh

M := —
1 ap(””) < o

sup
(Ptz) €B; (Fni)
1

and
__1+tM 1
2(M1+1) T2

By Theorem 5.5 it remains to show the existence of 4 > 0, M > 0 such that
for ally €Y of |ly]| =1 and all (p, z) near (p,%) and all smallt > 0

oh
sup < (a’q)’("s 'b—(p’z)v) > 2 flaf| - llgl|M1 2> 1
[[vli<1 P

sup{<ye>|ee{B(p)?+ 188G ww+s] vl <1,peRI}AMB
+(8(p,2)B + RY)NMB} >

But this follows from the assumptions by the arguments similar to the proof

of Theorem 6.1. O
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6.3 Interior points of reachable sets of a control system

We consider the control system described in Example 2 and we impose the
same assumptions on f, X, S. For all T > 0 denote by R(T') the reachable
set of (5) at time T, i.e.,

R(T) = {z(T) | z is a mild trajectory of (5)}

Let z be a mild trajectory of (5) on [0, T] and @ be the corresponding control.
We provide here a sufficient condition for z(T) € Int R(T) and study how
much we have to change controls in order to get in neighboring points of

z(T).
Consider the linear control system
(36) {w’(t) = Aw(t) + L(z(t),a())w(t) + o(t)
w(0)=0; v(t) € fz(t),U) - 1(=(2), (1))

and let RZ(T) denote its reachable set by the mild trajectories at time 7.

Theorem 6.5 Under the above assumptions assume that for all x € X the
set f(z,U) is bounded and for allue U, t € [0,T), %f(-,u) 18 continuous at
z(t). If0 € Int RE(T) then z(T) € Int R(T) and there existe > 0, L > 0
such that for every control u € U satisfying d(u,u) < € and all b € B,(z(T))
there ezists a trajectory-control pair (z,,v) which verifies

z(T) = b p({t€[0,T]|u(t)#v(®)}) < L [Ip-=u(T)
In particular for every b € B,(z(T)) there exists a control u € U such that
z(T) = b p({te[0,T]|u(t) #u(t)}) < Ll - =(T)|

The above result was proved in [18] therefore we only sketch the idea of
the proof. From (7) we deduce that for almost all t € [0, T

Sa(Tst) (&8 £(=(2),U) - £(=(8),%())) c e cW(a)
and for the same reasons for all u near % and for almost all t € [0,7|
(1) Su(T3t) @1 (2u0),U) - f(zult),u(t))) €T GO(w)

On the other hand

RE(T) = { /o T Su(Tst)v(t)dt : v(t) € ©of(zu(t),U)—f(zu(t), u(t)) is measurable}
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and therefore integrating (37) we obtain RL(T) ¢ TesG()(u). Hence

1

T RE(T) e G (u)

Since 0 € IntRE(T) and RL(T) is a closed convex set, the separation theorem
and regularity of the data imply that for some § > 0

0 e It () REIT)

dr(u,u)<s

This allow to apply Theorem 3.1 (see [18] for details of the proof). O

6.4 Local controllability of a differential inclusion

We consider the dynamical system described by a differential inclusion from
the Example 3 and we assume H;) and H;). Let T > O be a given time. We
study here sufficient conditions for £ € Int R(T) and the regularity of the
“inverse”. Consider the following linearized inclusion

(38) w' € CF(£,0)w + co F(€); w(0) = 0
and let RL(T) denote its reachable set at time T.

Theorem 6.6 If 0 € Int RL(T) then ¢ € Int R(T) and there exists a
constant L > O such that for every z € Sjo1(£) sufficiently close to the
constant trajectory £ (in W11(0,T)) and for all b near £ there exists y €

Sio,1)(€), satisfying
v(T) = b |ly-zllwiagr < Llb—=z(T)]
In particular this implies that for all b near { there exists z € Sjo1q(£) with
o2T) = b |- lyrgm <L I5- €l

Proof The map G defined in Example 3 is continuous on its domain
of definition. It was proved in [15] that if 0 € Int RE(T) then there exists
a compact convex set K C coF(£) having only finite number of extremal
points such that the reachable set RE(T') at time T of the differential inclu-
sion (9) satisfies 0 € Int R%(T). From the Example 3 we also know that for
some M > 0 1

i RE(T) c G'(¢)

Applying Corollary 4.2 we end the proof.

23



6.5 Small time local controllability of differential inclusions

Consider again dynamical system described in Example 3 and satisfying H; ),
H;). We study here sufficient conditions for

VT >0, ¢ € IntR(T)

Set
V = {veX|3Ik>0suchthatVt>0,¢+tkv € R(t) + o(t*) }

Theorem 6.7 Under the above assumptions assume that for every xz €
X, F(z) is a convez set. If the convez cone spanned by V s equal to X,
then for all T > 0, £ € Int R(T).

The above result was proved in [17]. It follows from Theorem 5.4, (10) and
from the existence of ¢ > 0 such that GraphR N B, (0, £) is a closed set.
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