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Abstract We prove several first order and high order inverse mapping 
theorems for maps defined on a complete metric space and provide a number 
of applications. 
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1 Introduction 

Inverse function theorem is a natural tool to apply to many problems aris- 
ing in control theory and optimization. The classical theorems, such as 
Ljusternik's theorem, are not always sufficient , and this because the data 
of the problems often happen to be "nonclassicaln ones. 

Such "unusualn situation does arise when one deals with 
i )  A map whose domain of definition is a metric space 
i i )  A map which is not single-valued 
iii) A map for which the first order conditions are not sufficient to  solve 

the problem. 
This is why one has to  look for different inverse function theorems 

adapted to new problems. During the last twenty years this task was un- 
dertaken in many papers (see for example [6], [5], [8], [9], 1141, [21], [22] and 
bibliographies contained therein). 

Let us recall first the Ljusternik theorem proved in 1934 in [23]: 

Theorem 1.1 Let f : U -+ X be a continuously diflerentiable function from 
a Banach space U t o  a Banach space X and ii E U. If the derivative fl(ii) 



is surjective, then for all h > 0, f (a) E Int f (Bh(ii)) and there ezists L > 0 
such that for all z E X near f (Ti), dist (E, f -'(z)) I L 1 1  f (E) - 211. 

As it was observed in [9] the assumptions of theorem imply much stronger 
conclusions. In fact Ljusternik's proof allows to go beyond the above re- 
sult and to prove the uniform open mapping principle and regularity of the 
inverse map f-' on a neighborhood of the point (f(ii) ,G). 

Furthermore the surjectivity assumption of the above theorem may be 
replaced by the assumption ' 

Several extensions of Theorem 1.1 were derived in 191 via the same 
Ljusternik's idea. Assuming that the space U is just a complete metric 
space and some 'covering assumptionsn on f one can obtain a result similar 
to  Theorem 1.1. However verification of covering assumptions is not always 
simple. 

In this paper we prove a High Order Uniform Open Mapping Principle 
for maps defined on a complete metric space. That  is, we provide a suficient 
condition for the existence of t > 0, k >_ 1 such that 

(2) V u near Ti and V h > 0, j (u )  + L ~ ~ B  E Int f (Bh(u))  

To get regularity of the inverse map f-' we use a high order analogue of 
Ljusternik's theorem proved in [19] (using again Ljusternik's scheme): 

T h c o r c m  1.2 ( a  genera l  invcrsc funct ion  thco rcm) .  Let G be a set- 
valued map from a complete metric space (U,d)  to a metric space (X,dx) 
having a closed graph and let (Ti,f) E Graph G. Assume that for some k > 
0 ,p  > 0, c > 0, 0 5 a < 1 and all u~ B,(E), X E  G ( u ) n  B,(z), h~ [O,c] 

sup dist (b,G(Bh(u))) < aphk  
(2) 

Then for every h > 0 satisfying h/( l  - fi) + 2phk < c/2 and all u E 
B+(G), z E G(u) n BCl2(T), y E Bpht(z) we have 

dist (u, G- ' (~) )  5 1 

1 - f i  
h 

In particular, for all (u,z)  E Graph G near (ii,f) and a l l y  near G(E) 

dist ( u , ~ - ' ( ~ ) )  < d m  
*(I - *) 



When X is a Banach space, assumption (3) can be formulated as z + p h k ~  C 

G(Bh(u)) + aphk B. In particular it holds true for a map satisfying the Uni- 
form Open Mapping Principle (2) and therefore the two theorems together 
bring a sufficient condition for the regularity of j-'. The Uniform Open 
Mapping Theorem is proved via the Ekeland variational principle. The cu- 
rious aspect of this approach lies in the use of an apparently first order result 
(Ekeland's principle) to derive high order sufficient conditions. 

Let us explain briefly the main ideas. When the space U is just a metric 
space then one can neither differentiate the function j nor speak about 
the continuity of the derivative. In [IS], [I91 we proposed to replace the 
derivative by the variation of the map (which can be single-valued or set- 
valued). The first order variation j(')(ii) of a single-valued map is defined in 
such way that for a C' map j between two Banach spaces the set j'o~ is 
equal to it. Condition (1) together with continuity of the derivative inherit 
then their natural extension 

High order variations were introduced in 113) (see also [19], [14], [16]), 
where several sufficient conditions for regularity of the inverse map j-' were 
proved. When one restricts the attention to single-valued maps only, then 
results of [I91 can be improved and proofs can be made simpler. In this 
paper on one hand we prove more precise results for single-valued maps on 
the other we overview the applications of the inverse function theorem given 
in 1151, [17]-[I91 and provide its several new consequences. 

The plan of the paper is as follows: Variations are defined in Section 2 
where also several examples are given. Sections 3 and 4 are devoted to first 
and high order inverse function theorems for a single valued map. In Section 
5 we state several theorems for set-valued maps. Their proofs can be find 
in 1191. Examples of applications are provided in Section 6. 

2 Variations of single-valued and set-valued maps 

Consider a metric space (U, d)  and a Banach space X with the norm GGteaux 
differentiable away from zero. For all u E U, h > 0 let Bh(u) denote the 
closed ball in U of center u and radius h. 

We recall first the notions of Kuratowski's limeup and limin j: 
Let T be a metric space and A, c X, r E T be a family of subsets of X. 



The Kuratowski limsup and l iminf  of A, at ro are closed sets given by 

limsup,,,A, = { V E X  : liminf,,, dist(v,A,) = 0 )  
lim inf,,, A, = { v E X : lim,,, dist (v ,  A,) = 0 ) 

Definition 2.1 Consider a function C : U -, X and let u E U, k > 0. 
i )  The contingent variation of G at u is the closed subset of X given by  

ii) The k-th order variation o f C  at u i~ the closed subset of X given by 

In other words v E C(')(u) is and only if there exist sequences hi -, 
0+, vi -, v such that G(u) + hivi E C(Bh,.(u)). The word contingent is used 
because the definition reminds that of the contingent cone of Bouligand. 

Similarly v E Ck(u) if and only if for all sequences hi -, O+,u; -, u 
there exists a sequence V i  v such that G(q )  + h;vi E C(Bh;(ui)). 

Clearly, C(')(u) and Gk(u) are closed sets starshaped at zero. When U 
is a Banach space and C : U -, X is a GGteaux differentiable at some u E U 
function, then G'OIB) c G(')(u). If moreover C is Frkchet differentiable 
at u then G'(UJIB) = G1(u) = c(')(u). 

The notions of variation extends to set-valued maps in a natural way. 
Let G : U 4 X be a set-valued map, that is for all u E U, G(u) is a (possibly 
empty) subset of X .  The domain and the graph of G are given by 

Definition 2.2 Let (u,z) E Graph G, k > 0. 
i )  The contingent variation of G at (u,z) is the closed subset of X 

C(')(u) := limsup G (Bh(.)) - z 
h+O+ h 

ii) The k-th order variation of C at (u,z) is the closed subset o f X  

ck (u )  := Iim inf 
G(Bh(ul)) - Z' 

(u', .'I -,c (u, 2) hk 

where -,c denotes the convergence in Graph C. 



When G ia a aingle-valued map the point (u,z) E Graph G if and only if 
C(u) = z and therefore in this case the variationa in the aenae of the first 
and the second definitions do coincide. 

Variationa of all orders can be used to prove aufficient conditions for the 
exiatence of a Holder inverse for a aingle-valued and a set-valued map. They 
describe a local expansion of a map at  a given point. 

Definition 2.3 Let G : U -, X be a set-valued map and (u,z) E Graph G. 
The ezpanaion of G at (u,z) is the cone spanned by all variations 

Let co (a) denote the convex (closed convex) hull and B the closed unit 
ball in X. The following result was proved in [19]: 

Proposition 2.4 For every (u, z) E Graph G we have 
) Forall O < k 5  K, OEGk(u,z)cGK(u,z)  

ii) For all k > 0, Xi 2 0 ,  viEGk(u,2), i = O  ,..., m satisfyingCgoXi= 1 

iii) For all k > 0, v E co Gk(u, z) there ezista E > 0 such that EV E Gk(u, z) 

iv) For all k > 0, UA>o Xco Gk(u, z) = UALo XGk(u, z) 

v) The expansion cone Gm(u,z) is conver and equal to 

vi) If Cm(u,z) = X then for some k > 0, Ux>oXGk(u,z) = X. - 
Propoeition 2.5 Let k > 0. The jolloluing conditions are equivalent: 

i) UxrdGk(u,z) = X 
ii) 0 E In t co G (u, z) 

Moreover for all k > 0, s > 0, R+G'(u, z) c Gk+'(u, z) and therefore 
if i) or ii) holds true then GN8(u,z) = X .  

Remark Observe that when X is a finite dimensional epace then, 
by the Caratheodory theorem, ii) is equivalent to 

3 vl, ..., v, E Gk(u,r) such that 0 E Int co {vl, ..., v,,) 



Proof Assume that i) holds true. Since Ck(u,z) is starshaped at 
zero, for all 0 5 A 5 p,  ACk(z, y) c C t ~ k ( ~ ,  z). Thus UxEZ ACk(u, z) = X. 
Using Baire's theorem we prove that Ck(u,z) has a nonempty interior 
and therefore also c o ~ ~ ( u , z )  does. Assume for a moment that zero is not 
an interior point of coCk(u,z). By the separation theorem, there exists 

a different from zero p E (co Ck(u, 2))' = ((Jxto Aco d ( u ,  2))' = {O). 
This proves that i) implies ii). By Proposition 2.4iv), ii) implies i). Fix 
k > 0, 8 > 0, v E Ck(u,z], X 2 o and set E =  k + s .  Let (%,zi) +C 

( u , ~ ) ,  hi -+ 0+, hi = fi h:Ik. - Then for all l u p  i, h: 5 hi. Let vi -. v be 
such that zi + hikvi = zi + h:Avi E C(Bh;(q)) c G(Bhi(q)). This implies 

that Av E CE(u, z) and ends the proof. 

Example 1. First order variation of a set-valued map 
Consider Banach spaces P, X, Y, continuously differentiable functions 

g : P x X -, Y, h : P x X -, Rn and the set-valued map C : P x X 4 

P x Y x Rn defined by 

Then a direct calculation yields that for all (p,z, q)  E P x X x R"+ 

Example 2. Contingent variation of end points of trajectories 
of a control system 

Let U be a topological space, X be a Banach space and j : X x U 4 X 
be a continuous, differentiable in the first variable function. 

We assume that j is locally Lipschitz in the first variable uniformly on U, 
i.e. for all z E X there exist L > 0 and c > 0 such that for all u E U, I(., u) 
is LLipschitz on B,(z): 

11 j(zt,u) - j(z", u) 11 5 L IIzt - znII , for all zt, zn E B,(z) 

Fix T > 0 and let U denote the set of all (Lebesgue) measurable functions u : 
[0, TI -, U. Define a metric d on U by setting d(u, v) = p({t E [0, T] I u(t) # 
~ ( t ) ) ) ,  where p denotes the Lebesgue measure. The space (U, d) is complete 
(see Ekeland [lo]). 



Let {S(t))c>o be a strongly continuous semigroup of continuous linear 
operators from> to X and A be its infinitesimal generator, zo E X. Con- 
sider the control system 

Recall that a continuous function z : [O,T] -+ X is called a mild trajectory 
of (5) if for some u E U and all 0 5 t <_ T 

We denote by zu the trajectory (when it is defined on the whole time interval 
[O,T] and is unique) corresponding to the control u. Define the map G : 
U-,Xby 

G(u) = {zu(T)) 

Let z be a mild trajectory of (5) on [O,T] and ii be the corresponding control. 
Consider the linear control system 

and let S=(t; a) denote its solution operator, where SG(s; s) = Id, t 2 s. 
Then for all u near E, G is a well defined single-valued map. Moreover for 
almost all t E [O,T] and for all u E U 

We refer to [I 11, [18] for the proof of this result. 

Example 3. Firet order variation of end points of trajectories 
of a differential inclueion 

Let X be a finite dimensional space, F be a set-valued map from X to 
X. We associate with i t  the differential inclusion 

An absolutely continuous function z E wl*'(O, T), T 2 0 (the Sobolev 
space) is called a trajectory of the differential inclusion (8) if for almost all 
a E [O,T], d(a) E F(z(a)). The set of all trajectories of (8) defined on the 



time interval (O,T] and starting at  (, (z(0) = () is denoted by SIolq((). The 
reachable map of (8 )  from ( is the seevalued map R : R+ -+ X defined by 

h u m e  that 

HI) V z E X near (, F(z) is a nonempty compact set and 0 E F(()  
H2) 3 a neighborhood U of ( and L > 0 such that 

V Z , Y E U ,  F ( t , z )cF ( t ,~ )+L l l z -Y I lB  

Hypothesis H2) means that F is Lipschitz in the Hausdorff metric on a 
neighborhood of (. Hypothesis HI) implies that z ( E Slov4((). 

The derivative of F at  ( ( , O )  is the seevalued map CF((,O) : X -+ X 
defined by 

V u E X, CF((,O)u = lim inf 
F(z + hu) - y 

(2, Y )  -+F ( € , O )  h 

h-+O+ 

Fix T > 0 and consider the singlcvalued map G : wlpl(O, T )  > S I ~ , ~ ~ ( ( )  -+ 

X defined by G(z)  = z(T). Let K c coF(() be a closed convex set having 
only finite number of extremal points. Then there exists M > 0 such that 
for every trajectory w E W1*l(O, T )  of the differential inclusion 

we have E G1((). The proof follows from the results of (151. 

Example 4. High order variation of reachable map 
Let F be a set-valued map satisfying all the assumptions from the Ex- 

ample 3. Consider again the differential inclusion (8 )  and the reachable map 
t -+ R(t). It was shown in [17] that for all integer k 3 1 

R'(o,() = liminf R(h) - € 
h+O+ h' 

A very same proof implies that the above holds true for all k > 0. 



3 First order inverse of a single valued map 

Consider a complete metric space (U, d), a Banach space X and a continuous 
map G : U -, X. We assume that the norm of X is GBteaux differentiable 
away from zero. Let Ti E U be a given point. We study here a sufficient 
condition for: 

V h > 0, C(Ti) E Int C(Bh(Ti)) (open mapping principle) 

and the regularity of the inverse map G" : X + U defined by 

on a neighborhood of (G(Ti),ii). 

Theorem 3.1 (Inverse Mapping Theorem) If for some c > 0, p > 0 

then for every u E B;(ii) and h E [0, $1, G(u) + hp h c G(Bh(u)), (where 

5 denotes the open unit ball i n  X). Moreover for curry u E B~( i i ) ,  z E 
2 

B: (G(u)) 

(11) 
1 

dist (U,G-'(2)) 5 - IlG(u) - zll 
P 

Corollary 3.2 Assume that X i s  a finite dimensional space and that 0 E 
Int liminf,,,?i 55 G(')(u). Then there ezist E > 0, p > 0 such that all 
conclusions of Theorem 3.1 are valid. 

Proof (of Theorem 3.1) Fix u E B;(ii), 0 < h 5 5 and assume for 
a moment that there exists z E X satisfying 

Set 8* = llz - G(u)l( lhp. Then 0 < 8 < 1. Applying the Ekeland varia- 
tional principle [lo] to the complete metric space Bh(u) and the continuous 
function y + (IG(y) - 211 we prove the existence of E Beh(u) such that 
for all y E Bh(u) 



Observe that g E Int Bh(u) and, by (12), z # G(g). Hence, by differ- 
entiability of the norm, there exists p € X* of I(p(J = 1 such that for all 
h j  + 0+, v j  + v we have 

where liminfj,, o(hj)/hj = 0. Pix v E G(')(g). Then from (13), (14) and 
Definition 2.1 we obtain 0 5 < p,hjvj > ++phi + o(hj). Dividing by hi 
and taking the limit yields < p,v > 1 -8p. Hence 

Since d(g,ii) < d(g, u)+d(u,ii) < 8 h + +  < c, by the assumption of theorem, 

pB c G(')(v). Hence (15) yields that 

-p > inf < p,v > 1 -8p  
uImC(')(ii) 

But 0 < 8 < 1 and p > 0 and we obtained a contradiction. The second 
statement follows from the first one and Theorem 1.2. 

Remark Inequality (11) means that G is pseudeLipschitz a t  (G(ii),Ti) 
with the Lipschitz constant p'' (see Aubin 111). 

As one should expect sufficient conditions for an Open Mapping Principle 
to hold true are weaker than those implying the regularity of the inverse. 
We prove next 

Theorem 3.3 (Open Mapp ing  Principle) Assume that there ert'st a com- 
pact set Q c X, c > 0 such that 

0 E Int lim igf G(')(u) 
u-bu 

then for every h > 0, G(ii) i) Et G(Bh(ii)). 

P roo f  The proof is similar to that of Theorem 3.1. We assume for a m e  
ment that for some h > 0 , C(Ti) is not an interior point of C(Bh(G)) and we 
consider a sequence Zi € X, Zi $! 4(Bh(ii)), IIZi - G(ii)i)(l 5 i-*, i = 1,2, .... 
Applying the Ekeland variational principle to the continuous function u + 



I(G(u) - zii;ilJ on the complete metric space Bh(ii) we prove the existence of 
q + Ti such that for all u E Bh(ii) 

- 1 
(18) I lc(q) - 41 r I~G(u) - sll + .. a d(u,q)  

By differentiability of the norm for some p; E Y*, JJpill = 1 and for all 
hi -'O+,vj + v we have 

where l imj, ,~~,~(hj) /h~ = 0. Fix v E G ( ' ) ( ~ )  and let hj + O+,vj + 

v, Tij E Bhj ( q )  be such that G(%) + hjvj = G(zj). Then replacing in (18) 
u by Zj we obtain 

Dividing by hi and taking the limit when j -, ao yield 

(20) 
1 

V v E G(')(q), < pi, v > 2 -7 
1 

From the Alaoglu theorem, taking a subsequence and keeping the same 
notations, we may assume that {pi} converges weakly in X* to some p. 
Then (20) implies that for all w E liminf,,G i% G(')(u), < p,w > 2 0. 
This and the aesumption (17) yield that p = 0. To get a contradiction we 
show next that p can not be equal to zero. Indeed let ti E X, llqll 5 1 be 
such that < pi, y > 2 1 - !. Consider z E X, p > 0 such that the ball z+pB 
is contained in the left-hand side of (16). Let ai E G ( ' ) ( ~ ) ,  qi E Q such 
that for all large i ,  z-pr; = a;+q;. Hence (20) yields < pi, z-pq-q; > 2 -f 
and therefore < pi,z - qi > 2 p - $ - i .  Let {qij} be a subsequence 
converging to some q E Q. Then, taking the limit in the last inequality we 
get < p, z - q > 2 p > 0. This implies that p # 0 and ends the proof. 

Corollary 3.4 Let X be a Hlbert space, H be a closed subspace of X of 
finite co-dimension. Assume that there e t is t  p > 0, z E X such that 

V u near ?i, z + pBH c E G(')(u) 

tuhere BH denote the closed unit ball in  H .  I/ 0 E Int liminf,,,u G(')(u) 
then /or all h > 0, G(E) E Int G(Bh(E)). 

Proof Observe that pB c pBH + pBHl. Thus for all u near ii, 
z + pB C z + ~ B H  + pBHl C ZZi CI1)(u) + pBRl. Since BHl is a compact 
set, Theorem 3.3 ends the proof. o 



4 High order inverse of a single valued map 

Let U be a complete metric space, X be a uniformly amooth Banach space 
(aee (71 ) and G : U -, X be a continuous function. In this section we prove 
higher order sufficient conditions for openneas of C and regularity of the 
inverse map c". 
Theorem 4.1 (Inverse Mapping Theorem) Lct ii E U and assume that 
for some k 2 1, M > 0, p > 0 and lor all u E U near ?i and all small h > 0 

Then there etists t > 0 such that for all u E U near Ti, for all z E X near 
C(a) and all h > 0 small enough 

Corollary 4.2 Assume that X is a finite dimensional space and for some 
k 2 1, the convez cone spanned by Gk(Ti,5) is equal to X .  Then the conclu- 
sions of Theorem 4.1 hold true. 

Proof From Proposition 2.5 and the Remark following it we deduce that 
for some vi E Ck(Ti,z), i = 1, ..., p we have 0 E Int co{vl, ..., up). Then for 
some c > 0 and for all vi E BC(vi) we have 0 E Int C O { ~ ,  ..., vi). On the 
other hand, by the definition of variation for every 1 5 i 5 p there exists 

> 0 such that 

d(ii,u) + h 5 si * dist 
hk 

Hence the aaaumption of Theorem 4.1 ia satisfied. 
Proof(of Theorem 4.1) h u m e  for a moment that there exist 

iii + 1, & + 0+, +i E C(%) + 2-k i - kx f~  satisfying 

Applying the Ekeland variational principle to the complete metric space 
BKi (ci) and the continuous function u -, t/nC(u) - ril[ we prove the exis- 
tence of ui E BX. (4) such that for all u E BEi(C) 

-L 
a 



By (22) and the smooth differentiability of the norm, there exist pi E X* of 
JJpiJJ = 1 and a function o : R,+ -, R+ satisfying limh,o+ o(h)/h = 0 such 
that for d l  u E Biil(@) we have 

IIc(u) - .ill 5 IIc(ui) - .ill + < Pi, G(u)-C(ui) > + o(llC(u) - G(ui)l() 

Hence 

C u  C u  
;/nc(ui) -.i l l(l+ f <pi,  &I > + z ( \ w ) )  

where 5 : R+ -, R+ eatiefiea limh,o+~(h)/h = 0. This and (23) yield that 
for all u E Bxi (G) 

Hence for all u E Bxi (@) 

Fix v E G ( ' ) ( ~ )  and let hj 4 O+,vj 4 v be such that C(ui) + hjvj E 
G(Bhj (w)). Then from (24) we obtain 

Dividing by hj and taking the limit yields 

k 
(25) 

9 
V v  E c(')(w), < pi, v > 2 -7 IIG(ui) - zill 

1 

On the other hand, by (24), for h; = ~ J G ( ~ )  - '$ and for d l  v  E 
(C (Bhi(ui)) - c (ui))/h; we have 

(26) 
.- u o _< <pi ,  v >  +dl(!$) + k t  rk 



Adding (25) and (26) yields 

Observe that for all large i, d(ui,Ii) 5 d(ui,@) + d(Iii,Ii) < &/2 + d(q,i i) < 
6. Hence assumption (21) of theorem contradicts (27). This proves that (22) 
can not hold. The ~ecand statement of theorem follows from the first one 
and Theorem 1.2. 0 

Theorem 4.3 ( A n  Open Mapping Principle) Assume that there ezist 
p > 0, M > 0 k 2 1 and a compact subset Q c X such that jor a11 u E U 
near ti and all small h > 0 

I j  Gm(ii) = X ,  then jor a11 h > 0, G(ti) E Int G(Bh(ii)). 

When the space X is finite dimensional then the assumption (28) is always 
satisfied with Q equal to the unit ball. 

Proof  By Propositions 2.4vi) and Proposition 2.5 there exists K > 0 
such that 0 E Int coGP(ti,f). Set = max(k, K). Then, by Proposition 
2.4i), 0 E Int co c'(z,E). Moreover for all u E U near ii and all small h > 0 - 
and h' = hklk we have 

Hence we may assume that k in the assumption (28) is so that 

(29) o E Int COG'(C,Z) 

Aarurne for a moment that there exist & + 0+, q E G(G) + ~-L'~-~K:B 
satisfying (22). Setting Ci = ?i in the proof of Theorem 4.1 from (27) we get 

v ( ~ ( ~ l ; ( ~ ) ) - c ( u i )  ht n M B  + G(')(ui) 

<  pi,^ > > -f llG(w) - ~illfl-4% (j) - ki 1k 



Let q E B be such that <pi ,% > 2 1- and 

be such that -pq = vi + qi (they do exist because of (28)). Then 

Taking subsequences and keeping the same notations we may assume that 
q; -+ q and pi converges weakly in X* to some p. Thus p+ < p, q >_< 0 and 
consequently p # 0. On the other hand (30) implies that for all v E Gk(Ti, 5) 
of 1 1 ~ 1 1  5 we have < p,v >I  0. This and (29) yield p = 0. The obtained 
contradiction ends the proof. 17 

5 Inverse of a set-valued map 

Consider again a complete metric space (U, d )  and a Banach space X with 
the norm Gdteaux differentiable away from zero. Let G be a set-valued map 
from U to X, whose graph is closed in U x X. Consider a point (E,L) E 
Graph G. We proved in (191 a sufficient condition for 

(31) V h > 0, 5 E Int C(Bh(Ti)) 

and the regularity of the inverse map 

c- l (z )  = {UE  U : z E  C(u) ) 

on a neighborhood of (5, a). In this case the results are more restrictive, we 
only state them (the corresponding proofs can be found in [19]). 

Theorem 5.1 (Open Mapping Principle) Assume that jor some c > 
0, A4 > 0 and a compact set Q c X 

(32) Int n (z (G(~)(u, 2) n MB) + Q) # 0 
(u, z) E Graph G - 

d(u,n) 5 c,llz - 211 < c 

I .  
0 E Int liminf (d l ) (u,  z) n MB) 

(uI=I~a(z,q 

then lor  all h > 0, 5 E Int G(Bh(ii)). 



Observe that when X is a finite dimensional apace then the condition (32) 
is always aatiafied with Q equal to  the unit ball and M = 1. Hence 

Corollary 5.2 Assume that X is a finite dimensional space and for some 
M > O  

O ~ 1 n t  lirninf ~6 (c(')(u,z)~MB) 
(u,=i+a(a,rl 

Then for a11 h > 0, 5 E Int G(Bh(ii)). 

Theorem 5.3 (Inverse M c t i o n  Theorem) If for some E > 0, M > 0 

o E Int n E (G(')(~,Z) n MB) 
(u, 2) E Graph G - 

d(u,G) 5 6, 112 - 211 5 E 

then there ezists L > 0 such that for a11 (u,z) E Graph G near (?i,Z) and 
a11 y E X near ?i 

dist (u, G"(Y)) 5 L 112 - yll 

The high order results also have their analogs in the setivalued case. 

Theorem 5.4 (High Order Open Mapping Principle) Assume that X 
is a uniformly smooth Banach space and that there ezist p > 0, k > 0, M > 0 
and a compact subset Q c Y such that for a11 ( u , ~ )  E Graph G near ( i i ,~ )  
and a11 small h > 0 

If GbO(ii,f) = X, then for a11 h > 0, ZE Int G(Bh(G)). 

Theorem 5.5 (High Order Inverse Function Theorem) Assume that 
a11 the assumptions of Theorem 5.4 are satisfied uith k > 1 and Q = 0. 
Then there etists L > 0 such that for a11 (u,z) E Graph G near (?i,?i) and 
for all y E X near f 

dist (u, G-'(y)) 5 L - y l l  
Corollary 5.6 Assume that X is a finite dimensional space and that for 
some k 2 1 the eonuez cone spanned by Gk(ii,z) is equal to X .  Then the 
eoncluaions of Theorem 5.5 are ualid. 



6 Applications 

6.1 Taylor coefficients and inverse of a vector-valued func- 
t ion 

Consider a function f from a Banach apace X to a Hilbert apace Y and 
a point 5 E X. We assume that f E ck at f for some k 1 1. Then 
for a neighborhood U o f f  and for a1 all z E U there exist i-linear forms 
&(z), i = 1, ..., k such that A;(-j i s  cob tit^^^ at E cmd 

k hi 
j ( z  + hw) - j (z) - -TJ&(Z)W ... w 

i=l 

uniformly in z E U. 

Theorem 6.1 (Second order h e r t i b i l i t y  condition) Assume that j E 
c2 at f, that Imjt(5) is a closed subapace o jY  and for some a > 0, c > 0 
and all z E B,(z) the following holds true 

,331 { V y E Im j ' ( ~ ) ~  of llyll = 1 3 w E X of IIwII < 1 such that 
< y, f"(f)ww > 1 a, < y, ft(z)w > 1 a 11 ft(z)wll 

Then there eza3ts L > 0 such that for all z near f and jor ally near f ( f )  

Proof It is not restrictive to assume that a 5 1. Since j E C2 at Z, 
there exists a function o : R+ -, R+ such that limh,o+ o(h2)/h2 = 0 and 
for all z near f and all w E X of llwll 5 1 we have 

Hence, by the separation theorem and Theorem 4.1 it is enough to show that 
for some M >  0, p >  0, 7> 0 and all y E  Y of ((yll = 1, z E  BT(5), h > 0 

Set H = Imft(f), M  = 1 + I(fn(f)lJ and let 7 > 0 be such that yBH c 
ft(5) B. Then for some 0 < 7 < c and all z E B;(z) 



Set p = r n i n (3 , ; ) .  Fix z E B?(Z), h > 0, y E Y of llyll = 1 and let P yi E H, yt E H be such that y = yl + yt. If (lyl J J  > & then from (34) we 
obtain 

8uPl(vll<l < Y, f l(z)w > 2 LNP[wI<l < Y l ,  f l(z)w > - SUP[IvII<l < yt, f l(z)w > 
2 ; II~111 - 3 1 P 

If l l y l l l  < & then ((yt(( 2 1 - & and, by (33), for some w E X of llwll 5 1 

< yt,f l(z)w > 2 allytll Ilfl(z)wlb, < y z , f " ( 3 w  > 1 a Ilytll 

If Nfl(z)fI < 1 then l ( ( f l (z ) t+  ! f n ( ~ ) w l l  < M a n d  

< y , j ' ( z ) ~ + f f n ( z ) w >  2 < y z , f f n ( ~ ) w > - l l Y 1 1 1 ~  
a' 

>;llytll-: 2 :-rn 2~ 

If J J  f l(z) 11 > 1 then eetting 

we obtain IIiEI) 5 1, 11 f l(z)f + E j n ( V ) i E ~ ~ ~  < M and 

< y, f l (z )F + b f " ( ~ ) i i i ~ >  1 < yt, f1(z)? > - llylllM 1 
..Ilytll-: 1a( l -& ) -Z  1 P 

The proof is complete. 

Theorem 6.2 (A high order condi t ion) Assume that for some X > 0 
and for all z near V and y E Y of llyll < 1 there e2ists A' 2 X such that 

X'y E {Ai(~)w...w I llwll 5 1, Aj(z)w...w = 0 for 1 < j < i < k) 

Then f-l i s  pseudti'lroldetian on a neighborhood o j ( f ( ~ ) , 5 )  with the Holder 
ezponmt! i n  Kr sense o f  Theorprn V.L. 

Proo f  O b s e r v e t h a t f o r a l l z E U , w E X o f ~ ~ w ~ ~ < l  



where limndo+ 9 = 0. Hence, by Theorem 4.1,it is enough to show that 
for some M > 0, p > 0, c > 0 and all z E Be@), all small h > 0 and every 
Y E Y of I l ~ l l  = 1 

Let c > 0 be such, that maxlylk B U P , ~ B , ~  I ( & ( z ) w  ... wI( < 00 and such 
that the assumption of theorem k satisfied on B,(z). Fix y E Y of llyll = 1 
and z E BC(Z), 0 < h 5 1 and let w, E B, 1 5 s 5 k  be auch that 
< y,A,(z)w ,... w, >> X and for all 1 5 j < a, Aj(z)w, ... w, = 0. Setting 
w = hi-'w, we obtain llw,ll 5 1 and 

Then 

Since the right-hand side of the above inequality converges to  Xlk !  when 
h -, O+ uniformly in z E Bc(Z) we end the proof. 

6.2 Stability 

Consider a Banach space X,  finite dimensional spaces P, Y and continuously 
diflerentiable functions g : P x X -, Y, h : P x X -, Rn. For all p E P 
define the set 

(35) DP = ~ E X I  ~ ( ~ 8 2 )  =0,  h(p,z) 2 0 )  

Let ( p , ~ )  be such that 

g(B,E) = 0, h(F,z) 5 0 

We study here the map p -, Dp on a neighborhood of @,Z). 

Theorem 6.3 (first order condition) Assume that jot some E E X 

Then there czist c > 0, L > 0 such that jot all p, p' E Be@), z E DpnB,(z) 



Remark The above result is the well known Mangasarian and Romowitz 
condition for stability (see [24]). It was also proved in 1251 via an inverse 
mapping theorem involving the inverse of a closed convex process. The proof 
given below uees the variational inverse function theorem (Corollary 4.2). 

Proof Define the aet-valued map C : P x X + P x Y x Rn by 

and set E = @,E,F,g@,f),h@,E)). Then, by Example 1, 

Let G be as in the assumptions of theorem. Without any loss of generality 
we may assume that ) I E I I  5 1. Then (0,0, E@,Z)F) E El(€). Hence for all 
p 1 0 a n d a l l  ( v , w ) E P x X  

Fix (v, y, z) E P x Y x Rn. Since g ( j i , ~ )  is eurjective, there exists w E X 
such that 

On the other hand, since g ( j i , f ) ~  < 0 there exists p > 0 such that 

Therefore Ux>o XcoG1(€) = P x Y x Rn and we may apply Corollary 4.2. 
Thus there e&ts L > 0 such that for all (p, z) near (P,Z) and all z near 
(P,~(P, 4, h(P, 2)) 

Fix (p, z) sufficiently close to @,z) with z E Dp, sufficiently close to fj and 
= (p',O,h(p,z)) and let (p",z') E C'*(z) be such that Jl(p,z) - (pW,z')ll 5 

L lip - ptll Then z E G(p", z') = (ptt, g(ptt, zt), h(pw, 2')) + RT. This yields 
that p" = g(#,z') = 0 and h(p,z) E h(p',z') +Rn+. Therefore h(p',z') 
h(p, z) 5 0. Consequently z' E Dpt and 



Second order sufficient conditions require a more fine analysis. Theorem 
6.1 can be applied to  the case when equality constraints only are present. 
We state next a reault for inequality constraints. 

Theorem 6.4 (Second order condition) Assume that g = 0, h E C2 at 
( j j , ~ )  and let H be the largest subspace contained in  Im g@,E)  + R;. If 
there etists cr > 0 such that for d l  (p, z) near @,Z) 

then there etist c > 0, L > 0 such that for all p, p' E Be@), z E DpnBc(E) 

dist (2, Dpt) < ~,,/llP - dl1 
Proof Consider the set-valued map G : P x X 4 P x Rn defined by 

C ( P , ~ )  = b, h(p,z)+p) I P E  R3 1 
Then for all e 2 h(p, z) and for all (p, z) near (F, E), t > 0 

1 Bah {(v, e (p , z ) v+  E ( P , z ) ~  + i D @ , Z ) ~ ~ +  P) I lI(~,w)ll 5  PER;} 
c Cccp 'z)+~B' -cp 'e~ t + (9 + 11 (F, L) - (p, Z) 11) B 

where o( t2 ) / t 2  -+ 0 when t 4 0+ and 

Let 6 > 0 be such that 

1 Fix (a,q) E P x Y of ll(a,q)Il = 1. If llrll 5 then llall 2 1 - &q 
and 

By Theorem 5.5 it remains to show the existence of 1 > 0, M > 0 such that 
for all y E Y of (lyJJ = 1 and all (p, z) near (F,z) and all small t > 0 

But this follows from the assumptions by the arguments similar to the proof 
of Theorem 6.1. O 



6.3 Interior points of reachable sets of a control system 

We consider the control system described in Example 2 and we impose the 
same assumptions on j ,  X,  S. For all T > 0 denote by R(T) the reachable 
eet of (5) at time T ,  i.e., 

R(T) = {z (T)  I z is a mild trajectory of (5)) 

Let z be a mild trajectory of (5) on LO, T ]  and J be the corresponding control. 
We provide here a eufficient condition for z(T) E Int R(T) and study how 
much we have to change controls in order to get in neighboring points of 
z(T). 

Consider the linear control eystem 

and let R ~ ( T )  denote ite reachable set by the mild trajectories at time T .  

Theorem 6.5 Under the above assumptions assume that /or all z E X the 
set j (z ,  U )  is bounded and jor all u E U, t E P,T], %(., u) ti continuous at 
~ ( t ) .  IjO E Int R ~ ( T )  then z(T) E Int R(T) and there ezist c > 0, L > 0 
such that jor every control u E U satisfying d(u,ii) 5 r and all b E B,(z(T)) 
there ezists a trajectory-control pair (z,, v)  which verifies 

In particular jor every b E B,(z(T)) there emits a control u E U such that 

The above result wae proved in (181 therefore we only sketch the idea of 
the proof. F'rom (7) we deduce that for almost all t E (0, TI 

and for the same reasons for all u near J and for almost all t E [O,T] 

(37) u ) u , ) - ( u ( )  , ( t ) ) )  c = C(')(U) 

On the other hand 

&(T) = {IT S.(T; t)v(t)dt : v(t) E rn j (rU(t),  U ) -  j(zu(t), u(t)) is measurable) 
0 



and therefore integrating (37) we obtain R ~ ( T )  c =dl)(u). Hence 

Since 0 E 1 n t e ( T )  and e ( T )  is a closed convex set, the separation theorem 
and regularity of the data imply that for some 6 > 0 

This allcnv to apply Theorem 3.1 (see [18] for details of the proof). 

6.4 Local controllability of a differential inclusion 

We consider the dynarnical system described by a differential inclusion from 
the Example 3 and we assume HI) and Hz). Let T > 0 be a given time. We 
study here sufficient conditions for ( E Int R(T) and the regularity of the 
'inverse". Consider the following linearized inclusion 

and let RL(T) denote its reachable set at  time T. 

Theorem 6.6 If 0 E Int R ~ ( T )  then ( E Int R(T) and there ezists a 
constant L > 0 such that for every z E SIo,T1(() auficiently close to  the 
constant trajectory ( (in W1*'(O,T)) and for all b near ( there ezists y E 

S[O,T] (0, 

In particular this implies that for all b near ( there ezists z E Slo,4(() with 

Proof The map C defined in Example 3 is continuous on its domain 
of definition. It was proved in [IS] that if 0 E Int R ~ ( T )  then there exists 
a compact convex set K c coF(() having only finite number of extremal 
points such that the reachable set R i (T)  at  time T of the differential inclu- 
sion (9) satisfies 0 E Int R;(T). F'rom the Example 3 we also know that for 
some M > 0 

1 
- R ~ ( T )  c ~ ' ( 0  A4 

Applying Corollary 4.2 we end the proof. 



6.5 Small time local controllability of differential inclusions 

Consider again dynamical ayatem described in Example 3 and satisfying HI), 
Ht). We atudy here sufficient conditions for 

Set 

Theorem 6.7 Under the above assumptions assume that for every z E 
X, F ( z )  is  a eonvez set. If the eonvez cone spanned by V is  equal to X, 
then for a l l  T > 0, ( E Int R(T). 

The above result was proved in [17]. It followa from Theorem 5.4, (10) and 
from the existence of 6 > 0 such that GraphR n B,(O, () is a closed set. 
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