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1. INTRODUCTION

The theory of economic growth attempts to describe and to explain the

long-run development over time of an economic system (or economy, for
short). An economic system 1is essentially dynamic in nature. The
three most important sources of dynamics in economics are:

accumulation  of capital (investment), population growth, and

technical change. Moreover, some of these dynamic forces are, at

least partly, endogenous to the economic system, 1.e. determined by
economic forces.
A concept of considerable interest in growth theory is the concept

of the steady state. A steady state 1s a situation of economic

development in which all wvariables grow at a constant rate. These
rates can be different for different variables; it can also be zero,
so that the corresponding variable is a constant in steady state. It
should be  pointed out that a necessary, though by no means
sufficient, condition for a steady state to occur 1is that the
relevant exogenous varlables (like e.g. population) grow at a
constant rate.

The theory of optimal economic growth assumes that one or more
variables in the economic system can be controlled and is concerned

with determining these control variables in such a way that the

resulting economic development 1s optimal with respect to some
objective or welfare <function. Optimal economic growth has been
ploneered by Ramsey in his seminal (1928) article.

Probably the most fampus result of optimal economic growth theory
is the so-called Golden Rule (Phelps, 1961; Robinson, 1962). It was
originally derived within the context of comparative statics, i.e.
comparing steady states. The Golden Rule states that the steady state
with the highest level of consumption per capita is characterized by
the equality of the marginal productivity of capital and the growth
rate of the population. Cass (1965) has shown that the Golden Rule
can alternatively be derived as the equilibrium position (singular
solution) of an optimal control problem, with the 1integral of
consumption per capita as the objective function. Since 1its first
appearance in the literature numerous generalizations and extensions
of the Golden Rule have been derived by various authors.

The maln drawback of the whole concept of the Golden Rule is its
tight link with the notion of the steady state. Although the latter
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is wvery appealing from a theoretical point of view it is hardly
relevant for actual economic development. At noted abave, steady
states can come about only if the exogenous variables grow at a
constant rate. Clearly, this condition is not satisfied 1in reality.
This 1is most obvious for population, of which the growth rate is
fluctuating quite strongly; typically, the growth rate of population
is presently falling in almost all industrialized countries. Another
example is technical change, although it should be added that it is
not immediately clear whether this is a truly exogenous variable.

The purpose of my research is to analyze the effects of changes in

the growth rate of population (g%) on the optimal economic growth

path. Among the most important variables that are directly affected

by changes in g™ are the following:

1. the sheer size of the population, 1.e. number of consumers and

size of the labour force;

38}

the labour force/population-ratioc and its complement the
dependency-ratio;

3. more generally, the age-structure of the population.

These and related demographic variables in turn affect many of the
economic variables; in particular, they affect the optimal values of
the control variables.

A populaticn with a constant age-structure is saild to be
stationary. If the age-specific mortality rates are constant, then a
population is stationary if and only if the growth rate of the number
of newborns (g®) has been constant for at least n years, where n is
the maximum age that man can reach (say 100 years). Obviously, since
the age-structure of the populaticn 1is an important economic
variable, a temporary change in the growth rate of newborns during m
years results 1in a departure of the economic growth path from steady
state for at least mtn years. The period during which the age-
structure of the population is non-constant, population itself being

ncn-stationary, can be labelled a period of demographic transitiom.

There are four broad groups of growth models that are analyzed in

ny dissertation. These are the following:

1. the simple neoclassical one-sector model of Solow (1956). This

analysis can be regarded as a non-stationary generalization of the
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classical Golden Rule case;
2. one-sector models with technical change;
3. one-sector models with education;

4. one-sector models with education and technical change.

For each model the analysis consists of four steps:

1. formulation of the model in mathematical terms;

2. the derivation of the necessary conditions for optimal economic
growth, using the Maximum Principle of control theary;

3. characterization of steady states as equilibrium points (singular
solutions) of the optimal control problem, as well as comparative
statics, i.e. assessing the effects of changes in the long-run
growth rate of the population on the steady-state values of the
economic variables;

4. analysis of the non-staticnary optimal economic growth path, i.e.
the optimal growth path moving the economy from its initial steady
state to its new steady state (after the period of demographic

transition has come to an end).

Some results obtained thus far have been published in the form of
working papers. The analysis of optimal growth in the basic one-
sector model 1is given 1in Van Imhoff & Ritzen (1987). A model with
education is considered in Van Imhoff (1985).

The present paper analyzes optimal economic growth in a model with

technical change that 1is embodied in physical capital. For a

discussion of this and other types of technical change, as well as of
their relation to the production function, see Van Imhoff (1986a). If
technical change is embodied in capital the model becomes one of

capital vintages, 1.e. capital goods (machines) are distinguished by

their date of construction. Thus the develcopment of the economy is an
explicit function of its history, at 1least of 1its most recent
history. This feature should lead ome to expect that non-
stationarities in the economic development triggered by the
occurrence of demographic transition are particularly severe and
persistent in this model.

The following assumptions will be made throughout this paper:

1. there is one single production sector that produces an aggregate
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commodity. Production can be either consumed or added to the stock
of physical capital which is distinguished according to its date
of construction;

2. economic decisions are made by a central planning agency which
seeks to maximize some social welfare function in terms of
consumption per capita;

3. human capital <(showing in labour efficiency) is a function of age

only (i.e. investment in education will not be considered).

The plan of the remainder of this paper 1is as follows. Section 2
spells out the model. In section 3 a condition for optimal economic
growth will be derived. This condition turn out to be 1in many
respects similar to the well-known Golden Rule of Accumulation
mentioned above. Section 4 gives some comparative statics results. In
section 5 [ analyze the stability of steady states while section 6
investigates some properties of the non-stationary optimal growth

path. The final section summarizes the main results.

2. THE FIXED-COEFFICIENTS CAPITAL VINTAGE MODEL

The growth model consists of three building blocks: population and
labour; production, investment, and technical change; and the social
welfare function to be maximized by the central planning agency. Each
block will be described in turn.

2.1. Population and labour

The model is one of overlapping generations in continuous time. The
number of individuals born at time t is denoted by B(t). The number
of newborns at time t is related to the number of newborns 1in the

previous period by the rate of growth of births, denoted by g%(t):
o : B
B(t) = B(t)/B(t) = g (1) S))

The dynamic path of g=(t) will be assumed to be completely
exogenously determined.

If people die according to some fixed age-specific survival
schedule p(v) and 1if maximum age 1is dencted by n, then total
population at time t P(t) can be written as

4



P(t) = JS MC(v)-B(t-v) dv (2)
where
RCO) = 1 B(n) = 0 po(v) €0 (3

Each individual is endowed with a stock of human capital h(v) that is
a function of age v only. This implies that all 1individuals of a
given age are equal 1in their ability to produce. Typically the
function h(v) is assumed to be unimodal, with low values for v close
to zero and v close to n and higher values for ages in the
intermediate range. The labour force at time t L(t) measured in units

of human capital can now be written as
L(t) = Jg B(v) - H(V) -B(t-v) dv (4)

The rate of population graowth g~ (%) is defined by

g (t) = P(t) = P(t)/P(t) (5>

Similarly, the rate of growth of the labour force g-(t) is defined
by:

~

gL(t) = L(t) = L(t)/L(t) (6>

In general, given the survival schedule p(v) and the age-ability
profile h(v), the growth rates gF(t) and g-(t) are completely
determined by the dynamic path of g=(t). Equivalently, g™(t) and
g-{(t) are a function of g®(t)> and the age-structure of the
population. When g®(t) is constant for at least n successive periods
then the age-structure of the population is also constant and we

have:
grit) = g-<t) = g=(t) = g , say P,

In this case the population is said to be stationary.



2.2, Production, investment, and technical change

The aggregate commodity 1is produced from labour and (physical)
capital where capital goods are distinguished by their date of
canstruction. Production obtained from capital of a certain vintage

is described by a so-called vintage production function:
Q(v,t) = FiK(v,t), Liv,t); vI (8)

Here v is the time at which the capital goods under consideration
have been constructed; K(v,t)> 1is the size of the capital stock
installed at time v and still in existence at time t (this could be
less than the amount originally 1invested as a result of
depreciation); L(v,t) is the amount of labour allocated to work with
the capital goods in question; and Q(v,t) is the resulting ocutput.
The fact that the vintage production function F(-] 1is parametrized
with an 1index v reflects the presence of capital-embodied capital
change: the productivity of given amounts of factor inputs K and L
depends on the date at which the capital goods have been installed.
Total production at time t is given by the sum of all outputs

produced from the different capital vintages, i.e.
Qt) = me Q(v,t) dv (3

Physical capital is subject to depreciation at a constant rate §:

SV (10)

K(v,t) = K(v,v)-
In each period a fraction of total output is saved and added to the

capital stock (1lnvested):
K(t,t) = T(t) = s(t)-Qt) n

The (gross) rate of savings s(t) cannat exceed aone. It will be
assumed that physical capital, once installed, 1is not fit for
consumption which implies that the rate of savings cannot become
negative. Output not invested in physical capital is consumed. Total

cansumptlion equals:

City = QY - (W 12>



We are left with the specification of the production function (8). I
assume the vintage production function to be characterized by fixed

factor proportions ("clay-clay"):

Q(v,t) = min {(k(v)-K(v,t), 1v)-L(v,t)} for all v £t (13

This model has been investigated extensively by Solow et aliil (1966).
k(-) and 1(-) are indexes of capital-augmenting and labour-augmenting
technology, respectively. The development over time of these indexes

is assumed to satisfy:

k"(v) 20 ; 17¢(v) 2 0 (145

Most of the time I will assume that k(-) is constant and that 1(-)
grows exponentially over time, 1i.e. technical change is exponential
and Harrod-neutral everywhere.

From (9>, (13) and (14) it 1is evident that, given the stocks of
physical capital of all different vintages, production at time t is

maximized by allocating labour across capital vintages such that:

k(v)
1K€
L(v,t) = (152

0 for all v < t - T(t)

-K(v, for all v 2 t - T(t)

where T(t) denotes the age of the oldest capital vintage 1n use at
time t. T(t) is restricted by the size of the labour force:

_ t =
Lty = Jt—T(t) L(v,t) dv {189

(9)-(11, (13>, (15 and (16) together imply:

t k(v) &v-t)

Lty = t-T(t) X9y © -1(v) dv (17
_ t C S(v-t) y
Q) = f-T(E) k(v)-e I(v) dv (18)

It should be stressed that in (17), L(t) is exogenous and T(1)
endogenous, not the other way round.



2.3. Soclal welfare

We will take the social welfare function, of which the maximization
iz the object of the central planning agency, to be simply the

discounted sum of per caplta consumption:

y = Im LT QU T ()

0 —Tm ¢ (19

where r 1is the social rate of time preference. For a discussion of
this and related socilale welfare functions see Burmeister & Dobel)
(1970), pp. 398-400>. One reason for choosing specification (19) is
that it corresponds closely to the social welfare function in the
earlier writings on the steady-state Golden Rule, maximizing long-run

sustainable consumption per head.

3. OPTIMAL ECONOMIC GROVWTH

The central planning agency maximizes the social welfare function

(19) subject to (17>, (18), and
0 = Ity = QM (boundary restriction on the control) 20
I¢<v)y = I,  for all v<0 <(initial cenditions) 2n

The control variable is [(t>. Although I(t) determines T(t) via (17),
and T(t) determines Q(t) wvia (18>, I treat 1(t), T(t) and Q(t) as
three independent control variables that are restricted by (17) and
(18).

In the analysis that follows I have made use of some very valuable
advice given to me by Onno van Hilten of Limburg University (cf.
Malcomson, 1975; Nickell, 1975; Verheyen & Lieshout, 1978).

Linking restrictions (17) and (18) to the maximand (19) with the

use of the Lagrange multipliers w (t) and wa(t) yields:

v - r LTSI T KV S(v-t) .
0 —rm T N it reer e FI¢vd dv - L(t”} ¥

) t S(v-t)
t wWe (£ =T () k(v)-e S1(v) dv - Q) dt =



oo [ rt o-I
& T T MU L) - owa () -Qoey | dt 4+

I
«® t §(v-t) )
+ IO [ ft_T(t) k(v)-e ST [Wg oty + wo (127100 dv ] dt (22>

The last term on the RHS of (22) is a double integral. The area over
which the integration is performed is the shaded area in Figure 1.
[f the function T(t) is such that

Tty > -1 for all t 23

(i.e. capital once out of use remains out of use forever), then the

following inverse funcion of t-T(t) exists:

t+Z2(t) = INVIt-T(t)] (24>
From (24):
t =t + 2t - TIt+Z2¢(t)]1 ==> Z{&) = TI[t+Z2(t)] (25

Thus, Z(t) 1is the age at which capital installed at time t will
become obsolete. From (23) and (25) we find that:

Z27(ty = T lE+Z(01 . (1427 (>} ==> Z7(t> > -1 for all t (26>

Using the definition of Z2(t), a double integral of some function
f(v,t> over the shaded area in Figure 1 can be rewritten by changing

the order of integration as follows:

@1t f(v,t) dv | dt =
Io [ It—T(t) v v ] -

_ e v+Z(v) 0 v+Z(v)
= IO [ IV flv,t) dt ] dv + I-T(O) [ 0 fiv, £y dt ] dv  (27)

In Figure 2 the shaded area corresponds to the first integral on the
RHS aof (27) while the craoss-hatched area correspands to the second
integral.
Using (27) after interchanging the symbols v and t, the integral
9



in (22) can be written as:
v = J’m e—rt_Q(t)—I(t) W ieaote _ =
0 —Trp B L) - owe () -ty | dt 4

+ Ig k(t)-e‘st- I¢t)- [ J:+Z(t) e—6v- [w‘_‘(v) + "ﬁk.k(‘-’)/l‘ltfl dv } dt 4+

+

0 5t t+Z(t) -6év 1
J_T(O) k(t)’e ° IQ,.' [JO e - [w.;(t')-.*w(!.’),/l('t)] dVJ dt (28)

In writing the +third integral 1in (28) use has been made of the
initial conditions in (21).

Necessary conditions for the maximization of VWV are that the
integrand in (28) be maximized with respect to the controls I(-),
Q(-) Z(-) and be minimized with respect to the multipliers wg(-) and wi(-), at
each point in time. If attention is restricted to time periods later than Z(0), then the

third integral in (28) vanishes and the necessary conditions are the following:

v e_rt
goEy - reEy | (B =0 (29)
-rt
g_¥m = - ;TD_ + k(t)-e‘st- J.:+Z(t) e §v. [wr;g((vr;)+yh__(v),/1(t)] dw =
>0  if It = Q)
= =0 if 0 < I < Qb (307
<0 1f It =0
AV 8§-2(t)
gzcEy - Kbe ST [WoT£42(8)] 4 w [E4Z(0 /1] = 0 ¢31)
N = - Q(ty + jt k(v)-es(v_t)-l(v) dv = 0 (32)
ety £-T () = ~
ov t k(v) &(v-t)
= - + . . - a:
LS L t-T¢t) T © [v) dv = 0 (33)

From now on I will concentrate on singular arcs. In other wards: I

will assume an interior solution to optimal investment, such that

0<I(t><Q(t> and the RHS of (30) 1is identically zero.
Under this assumption (31) implies:

Walt+Z(E)] + w [t+Z(221/1¢Ct) = 0 (34>
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or, equivalently, lagging (34) by Z(t) periods and using (24):
Waltl + w f£1/10%-T0E0] = 0 {352

On the other hand we have from (29) and the observation that the
conditions (29) through (33) must hold for longer than a single

instant along a singular arc:

-rt - -rt
a ¥ 5 D e W) =0 (36)

dt Q® DL -2 6 M 1 6 228 1 63 Q
from which, using (29) and definition (5):

- P
w. (t) = - {r + t)l-w_ (> 37
Q g Q

Integrating (37):
w (V) = w (t) ex N r + P(u)] du (38}
Q_ Q P [ t 8 ] e Qr

Substitution of (35) and (38) into (30), using (29), yields:

-rt
_e [ t+Z2(t) _ (v .
0= rrey [ HY Jt exp [ It [rdtg (W1 du |-kt

—~
(W]
e

-

1lv=-T(v)]
‘[“T]d"]

Bearing in mind the inverse relationship between Z(-) and T(-),

equation (39) is a condition for the occurrence of a singular arc in

terms of the lifetimes of subsequent capital vintages.

I will now show that condition (39) is equivalent to the non-
stationary Golden Rule for the simple <(non-vintage) neoclassical

model as derived in Van Imhoff & Ritzen <(1987). The marginal

productivity of capital of some vintage v can be obtained from (18):

dQtt) _ (W -kw + klt-Tr1-e 8 T 1rporeeyy - 4TV

dTvy ~ Tt-T(L), t] ey 40

where the indicator function J,(x) is defined by

T, = (41)

11



From (17) we have:

- k(v)
0 = Jiorcry, 61V 1y dtiewt #
K[t-T(t)] -6-T(t).

+ =TT © IIt-T(E)1-dIT()] (42)
from which
dTet) | vy B 1IE-TCOT 8- TCt) 1 (43)
Ty [t-T(t),t) v EE-T(OT © T T
and thus, from (40) and (43):
aQet) . ) CIE-T(D] )
I - Jreeto, VW EY [T — ] (44)

From (44) and (24) it follows that:

1{v-T(w]

dQ(v) ] (- [ 1= 2V (45)

TICEY 0, 2]
(cf. Solow e.a., 1066),

Thus it can be seen that the integral in the RHS of (39) is equal
to the present value of all future returns to investment made at time
t, discounted at a rate equal to the sum of the rates of social
impatience (r), depreclation (§), and population growth (g*). On the
other hand, the marginal costs of investment (in terms of consumption
foregone) equal unity. Thus condition (39) simply says that the
singular arc 1s characterized by the familiar equality of marginal
costs of and returns to investment.

The condition spelled out in the previous paragraph is easily seen
to be the finite-lifetime equivalent of the non-stationary Golden
Rule of Van Imhoff & Ritzen (1987). V¥ith infinite lifetime of capital

(no obsolescence) the condition becomes:

_ ® (v P QW o
1 = ft exp [ It [r+6+g (w1 du ] XES dv (46)

Differentiating (46> with respect to time t:

dQ(t) P v P dQ (v o
0= - JRET + [r+6+g (t)]-jt exp[ - ft [r+8§+g (u)] du ].EgTTT dv 47
from which, using (46):

12



dQ(t>

w‘eey STt § + gP(t) (48>

which is the non-stationary Golden Rule.

4. COMPARATIVE STATICS

If population grows at a constant rate g, and if technical progress
is exponential and Harrod-neutral everywhere, 1.e.
1t

k(t) = ko p 1ty = lo-e with ko, 10, 1 constant 43

then the optimal growth path could well lead the economy into a
steady state.

In steady state the optimal savings rate is constant. As Solow
e.a. (1966) have shown a constant savings rate for this model implies
the maximum age of capital to be constant too, i.e. 2(t) = T(t) = T*,
say.

The value of T* can be obtained by solving (39). Carrying out the

integration yields:

t+T+«  a-it-w). 1 (v-T*-1 _

1 = jt e [ 1 e ] dv =

B 1 -a-T= e_liT* 1 -(a-1)-T*

= (a[1-e ] -1 [1"e ]

-1-T= —a- T

== (a-D-(a-1) +ae S o 1.2 o (50
where [ write
a=r+d8+g BL

for notational convencience.

Equation (50) cannot be explicitly solved for T*. If we define

-1 - E .3 —_a - T
G(T*s = (a-1)-(a-1) + ae © & - 1:e°2T (52

a steady-state value for T* exists if G( ) has a finite positive

13



root. Since

G'(T*) = a-b-[ T T

] (53
is monotonous on R*, a positive root of G(-) iz unique if 1t exists.
The existence of such a root depends on the values of a and 1.

Analysis of the function G(-) yields the following tableau:

parameter values | number of positive roots of G¢-»
a=0,1#o0 | none }
1=0, a2 ncne

a=1 infinite (identity)

a>1l>290 one root (1f a<l)

1>a>090 one root (1f a<l)

a>o0>1 none

1>a>0 one root

0>a>1 none

0>1>a none

Thus we have the following existence condition:

an optimal steady-state value for T* exists only if

1>0, a<l, a#0 and a#1l (854>

However, a steady state must also be feasible. That is, the savings
rate s* = [*/Q* corresponding to the steady-state value of T* must be
between zero and unity (cf. condition (20)). From (17) and (49) 1t is
seen that 1in steady state investment I(-) grows at an exponential
rate g+l; and from (18) so does production Q(-)>. Then we have from

(18>:

t 6+ (v—1) 3 (g+1). (y-
Qt)y = ko'Jt—’rc e -1(v) dv = ko-jt_T_‘ S+ Qit)-@ g (v=1) 4y
. . §+ g+ 1
== < = .
> 0 £ 8% = (k) oD 1 (55)

Given the form of condition (50) and expression (55) 1t 1s very
difficult to obtain general comparative-statics results, that is to
sign the partial derivatives of s* and T* with respect to the
parameters g, 1, r and 6. Some numerical calculations of steady
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states are given in Table 1. These results suggest that for
reasonable values of the parameters the signs of the partial
derivatives are as in Table 2.

It is interesting to note that these comparative-statics results,
as far as the savings rate is concerned, are essentially the same as
for the simple neoclassical model with disembodied technical change
(see Van Imhoff, 1986b). Moreover, 1f one is prepared to interpret an
increase in T as a decrease in the "capital/labour-ratio”, then (with
the exception of the effect of 1) the results of the two models are

simllar too for the capital variable.

5. STABILITY OF STEADY STATES

Along a singular arc the endogenous variable T(t), being the age of
the oldest capital vintage 1n operation at time t, develops over time
according to equation (39). The question can now be raised: does the
optimal economic growth path under suitable external conditions
converge towards a steady state? Particularly, if population grows at
a constant rate g and 1f technical progress 1is exponential and
Harrod-neutral everywhere, does then a trajectory T(-) satisfying
(39) converge towards the constant value T*? This question is
important as it relates to the stability of the steady state.

From (39) and (49) we have:

N t+Z(t) (v P ) L fv=t-T(y o
1/k0 = It exp[ It [r+8+g (w1 du] [1 e ] dv (56

Differentiation of (56) with respect to t yields:

0 = [142¢t)]-exp[- ﬁ+z<t) [r+64gk () du]. [1-et FIHTIIEIZCED) ]+
- LT ]

+ [r+6+gP(t)].I:+z<t) exp[- ﬁ;’ [r+d+g) (w1 du]-[l—el"[v—t'“"” ] dv
+ 1- I:+Z(t) exp[— IZ [r+6+gP<u)] du]—el.[v_t_T(V)] dv (57)

The first term in (57) is equal to zero because of (25). The third
term is equal to [r+8+g~(£)1/k-, using (56). The fourth term equals
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t+Z(t) v P ]
1-[ - 1/, + Jt 2Xp [ - Jt [r+8+g (ux1 du ] dv J (583
also using (56). Thus, equation (57) can be written as:
t+Z () v p _
It exp [ - It (r+6+g (w1 du ] dv =
_ 1 - e 1T L r v s gPy - 11k, (595

1

Equation (59>, together with definition (25), is an interesting type
of difference equation linking T(t) and Z(t): it gives a relationship
along the singular arc between the oldest age of capital at time t on
the one hand, and the oldest age that capital installed at time t
will ever reach on the other hand.

It 1s easily seen that a necessary and sufficient condition for

the difference equation (59) to converge is given by

dzZ(t>
‘m'“ (60>

Carrying out the differentiation yields:

+
g%;%; = exp [ -1-T(t) + IE 2o [r+6+gP(u)] du ] (51>

which in the case of stationary population reduces to:

dZ{t) _ e(r+6‘+g)-Z(t) - 1-T(

(62)

This expression is always positive. In the neighbourhood of the
steady state we have Z(t) = T(t), so that a necessary condition for

local convergence (local stability of the steady state) is:
1 > r+6+g (63)

This is quite an uncomfortable result as it implies that the integral
of the social welfare function (19) diverges for a locally stable
singular arc.

A difference equation similar in kind to (59) can also be derived

for s(-). From (17) and (49) we have:
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_qt -1t S (v-t _ _
L(t) - Jt_T(t) (kn;’l;_—.:'e e - I(‘.’) d‘.’ (64)

Differentiation of (64) with respect to time yields:

-1t §(v-t) 1

" t -1t .
Lty = -6-jt_T(t)<kﬁ/1m>-e SICw) dv o+ (ka/lsd)-e - Ik o+

1-t (1-86)-T(t)
-8

- (1-T(D)) - (/1) e SI0E-T(D)] (65)

After substitution of (64) and (6) and some rearranging (65) reduces

to:
o 1t - (1-8)T(t)
L) = (Laskad - [gid)+61-e -L{t) + [1-T(t)1-a SLIE-TCED] (66)
or, equivalently:
1-t
e Lt
s(t) = (lo/ka) - [g(£)481- +
8el TR —gre—
+ [l—T(t)]-e(l_é)'T(t)-s[t—T(t>]-9£E&%;t)] (67

Expression (67) is a kind of difference equation 1linking the savings
rate at time t to the savings rate at the timeat which the oldest
capital in use at time t has been installed.

In the neighbourhoaod of the steady state we have:

1-¢t
¢ L constant

T(t) = 0

QLt-T(t)]

o (BTD - TCD)

~
~

so that

d st o (BHE)TCD

<1 (68>
I sTE=T(E)

0«

Thus the non-stationary time path of s(-) is locally convergent as

the economy approaches its new steady-state growth path.

17



6. THE NON-STATIONARY OPTIMAL ECONCOMIC GROWTH PATH

Along the singular arc the time path of the lifetime of subsequent
capital vintages 1is governed by condition (39). Clearly this
condition is too complicated to allow the derivation of general
characteristics of the non-stationary optimal economic growth path
(as in Van Imhoff & Ritzen, 1987). Faor this particular vintage-model,
therefore, I must be content with the more modest target of trying to
simulate an optimal economic growth path given some fixed values for
the external parameters.

The simulation problem can be described as follows. Given are
specified values for:

- r, the social rate of impatience;

- &, the rate of capital depreciation;

- 1, the rate of labour-augmenting technical progress.

It is assumed that 1initially the growth rate of population has been
constant (g,) for a long time, and that the economy is in its optimal
steady state corresponding to this population growth rate g.. At a
certain point in time (%t.) the growth rate of populaticn begins to
fall (linearly for the sake o0f convenience) until at time t. it
reaches a new level g; which 1t will keep forever afterwards. Now
what 1is the optimal economic growth path for these extermnal
conditions? The parameters used in the simulation problem are listed
in Table 3.

I have used two different approaches to solve the dynamic
optimization problem described in the previous paragraph. The first
method maximizes the social welfare function directly over a finite
time interval, subject to the terminal conditions that the
investments made in the last time periods be such that the economy is
left (after the planning period) in the steady state corresponding to
the population growth rate g,. The second method maximizes the social
welfare function indirectly by simulating the difference equation
(59),

A simple check of either method is to run a simulation with g,=go.
[f everything is well the simulation method should find that the
optimal policy is to remain in the initial steady state forever.

Both simulation methods are discussed below.
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6.1. The direct method

The direct method maximizes the welfare function (19) over some
finite time interval {t.,t,] where t- and t, are chosen such that ta
Kty <t << %,, i.e, the simulation periocd contains the period of
demographic transition. The welfare function 1is maximized with
respect to the savings rates s(ts,), s(ta+l), ... , s(t.-1), s(t,7,

and subject to the conditions

Ity = It t = £ -iot(TH , ... , t: (69)

where If and TY refer to the steady-state values of I(-)> and T(-),
respectively, corresponding to g,.

Obviously, in order to keep the number of controcl variables within
manageable limits a discretization of the model is required. For the
simulation of the non-stationary growth path itself this
discretization is fairly straightforward. In computing the steady-
state values of the endogenous variables use has been made of the

following approximation:

int (T
+ -y - — - - i —
[E T e X (v-t) dt = I (1+x) 1 + frac(T)- (1+x? intiD-1 =
: i=1
= D(%,T,14x) 70

T8 and TY are computed from the following discrete-time equivalent of

(50>

1 = DEt, Ty, (14g.)- (146 (141 -

T

_— “
- (141> "*-DLt, Ty, (14g,7- (1482 - (142 /(1+41)] i=0,1 71>

Similarly s% and st are computed from (cf. (55)):

1
E = -
ST K(_"j)[t,'r:,{l;gi).(l.*l)] i 0,1 (72)

Finally the absclute steady-state 1level of investment at time t is
obtained from the discrete approximation to the steady-state version

of (17):

-t
Lt = It‘(ko/lq)-(l+l) DO, T, (14g,) - (14601 i=0,1 (73>
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Along the non-stationary optimal economic growth path T, is computed
from the condition (cf. (17)):

int(T,) -t q
L, = I (ka/15)-(141) -(1+468) -1 +
t _ t-1i
i=1
int(T,)+1-t -int(T) -1
+ : Ca Qs ) / - -
frac(T,) (ka/la)- (1+1) (146> L-int(Ty-1 7%
where L. and past investments l.-,, 1i=1,... are known at time t.

Given T, from (74), production at time t is computed as (cf. (18)):

int(Ty)» -4
Q = X ke-(1+d) “- 1, +
t =1 t-1
~int(T,)-1
+ - Ko- ) : .
f!‘aC(Tt.) kn (1+44) It_int(Tt)_l 75)
The welfare function to be maximized is (cf. (19)):
t,
_t QL‘ (1’5*.)
vV = + .
mgf +i*~ (1+r) —p— (76)

subject to initial conditions, (74)-(75), the accumulation equations

lv = 5e-Qc 77

the control constraints

0 =s, 21 , (78>
and the terminal constraints (69).

In order to numerically solve the optimization problem described
above [ tried several algorithms. None of these, however, produced
satisfactory results. It turned out that the numerical solution is
highly unstable. This instability can be partly attributed to the
non-smoothness of the discretized model <(cf. equations (74) and
(75)). More generally, the objective function, in combination with
the nonlinear constraints (69), appears to be badly-behaved,
rendering convergence of any algorithm very difficult to achieve.

The MINOS-program (Murtagh & Saunders, 1983) handles the nonlinear
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constraints (69) 1in a direct way, using a so-called projected
augmented Lagrangian algorithm. An optimal solution was reported by
the program but the time path of s(-) was highly irregular. Further
analysis of the solution reveals that the corresponding values of
T(-)> are for most periods very close to being integer, points at
which the equations (74) and (75) are nondifferentiable. Apparently,
the nonsmoothness of the discretized problem 1s so severe that the
MINOS-algorithm breaks down.

A very flexible and convenient way of interactively controlling
the maximization process is offered by the SQG/PC-program develaped
by Alexel Gaivoronski at IIASA/SDS. It is actually intended to solve
stochastic optimal control problems but it can handle deterministic
problems as the one under consideration equally well (for a
description of an earlier mainframe-version of the program see
Ermoliev & Gaivoronski, 1984). The nonlinear constraints (69) were
taken into account by adding a penalty term to the objective function
(767,

However, for the present problem convergence of the solution was
very difficult to achieve. More seriously, the various algorithms
reproduced only a rough approximation to the optimal steady state
when the program was run with g, set equal to g-.

Finally I tried a very simple although rather time-consuming
simplex algorithm due to Nelder and Mead (described 1in Churchhouse,
1981). Here the findings were essentially the same as for SQG/PC:
very slow convergence, solutions sensitive to starting positions, and
high numerical instability in general.

Thus, the <conclusion of this sub-section 1s a simple and
disappointing one: for the capital-vintage model wunder consideration
it is very difficult to find the non-stationary optimal growth path
by direct methaods.

6.2. The indirect method

The 1indirect method computes the optimal growth path from the
singularity condition / difference equation (59). The computation
consists of two steps: computation of T(-) from (59); and computation
of s(-> given T(-). Contrary to the direct method where, in order to
keep the number of variables to be determined optimally within
reasonable limits discretization was necessary, the indirect method

works with a discretization that can be made as close to continuous
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time as one wishes.

The computation of T(-) starts from the initial steady state given
by

T =T8 ; s(£) = st t = ta, ..., ta + iRt(TE/4LY + 1 79
where dt is the discretization parameter. Naw for t=t,, t.+dt,

the variable Z(t) 1s obtained by numerically solving (59); the
intregral 1is approximated using the Trapezium Rule followed by
Romberg Integration <(e.g. Churchhouse, 1981). The result is saved as
Tlt+Z(t)>]1. Since the index t 1s necessarily discrete and the solution
Z(t) 1s generally not, the values of T[t+dt-int(Z2(t)/dt)] are
approximated by parabolic interpolation between three consecutive
values of t+Z(t).

The second step 1involves computing the time path of s(-)
corresponding to the simulated path of T(-). There are several ways
in which this can been done. Originally I used the method which is
illustrated in Figure 3. Here, along the Y-axis 1s plotted the
quantity

k(v) &-(v-t)
‘e .

RED] I(w v

E(v,t)

1A
e

i.e. employment at time +t on capital installed at time v. At time t
all values of E(v,t) for v=t-dt, t-2-dt, ... are known. Also T(t) and
L(t)> are known. The quantity E[t-T(t),tl 1is approximated by linear
interpolation (cf. point DO.

The integral

t
jt—T(t) E(v,t) dv

is approximated according to the Trapezium Rule. Its approximated
value is equal to the sum of the known area ABED and the unknown area
BCFE. The value of E(t,t) is found by requiring that the approximated

integral be equal to the size of the labour force, 1i.e.
L(t> = ABED + BCFE

The computed value of E(t,t) automatically yields the value of I(t).
Using this value, Q(t) is determined by a similar Trapezium Rule
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approximation. Finally the ratio of I(t) and Q(t) determines s(t).

This procedure, however, turned out not to be very successful in
practice. The computed non-stationary time path of the optimal
savings rate became wildly oscillating with an ever-increasing
amplitude, finally exploding out of the control space. No matter how
small the discretization parameter was chosen, the explosive praoperty
of the solution remained.

I therefore decided to use the difference equation (66) for the
computation of s(-). Here the time derivative of T(-) was
approximated by central differences while I[{t-T(t)] was obtained by
exponential interpolation between two consecutive values of I(-).
Once I(t)> has been found Q(t) and s(t) follow easily. The results of
this approach are summarized in Table 4 and Figure 4.

The results of the <simulation confirm the point raised in the
introduction, viz. that because of the fact that the state of the
economy is a function of 1its history non-stationarities are
particularly severe and persistent. The oscillations 1in the optimal
trajectories of T(-) and s(-) are quite strong (taking intoc account
that the demographical disturbance of the original steady state is
relatively small) and take a very long time to dampen out. Haowever,
gradually the optimally growing economy converges to a new stationary
growth path, 1in which both the optimal savings rate s and the optimal

lifetime of capital equipment T are once more constant.

7. SUMMARY AND CONCLUSIONS

In this paper I have investigated optimal economic growth in a model

with technical progress that 1is embodied in physical capital. The

production function corresponding to each capital vintage has been

taken to be of the fixed-coefficients type, as in Solaow e.a. (1966).

A suitable transformation of the Lagrangian allows the derivation

of necessary conditions for optimal economic growth. These necessary

conditions are 1in terms aof +two key variables which are inversely

related to each other, viz.:

- T(t), the age of the oldest capital in use at time t; and

- 2(t), the age at which capital installed at time t will become
obsolete.

Along a singular trajectory the necessary conditions reduce to a
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Generalized Golden Rule. It 1is shown that this Generalized Golden

Rule is nothing more than a disguised version of the Golden Rule for
more traditional growth models.

A comparative-statics analysis bears out that the optimal savings

rate in steady state varies positively with the growth rate of
population (g), the rate of labour-augmenting technical progress (1),
and the rate of depreciation (6§); and negatively with the social rate
of impatience (r). These results are essentially the same as for
models with disembodied technical change.

Investigation into the stability of \steady states yilelds the

canclusion that a necessary condition for the optimal economic growth
path to converge is that 1 > r+g+8. This is a puzzling result, as the
integral in the social welfare function 1is divergent 1f this
stability condition is satisfied. For T and s two difference-type of

equations have been derived which describe the dynamics of the
optimally controlled economy.

Direct methods of actually computing non-stationary optimal growth

paths for this model turn out to be unsuccessful, due to the high
numerical instability of the optimization problem. An indirect
method, however, which simply integrates the two difference equations
referred to above, ylelds a plausible and theoretically satisfying
optimal growth path. The results of the simulation show that non-

stationarities are particularly severe and persistent in this model,

as a result of the fact that the state of the economy is a function

of its 2153951.
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Figure 1: The double integral before changing the order of

integration
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Figure 2: The double integral after changing the order of integration
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Figure 3: Computation of s(t)
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The simulated non-staticonary optimal economic growth path

Figure 4:
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Table 1: Selected numerical steady-state values

28

r g § 1 T« | s i
l |

0. 02 0. 04 0. 02 0. 04 8.3115 i 0.1772 i

0. 02 0. 04 0. 02 0. 00 n.a. n.a.

0. 02 0. 04 0. 02 0. 02 12.61409 0.1289

0. 02 0. 04 0. 02 0. 04 8.3115 0.1772

0. 02 0. 04 0. 02 0. 06 6.7333 0.2165%5

0. 02 0. 04 0. 00 0. 04 8.06872 0.1682

0. 02 0. 04 0. 02 0. 04 8.3115 0.1772

0. 02 0. 04 0. 04 0. 04 8.5706 0.1868

0. 02 0. 04 0. 06 0. 04 8.8458 0.19271

0. 02 0. 00 0. 02 0. 04 n.a. n.a.

0. 02 0. 02 0. 092 0. 04 8.0632 0.1682

0. 02 0. 04 0. )2 0. 04 8.3115 0.1772

0. 02 0. 06 0. 02 0. 04 8.57068 0.1868 |
| [

0. 00 0. 04 0. 02 0. 04 8.0652 | 0.1806 |

0. 02 0. 04 0. 02 0. 04 8.3118 0.1772 |

0. 04 0. 04 0. 02 0. 04 8.5706 0.1737 |

0. 06 0. 04 0. 02 0. 04 8.8488 0,1703 \

Table 2: Comparative-statics effects

effect on: \ of: g ) 1

T=* + + -

s* + + +



Table 3: Parameters used in the simulations

parameter value

r 0.00

§ 0.00

1 0.05

8 0.03
hz; 0.02

t. 20

t. [30

¥ 1.00

1. 1.00
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Table 4: The simulated non-stationary optimal economic growth path

t] g Tty | S* (1) o t I gt | T* (%) f 5% () f
0 | 0.03 6.9278 | 0.1880 65 | 0.02 | 6.8473 | 0.1866
66 | 0.02 | 6.8440 | 0.1883
10 | 0.03 6.9278 | 0.1880 67 | 0.02 | 6.8396 | 0.1900
68 | 0.02 | 65,8353 | 0.1847
20 | 0.03 6.9278 | 0.1880 69 | 0.02 | 6.8379 | 0.1797
21 | 0.029 | 6.9276 | 0.1870 70 | 0.02 | 6.8417 | 0.1783
22 | 0.028 | 6.9264 | 0.1863 71 | 0.02 | 6.8470 | 0.1777
23 | 0.027 | 6.9232 | 0.1860 72 | 0.02 | 6.8459 | 0.1869
24 | 0.026 | 6.9167 | 0.1859 73 | 0.02 | 6.8431 | 0.1885
25 | 0.025 | 6.9060 | 0.1862 74 | 0.02 | 6.8323 | 0.1902
26 | 0.024 | 6.8899 | 0.1867 75 | 0.02 | 6.8367 | 0.1821
27 | 0.023 | 6.8700 | 0.1852 76 | 0.02 | 6.8300 | 0.1796
28 | 0.022 | 6.8690 | 0.1830 77 | 0.02 | 6.8423 | 0.1782
20 | 0.021 | 6.8666 | 0.1827 78 | 0.02 | 6.8464 | 0.1804
30| 0.02 6.8624 | 0.1827 79 | 0.02 | 6.8448 | 0.1870
31 | 0.02 6.8554 | 0.1842 80 | 0.02 | 6.8424 | 0.1386 |
32 | 0.02 6.8457 | 0.1858 81 | 0.02 | 6,839z | 0.1201 |
33 | 0.02 6.8334 | 0.1875 82 | 0.02 | 6,837% | 0.1811 |
34 | 0.02 6.8248 | 0.1819 83 | 0.02 | 6,8392 | 0.1796 |
35 | 0.02 6.8327 | 0.1812 84 | 0.02 | 6,8427 | 0.1783 |
36 | 0.02 6.8447 | 0.1806 85 | 0.02 | 6.8455 | 0.1832 |
37 | 0.02 6.8581 | 0.1829 86 | 0.02 | £,8432 | 0.1871 |
38 | 0.02 6.8518 | 0.1856 87 | 0.02 | £.8419 | 0.1386 |
39 | 0.02 6.8436 | 0.1873 88 | 0.02 | £.,8392 | 0.1203 |
40 | 0.02 6.8330 | 0.1892 89 | 0.02 | £.8388 | 0.1809 |
41 | 0.02 6.8289 | 0.1811 90 | 0.02 | 6.8405 | 0.1797 |
42 | 0.02 6.8358 | 0.1801 91 | 0.02 | £,8429 | 0.1784 |
43 | 0.02 6.8460 | 0.1791 92 | 0.02 | 6.8445 | 0.1851
44 | 0.02 6.8543 | 0.1847 93 | 0.02 | 6.8433 | 0.1872
45 | 0.02 6.8490 | 0.1866 94 | 0.02 | 6.8415 | 0.1885 |
46 | 0.02 6.8420 | 0.1880 95 | 0.02 | 5.8392 | 0.1896
47 | 0.02 6.8330 | 0.1903 96 | 0.02 | 6,8395 | 0.1809
48 0.02 6.8320 0.1806 97 0.02 6.8410 | 0.1798 |
49 | 0.02 6.8380 | 0.1794 98 | 0.02 | 56,8431 | 0.1785
50 | 0.02 6.8467 | 0.1781 99 | 0.02 | 5.8439 | 0.1858
51 | 0.02 6.8514 | 0.1857 100 | 0.02 | 6.8428 | 0.1872
52 | 0.02 6.8469 | 0.1874 101 | 0.02 | 6.8413 | 0.1884
53 | 0.02 6.8408 | 0.1892 102 | 0.02 | 6,8394 | 0.1875
54 | 0.02 6.8331 | 0.1917 103 | 0.02 | 6.8401 | 0.1810
55 | 0.02 6.8345 | 0.1802 104 | 0.02 | 6.8414 | 0.1799
56 | 0.02 6.8397 | 0.1788 105 | 0.02 | 6.8431 | 0.1788
57 | 0.02 6.8470 | 0.1775 106 | 0.02 | 6,8434 | 0.1860
58 | 0.02 6.8491 | 0.1863 107 | 0.02 | 6.8424 | 0.1871
59 | 0.02 6.8452 | 0.1879 108 | 0.02 | 6.8411 | 0.1882
60 | 0.02 6.8401 | 0.1897 109 | 0.02 | 5.8398 | 0.1851
61 | 0.02 6.8339 | 0.1890 110 | 0.02 | 6.8405 | 0.1811 |
62 | 0.02 6.8364 | 0.1799 | |
63 | 0.02 6.8409 | 0.1785 | |
64 | 0.02 6.8472 | 0.1767 ® | 0.02 | §.8417 l 0.1839 ‘
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