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FOREWORD 

The author defines the playability property of a qualitative differential game, 
defined by a system of differential equations controlles by two controls. The 
rules of the game are defined by constraints on the states of each player 
depending on the state of the other player. This paper characterizes the 
playability property by a regulation map which associates with any playable 
state a set of playable controls. 

In other words, the players can implement playable solutions to 
the differential game by playing for each state a static game on 
the controls of the regulation subset. 

One must extract among theses playable controls the set of discrimi- 
nating and pure controls of one of the players. Such controls are defined 
through an adequate "contingent" Hamilton-Jacobi-Isaacs equation. Suffi- 
cient conditions implying the existence of continuous or minimal playable, 
discriminating and pure feedbacks are provided. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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Introduction 

We consider a tweplayer differential game whose dynamics are described 

by 
1 = f ( 4 1 ,  Y ( t )  , u(t))  

u(t) E U(z( t ) , y ( t ) )  
1 Y'(t) = g(z(t) ,  Y(t) ,  v ( t ) )  

v(t)  E V ( z ( t ) ,  Y(t))  
The rules of the game are set-valued maps P : Y .u X and Q : X .u 

Y ,  stating the constraints imposed by one player on the other. 
.The playability domain of the game K c X x  Y  is defined by: 

K := { ( z , y )  E X X  Y  I z~ P(y) and y ~ Q ( z )  ) 

(We consider only the time-independent case for the sake of simplicity). 
The playability property states that for all initial state (zo,yo) E K, 

there exists a solution to the differential game which is playable in the sense 
that 

V t  2 0 ,  z ( t )  E P ( Y ( ~ ) )  k ~ ( t )  E Q(z( t ) )  

We shall charaterize i t  by constructing decision rules 

which involve the contingent derivatives1 of the set-valued maps P and Q,  
with which we build the regulation map R mapping each ( z , y )  E K to 
the regulation set 

'We recall that the contingent cone TK(z) to a subset K at z E K is the closed cone 
of elements v satisfying 

liminf d(z + hv, K)/h = 0 
h-o+ 

The contingent derivative of the set-valued map Q from X to Y at a point ( z ,  y) of its 
graph is the closed positively homogenous set-valued map DQ(z, y) from X to Y defined 
by 

Gnph(DQ(z1 Y)) := T G ~ ~ ~ ( ~ ) ( ~ ,  Y) 

or, equivalently, by 



The controls belonging to R(z, y) are called playable. 
The Playability Theorem states that under technical assumptions, the 

playability property holds true if and only if 

and that playable solutions to the game are regulated by the regulation 
law: 

We then introduce the subset 

of discriminating controls which allow the first player to associate to any 
control v E V(z, y) played by the second player at  least a control u E U(z, y) 
such that the pair (u,v) is playable and the subset 

of pure controls which allow the first player to find a control u E U(z, y) 
such that (u, v) is playable for all v E V(z, y). 

These concepts are particularly relevant for games "against nature" or 
"disturbances" (see [11,12,26,27] and their references). 

Before going further, it may be useful to relate these concepts to more fa- 
miliar ones through an adequate Hamilton-Jacobi-Isaacs's equation (see[l8]). 

For that purpose, we characterize the rules P and Q by their indicator 
functions Wp and WQ defined respectively by 

These functions are only lower semicontinuous, but we can still "differ- 



entiate" them by taking their contingent epiderivatives2. We set 

We shall prove that 
- the game is playable if and only if 

inf H(Wp + W Q ; Z , ~ ; U , V )  = 0 
uEU(z,u),uEV(z,u) 

and the regulation map is equal to 

- the first player has a discriminating control if and only if 

sup inf H(Wp + WQ;z ,y ;u ,v )  = 0 
v E V ( z , y )  uEU(z,u) 

and the feedback map A is equal to 

- the first player has a pure control if and only if 

inf sup H(Wp + WQ;z ,y ;u ,v )  = 0 
uEU(z*y )  u € V ( z , y )  

and the feedback map B is equal to 

'The contingent derivative DyW(z) of a extended function W from X to R U {+oo) 
at z E Dom(W) i~ defined by 

EpDtW(z) := Tcp(w)(z, W(z)) 

or, equivalently, by 



We then deal with the main topic of this paper: construct single-valued 
playable feedbacks (G, C), such that the differential system 

has playable solutions for each initial state. By the Playability Theorem, 
they must be selections of the regulation map R in the sense that 

We shall prove the existence of such continuous aingle-valued playable 
feedbacks, as well as more constructive, but discontinuous, playable feed- 
backs, such as the feedbacks associating the controls of R(z, y) with mini- 
mal norm (the playable slow feedbacks, as in [13,36] ). More generally, we 
shall show the existence of possibly seevalued feedbacks associating with 
any (2, y) E K the set of controls (u, v) E R(z, y) which are solutions to a 
(static) optimization problem of the form: 

or solutions to  a noncooperative game of the form: 

V(ul, v') E R(z, y), a(z, u, v') 5 a(z, u, v) 5 a(z, u', v) 

In other words, the players can implement playable solutions to 
the differential game by playing for each state (z,y) E K a static 
game on the controls of the regulation subset R(z,y). 

We also consider the issue of finding discriminating feedbacks, which 
are selections of the seevalued map A. We shall provide for instance auffi- 
cient conditions implying that for all continuous feedback G(z, y) E V(z, y) 
played by the second player, the first player can find a feedback (continuous 
or of minimal norm) G(z, y) such that the above differential equation has 
playable solutions for each initial state. 

Finally, we addrese the question of constructing continuous pure feed- 
backs G(z, y) which have the property of yielding playable solutions of the 
above differential equation whatever the continuous feedback G(z, y) played 
by the second players. 

'One can ale0 conrtruct .dynamic feedback controls' which are selectioxu (i, E) of the 



We use for constructing these feedbacks selection theorems (for instance, 
Michael's continuous selection theorem, see [29,30,31.]), we need to prove the 
lower semicontinuity of the set-valued maps R, A and B. In the case of the 
set-valued map B,  we need a Lower Semicontinuity Criterion of an infinite 
intersection of lower semicontinuous maps. We provide such a theorem at 
the end of this paper, which can be useful for other purposes. 

contingent derivative of the regulation map 

With there "dynamic feedbach, playem implement the differential ryrtem 

which yieldr playable rolntionr. 
In other wordn, the playerm e m  Implement playable molutionm to the differential 

game by playing for uch mtate (z,  y) E K a mtatie game on Sreloeitiemn of the 
eontrolm in the derivative DR(z, y)(f(z, y; u), g(z, y; v)) of the regulation mbmet. 

Minimal selectionn (bO, cO) provide heavy trqjectoriem (nee IS]) in the cane of control 
ryrtemr 



1 Playable Rules 

Let us consider only two players, Xavier and Yves. Xavier acts on a state 
space X and Yves on a state space Y. For doing so, they have access to 
some knowledge about the global state (z, y) of the system and are allowed 
to choose controls u in a global state dependent set U(z, y) and v in a global 
state dependent set V(z, y) respectively. 

Their actions on the state of the system are governed by the system of 
differential inclusions: 

We now describe the influences (power relations) that Xavier exerts on 
Yves and vice-versa through rules of the game. They are set-valued maps 
P : Y .u X and Q : X .u Y which are interpreted in the following way. 
When the state of Yves is y, Xavier's choice is constrained to belong to 
P(y). In a symmetric way, the set-valued map Q assigns to each state z the 
set Q(z) of states y that Yves can implement4. 

Hence, the playability domain of the game is the subset K c X x Y 
defined by: 

(2) K := { ( 2 , ~ )  E X  x Y 1 Z E  ~ ( y )  and y E Q ( Z ) )  

Naturally, we must begin by providing sufficient conditions implying 
that the playability domain is non empty. Since the playability domain is 
the subset of fixed-points (z, y) of the set-valued map (2, y) .u P(y) x Q (2) , 
we can use one of the many fixed point theorems to answer this type of 
questions6. 

From now on, we shall assume that the playability domain associated 
with the rules P and Q is not empty. 

Definition 1.1 (Playability Property) W e  shall say that the diflerential 
game enjoys the playability property if and only if, for all initial state 

'We can eaaily extend the reaults below to the time-dependent case using the methoda 
of [2]. 

bFor instance, Kakutani's Fied Point Theorem fumbhea ruch conditions: Let L C X 
and M c Y be compact convez rubretr and P : M .u L and Q : L .u M be clored map8 
with nonempty conuez imager. Then the playability domain u not empty. 



(zo,  yo) E K ,  there eziete a eolution to  the differential game (1) which is 
playable i n  the eenee that 

We need now to define playable rules. For that purpose, we associate 
with the rules P and Q acting on the states decision rules @ and a acting 
on the controls defined in the following way: 

Definition 1.2 Xavier'e decision rule ie the set-valued map @ defined by 

and Yvee'e decision rule ie the set-valued map a defined by 

W e  aeeociate with them the regulation map R defined by 

The eubeet R(z, y)  ie called the regulation set and ite elements playable 
controls. 

In other words, we have associated with each state (2, y)  of the playability 
domain a static game on the controls defined by the decision rules. This 
new game on controls is playable if the subset R(z, y)  is nonempty. This 
property deserves a definition. 

Definition 1.3 W e  shall say that P and Q are playable rules if their 
graphe are cloeed, the playability domain K defined by (2) ie non empty 
and if for all pair (z ,  y) E K ,  the ualuee R ( z , y )  of the regulation map are 
nonempty. 

We still need a definition of transversality of the rules before stating our 
first theorem. 

Definition 1.4 W e  shall eay that the rule8 P and Q are transversal if 
for all ( z ,  y)  E K,  for all perturbation8 (e ,  f )  E X x .Y, there eziets (u, u )  
eatie fying 

(6) 
i) u ~ D P ( y , z ) ( u ) + e  

ii) u E DQ(z ,  Y )  (u)  + f 



We shall say that the are s t rong ly  t ransversa l  if 

' V(z, y) E K, 3c > 0,6 > 0 such that V(zl, y') E BK ((2, y),6), 
V (e, f )  E X x Y, there ezist solutions (u, v) to 

{ ) U E  DP(y',zl)(v)+e 
) V E  DQ(z1,y')(u)+f 

satisfying 

. m=(llull, llvll) 5 m=(llell, l l f  ll) 

We will also assume that  the rules are sleek6. 
We shall now derive from the Viability Theorem a characterization of 

the playability property. 

Theorem 1.1 (Playabi l i ty  Theorem)  Let us assume that the functions 

f and g 
i )  are continuous 

(8) i i )  f (z, y, .) and g(z, y, .) are afine 
i i i )  have a linear growth 

that the feedback maps U and V 

(9) { i )  are upper semicontinuous with compact convez images 
i i )  have a linear growth 

and that the rules P and Q are 

(10) sleek and transversal 

Then the rules P and Q enjoy the playability property if and only if they 
are playable. Arthermore, the controls u(.) and v(.) which provide playable 
solutions obey the following regulation law 

P r o o f  - We apply the Viability Theorem (see [17], [3, Theorem 4.2.1., 
p.1801 )to the control system 

'A rubet  K b rleek at zo E K if the ~t-valued map z .u TK(z) ir lower remicon- 
tinnonr at zo. I .  thia case, the contingent cone ia convex and coincides with the Clarke 
tangent cone. K ia rleek if it ia aleelk at every point of K. Convex rnbetr  and C1-manifold8 
are rleek. A ~t-valued map b rleek if it graph b #leek.(- [I]) 



which satisfy the assumptions of the Viability Theorem. It remains to prove 
that the playability domain of the differential game is a viability domain of 
the above control system, i.e., that for any global state (z,y) E K of the 
system, there exist controls u and v such that the pair (f (z, y, u) , g(z, y, v)) 
belongs to  the contingent cone TK(z). 

Since K ie the intersection of the graphs of Q and P-', we need to use 
a sufficient condition for the contingent cone to  an intersection to be equal 
to  the intersection of the contingent cones. 

The graphs of Q and P-' are sleek because the rules of the game are 
s u p p o d  to be ao. Furthermore, 

T ~ r a p h ( ~ - l )  (z, Y) - T ~ r a p h ( ~ ) (  z,y) = X x Y  

because the maps P and Q are transversal: For any (e, f )  E X x Y, there 
exists (u, v) such that (u, v - f )  belongs to the graph of Q and (u + e, v) to 
the graph of P-', i.e., that (e, f )  = (u+e,v)  - (u,v - f ) .  

Hence, by [4, Corollary 7.6.5., p.4411, we deduce that 

TK (2) 
= T ~ r a p h ( ~ - l ) ( z ~  Y) T ~ r a p h ( ~ ) ( z .  Y) 
= ~ r a ~ h ( ~ ~ ( ~ ,  2))-' n Graph(DQ(z, y)) 

Therefore, K is a viability domain if and only if the regulation map R 
has nonempty values, i.e., if and only if the rules of the game are playable. 

The regulation law (11) describes how the players must behave to keep 
the state of the system playable. A first question arises: do the domains of 
the set-valued maps 

{ i )  @(z, y) : v .u @(z, y; v) 
ii) Q(z,y) : u .u Q(z,y;u) 

coincide with U (z, y) and V(z, y) respectively? 

Proposition 1.1 We posit the assumptions of Theorem 1.1. Let us assume 
that for all (z, y) E K, 

(12) 
i)  Dom(@(z, Y)) = V ( ~ , Y )  
i i )  Dom(Q(z,y)) = U(z, Y) 

Then the rules are playable. 



Proof - We deduce it from Kakutani's Fixed Point Theorem, since 
the set R(z, y) is the set of fixed points of the set-valued map 

defined on the convex compact subset U(z, y) x V(z, y) into itself. This 
set-valued map has non empty values by assumption, which are moreover 
convex since the rules P and Q being sleek, the graphs of the contingent 
derivatives DP(z, y) and DQ(z, y) are convex. They are slso closed. This 
implies that the graph of (u, v )  .u Q(z, y; v )  x Q(z, y; u) is claeed. Hence we 
can apply Kakutani's Fixed Point Theorem7. 

Once the playability of the game is established, how can it be played? 
The question arises to know whether Xavier can aseociate to any control 

v E V(z, y) played by Yves at least a control u E U(z, y) such that the pair 
(u,v) is playable, or even better, whether he can find a control u E U(z, y) 
such that (u,v) is playable for all v E V(z, y). These ideal situations (for 
Xavier) deserve a definition. 

Definition 1.5 (Discriminating and Pure Controls) We say that Xavier 
has discriminating controls if for any (z, y) E K and v E V(z, y), the 
subset 

of discriminating controb is  nonempty. It has pure controls if and only if 
for any (z, y) E K the subset 

of pure controb is nonempty. 

We have to examine whether the set-valued map B has nonempty values. 

Proposition 1.2 Let u8 a88ume that for any u E U(z, y), there ezists u' 
satisfying 

V v E Q(z, y; u), u' E Q(z, y; v )  

Then the set-valued map B has nonempty values. 

'we can uae instead the Browder-Ky hn Theorem and replace condition (12) by: a 
mfficient condition of the form 

where A is a linear operator from Zx x ZY to X x Y 



Proof  - We observe that B(z, y) is the subset of fixed points of the 
%quare product" @(z, y) @(z, y) defined by 

(see [6]). This sebvalued map h a  nonempty values by assumption, which 
are obviously convex and compact. Furthermore, its graph is closed. Since 
U(z, y) is convex and compact, Kakutani's Fixed Point Theorem impliea the 
existence of a fixed point. 

Remark  - When 

and when the sebvalued m a p  

are lipschitzean around K,  then the playability domain K h a  the winabil- 
i ty  property: for all initial state (zo, yo), all solutions to the game (1) are 
playable. 

Indeed, we deduce from [3, Theorem 4.6.21 that in this c a e ,  K is in- 
variant by the differential inclusion associated with the differential game. 

We shall investigate later several methods of selecting feedback controls 
(u, v) in the subsets R(z, y), A(z, y; v) and B(z, y) by optimization and/or 
(static) game theoretical methods. 

Remark-CONTINGENT HAMILTON- JACOBI- ISAACS EQUATION We 
can relate the above results to the original Isaacs's formulation of the Hamilton- 
Jacobi equations in the framework of differential games (see [18]). For that 
purpose, we characterize the rules P and Q by their indicator functions Wp 
and WQ defined by 

We then introduce the Hamil tonian H associating with any lower serni- 
continuous function W : X x Y I-+ R U {+=I the function defined on by 

where DtW(z) denotes the contingent epiderivative of W at  z. 



Proposi t ion 1.3 W e  posit the aeeumptione of Theorem 1.1. Then the rules 
P and Q are playable if and only if their indicator functions Wp and WQ 
are eolutione t o  the contingent Hamilton-Jacobi equation 

and the regulation map A equal to  

Xavier has a dbcriminating control if and only if 

(21) sup inf H(Wp+WQ;z,y;u,v) = 0 
vEV(t,y) uEU(z,v) 

and the feedback map A A equal t o  

A(Z, Y; v) = {u E U(z, Y) I 
H(WP + WQ; Z, Y; u, v) = in fu~~u( t ,v)  H(Wp + WQ; Z, y; u', v)) 

Finally, Xavier has a pure control if and only if 

inf sup H(Wp+WQ;z,y;u,v) = O  
uEU(t,u) vEV(z,y) 

and the feedback map B A equal t o  

Proof  - The proof is based on the fact that the contingent cone 
to the epigraph of WQ at (z, y), which is the epigraph of the contingent 
epiderivative D WQ (z, y; -, -) , is the indicator function of the contingent cone 
to the graph of Q a t  (z, y), i.e., the indicator function of the graph of the 
contingent derivative DQ (z, y). Therefore, 

and, in a similar way, 



Therefore u belongs to @(z, y; v) if and only if 

and that v belongs to @(z, y;u) if and only if 

We finally recall that the sleekness and transversality assumptions imply 
that 

Dt(WP + WQ)(~ ,Y )  = DtWP (27 Y) + DtWQ(z,Y) 

With these formulas at  hand, we can translate the definitions of the set- 
valued maps R, A and B into the formulas of our Proposition. 

2 Playable feedbacks 

Knowing the regulation law (11)) playing the game amounts to choose 
for each pair (z, y) E K playable controls (u, v) in the regulation set R(z, y) 
through playable feedbacks. 

In particular, we shall look for single-valued playable feedbacks (ii, C), 
which are selections of the regulation map R in the sense that 

or, equivalently, solutions to the system 

For instance, continuous selections of the set-valued map R provide con- 
tinuous playable feedbacks (G,d such that the system of differential equa- 
tions 

(25 )  
zt(t) = f (z(t),y(t), G(z(t17 ~ ( t ) ) )  
Yt(t) = g(z(t), Y(t)7 G(z(t17 Y (t))) 

does have solutions which are playable. 
Michael's Continuous Selection Theorem, as well as other selection p r e  

cedurea we shall use, requires the lower semicontinuity of the regulation map 
R. 

Our next objective is then to provide criteria under which the regulation 
map is lower semicontinuous. For that purpose, we need to strengthen the 
concept of playable rules. 



Definition 2.1 W e  oclsociate with any perturbation (e ,  f )  the decision rules 
Q(e,f) and Q(e, f )  defined by: 

and 

and regulation map qeIf) defined by 

W e  shall say that the rules P and Q are strongly playable if 

V ( z ,  y) E K,  37 > 0,6 > 0 such that V ( z t ,  yt) E B K ( ( ~ , y ) , 6 ) ,  

V (e ,  f )  E 7BY R(e, f ) (z t ,  d )  # 0 

Theorem 2.1 Let us assume that the functions f and g 

i) are continuous 

(30) ii) f ( z ,  y, .) and g (z ,  y,.) are a f i ne  
iii) have a linear growth 

that the feedback maps U and V 

i) are continuous with compact convez images 
ii) have a linear growth 

and that the rules P and Q are 

(32)  sleek, strongly transversal and strongly playable 

Then the regulation map R ie luwer eemicontinuoue with closed convez 
images. 

In particular, there ezist continuous playable feedbacks (6, ;). 



Proof - We use the Lower Semicontinuity Criterion of the intersection 
and the inverse image of lower semicontinuous set-valued maps8 

First, we need to  prove that the set-valued map 

is lower semicontinuous. But this follows from the strong transversality of 
the rules P and Q and the Lower Semicontinuity Criterion. 

We observe that U x V being upper semicontinuous with compact values, 
it maps a neighborhood of each point to a compact set. Since we can write 

and since both U x V and T are lower semicontinuous with convex images, 
strong playability of the decision rules implies that the regulation map R is 
lower semicontinuous. 

Unfortunately, the proof of Michaels's Continuous Selection Theorem 
is not constructive. We would rather trade the continuity of the playable 
control with some explicit and computable property, such as uO(z, y) being 
the element of minimal norm in R(z, y), or other properties. Hence we need 
to prove the existence of a solution to the differential equation (25) for such 
noncontinuous feedbacks. 

We shall provide a general method of construction of such playable feed- 
backs. It is useful for that purpose to introduce the following definition: 

8 L ~ ~ ~ ~  S~~ICONTINUITY CRITERIW-L~~ ur conrider a metric apace X I  two Banach 
spacer Y and Z, two wt-valued mape T and U from X to Y and Z respectively and a 
(single-valued) map f from the graph of U to Y. We assume that 

i) T and U are lower wmicontinuous 
with convex valuer 

ii) f ir continuous 
iii) Vu, u I+ f (z, u)is affine 

We posit the following condition: 
Vz E X, 370, 6 > 0, c > 0 such that Vz' E B(z,6), we have 

{ i )  7 B r  C f (z', U(zl)) - T(z') 
ii) U(zl) c cBs 

Then the eet-valued map R : X -.+ Z defined by 

R(z) := {U E U(z) I f (z, u) E T(z)) 

L lower aemicontinno~ with convex valuw (oee [ I ,  Theorem 3.1.16, p. 1151). 



D e f i n i t i o n  2.2 ( S e l e c t i o n  P r o c e d u r e )  A selection procedure of the reg- 
ulation map R : X x Y - U x V ie a eet-valued map S R  : X x Y - U x V 

i) V ( Z ,  y)  E K, S ( R ( z ,  y) )  := S R ( ~ ,  Y )  n R(z, Y )  # 0 
(33) { ;;) the graph of SR ie cloeed 

and the eet-valued map S ( R )  : (z ,  y) - S ( R ( z ,  y ) )  ia called the eelection of 
R. 

It ia eaid convex-valued or eimply, convex if its valuee are convez and 
strict if moreover 

ie a eingleton. 

Theorem 2.2 W e  poeit the assumptione of Theorem 2.1 and we euppoee 
that K ie a playability domain. 

Let SR be a convez eelection procedure of the regulation map R. Then, 
for all initial etate (zo,yo)  E K ,  there eziet a playable eolution dart ing at 
(20, yo) to  the diflerential inclueion 

(35)  { i) z1( t )  = f ( ~ ( t ) ,  y ( t ) ;  u ( t ) )  
) ~ ' ( t )  = g ( z ( t ) ,  y ( t ) ;  v ( t ) )  
iii) for almoet all t ,  ( u ( t ) ,  v ( t ) )  E ~ ( R ( z ( t ) ,  y ( t ) ) )  

In  particular, if the eelection procedure ie etrict, then the controle 

are eingle-valued playable feedback controle. 

Proof - Since the convex selection procedure SR h a  a closed graph 
and convex values, we can replace the differential game ( 1 )  by the controlled 
system 

) z'(t) = f (z(t) ,  y( t ) ;  u ( t ) )  

(36)( 1 ii) for y1(t)  almost = g ( z ( t ) ,  all t ,  ~ ( t ) ;  ~ ( t ) )  

( u ( t ) ,  v ( t ) )  E ( U ( z ( t ) , y ( t ) )  x V ( z ( t ) , y ( t ) ) )  S ~ ( z ( t ) ,  ~ ( t ) )  

which satisfies the assumptions of the Viability Theorem. It remains to 
check that K ie still a viability domain for t hb  smaller system. 



But by construction, we know that for all (z, y) E K,  there exists (u, v) E 
S(R(z, y)), which belongs to the intersection U(z, y) x V(z, y) nSR(2, y) and 
which is such that (f (z, y; u), g(z, y; v)) belongs to TK (2). 

Hence the new controlled system (36) enjoys the viability property, so 
that, for all initial state (20, yo) E K ,  there exist a viable solution and a 
viable control to the controlled system (36) which, for almost all t 2 0, are 
related by 

Therefore, for almost all t 1 0, (u(t),v(t)) belongs to the intersection of 
R(z(t), y(t)) and S ~ ( z ( t ) ,  y(t)), i.e., to  the selection S(R(z(t), y(t))) of the 
regulation map R. 

We can now multiply the possible corollaries, by giving several instances 
of selection procedures of set-valued maps. 

We begin by cooperative procedures, where the players agree upon cri- 
teria a(z, y; a,  -) for selecting controls in the regulation sets R(z, y). 

Example-- COOPERATIVE BEHAVIOR 
Let a : Graph(R) I+ R be continuous. 

Proposition 2.1 We posit the assumptions of Theorem 2.1. Let a be con- 
tinuous on Graph(R) and convez with respect to the pair (u, v). Then, for all 
initial state (20, yo) E K, there ezi8t a playable solution starting at (20, yo) 
and a playable controls to the differential game (1) which are regulated by: 

for almost all 1 0, 

u(z(t) 9 Y (t); u(t) v(t)) = i n f u ~ , ~ ~ ~ ~ ( z ( t ) , ~ ( t ) )  u(z(t), y(t); u', 0') 

In particular, the game can be played by the slow feedbacks of minimal 
norm: 

Proof - We introduce the set-valued map SR defined by: 

(39) SR(z, y) := {(u, v) E Y 1 a(z, y; u, v) 5 inf a(z,  y; u', v')) 
(ul,v')ER(z,v) 

It is a convex selection procedure of R. Indeed, since R is lower semicon- 
tinuow, the function 



is lower semicontinuous thanks to the Maximum Theorem. Then the graph 
of SR is closed because 

The images are obviously convex. Consequently, the graph of R being 
also closed, so is the selection S ( R )  equal to: 

We then apply Theorem 2.2. We observe that when we take 

the selection procedure is strict and yields the elements of minimal norm. 

Example NONCOOPERATIVE BEHAVIOR We can also choose con- 
trols in the regulation sets R(z, y) in a non cooperative way, as saddle points 
of a function a(z ,  y; - , a ) .  

Propoeition 2.2 We posit the assumptions of Theorem 8.1 and we suppose 
that K ie a playability domain. Let us assume that a : X x Y x U x V + R 
satisfies 

i) a ie continuous 

ii) V ( z ,  y, v )  E X x V, u I+ 4 2 ,  y; u ,  v )  i s  convez 
iii) V ( z ,  y; u )  E X x U, v I+ a(z ,  y; u ,v )  is concave 

Then, for all initial state (zo, go) E K ,  there eziet a playable solution starting 
at (zo, go) and a playable controls to the differential game (1) which are 
regulated by: 

1 Y ~ ( t ) )  E R(4t)Y d t ) )  

for almost all t 2 0, ii) v ( ~ ' 9  v') E R(z ( t ) ,  y ( t ) ) ,  
a(.(t), y(t) ;  u ( t ) ,  v') l a (z ( t ) ,  y(t) ;  4t)Y v ( t ) )  
l a(z ( t ) ,  d t ) ;  u', v ( t ) )  

Proof - We prove that the seevalued map SR associating to any 
(2, y) E K the subset 

(42) 
SR(z ,  y) := { (u ,v )  E U x V such that 
V(u l ,  v') E R(2 ,  9)s a ( z ,  u ,  v') l a(z ,u l ,  v )  1 



is a convex selection procedure of R. The associated selection map S(R(.)) 
associates with any z E X the subset 

(43) 
S(R(z,  y)) := { (u, v) E R(z, y) such that 
q u t ,  4 E R(z, Y), 4 2 ,  Y; u, 4 5 4 2 ,  Y; ut, v) 1 

of saddle-points of a(z, y; ., .) in R(z, y). Von Neumann' Minimax Theo- 
rem states that the subsets S(R(z, y)) of saddle-points are not empty since 
R(z,y) are convex and compact. The graph of SR i~ closed thanks to the 
assumptions and the Maximum Theorem because it is equal to the lower 
section of a lower semicontinuous function: 

(44)Graph(SR) = {(z, y) I sup (a(z, Y; u,vt) - Y; u', v)) 5 
(u'*v')ER(=,u) 

We then apply Theorem 2.2. 

3 Discriminating and Pure Feedbacks 

We address now the question of finding for Xavier feedback controls which 
are selection of the set-valued map 

(z,y,v)-  A(z,y,v) c U ( ~ , Y )  

defined by 

(45) 4 2 ,  Y; v) := { u E U(z, Y) I (u, v) E R(z, Y) 1 
Such feedbacks are called discriminating feedbacks. If we assume 

that Xavier has access to the controls chosen by Yves, he can keep the states 
of the system playable by 'playingn a discriminating control whatever the 
choice of Yves through a discriminating feedback. 

Then, we shall investigate whether we can find (possibly, single-valued) 
selections of such a seevalued map A, and for that, provide sufficient con- 
ditions for A to  be lower semicontinuous. 

We first observe that A can be written in the form 

(46) A(z, Y; v) := Q(z, Y; v) n (Wz, y))-'(v) 

The first assumption we have to make for obtaining discriminating feed- 
backs for Yves is that the domain of the seevalued maps A(z, y; .)) are not 
empty. i.e., that 

V v E V(z, y), 3 u E U(z,y) such that 
f ( z , ~ ; ~ )  E D ~ ( Y , ~ ) ( ~ ( z , Y ; v ) )  nDQ(z,Y)-'(g(z,Y;v)) 



We shall actually strengthen i t  a bit to get the lower semicontinuity of A, 
by assuming that 

V (z,y) E K , V v E V ( z , y ) , 3 6  > 0, 37  > 0 such that 
v ( z ' , ~ ' )  E B K ( ~ , Y , ~ ) ,  v v '  E B(v,6) nV(z1,y'), 
V lleill 5 7 ( i =  1,2) 3 u E  U(z1,y') such that f(zl,y';u) 
E (DP(yl,  z1)(g(z', Y'; v')) - el) n (DQ(zl, Y')-'(g(zt, 5/;vt)) - et) 

Proposition 3.1 We posit the assumptions of Theorem 2.1, where we re- 
place strong playability by assumption (/7), and we assume further that the 
norms of the closed convez processes DP(y, z)  and DQ(z, Y)-' are bounded. 
Then the set-valued map A b lower semicontinuous. 

Proof - First, we have to prove that iP is lower semicontinuous, and, 
for that  purpose, that (z, y; w) .u DP(y, z)(w) is lower semicontinuous. 

By a generalization of the Banach-Steinhauss Theorem to  closed convex 
process of 171, we know that it is sufficient to prove that 

(2, y) .u Graph(DP(y, z)) is lower semicontinuous 

and that 
IIDP(y,z)JI := sup inf llull < +w 

J lwJ I< l  UEDP(U,Z)('") 

This is the case because P is assumed to be sleek and because we have 
assumed that the n o r m  of the derivatives are bounded. 

Therefore, the set-valued map 

is also lower semicontinuous. 
The Lower Semicontinuity Criterion and assumption (47) imply that 

(2, y, v) .u @(z, y; v) is lower semicontinuous. 
The same proof shows that the set-valued map (2, y, v) .u Illr(z, y)-l(v) 

is also lower semicontinuous. Since A is the intersection of these two set- 
valued maps, we apply again the Lower Semicontinuity Criterion t o  deduce 
that  A is lower semicontinuous, which is possible thanks t o  assumption (47). 

Theorem 3.1 We posit the assumptions of ~ r o ~ o s i t i o n  3.1. For any con- 
tinuous feedback control (2, y) C(z, y) played by Yves, there e+ a contin- 
uous single-valued feedback G(z, y) played by Xavier such that the diflerential 
equation (25) has playable solutions for any initial state (zo,yo) E K .  



More generally, let SA be a convez selection procedure of set-valued map 
A. Then, for any continuous feedback control ( z ,  y )  I-+ 6(z ,  y )  played b y  
Yves, for all initial state (20, yo) E K,  there ezisk a playable solution start- 
ing at (20, m) to the diferential game 

1 z'(t) = f (z ( t ) ,  u(t))  
(48) 1 d ( t )  = g(z(t) ,y(t) ;  W t ) ,  y(t)))  

~ ( t )  E S(A(z ( t ) ,  d t ) ;  W t ) ,  y( t ) ) ) )  

In particular, i f  the selection procedure is strict, then the control i i(z, y )  
defined by  

Cdz,  9) := S(A(z ,  9; 6(z,  9 ) ) )  
is a single-valued feedback controls. 

This is the c u e ,  for instance, when Xavier plays the feedback control 
U ; ( Z ,  y )  of minimal norm in the set A(z ,  y;  6(z ,  9)).  

Proof - Whenever Yves plays a continuous feedback 6(z ,  y ) ,  K re- 
mains a playability domain for the system 

Since the set-valued map ( z ,  y )  u A(z,  y; 6(z, y ) )  is lower semicontinu- 
ous, i t  contains continuous selections G(z, y )  which therefore yield playable 
select ions. 

We can also think of using more constructive convex selection procedures 
of the set-valued map ( z ,  y) .u A(z,  y; 6(z ,  y ) )  and deduce, as in the proof 
of Theorem 2.2, that Xavier can implement playable solutions by playing 
controls u(t )  in the selection S(A(z( t )  , y ( t )  ; G(z(t), y ( t ) ) ) )  . 

A much better situation for Xavier occurs when he can find feedback 
controls ii which are selections of the set-valued map B defined by 

In other words, such a feedback allclws him to implement playable solu- 
tions whatever the control v E V ( z ,  y) chosen by Yves, since in this case the 
pair (u,v) belongs to the regulation set R(z ,  y )  for any v. 

Such feedbacks are called pure feedbacks. 
In order to obtain continuous single-valued feedbacks, we need to  prove 

the lower semicontinuity of the set-valued map B ,  which is an infinite inter- 
section of lower semicontinuous set-valued maps. 



Theorem 3.2 W e  poeit the aeeumptiono of Proposition 3.1. W e  aeoume 
further that there eziet poeitive conetante 6 and 7 euch that for all (z', y') E 

BK ( (2 ,  Y )  , 6 ) )  we have 

Then  the eet-valued map B ie lower semicontinuous and there eziet contin- 
uous eingle-valued pure feedback controb for Xavier. 

Proof - We observe that V is upper semicontinuous with compact 
values, that A is lower semicontinuous and hae its images in a fixed compact 
set, and that assumption (50)  implies obviously that there exist positive 
constants 6 and 7 such that for all (z', y') E B K ( ( z , y ) , 6 ) ,  we have 

(51) V V E V ( Z ' , ~ ~ ) , V ~ , E ~ B ,  n ( A ( Z ' , Y ' ; V ) - ~ , )  # 0 
v€V(t',ll') 

This theorem follows then from the following general criterion on the 
lower semicontinuity of an infinite intersection of lower semicontinuous set- 
valued maps. 

Theorem 3.3 Let us  coneider set-valued map8 F : X x Y .u Z and H : 
X .u Y .  W e  crseume that 

i) F is  lower semicontinuous with convez value8 
H ie upper semicontinuoue with compact values 

and that there e z b t  positive constants 7 , 6  and c such that for all z' E B(z, 6 ) )  
we have 

Then  the eet-valued map G : X - Z defined by 

ie lower eemicontinuous. 



Remark - When the set-valued map F is locally compact, i.e., maps 
an adequate neighborhood of each point to compact subsets, we do not need 
the constant c and we can replace (53) by 

Proof - Let us choose any sequence of elements z, converging to z 
and z E G(z). We have to approximate z by elements zn E G(zn). 

We introduce the following numbers: 

Now, let us choose in each y E H(zn) an element un(y) E F(zn, Y) 
satisfying 

112 - ~ n ( ~ ) l l  I 2d(z, F ( z ~ , Y ) )  5 en 

We set 8, := 7/(7 + en). Consequently, 

B,(z - u,) E B,e,B = (1 - 0,)yB 

So that there exists a,(y) E yB  such that Bn(z - u,) = (1 - Bn)an(y) 
Therefore, assumption (53) implies the existence for all n large enough 

of elements w, E cB and elements vn(y) E F(zn, y) such that an(y) = 
v, (Y) - w, for all y E H(z,). 

Hence we can write 

so that the common value: 

does not depend of y, belongs to all F(z,, y) (by convexity) and converges 
to z because 

and because (1 - 8,) = e,/(r + en) converges to O for en converges to o 
thanks to the following lemma. 



ÿ em ma 3.1 Let us assume that F is lower semicontinuous and that H is 
upper semicontinuous tuith compact images. Then the numbers en defined 
by (56) converge to 0. 

Proof - Since F is lower semicontinuous, the Maximum Theorem 
implies that the function 

is upper semicontinuous. Therefore, for any c > 0 and any yi E H(z), there 
exist an integer Ni and a neighborhood Vi of yi such that 

because d(r, F(z, yi)) = 0. Hence the compact set H(z) can be covered by n 
neighborhoods Vi and there exists an integer No such that, H being upper 
semicontinuous, 

(59) VnLNo ,  H(zn) c U Vi 
i=l, ..., n 

Set N := ,..., , Ni. Then, for all n 2 N and y E H(zn), y belongs 
to some Vi, so that, by (58)) d(z, F(z,, y)) I 6. Thus, for all n 2 N, en := 
8up,E~(o,) d(z, F(z,, y))/2 5 €12, i.e., our lemma is proved. 
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