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1. I NTKODUCT I ON ---- 

The ----- t h e o r y  of economic glowth a t t e m p t s  t o  d e s c r i b e  and t o  e x p l a i n  t h e  

long-run development over  t ime of an  economic sys tem ( o r  economy, f o r  

s h o r t ) .  An economic sys tem is e s s e n t i a l l y  dynamic i n  n a t u r e .  The 

t h r e e  most impor tant  s o u r c e s  of dynamics i n  economics a r e :  

accumulat ion of c a p i t a l  ( i n v e s t m e n t ) ,  -- popu la t ion  - growth,  -- and 

t e c h n i c a l  c h a n ~ .  Moreover, some of t h e s e  dynamic f o r c e s  a r e ,  a t  

l e a s t  p a r t l y ,  endogenous t o  t h e  economic sys tem,  i .  e .  determined by 

economic f o r c e s  

A concept  of c o n s i d e r a b l e  i n t e r e s t  i n  growth t h e o r y  is t h e  concept  

of t h e  s t e a d y s t a t e .  A s t e a d y  s t a t e  is a  s i t u a t i o n  of economic 

development i n  which a l l  v a r i a b l e s  grow a t  a  c o n s t a n t  r a t e .  These 

r a t e s  can be d i f f e r e n t  f o r  d i f f e r e n t  v a r i a b l e s ;  it can a l s o  be z e r o ,  

s o  t h a t  t h e  cor respond ing v a r i a b l e  is a  c o n s t a n t  i n  s t e a d y  s t a t e .  I t  

shou ld  be po in ted  o u t  t h a t  a  necessary ,  though by no means 

s u f f i c i e n t ,  c o n d i t i o n  f o r  a  s t e a d y  s t a t e  t o  occur  is t h a t  t h e  

r e l e v a n t  exogenous v a r i a b l e s  ( l i k e  e . g .  p o p u l a t i o n )  grow a t  a  

c ~ n s t a n t  r a t e .  

The t h e o r y  of q t i m l  economic growth assumes t h a t  one o r  more 

v a r i a b l e s  i n  t h e  economic sys tem can be c o n t r o l l e d  and is concerned 

wi th  de te rm in ing  t h e s e  c o n t r o l  v a r i a b l e s  i n  such  a  way t h a t  t h e  

r e s u l t i n g  economic development is opt imal  w i th  r e s p e c t  t o  some 

o b j e c t i v e  o r  we l fa re  f u n c t i o n .  Optimal economic growth h a s  been 

p ioneered by Ramsey i n  h i s  seminal  (1928) a r t i c l e .  

Probably t h e  most famous r e s u l t  of opt imal  economic growth t h e o r y  

is t h e  s o - c a l l e d  Golden ----- Rule (Phe lps ,  1961; Robinson, 1962) .  I t  was 

o r i g i n a l l y  d e r i v e d  w i t h i n  t h e  c o n t e x t  of comparat ive  s t a t i c s ,  1 . e .  

comparing s t e a d y  s t a t e s .  The Golden Rule s t a t e s  t h a t  t h e  s t e a d y  s t a t e  

w i th  t h e  h i g h e s t  l e v e l  of consumption pe r  c a p i t a  is c h a r a c t e r i z e d  by 

t h e  e q u a l i t y  of t h e  marginal  p r o d u c t i v i t y  of c a p i t a l  and t h e  growth 

r a t e  of t h e  popu la t ion .  Cass (1965) has  shown t h a t  t h e  Golden Rule 

can a l t e r n a t i v e l y  be d e r i v e d  a s  t h e  e q u i l i b r i u m  p o s i t i o n  ( s i n g u l a r  -- 

s o l u t i o n )  of an  opt imal  c o n t r o l  problem, w i th  t h e  i n t e g r a l  of 

consumption p e r  c a p i t a  a s  t h e  o b j e c t i v e  f u n c t i o n .  S ince  its f i r s t  

appearance i n  t h e  l i t e r a t u r e  numerous g e n e r a l i z a t i o n s  and e x t e n s i o n s  

of t h e  Golden Rule have been d e r i v e d  by v a r i o u s  a u t h o r s .  

The main drawback of t h e  whole concept  of t h e  Golden Rule is its 

t i g h t  l i n k  w i th  t h e  n o t i o n  of t h e  s t e a d y  s t a t e .  Although t h e  l a t t e r  



is -Jery appea l ing  from a  t h e o r e t i c a l  p o i n t  of view i t  is hard ly  

r e l e v a n t  f o r  a c t u a l  economic development. A t  noted above, s t e a d y  

s t a t e s  can come about  on ly  i f  t h e  exogenous v a r i a b l e s  grow a t  a  

c o n s t a n t  r a t e .  C l e a r l y ,  t h i s  c o n d i t i o n  is not s a t i s f i e d  i n  r e a l i t y .  

Th is  is most obv ious f o r  popu la t ion ,  of which t h e  growth r a t e  is 

f l u c t u a t i n g  q u i t e  s t r o n g l y ;  t y p i c a l l y ,  t h e  growth r a t e  of popu la t ion  

is p r e s e n t l y  f a l l i n g  i n  a lmost  a l l  i n d u s t r i a l i z e d  c o u n t r i e s .  Another 

example is t e c h n i c a l  change, a l though  it shou ld  be added t h a t  it is 

not i m e d i a t e l y  c l e a r  whether t h i s  is a  t r u l y  exogenous v a r i a b l e .  

The purpose of my r e s e a r c h  is t o  ana lyze t h e  e f f e c t s  of changes i n  -- 

t h e  ---Q orowth r a t e  o f p o p u l a t i o n  - -- (8') on t h e  o p t i m l  economic KT&& 

p a t h .  Among t h e  most important  v a r i a b l e s  t h a t  a r e  d i r e c t l y  a f f e c t e d  

by changes i n  gF' n r e  t h e  fo!lcwing: 

1. t h e  s h e e r  s i z e  of t h e  popu la t ion ,  i .  e .  number of consumers and 

s i z e  of t h e  labour  f o r c e ;  

2 .  t h e  labour  fo r -ce /popu la t ion- ra t io  and its complement t h e  

dependency- ra t io ;  

3.  more g e n e r a l l y ,  t h e  a g e - s t r u c t u r e  of t h e  popu la t ion .  

These and r e l a t e d  demographic v a r i a b l e s  i n  t u r n  a f f e c t  many of t h e  

economic v a r i a b l e s ;  i n  p a r t i c u l a r ,  t hey  a f f e c t  t h e  opt imal  v a l u e s  of 

t h e  c o n t r o l  v a r i a b l e s .  

A popu la t ion  wi th  a  c o n s t a n t  a g e - s t r u c t u r e  is s a i d  t o  be 

s t a t i o n a r j .  If t h e  a g e - s p e c i f i c  m o r t a l i t y  r a t e s  a r e  c o n s t a n t ,  t h e n  a  

popu la t ion  is s t a t i o n a r y  i f  and on ly  i f  t h e  growth r a t e  of t h e  number 

of newborns (gm;) h a s  been c o n s t a n t  f o r  a t  l e a s t  n  y e a r s ,  where n is 

t h e  maximum age t h a t  man can r e a c h  ( s a y  100 y e a r s ) .  Obviously,  s i n c e  

t h e  a g e - s t r u c t u r e  of t h e  popu la t ion  is a n  important  economic 

v a r i a b l e ,  a  temporary change i n  t h e  growth r a t e  of newborns d u r i n g  m 

y e a r s  r e s u l t s  i n  a d e p a r t u r e  of t h e  economic growth pa th  from s t e a d y  

s t a t e  f o r  a t  l e a s t  mtn y e a r s .  The p e r i o d  d u r i n g  which t h e  age- 

s t r u c t u r e  of t h e  popu la t ion  is non-constant ,  popu la t ion  i t s e l f  be ing 

n c n - s t a t i o n a r j ,  can be l a b e l l e d  a  pe r iod  of demographic t r a n s i t i o n .  

There a r e  f o u r  broad groups of growth models t h a t  a r e  ana lyzed i n  

my d i s s e r t a t i o n .  These a r e  t h e  fo l lowing:  

1, t h e  s imp le  n e o c l a s s i c a l  one-sector  model of Solow (1956) .  Th is  

a n a l y s i s  can  be regarded  a s  a  non-s ta t ionary  g e n e r a l i z a t i o n  of t h e  



classical Golden Rule case; 

2. one-sector models with technical change; 

3. one-sector models with education; 

4 ,  one-sector models with education and technical change. 

For each model the analysis consists of four steps: 

1. formulation of the model in mathematical terms; 

2. the derivation of the necessary conditions for optimal economic 

growth, using the Maximum Principle of control theory; 

3. characterization of steady states as equilibrium points (singular 

solutions) of the optimal control problem, as well as comparative 

statics, i.e, assessing the effects of changes in the long-run 

growth rate of the population on the steady-state values of the 

economic variables; 

4. analysis of the non-stationary optimal economic growth path, i.e. 

the optimal growth path moving the economy from its initial steady 

state to its new steady state (after the period of demographic 

transition has come to an end). 

Some results obtained thus far have been published in the form of 

working papers. The analysis of optimal growth in the basic one- 

sector model is given in Van Imhoff & Ritzen (1987). A model with 

education is considered in Van Imhoff (1985). 

The present paper analyzes optimal economic growth in a model with 

technical change that is embodied in physical capital. For a 

discussion of this and other types of technical change, as well as  of 

their relation to the production function, see Van Imhoff (1986a). If 

technical change is embodied in capital the model becomes one of 

capital vintages, i.e. capital goods (machines) are distinguished by - -- 

their date of construction. Thus the development of the economy is an 

explicit function of its history, at least of its most recent 

history. This feature should lead one to expect that non- 

stationarities in the economic development triggered by the 

occurrence of demographic transition are particularly severe and 

persistent in this model. 

The following assumptions will be made throughout this paper: 

1 ,  there is one single production sector that produces an aggregate 
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commodity. Production can be either consumed or added to the stock 

of physical capital which is distinguished according to its date 

of construction; 

2. economic decisions are made by a central planning agency which 

seeks to maximize some social welfare function in terms of 

consumption per capita; 

3 .  human capital (showing in labour efficiency) is a function of age 

only (i.e. investment in education will not be considered). 

The plan of the remainder of this paper is as follows. Section 2 

spells out the model. In section 3 a condition for optimal economic 

growth will be derived. This condition turn out to be in many 

respects similar to the well-known Golden Rule of Accumulation 

mentioned above. Section 4 gives some comparative statics results. In 

section 5 I analyze the stability of steady states while section 6 

investigates some properties of the non-stationary optimal growth 

path. The final section summarizes the main results. 

2. THE FIXED-COEFFICIENTS CAPITAL VINTAGE WODEL 

The growth model consists of three building blocks: population and 

labour; production, investment, and technical change; and the social 

welfare function to be maximized by the central planning agency. Each 

block will be described in turn. 

2.1. Population and labour 

The model is one of overlapping generations in continuous time. The 

number of individuals born at time t is denoted by B(t). The number 

of newborns at time t is related to the number of newborns in the 

previous period by the rate of growth of births, denoted by gU(t>: 

The dynamic path of gB(t> will be assumed to be completely 

exogenously determined. 

If people die according to some fixed age-specific survival 

schedule p(v> and if maximum age is denoted by n, then total 

population at time t P(t> can be written as 



where 

Each i n d i v i d u a l  is endowed wi th  a  s t o c k  of human c a p i t a l  h ( v )  t h a t  is 

a f u n c t i o n  of age v  on ly .  T h i s  i m p l i e s  t h a t  a l l  i n d i v i d u a l s  of a  

g i ven  age a r e  equa l  i n  t h e i r  a b i l i t y  t o  produce.  T y p i c a l l y  t h e  

f u n c t i o n  h ( v )  is assumed t o  be unimodal, w i th  low v a l u e s  f o r  v  c l o s e  

t o  z e r o  and v  c l o s e  t o  n  and h igher  v a l u e s  f o r  a g e s  i n  t h e  

in te rmed ia te  range.  The labour  f o r c e  a t  t ime t L ( t >  measured i n  u n i t s  

of human c a p i t a l  can now be w r i t t e n  a s  

The r a t e  of popu la t ion  growth g P ( t )  is d e f i n e d  by 

S i m i l a r l y ,  t h e  r a t e  of growth of t h e  labour  f o r c e  g L ( t )  is d e f i n e d  

by : 

In g e n e r a l ,  g i ven  t h e  s u r v i v a l  schedu le  p ( v >  and t h e  a g e - a b i l i t y  

p r o f i l e  h ( v ) ,  t h e  growth r a t e s  g P ( t )  and &(t> a r e  comple te ly  

determined by t h e  dynamic p a t h  of g H ( t > .  Equ iva len t l y ,  gP"(t)  and 

gL!t> r e  a f u n c t i o n  of r(t) and t h e  a g e - s t r u c t u r e  of t h e  

popu la t ion .  When g m ( t )  is c o n s t a n t  f o r  a t  l e a s t  n s u c c e s s i v e  p e r i o d s  

then  t h e  a g e - s t r u c t u r e  of t h e  popu la t ion  is a l s o  c o n s t a n t  and we 

have : 

g p ( t )  = #-it! = g@( t )  = g , s a y  

In t h i s  c a s e  t h e  popu la t ion  is s a i d  t o  be s t a t i o n a r y .  



2 . 2 .  - - - P r o d u c t i o n ,  - -- i nves tmen t ,  and t e c h n i c a l  -- change 

The a g g r e g a t e  commodity is produced from labou r  and ( p h y s i c a l )  

c a p i t a l  where c a p i t a l  goods are d i s t i n g u i s h e d  by t h e i r  d a t e  of 

c o n s t r u c t i o n .  P r o d u c t i o n  o b t a i n e d  f rom c a p i t a l  of  a  c e r t a i n  v i n t a g e  

is d e s c r i b e d  by a s o - c a l l e d  v i n t a g e  p r o d u c t i o n  f u n c t i o n :  

Here v  is t h e  t ime  a t  which t h e  c a p i t a l  goods  under  c o n s i d e r a t i o n  

have been c o n s t r u c t e d ;  K ( v , t )  is t h e  s i z e  of t h e  c a p i t a l  s t o c k  

i n s t a l l e d  a t  t ime  v  and still i n  e x i s t e n c e  a t  t ime  t ( t h i s  c o u l d  be 

l e s s  t h a n  t h e  amount o r i g i n a l l y  i n v e s t e d  a s  a  r e s u l t  of 

d e p r e c i a t i o n ) ;  L ( v , t )  is t h e  amount of l a b o u r  a l l o c a t e d  t o  work w i t h  

t h e  c a p i t a l  goods i n  q u e s t i o n ;  and Q ( v , t )  is t h e  r e s u l t i n g  o u t p u t .  

The f a c t  t h a t  t h e  v i n t a g e  p roduc t i on  f u n c t i o n  F [ - I  is p a r a m e t r i z e d  

w i th  a n  index  v  r e f l e c t s  t h e  p resence  of cap i t a l -embod ied  c a p i t a l  

change:  t h e  p r o d u c t i v i t y  of  g i v e n  amounts of f a c t o r  i n p u t s  K and L  

depends on t h e  d a t e  a t  which t h e  c a p i t a l  goods have been i n s t a l l e d .  

T o t a l  p r o d u c t i o n  a t  t ime  t is g i v e n  by t h e  sum of a l l  o u t p u t s  

produced f rom t h e  d i f f e r e n t  c a p i t a l  v i n t a g e s ,  i . e .  

P h y s i c a l  c a p i t a l  is s u b j e c t  t o  d e p r e c i a t i o n  a t  a c o n s t a n t  r a t e  6 :  

In each  p e r i o d  a  f r a c t i o n  o f  t o t a l  o u t p u t  is saved  and added t o  t h e  

c a p i t a l  s t o c k  ( i n v e s t e d ) :  

The ( g r o s s )  r a t e  of s a v i n g s  s(t )  canno t  exceed one.  I t  w i l l  be 

assumed t h a t  p h y s i c a l  c a p i t a l ,  once i n s t a l l e d ,  is n o t  f i t  f o r  

consumpt ion which i m p l i e s  t h a t  t h e  r a t e  of s a v i n g s  canno t  become 

n e g a t i v e .  Output  no t  i n v e s t e d  i n  p h y s i c a l  c a p i t a l  is consumed. T o t a l  

consurnpt lon e q u a l s :  



We are left with the specification of the production function ( 8 ) .  I 

assume the vintage production function to be characterized by fixed 

factor proportions ("clay-clay"): 

Q(v,t) = min {k(v)-K(v,t), l(v)-L(v,t)) for all v I t  (13) 

This model has been investigated extensively by Solow et alii (1966). 

k(-) and 1(-) are indexes of capital-augmenting and labour-augmenting 

technology, respectively. The development over time of these indexes 

is assumed to satisfy: 

Most of the time I will assume that k(-) is constant and that I(-) 

grows exponentially over time, i.e. technical change is exponential 

and Harrod-neutral everywhere. 

From ( 9 ) ,  (13) and (14) it is evident that, given the stocks of 

physical capital of all different vintages, production at time t is 

maximized by allocating labour across capital vintages such that: 

K - ~ ( v , t )  for all v z t - 

for all v < t - T(t) 

where T(t) denotes the a x  of the oldest capital vintage in use at 

time t. T(t) is restricted by the size of the labour force: 

(9)-(ll), (13), (15) and (16) together imply: 

6 (v-t 
= JE-T(t) k(v) - e - I (v) dv 

It should be stressed that in (17), L(t) is exogenous and T(t) - 

endogenous, not the other way round. 



2 . 3 .  Social welfare 

We will take the social welfare function, of which the maximization 

is the object of the central planning agency, to be simply the 

discounted sum of per capita consumption: 

where r is the social rate of time preference. For a discussion of 

this and related sociale welfare functions see Burmeister & Dobell 

(1970), pp. 398-400). One reason for choosing specification (19) is 

that it corresponds closely to the social welfare function in the 

earlier writings on the steady-state Golden Rule, maximizing long-run 

susta inatle consumption per head. 

3. OPTIMAL ECONOMIC GROWTH - --- 

The central planning agency maximizes the social welfare function 

(19) subject to (17), (la), and 

0 5 Ict) I Q(t) (boundary restriction on the control) (20) 

I(v) = I., for all v<O (initial ccnditions) (21) 

The control variable is I(t). Although I(t) determines T(t) via (17), 

and T(t) determines Q(t) via (la), I treat I(t), T(t) and Q(t) as 

three independent control variables that are restricted by (17) and 

( 1 8 ) .  

In the analysis that follows I have made use of some very valuable 

advice given to me by Onno van Hilten of Limburg University (cf. 

Malcomson, 1975; Nickell, 1975; Verheyen & Lieshout, 1978). 

Linking restrictions (17) and (18) to the maximand (19) with the 

use of the Lagrange multipliers wL.(t) and w,Ct) yields: 



The last term on the R H S  of (22) is a double integral. The area over 

which the integration is performed is the shaded area in Figure 1. 

If the function T(t) is such that 

T'(t) > -1 for all t (23) 

(i.e. capital once out of use remains out of use forever), then the 

following inverse funcion of t-T(t) exists: 

From (24): 

Thus, Z(t) is the age at which capital installed at time t will 

become obsolete. From (23) and (25) we find that: 

Z'(t) = T'[t+Z(t)l. {l+Z'(t)) ==> Z'(t> > -1 for all t (26 > 

Using the definition of Z(t), a double integral of some function 

f(v,t> over the shaded area in Figure 1 can be rewritten by changing 

the order of integration as follows: 

In Figure 2 the shaded area corresponds to the first integral on the 

R H S  of (27) while the cross-hatched area corresponds to the second 

integral. 

Using (27) after interchanging the symbols v and t, the integral 

9 



i n  (22 )  can be w r i t t e n  a s :  

In w r i t i ng  t h e  t h i r d  i n t e g r a l  i n  (28) use has  been made of t h e  

i n i t i a l  cond i t i ons  i n  ( 21 ) .  

Necessary cond i t i ons  f o r  t h e  maximization of V a r e  t h a t  t h e  

in teg rand  i n  (28) be maximized wi th  r espec t  t o  t h e  c o n t r o l s  I ( -  ) ,  

Q ( - )  Z ( - )  and be minimized with respect to the multipliers w g ( - )  and w L ( - ) ,  at 

each point in time. If attention is restricted to time periods later than Z(O),  then the 

third integral in (28) vanishes and the necessary conditions are the following: 

From now on I w i l l  concen t ra te  on s i n g u l a r  a r c s .  In  o t h e r  words: I -- 
w i l l  assume an -- i n t e r i o r  s o l u t i o n  t o  opt imal  investment ,  such t h a t  

O < I ( t ) < Q ( t )  and t h e  RHS of (30) is i d e n t i c a l l y  ze ro .  

Under t h i s  assumpt ion (31)  imp l ies :  



or, equivalently, lagging (34) by Z(t) periods and using (24) 

On the other hand we have from (29) and the observation that the 

conditions (29) through (33) must hold for longer than a single 

instant along a singular arc: 

from which, using (29) and definition (5): 

Integrating (37): 

Substitution of (35) and (38) into (30), using (29) ,  yields: 

-rt 
e 0 = [ -  1 t 1 t+Z(t) t exp [ - 1: [rtdtg (u)l du ] - h i t ) -  

Bearing in mind the inverse relationship between Z ( - )  and T(- ) ,  

equation (39) is a condition for the occurrence of a singular arc in -- 
terms of the lifetimes of subsequent capital vintages. -- 

I will now show that condition (39) is equivalent to the non- - 

stationarj -- Golden Rule for the simple (non-vintage) neoclassical 

model as derived in Van Imhoff & Ritzen (1987). The marginal 

productivity of capital of some vintage v can be obtained from (18): 

where the indicator function J,(x) is defined by 



From (17) we have: 

from which . 

and thus, from (40) and (43): 

From (44) and ( 2 4 )  it follows that: 

(cf. Solow e. a . ,  1966). 

Thus it can be seen that the integral in the RHS of (39) is equal 

to the present value of all future returns to investment m d e  at time 

t, discounted at a rate equal to the sum of the rates of social 

impatience (r), depreciation (6), and population growth (r). On the 

other hand, the marginal costs of investment (in terms of consumption 

foregone) equal unity. Thus condition (39) simply says that the 

singular arc is characterized by the familiar equality of mrginal 

costs of and returns to investment. 

The condition spelled out in the previous paragraph is easily seen 

to be the finite-lifetime equivalent of the non-stationary Golden 

Rule of Van Imhoff b Ritzen (1987). With infinite lifetime of capital 

(no obsolescence) the condition becomes: 

P Q(v) dv 
1 = 1; exp [ - 1; [rtstg (U)I du 1 - - 
Differentiating (46) with respect to time t: 

from which, using (46): 

12 



which is t h e  n o n - s t a t i o n a r y  Golden Ru le .  

4 .  COKPARATIVE STATICS 

I f  p o p u l a t i o n  grows a t  a  c o n s t a n t  r a t e  g ,  and  i f  t e c h n i c a l  p r o g r e s s  

is e x p o n e n t i a l  and  Ha r rod -neu t ra l  everywhere ,  i . e .  

k ( t )  = kO ; l ( t )  = 1 - e  
1 t 

0  
w i t h  kO,  lo, 1 c o n s t a n t  ( 4 9 )  

t h e n  t h e  o p t i m a l  g rowth  p a t h  c o u l d  w e l l  l e a d  t h e  economy i n t o  a  

s t e a d y  s t a t e .  -- 
I n  s t e a d y  s t a t e  t h e  o p t i m a l  s a v i n g s  r a t e  is c o n s t a n t .  A s  Solow 

e . a .  (1966)  have shown a  c o n s t a n t  s a v i n g s  r a t e  f o r  t h i s  model i m p l i e s  

t h e  maximum a g e  of  c a p i t a l  t o  be c o n s t a n t  t o o ,  i . e .  Z ( t )  = T ( t )  = T*, 

s a y .  

The v a l u e  of T* can be o b t a i n e d  by s o l v i n g  (39).  C a r r y i n g  o u t  t h e  

i n t e g r a t i o n  y i e l d s :  

- 1 - T'* 
==> ( a - 1 ) -  (a -1 )  + a - e  -a -  TC 

- 1 - e  = 0  

where I write 

f o r  n o t a t i o n a l  convenc ience .  

Equa t i on  ( 5 0 )  canno t  be e x p l i c i t l y  s o l v e d  f o r  T*. I f  we d e f i n e  

-1- T+ G(T*, = !j-l!- (3-1, + a - e  -a -  TC 
- 1-e  (52) 

a s t e a d y - s t a t e  v a l u e  f o r  T+ e x i s t s  i f  G ( - 1  h a s  a f i n i t e  p o s i t i v e  



r o o t .  S ince  

is monotonous on R', a p o s i t i v e  r o o t  of G ( - !  is unique i f  it e x i s t s .  

The e x i s t e n c e  of such a  r o o t  depends on t h e  v a l u e s  of a  and 1. 

Analys is  of t h e  f u n c t i o n  G ( -  > y i e l d s  t h e  fo l l ow ing  t a b l e a u :  

parameter  v a l u e s  number of p o s i t i v e  r o o t s  of G ( - !  i 
ncne 

---i 
I 
I 

ncne 
i n f i n i t e  ( i d e n t i t y )  

I 
one r o o t  ( i f  a < l )  

I 
one r o o t  ( i f  a < l )  

I 
none 

l 
one r o o t  

I 
none 

I 
none 

I 
I 

Thus we have t h e  f o l l o w i n g  e x i s t e n c e  c o n d i t i o n :  -- 

a n  opt imal  s t e a d y - s t a t e  va lue  f o r  T" e x i s t s  on ly  i f  

1 > 0 ,  a < l ,  a10 and aZ1 

However, a  s t e a d y  s t a t e  must a l s o  be f e a s i b l e .  That is, t h e  s a v i n g s  

r a t e  sC = I+/Q4 cor respond ing t o  t h e  s t e a d y - s t a t e  va lue  of TC must be 

between z e r o  and u n i t y  ( c f .  c o n d i t i o n  ( 2 0 ) ) .  From (17)  and (49)  i t  is 

seen  t h a t  i n  s t e a d y  s t a t e  investment I ( -  > grows a t  an  e x p o n e n t i a l  

r a t e  g t l ;  and from (18)  s o  does  p roduc t ion  Q(- > .  Then w e  have from 

( 1 8 ) :  

Given t h e  form of c o n d i t i o n  (50)  and express ion  (55) it is very  

d i f f i c u l t  t o  o b t a i n  g e n e r a l  c o m p a r a t i v e - s t a t i c s  r e s u l t s ,  t h a t  is t o  

s i y n  t h e  p a r t i a l  d e r i v a t i v e s  of  s* and T* with r e s p e c t  t o  t h e  

parameters  g ,  1 ,  r and 6.  Some numerical  c a l c u l a t i o n s  of s t e a d y  
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s t a t e s  a r e  g i v e n  i n  Tab le  1. These r e s u l t s  s u g g e s t  t h a t  f o r  

r e a s o n a b l e  v a l u e s  of t h e  pa ramete rs  t h e  s i g n s  o f  t h e  p a r t i a l  

d e r i v a t i v e s  a r e  as i n  Tab le  2 .  

I t  is i n t e r e s t i n g  t o  n o t e  t h a t  t h e s e  c o m p a r a t i v e - s t a t i c s  r e s u l t s ,  

a s  f a r  a s  t h e  s a v i n g s  r a t e  is concerned,  a r e  e s s e n t i a l l y  t h e  same a s  

f o r  t h e  s i m p l e  n e o c l a s s i c a l  model w i t h  d isembod ied  - t e c h n i c a l  change 

(see Van Imhof f ,  1986b) .  Moreover, i f  one is prepa red  t o  i n t e r p r e t  an  

i n c r e a s e  i n  T  a s  a  d e c r e a s e  i n  t h e  " c a p i t a l / l a b o u r - r a t i o " ,  t h e n  ( w i t h  

t h e  e x c e p t i o n  o f  t h e  e f f e c t  of  1) t h e  r e s u l t s  o f  t h e  two models are 

s i m i l a r  t o o  f o r  t h e  c a p i t a l  v a r i a b l e .  

5. STABILITY OF STEADY STATES 

Along a  s i n g u l a r  arc t h e  endogenous v a r i a b l e  T ( t ) ,  b e i n g  t h e  a g e  of 

t h e  o l d e s t  c a p i t a l  v i n t a g e  i n  o p e r a t i o n  a t  time t ,  d e v e l o p s  ove r  t ime  

a c c o r d i n g  t o  e q u a t i o n  ( 3 9 ) .  The q u e s t i o n  c a n  now be r a i s e d :  d o e s  t h e  

op t ima l  economic growth p a t h  under  s u i t a b l e  e x t e r n a l  c o n d i t i o n s  

c o n v e s e  - t owards  a s t e a d y  s t a t e ?  P a r t i c u l a r l y ,  i f  p o p u l a t i o n  grows a t  

a c o n s t a n t  rate g  and i f  t e c h n i c a l  p r o g r e s s  is e x p o n e n t i a l  and  

Har rod -neu t ra l  everywhere,  d o e s  t h e n  a  t r a j e c t o r y  T ( - )  s a t i s f y i n g  

(39 )  converge  towards  t h e  c o n s t a n t  v a l u e  T"? T h i s  q u e s t i o n  is 

impo r tan t  a s  i t  r e l a t e s  t o  t h e  s t a b i l i t y  -- of  t h e  s t e a d y  s t a t e .  

From (39 )  and ( 4 9 )  w e  have:  

D i f f e r e n t i a t i o n  o f  (56 )  w i t h  r e s p e c t  t o  t y i e l d s :  

P 
0 = [ l t i ! ( t ) l  -exp[- IitZ(t) [ r t b t g  ( u ) l  du ] .  [1-e 1- { Z ( t ) - ~ [ t + ~ ( t ! )  I + 

P  1- [ v - t - ~ i ~ ) ]  
exp[- I: [ r t d t g  ( u )  I  du] - [I-e ] dv 

The f i r s t  term i n  (57 )  is e q u a l  t o  z e r o  because o f  ( 2 5 ) .  The t h i r d  

term 1s e q u a l  t o  [ r + J + r ( t ) l / k r . ,  u s i n g  ( 5 6 ) .  The f o u r t h  t e r m  e q u a l s  
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also using (56). Thus, equation (57) can be written as: 

Equation (59), together with definition (25), is an interesting type 

of difference equation linking T(t) and Z(t): it gives a relationship 

along the singular arc between the oldest age of capital at time t on 

the one hand, and the oldest age that capital installed at time t 

will ever reach on the other hand. 

It is easily seen that a necessary and sufficient condition for 

the difference equation (59) to converge is given by 

Carrying out the differentiation yields: 

P 
dZ(t) = exp [ - l -~( t )  t /:tZ(t) [rtstg (U)I du 1 m 

which in the case of stationary population reduces to: 

This expression is always positive. In the neighbourhood of the 

steady state we have Z(t) T(t), so that a necessary condition for 

local convergence (local stability of the steady state) is: 

This is quite an uncomfortable result as it implies that the integral 

of the social welfare function (19) diverges - for a locally stable 

singular arc. 

A difference equation similar in kind to (59) can also be derived 

for s(-). From (17) and (49) we have: 



D i f f e r e n t i a t i o n  of (64 )  w i t h  r e s p e c t  t o  time y i e l d s :  

A f t e r  s u b s t i t u t i o n  of (64 )  and ( 6 )  and some r e a r r a n g i n g  (65 )  r e d u c e s  

t o :  

o r ,  e q u i v a l e n t l y :  

Exp ress ion  ( 6 7 )  is a k i n d  of d i f f e r e n c e  e q u a t i o n  l i n k i n g  t h e  s a v i n g s  

r a t e  a t  t ime  t t o  t h e  s a v i n g s  rate a t  t h e  t i m e a t  which t h e  o l d e s t  

c a p i t a l  i n  u s e  a t  time t h a s  been i n s t a l l e d .  

In  t h e  neighbourhood of t h e  s t e a d y  sta te  w e  have:  

e 
L - L ( t )  a c o n s t a n t  
T 

s o  t h a t  

Thus t h e  n o n - s t a t i o n a r y  t ime  p a t h  of s ( ->  is l o c a l l y  conve rgen t  as 

t h e  economy app roaches  its new s t e a d y - s t a t e  g rowth  p a t h .  



6. THE NON-STATIONARY OPTIHAL ECONOMIC GROWTH PATH 

Along t h e  s i n g u l a r  a r c  t h e  t ime pa th  of t h e  l i f e t i m e  of subsequent  

c a p i t a l  v i n t a g e s  is governed by c o n d i t i o n  ( 3 9 ) .  C l e a r l y  t h i s  

c o n d i t i o n  is t o o  compl ica ted t o  a l l o w  t h e  d e r i v a t i o n  of g e n e r a l  

c h a r a c t e r i s t i c s  of t h e  non-s ta t ionary  opt imal  economic growth p a t h  

( a s  i n  Van Imhoff & Ri tzen ,  1987). For t h i s  p a r t i c u l a r  vintage-model,  

t h e r e f o r e ,  I must be c o n t e n t  w i th  t h e  more modest t a r g e t  of t r y i n g  t o  

s i m u l a t e  an  opt imal  economic growth pa th  g iven some f i x e d  v a l u e s  f o r  

t h e  e x t e r n a l  parameters .  

The s i m u l a t i o n  problem can be d e s c r i b e d  a s  fo l l ows .  Given a r e  

s p e c i f i e d  v a l u e s  f o r :  

- r ,  t h e  s o c i a l  r a t e  of impat ience;  

- 6 ,  t h e  r a t e  of c a p i t a l  d e p r e c i a t i o n ;  

- 1, t h e  r a t e  of labour-augmenting t e c h n i c a l  p rog ress .  

I t  is assumed t h a t  i n i t i a l l y  t h e  growth r a t e  of popu la t ion  h a s  been 

c o n s t a n t  (g,,) f o r  a  long t ime ,  and t h a t  t h e  economy is i n  its opt imal  

s t e a d y  s t a t e  co r respond ing  t o  t h i s  popu la t ion  growth r a t e  g,,. A t  a  

c e r t a i n  p o i n t  i n  t ime (t,) t h e  growth r a t e  of popu la t ion  beg ins  t o  

f a l l  ( l i n e a r l y  f o r  t h e  sake  of convenience) u n t i l  a t  time t ,  it 

r e a c h e s  a  new l e v e l  g,  which it w i l l  keep f o r e v e r  a f t e r w a r d s .  Now 

what is t h e  opt imal  economic growth p a t h  f o r  t h e s e  e x t e r n a l  

cond i t i ons?  The parameters  used i n  t h e  s i m u l a t i o n  problem a r e  l i s t e d  

i n  Table 3. 

I have used two d i f f e r e n t  approaches t o  s o l v e  t h e  dynamic 

op t im iza t ion  problem d e s c r i b e d  i n  t h e  p rev ious  paragraph.  The f i r s t  

method maximizes t h e  s o c i a l  we l fa re  f u n c t i o n  d i r e c t l y  over  a  f i n i t e  

t ime i n t e r v a l ,  s u b j e c t  t o  t h e  t e r m i n a l  c o n d i t i o n s  t h a t  t h e  

investments  made i n  t h e  l a s t  time p e r i o d s  be such  t h a t  t h e  economy is 

l e f t  ( a f t e r  t h e  p lann ing p e r i o d )  i n  t h e  s t e a d y  s t a t e  co r respond ing  t o  

t h e  popu la t ion  growth r a t e  g , .  The second method maximizes t h e  s o c i a l  

we l fa re  f u n c t i o n  i n d i r e c t l y  by s i m u l a t i n g  t h e  d i f f e r e n c e  e q u a t i o n  

( 5 9 ) .  

A simple check of e i t h e r  method is t o  run a  s i m u l a t i o n  wi th g,=g,. 

If e v e r y t h i n g  is wel l  t h e  s i m u l a t i o n  method shou ld  f i n d  t h a t  t h e  

opt imal  p o l i c y  is t o  remain i n  t h e  i n i t i a l  s t e a d y  s t a t e  f o r e v e r .  

Both s i m u l a t i o n  methods a r e  d i s c u s s e d  below. 



6.1. Tho direct method 

The direct method maximizes the welfare function (19) over some 

finite time interval Ct,,t,! where t, and t,, are chosen such that tQ 

( (  t, ( t ,  <i t,. + i. e. the simulation period contains the period of 

demographic transition. The welfare function is maximized with 

respect to the savings rates s(t,), s(t,+l>, . . .  , s(t,-I>, s(tl), 

and subject to the conditions 

where I: and Tf refer to the steady-state values of I(- > and T(- >,  
respectively, corresponding to g,. 

Obviously, in order to keep the number of control variables within 

manageable limits a discretization of the model is required. For the 

simulation of the non-stationary growth path itself this 

discretization is fairly straightforward. In computing the steady- 

state values of the endogenous variables use has been made of the 

following approximation: 

r:t~ e-x- (v-t) int (T) ( l+xr i  + frac(T)-(l+~? -int<T)-1 - dt 2. z - - 
i=1 

TA and T t  are ccquted from the following discrete-tine equivalent of 

(50) : 

Similarly s: and st are computed from (cf. (55)): 

Finally the absolute steady-state level of investment at time t is 

obtained from the discrete approximtion to the steady-state version 

of (17): 



Along the non-stationary optimal economic growth path T, is computed 

from the condition (cf. (17)): 

int (T,) 
Z i- t - i L = 

t 
1 - 1 - (I+&) - It-i t 

i=1 

where Lt. and past investments It .-,, i=l,. . . are known at time t .  

Given Tt. from (74), production at time t is computed as (cf. (19)): 

int (Tt> - C - i 
Qt - kc- 1 - It-i t 

i= 1 

The welfare function to be mximized is (cf. (19)): 

subject to initial conditions, (74)-(75), the accumulation equations 

the control constraints 

and the terminal constraints (69). 

In order to numerically solve the optimization problem described 

above I tried several algorithms. None of these, however, produced 

satisfactory results. It turned out that the numerical solution is 

highly unstable. This instability can be partly attributed to the 

non-smoothness of the discretized model (cf. equations (74) and 

(75) ) . More generally, the objective function, in combination with 

the nonlinear constraints (69), appears to be badly-behaved, 

rendering convergence of any algorithm very difficult to achieve. 

The MINOS-program (Murtagh h Saunders, 1983) handles the nonlinear 



constraints (69) in a direct way, using a so-called projected 

augmented Lagrangian algorithm. An optimal solution was reported by 

the program but the time path of s(-) was highly irregular. Further 

analysis of the solution reveals that the corresponding values of 

T(- ) are for most periods very close to being integer, points at 

which the equations (74) and (75) are nondifferentiable. Apparently, 

the nonsmoothness of the discretized problem is so severe that the 

MINDS-algorithm breaks down. 

A very flexible and convenient way of interactively controlling 

the maximization process is offered by the SQG/PC-program developed 

by Alexei Gaivoronski at IIASA/SDS. It is actually intended to solve 

stochastic optimal control problems but it can handle deterministic 

problems as the one under consideration equally well (for a 

description of an earlier mainframe-version of the program see 

Errnoliev & Gaivoronski, 1984). The nonlinear constraints (69) were 

taken into account by adding a penalty term to the objective function 

( 7 6 ) .  

However, for the present problem convergence of the solution was 

very difficult to achieve. #ore seriously, the various algorithms 

reproduced only a rough approximation to the optimal steady state 

when the program was run with g, set equal to gn,  

Finally I tried a very simple although rather time-consuming 

simplex algorithm due to Nelder and Mead (described in Churchhouse, 

1981). Here the findings were essentially the same as for SQG/PC: 

very slow convergence, solutions sensitive to starting positions, and 

high numerical instability in general. 

Thus, the conclusion of this sub-section is a simple and 

disappointing one: for the capital-vintage model under consideration 

it is very difficult to find the non-stationary optimal growth path 

by direct methods. 

6.2. The indirect method 

The indirect method computes the optimal growth path from the 

singularity condition / difference equation (59). The computation 

consists of two steps: computation of T(-) from (59); and computation 

of s(-) given T(- ) .  Contrary to the direct method where, in order to 

keep the number of variables to be determined optimally within 

reasonable limits discretization was necessary, the indirect method 

works with a discretization that can be made as close to continuous 



time as one wishes. 

The computation of T(-) starts from the initial steady state given 

by 

where dt is the discretization parameter. Naw far t=t,,, t,+dt, . . . 
the variable Z(t) is abtained by numerically solving (59) ;  the 

intregral is approximated using the Trapezium Rule fallowed by 

Ramberg Integration (e.g. Churchhause, 1981). The result is saved as 

T[ttZ(t)l. Since the index t is necessarily discrete and the solution 

Z(t) is generally not, the values of TCttdt-int(Z(t)/dt)l are 

approximated by parabolic interpalation between three cansecutive 

values of ttZ(t). 

The second step invalves computing the time path of s(-) 

corresponding to the simulated path of T(-). There are several ways 

in which this can been done. Originally I used the methad which is 

illustrated in Figure 3. Here, along the Y-axis is plotted the 

quantity 

i.e. employment at time t on capital installed at time v. At time t 

all values of E(v,t) for v=t-dt, t-2-dt, . . .  are known. Also T(t) and 

L(t) are known. The quantity ECt-T(t),tl is approximated by linear 

interpolation (cf. paint D). 

The integral 

is approximated according ta the Trapezium Rule. Its approximated 

value is equal to the sum of the known area ABED and the unknown area 

BCFE. The value of E(t,t) is found by requiring that the approximated 

integral be equal to the size of the labour force, i.e. 

L(t) = ABED + BCFE 

The computed value of E(t,t) automatically yields the value of I(t). 

Using this value, Q(t) is determined by a similar Trapezium Rule 



approximation. Finally the ratio of I(t) and Q(t) determines s(t). 

This procedure, however, turned out not to be very successful in 

practice. The computed non-stationary time path of the optimal 

savings rate became wildly oscillating with an ever-increasing 

amplitude, finally exploding out of the control space. Bo matter how 

small the discretization parameter was chosen, the explosive property 

of the solution remained. 

I therefore decided to use the difference equation (66) for the 

computation of s .  Here the time derivative of T(-) was 

approximated by central differences while ILt-T(t)l was obtained by 

exponential interpolation between two consecutive values of I(-). 

Once I(t) has been found Q(t) and s(t> follow easily. The results of 

this approach are summarized in Table 4 and Figure 4. 

The results of the simulation confirm the point raised in the 

introduction, vlz. that because of the fact that the state of the 

economy is a function of its history non-stationarities are 

particularly severe and persistent. The oscillations in the optimal 

trajectories of T(- > and s(-) are quite strong (taking into account 

that the demographical disturbance of the original steady state is 

relatively small) and take a very long time to dampen out. However, 

gradually the optimally growing economy converges to a new stationary 

growth path, in which both the opt iml savings rate s and the optimal 

lifetime of capital equipment T are once more constant. 

7. SUMMARY AND CONCLUSIONS -- 

In this paper I have investigated optimal economic growth in a model 

with technical progress that is embodied in physical capital. The 

production function corresponding to each capital vintage has been 

taken to be of the fixed-coefficients type, as in Solow e.a. (1966). 

A suitable transformtion of the Lagrangian allows the derivation 

of - necessarpconditions -- for optimal economic growth. These necessary 

conditions are in terms of two key variables which are inversely 

related to each other, viz. : 

- T(t), the age of the oldest capital in use at time t; and 

- Z(t>, the age at which capital installed at time t will become 

obsolete. 

Along a singular trajectory the necessary conditions reduce to a 



Generalized Golden Rule. It is shown that this Generalized Golden - - - - - - - - - - - - - - - - 
Rule is nothing more than a disguised version of the Golden Rule for 

more traditional growth models. 

A c~arat ive-stat ics - analysis bears out that the optimal savings 

rate in steady state varies positively with the growth rate of 

population (g), the rate of labour-augmenting technical progress (I), 

and the rate of depreciation (6); and negatively with the social rate 

of impatience (r). These results are essentially the same as for 

models with disembodied technical change 

Investigation into the stability of steady states yields the 

conclusion that a necessary condition for the optimal economic growth 

path to converge is that 1 > rtgt6. This is a puzzling result, as the 

integral in the social welfare function is divergent if this 

stability condition is satisfied. For T and s two difference-tppeof -- 

equations have been derived which describe the dynamics of the 

optimally controlled economy. 

Direct --- methods of actually computing non-stationary optimal growth 

paths for this model turn out to be unsuccessful, due to the high 

numerical instability of the optimization problem. An indirect 

method, however, which simply integrates the two difference equations 

referred to above, yields a plausible and theoretically satisfying 

optimal growth path. The results of the simulation show that non- 

stationarities -- areparticularly persistent in this model, 

as a result of the fact that the state of the economy is a function 

of its historv. 



Finure 1: The double integral before chanaina the order of 

int%rat ion -- 

Fi ure 2: The double integral after changing the order of integration A - -- 



F i g u r e  3:  C o m p t a t i o n  of s( t )  - -- 



Figure  -- 4 :  The s i m u l a t e d  non-s ta t ionary  opt imal  economic growth p a t h  ---- 



Table 1: Selected numerical steady-state values 

Table 2: Cam~arative-statics effects 
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Table 3:  Parameters u s e d  i n  the simulat ions 

parameter v a l u e  



Table 4: The simulated non-stationary o p t i m l  economic growth path -- -- -- - -- - 



REFERENCES 

Burmeister, E. 8 A. R. Dobell (1970), "Mathematical Theories of 

Economic Growth". London: MacMillan. 

Cass, D. (1965), "Optimum Growth in an Aggregative Node1 of Capital 

Accumulation". Review of Economic Studies, 32, 233-240. 

Churchhouse, R.F. (ed.) (1981), "Handbook of Applicable Hathematics. 

Volume 1 1 1  - Numerial Methods". New York: Wiley. 

Ermoliev, Y. & A. Gaivoronski (1984), "Stochastic Quasi-Gradient 

Methods and their Implementation". Vorking Paper # VP-84-55, 

International Institute for Applied Systems Analysis, Laxenburg. 

Imhoff, E. van (1985), "Optimal Investment in Human Capital and Non- 

Stationary Population". Mimeographed, Erasmus Universiteit 

Rotterdam. 

Imhoff, E. van (1986a), "Technical Change in Growth Models: 

Introduction". Mimeographed, Erasmus Universiteit Rotterdam. 

Imhoff, E. van (1986b), "A Model with Exogenous Disembodied Technical 

Change". Mimeographed, Erasmus Universiteit Rotterdam. 

Imhof f ,  E. van 8 J .  M. M. Ritzen (1987), "Optimal Economic Growth and 

Non-Stationary Population". Discussion Paper # 8701/P, Institute 

for Economic Research, Erasmus University Rotterdam. 

Malconson, J . M .  (1975), "Replacement and the Rental Value of Capital 

Equipment Subject to Obsolescence". Journal of Economic Theory, 

10, 24-41. 

Murtagh, B. A. 8 M.A. Saunders (1983), "MIHOS 5.0 User's Guide". 

Technical Report SOL 83-20, Department of Operations Research, 

Stanford University. 

Nickell, S. J. (1975), "A Closer Look at Replacement Investment". 

Journal of Economic Theory, 10, 54-88. 

Phelps, E.S. (1961), "The Golden Rule of Accumulation: a Fable for 

Growthmen". American Economic Review, 51, 638-643. 

Ramsey, F.P. (1928>, "A Mathemtical Theory of Saving". Economic 

J ourna 1, 38, 543-559. -- 
Robinson, J .  (1962), "A Neo-Classical Theorem". Review of Economic 

Studies, 29, 219-226. 

Solow, R.M.  (1956), "A  Contribution to the Theory of Economic 

Growth". Quarterly -- Journal of Economics, 70, 65-94. ----- 
Solow, R. M. ,  J .  Tobin, C. C. von Veizskker & M. Yaari (1966), 

"Neoclassical Growth with Fixed Factor Proportions". Review of 



Economic Studies, 33, 79-115. 

Verheyen, P. & J .  van Lieshout (1978), "Levensduur in een 

Jaargangenmodel" . ---- Maandschrif t Economic, 42, 313-321. ["Lifetime 

in a Vintage Model"; Dutch1 


