
Probabilistic Constrained
Programming: A Reduced Gradient
Algorithm Implemented on PC

Mayer, J.

IIASA Working Paper

WP-88-039

May 1988

Mayer, J. (1988) Probabilistic Constrained Programming: A Reduced Gradient Algorithm Implemented on PC. IIASA

Working Paper. WP-88-039 Copyright © 1988 by the author(s). http://pure.iiasa.ac.at/3166/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

W O R K I N G P A P E R

PROBABILISTIC CONSTRAINED
PROGRAMMING: A REDUCED GRADIENT
ALGORITHM IMPLEMENTED ON P C

Jdnos Mayer

M a y 1988
W P-88-39

I n t e r n a t i o n a l l n s t ~ t u t e
for Appl~ed Systems Analysis

PROBABILISTIC CONSTRAINED
PROGRAMMING: A REDUCED GRADIENT
ALGORITHM IMPLEMENTED ON PC

Janos Mayer

May 1988
WP-88-39

Working Papers are interim reports on work of the International Institute
for Applied Systems Analysis and have received only limited review. Views
or opinions expressed herein do not necessarily represent those of the
Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

FOREWORD

The described solution technique for stochastic linear programs with one joint proba-
bility constraint and with multinormal righthand sides was developed and implemented in
the frame of the IIASA contracted study 'Modelling of interconnected power systems".
Very cautious use of efficient subroutines made it possible to solve such a numerically
complicated optimization problem on IBM/PC-XT or AT compatibles.

Alexander B. Kurzhanski
Chairman

System and Decision Sciences Program

CONTENTS

1 Introduction

2 Problem Formulation

3 Solution Technique

4 Overview of the Program System

5 A Brief User's Guide

6 Some Test Results

References

PROBABILISTIC CONSTRAINED
PROGRAMMING: A REDUCED GRADIENT

ALGORITHM IMPLEMENTED ON PC

Jdnos Mayer

Computer and Automation Institute
Hungarian Academy of Sciences

1. INTRODUCTION

The main purpose of this paper is to present a reduced-gradient-type algorithm and

its implementation on IBM/PC for the solution of probabilistic constrained stochastic

programming problems. It is assumed that the random right-hand side has normal joint

probability distribution.

The numerical difficulties associated with the solution of these problems originate

mainly in the computation of the stochastic constraint function and its gradient vector.

The evaluation of multiple integrals is required here, which is very time-consuming and

introduces a numerical error of several magnitudes higher when compared with the other

parts of the model.

The chief design-objectives for the algorithm and program have been the following:

The structure of the algorithm should facilitate the usage of the powerful advanced LP-

tools for the handling of linear constraints, and the number of calls t o the procedure

which computes the probabilistic constraint should be reduced as much as possible.

The program-system has been written in FORTRAN 77 with the exception of a

software-toolkit written in assembler to extend the capabilities of FORTRAN with

screen-handling facilities.

In the next section the model is formulated and a short historical summary is given

of its origins and of the numerical efforts for solving it. Section 3 serves for the presenta-

tion of the algorithm. The subsequent section gives an overview of the program-system,

followed by a section acting as a brief User's Guide. Finally some test results on problems

taken from the literature are presented.

Acknowledgement: The author expresses his thanks to the following persons for making

available their program-systems: Dr. I. Maros for his LP-system MILP, Dr. T. Szantai for

his subroutine-package NORSUBS, and Mr. L. Sparing for his assembler-toolkit CGA3.

2. PROBLEM FORMULATION

The probabilistic constrained stochastic programming problem can be formulated as

follows:

where G(z) = P(hl(z, P) > 0, ..., hp(z, P) > 0)) and Pl,. . . Pq are random variables with

a joint probability density function of the form:

Q(t) being a convex function. Functions f(z), gl(z), . . . , g,(z) and hl(z, t), . . . , hp(z, t)

are assumed to be concave functions, z E Rn and a is a prescribed probability level. Sym-

bol "Pn means probability.

The problem was formulated by A. PrCkopa [13], [14] in this general form. Using his

fundamental theorem concerning logarithmic concave measures 1121 he proved that G(z)

is a logarithmic concave function which implies that (2.1) is a convex programming prob-

lem [13].

The specific numerical difficulties associated with this type of nonlinear program-

ming problems are in connection with the computation of G(z). Calculating the value of

this function means multiple integration which is very time-consuming even for moderate-

ly dimensioned t vectors and leads to values with an error usually several magnitudes

greater than the numerical errors connected with the computation of the other functions

appearing in the model.

The subject of this paper is the solution of the special case of problem (2.1) where

f(z), gl(z) ,..., gm(z), hl(z, t),. .., hp(z, t) are linear functions, and the random variables

are normally distributed. Such problems may arise e.g. in the linear programming model-

ing process, when some components of the right-hand side vector turn out to be random

variables. In this respect probabilistic constrained programming can be considered as an

extension of the LP-modeling technique.

The problem under consideration can be formulated as the following nonlinear pro-

gramming problem:

max c7z ,

where the components of /3 are random variables with a joint normal probability distribu-

tion function, A is an (m x n) matrix, H an (q x n) matrix, z and c are n-dimensional

and b is an m-dimensional vector, symbol "P" stands for probability. The following

denotation will be used in the sequel: G(z) = P(Hz 1 P). It will be assumed that for

problem (2.3) the Slater-condition holds, i.e. there exists a feasible solution z with the

property: G(z) > a.

The earliest formulation of models which contain probabilistic constraints can be

found in the paper of Charnes and Cooper [I] , see also Charnes et al., [2]. They called

their models chance constrained problems, the constraints in these models can be con-

sidered as a special case of the probabilistic constraint in problem (2.3) by assuming that

the random variables PI,. . . , Pq are independent in the stochastic sense.

Model (2.3) in its general form originates in the paper of Prdkopa [I].]. Being a spe-

cial case of problem (2.1) the results of Prdkopa referenced above imply that (2.3) is a

convex programming problem. The particularities are the requirement that the joint pro-

bability distribution of the random vector-variable should be normal and the restriction of

the concave functions in model (2.1) to the class of linear functions.

From the mathematical programming point of view problem (2.3) is a nonlinear pro-

gramming problem with a single nonlinear constraint. The first algorithm and program

system for the solution of this type of problems were developed by Prdkopa and Deak in

1971 [16], they based their method on Zoutendijk's feasible-direction method P2 (for the

algorithm see Prdkopa [15], for the numerical results Dedk [3]). Rapcsak [17] used a

SUMT method for the numerical solution of small-scale problems of the type (2.3).

Szintai applied Veinott's supporting hyperplane method and achieved excellent numerical

results [18], his program system PCSP has been incorporated into the SDS/ADO system,

see Edwards [6]. The author of this paper developed an algorithm based on the reduced

gradient method and implemented it on a CDC mainframe computer [9]. This method can

be considered as an immediate predecessor of the algorithm implemented on PC.

As mentioned above the computation of G(z) is in itself a very hard numerical prob-

lem, solution methods are mainly based on Monte-Carlo techniques. Deak [4] and Szantai

1191 accomplished very nice and efficient numerical methods in this field, in our program

system Sz6ntai's subroutine-system is used for the computation of G(z).

The specific form of the linear constraints in (2.3) has been selected for the sake of

simplicity of presentation of the algorithm. Although LP-problems can obviously be

transformed to that form the user of the program system is by no means forced to do this.

The underlying LP-problem can be specified according to the standards of LP-packages,

(see Section 5), the programmed version of the algorithm corresponding to this formula-

tion of the problem can be derived from the method presented in the next section in a

straightforward way.

3. SOLUTION TECHNIQUE

In the design phase of constructing an algorithm for the solution of problem (2.3)

two main requirements were considered as desirable goals. According to the first one the

structure of the algorithm should facilitate the usage of advanced LP-techniques for the

handling of linear constraints and objective. The second one is the quite natural require-

ment of trying to reduce the number of calls of the procedure which computes G(z).

The algorithm which has been implemented for the nonlinearly constrained problem

(2.3) can be classified as a reduced gradient type feasible direction method.

To identify a method belonging to this class of algorithms first of all the direction-

finding subproblem is to be specified.

The characteristic feature of reduced gradient algorithms is a subdivision of vari-

ables into basic and nonbasic parts. The components of the direction vector corresponding

to nonbasic variables are determined in a way to ensure improvement in the objective

function value whereas those corresponding to basic variables serve for maintaining feasi-

bility. For notational simplicity in the presentation given below it will be assumed that at

the beginning of a certain iteration the first m variables are the basic variables.

Let us assume that at the beginning of the k-th iteration of the method we are given

a feasible solution zk of problem (2.3) together with a positive ck and a partition

(zk) = (Y T, zT) fulfilling the following conditions:

(i) y E Rm, and if A is partitioned in a similar way as A = (B, N) then B is an

(m x m) nonsingular matrix.

k
(ii) y, > c , j = 1, ..., m, (nondegeneracy assumption).

To condition (i) it is worthwhile to mention that in our case A is always of full row

rank, as it will be seen later. The columns of B form a basis in the column space of matrix

A, and components of z and w corresponding to B will be called basic components

whereas those corresponding to N nonbasic components. Let us suppose that the inverse

of the basis-matrix, B- ' has already been computed.

Let the direction-vector wk and the objective row c T partitioned analogously,
T T (w ~) ~ = (u ~ , uT) and c T = (g , h).

The direction-finding subproblem of the algorithm can now be formulated as the fol-

lowing mathematical programming problem:

max r,

gTu + hTv 2 r,

v:G(zk)u + G (z k) v > Or, if G(zk) 5 or + ck ,
Bu + Nv = 0, (3.1)

k u. > 0, i f z . < c , j = l , ..., n - m , 1 1 -

llull 5 1,

where 8 is a positive weighting factor for the directional derivatives. Number 8 is held

constant in the course of the iterations. Choosing the norm llvll = max lvjl problem (3.1)
I

becomes a linear programming problem.

It is evident that for problem (3.1) there exists an optimal solution, the optimal

value of the objective function let be denoted by r*.

The direction-finding procedure is the following:

Problem (3.1) is solved first. Depending on the optimal value of the objective func-

tion three cases are distinguished:

Case 1 r* = 0 holds. Under these circumstances (3.1.) is solved again with ck replaced

by 0.

If the optimal objective function value is still found to be equal to zero then

the algorithm terminates. It is easy to see that in this case zk is an optimal

solution of problem (2.3).

If the optimal value of the objective function turns out to be positive then the

tolerance-reduction procedure described below for Case 2 is initiated.

Case 2 0 < $ 5 r k holds. In this situation the tolerance is reduced in a cycle consist-

ing of the following steps:

Step 1 The tolerance is halved, r k : = 0 .5 c k

Step 2 Subproblem (3 . 1) corresponding to the new c k is solved. If for the op-

timal T*-value still i 5 ck holds then the cycle is repeated by return-

ing t o Step 1 , otherwise the direction-finding procedure terminates in

the same way as in Case 3.

Case 3 T* > r k holds. In this case the w-part of the solution of (3 . 1) is accepted as a

direction-vector for the present iteration, the direction-finding procedure ter-

minates.

It is obvious that the procedure just described terminates in a finite number of steps.

It either indicates that zk is an optimal solution of problem (2 . 3) or furnishes a feasible

direction along which the objective function strictly increases.

The selection of (3 . 1) as the direction-finding subproblem is justified by its easy sol-

vability. In fact (3 . 1) is equivalent to the problem given below.

max T,

r T v > T,

s T v 2 Or, if G (z k) I oc + ck ,
v 0, i f z . < c k , j = l ,..., n - r n ,

I 3 -

11v11 5 1)

where

Having obtained the solution v* of problem (3 . 2) the u-part of the solution of (3 . 1) can be

computed as follows:

Vectors r and s are the reduced gradients of the objective function and the nonlinear con-

straint function, respectively.

If among the components of z there exists a t least one fulfilling the conditions

r , > r k and either r j # 0 or a, # 0 then the reduction can be carried out one step further

by eliminating one of the rows in (3 . 2) . This leads to a subproblem with the very attrac-

tive feature of explicit solvability like in the reduced gradient method of Wolfe [2 0] .

In the implemented algorithm first an attempt is made to carry out this second

reduction.

If the attempt was successful then the explicit solution of (3.2) with Euclidean norm

is computed. If the reduction is unachievable then (3.2) is solved with a normalization us-

ing the maximum-norm. This means the solution of a linear continuous knapsack problem

which requires essentially only a sorting procedure.

Having solved the direction-finding subproblem the algorithm proceeds by perform-

ing a standard line-search. To determine the stepsize here simply means to compute the

intersection of the ray z(X) = zk + Xwk , X _> 0 with the boundary of the feasible domain.

Let the stepsize be X~ then the new feasible solution serving as a starting point for

the next iteration will be zk+' = zk + Xkwk.

If the nondegeneracy assumption (ii) remains fulfilled also for zk+ then the subdivi-

sion into basic and nonbasic components remains unchanged, r k + l = r k and a new itera-

tion begins.

If degeneracy occurs then the subdivision is changed. This is accomplished by a pro-

cedure consisting of the following steps.

Step 1 An attempt is made using a greedy strategy to exchange all basic variables with

zf+' < rk for nonbasic variables with z:+' > r k in order to get a subdivision of

z k + l which fulfills (i) and (ii) as specified above. The inverse of the basis-matrix

is updated accordingly by standard simplex pivoting techniques. In the case of a

success a new iteration is started with the new subdivision, otherwise the toler-

ance reduced in Step2.

k Step 2 The tolerance is reduced: r k : = 0.5 r , return to Step 1.

If there exists a subdivision of the components of zk+ l into basic and nonbasic parts

such that all basic components are positive then the procedure outlined above obviously

finds a partition fulfilling (i) and (ii) in a finite number of steps. If this is not the case

then it may still happen that the solution of the direction-finding problem (3.1.) is a feasi-

ble direction for problem (2.3). If so then the next iteration is started, otherwise some

special degeneracy-handling sub -procedure is to be initiated. This means the application

of a finite pivoting scheme for a modified direction finding problem (3.1) where nonnega-

tivity is also required for those components of vector u which correspond to zeros in the

current feasible solution. Such a procedure has not been implemented in the present ver-

sion of the program system because the inclusion of i t would increase the size of the code

substantially, and on the other hand test problems available in the literature do not

necessitate it. This feature will be included in versions for the solution of large-scale prob-

lems of the type (2.3).

To give a more complete description of the algorithm it is to be explained how the

procedure outlined so far gets started. A starting feasible solution to (2.3) is found in two

phases which makes the whole procedure a three-phase method.

Phase 0: The linear programming problem

max crz,
Hz 2 E(P) ,
Az = b ,

is solved, where E(B) denotes a vector whose i-th component is the expectation E(Bj),

j = 1,- . q. To solve (3.5) that kind of the simplex method is used, where the first phase

is started by augmenting the problem with logical variables thus ensuring full row rank.

In the subsequent two phases of the algorithm for the solution of (2.3) these logical vari-

ables are kept, i.e. the algorithm works on an equivalent form of (2.3) which guarantees

full row rank throughout.

Phase I: In this phase a feasible solution of (2.3) is computed by applying the re-

duced gradient method of Wolfe [20] to the following linearly constrained nonlinear pro-

gramming problem:

max G(z),
A2 = b ,

2 2 0 .

To ensure convergence the original reduced gradient method is enhanced by an ck-

technique in the same way as the main algorithm discussed before. The starting feasible

solution for the method will be the optimal solution of (3.5) and the starting basis the op-

timal basis, both obtained in Phase 0. The case of a degenerate basis is handled by the

procedure summarized for the main algorithm. Iterations of the reduced gradient method

are carried out till ~ (2 ~) > a is accomplished. The Slater-regularity guarantees that the

algorithm in Phase I terminates in a finite number of iterations. It must be emphasized

that for large-scale problems or for problems where for the Slater-points G(z) w a holds

the Phase I algorithm needs further improvements. More advanced forms of the reduced

gradient method are to be used which are based on conjugate gradients and quasi-Newton

techniques, like the algorithm implemented in the MINOS system [lo]. These techniques

are not implemented in the present version of the program system. The reason for this is

the fact that in the scope of problems to be solved by the system no difficulties of the

above mentioned nature arise.

Phase 11: In this phase the original problem (2.3) is solved using the main procedure

described above. The starting point and starting basis are supplied by the Phase I algo-

rithm. The sequence of iterations is stopped when either an optimal solution is indicated

by the direction-finding procedure or the tolerance fk is decreased below a prescribed stop-

ping level.

In the remaining part of this section a brief summary of numerical techniques which

were implemented in the program-system is given.

(i) Phase 0: An advanced version of the simplex method, developed by I. Maros [8] is

used.

(ii) Computation of the reduced gradients and the basic components of the direction

vector in Phases I and I1 (see (3.3) and (3.4)): LP forward and backward transfor-

mations.

(iii) Solution of the direction-finding subproblems in Phases I and 11: Either achieved via

explicit formulas or in Phase I1 by a standard sorting procedure to solve a continu-

ous knapsack problem.

(iv) Determining the steplength in Phase I: Golden-section search (see [7]) .

(v) Determining the steplength in Phase 11: The intersection of the ray corresponding to

the direction w with the surface {z(G(z) = a) is computed by a bisection-

procedure.

(vi) Changing the basis if necessitated by degeneracy, Phases I and 11: LP pivoting tech-

nique.

(vii) Reinversion of the basis: LP-technique.

(viii) Computation of G(z) and VG(z) : The Monte-Carlo technique [19] developed by T .

Szintai is used. This method includes the possibility of getting lower and upper

bounds for G(z) on a very low computational cost (i.e. very quickly on the comput-

er), which can be utilized to reduce the number of calls to the procedure which com-

putes G(z). In fact golden-section search and bisection ((iv) and (v) above) are both

algorithms where values of the function G, computed a t different points, are com-

pared for the sake of reducing the interval of search. First the bounds on G(z) are

computed and an attempt is made in an obvious way to reduce the interval. The

value of G(z) is only computed if this trial was unsuccessful.

4. OVERVIEW OF THE PROGRAM SYSTEM

The program system is designed for IBM/PC XT and AT computers.

Programs are written in FORTRAN 77 language with the exception of a software-

toolkit written in assembler which extends the capabilities of FORTRAN by screen-

handling facilities.

The system consists of the following main parts:

(i) User interface: This part provides the user with an interactive facility for problem-

specification and run-time interrupts.

(ii) Nonlinear programming part: It realizes Phases I and I1 of the procedure.

(iii) Linear programming system: This part accomplishes Phase 0 of the procedure and

several sub-procedures of it are also used in a modular way (see (i), (ii), (vi), (vii) at

the end of the previous section). The advanced linear programming system MILP

developed by I. Maros is incorporated into the system to perform these activities.

(iv) Computation of bounds on the value of the multivariate normal distribution func-

tion, computation of the function itself and its gradient vector. The subroutine-

package NORSUBS of T. Szintai was built in to accomplish this.

(v) A toolkit of assembly routines to facilitate screen-handling in FORTRAN programs.

The program CGA3 developed by L. Sparing (Technical University Budapest) is

utilized.

The main program, the subroutines performing the control of the iterative pro-

cedures, and MILP communicate arrays to each other through labeled COMMON fields.

In the case of other subroutines and the individual modules of MILP, data communication

is mainly organized with the help of parameter-lists.

5. A BRIEF USER'S GUIDE

The prerequisite of the usage of the system is the existence of an ASCII-file consist-

ing of 80-character records which contains the data specifying the LP problem (3.5). The

data are to be given in the input format of the LP-system MILP, which means the follow-

ing file-structure (the required FORTRAN input format is also specified):

The first record contains a problem-name (A10). The next record contains the dimen-

sions: the number of rows (m), the number of columns (n) and the index of the objective-

function row: (315).

The next records contain codes for the type of the constraints, (1015), where the

codes have the following meaning:

0 --> *=*,

1 --> "I",

2 --> "L",

3 --> free, meaning a non-restrictive constraint or objective function row.

The right-hand-side data are coming next, beginning with a new record (5F15.5).

The next records would contain data corresponding to ranges, a feature not included in

the nonlinear system. The user is kindly asked to insert at this place a sufficient number

of blank records corresponding to m real numbers in (5F15.5) format.

In the following records column-type information is specified, by repeating n-times the fol-

lowing structure:

Column-header record: index of the column, number of nonzero entries in this column,

lower bound on the variable, upper bound on the variable (215,2F10.5).

Records of the nonzero entries: They must be given as a sequence of pairs, on the first

place of which the row index and on the second place the entry is put (5(15,F10.5)).

After starting a run the user will be asked by the system to specify the following

items (in this order):

--> Identifier of the LP input-file.

--> Indices of rows to be included into the probabilistic constraint.

--> Standard deviations of the right-hand-side values corresponding to the rows

selected.

-- > Correlation matrix.

--> Required probability level.

--> How many random numbers are to be generated for the computation of G(z)

and V G(z), see [19].

--> Output level.

Subsequently to data specification the system starts the solution process. The follow-

ing run-time informations are displayed in a scroll-area of the screen:

-- > Probability-level.

--> Present value of the objective function.

--> Present value of counters for the following activities:

NOBJ : Objective function calls.

NGROBJ : Objective function gradient calls.

NPROB : Calls for the computation of G(z).

NGPROB : Calls for the computation of V G(z).

NFTR : LP forward transformations.

NBTR : LP backward transformations.

NTRSF : LP pivot-transformations.

NINV : Reinversion of the basis-matrix.

If the more detailed output option was selected the following quantities are also

displayed:

--> ACTIVITY = -1 if the stochastic constraint is considered to be

inactive by the system, 1 if it is considered as ac-

tive.

--> REDNOR : Euclidean norm of the reduced gradient.

--> EPZIG : Present value of the tolerance ck.

--> DIRDER FOR OBJ : The scalar-product of the direction vector and the

gradient of the objective.

--> DIRDER FOR STCH : The scalar-product of the direction vector and

V G(z) .

The feasible steplength determined by the linear

constraints.

The feasible steplength determined by all of the con-

straints.

-- > The optimal steplength.

Two run-time user interrupts are available:

--> Pressing the < # > key terminates the run after completing the present itera-

tion.

--> Pressing the < escape > key enables changing the value of the following param-

eters of the algorithm:

EPZIG : Present value of ck.

THETA : The &value in (3.1).

TOLDJ : Relative tolerance for gradient-components to be considered as

zeros.

EPSTP : If the Euclidean norm of the reduced gradient decreases below this

level then the present solution is checked for optimality, if it is not

accepted as optimal EPZIG is reduced.

EPLN : Tolerance for linesearch in Phase I.

ESTCH : Tolerance for bisection in Phase 11.

The results are stored in two output files:

--> NLOG.RES : It contains the information which was displayed on the screen

during run-time.

--> NLSP.RES : This file contains a detailed listing of the results.

After a short summary of the problem specification the in-

formation concerning the optimal values of the variables fol-

lows, containing columnwise the following items:

-- Index of the variable, logicals appear first.

-- One-character codes with the following meaning:

"B" basic variable,

"L" nonbasic variable on lower bound,

"U" nonbasic variable on upper bound,

"F" nonbasic variable with a value strictly between

bounds,

"S" structural variable appearing in the probabilistic con-

straint.

-- Lower bound for the variable.

-- Optimal value of the variable.

-- Upper bound for the variable.

-- Component of the last direction vector

This part of the output is followed by a listing of row-type infor-

mation. For each row the following information can be found in

this tableau:

-- Index of the row.

-- Scalar product of the corresponding row of A and the solu-

tion vector,

-- optimal value of the logical variable,

-- substitution value without right-hand-side,

-- right-hand-side component,

-- absolute error for the fulfillment of the corresponding con-

straint.

6. SOME TEST RESULTS

The program has been tested on two probabilistic constrained problems taken from

the literature.

Problem 1. This is a model in water resources system planning [5].

max zl,

where

"D" denoting here standard deviation ,and the correlation matrix is

Denoting the variables in [5] by f l , ..., is, the relation between the variables above and

the variables in [5] are the following:

The results are presented in Table 1, where the first row contains the solution of the

underlying LP-problem whereas the second the results for Problem 1.

TABLE 1 Results for Problem 1

Problem 2. This is a planning-model [16], [18] for the electric energy sector of the

Hungarian economy, with 53 rows and 46 variables.

The computations were carried out for a probability level 0.9, the optimal value of

the objective was 4370.18. The components of the solution are given in Table 2 in the

same manner as the results in Table 1.

TABLE 2 Results for Problem 2

Computing times on an IBM/PC AT without arithmetical coprocessor were x 1

minute for Problem 1 and x 20 minutes for Problem 2.

It must be emphasized that the program is still in a further-development phase with

the general aims to reduce computational time on the PC and increase reliability of the

system.

REFERENCES

[I .] Charnes, A. and W. W. Cooper: "Chance constrained programming", Management
Science, (1959) pp.73-79.

[2] Charnes, A., W. W. Cooper and M.J.L. Kirby: "Chance constrained programming:
An extension of statistical method", in.: Optimizing Methods in Statistics, ed. : Rus-
tagi, J. S., Academic Press, (1971), pp.391-402.

[3] Deiik, I.:"Computational experiences with a stochastic programming model", Magyar
Tudomanyos Akadkmia Szbmitiistechnikai Kozpontja, Kozlemknyek, 9(1972)
pp.33-49. (in Hungarian)

[4] Deik, I.: "Computing probabilities of rectangles in case of multinormal distribu-
tions", J. Statist. Comp. and Simulation, 26(1986), pp.101-114.

DupaEovi, J., A. Gaivoronski, Z. Kos and T . Szintai: "Stochastic programming in
water resources planning: A case study and a comparison of solution techniques",
WP-8840, IIASA, Laxenburg.

Edwards, J . (ed.): "Documentation for the ADO/SDS collection of stochastic pro-
gramming codes", WP-85-02, IIASA, Laxenburg.

Gill, P.E., W. Murray, and M.H. Wright: "Practical optimization", Academic Press,
1981.
Maros, I.: "A general phase-I method in linear programming", European Journal of
Operational Research, 23(1986), pp.64-77.

Mayer, J.: "A nonlinear programming method for the solution of a stochastic pro-
gramming model of A. PrCkopa", in: Survey of Mathematical Programming,
Proceedings of the 9th Mathematical Programming Symposium, ed.: A. PrCkopa,
Vol 2. North-Holland Publ. Co., (1979) pp.129-139.

Murtagh, B.A. and M.A. Saunders: "Large-scale linearly constrained optimization",
Mathematical Programming, 14(1978), pp.41-72.

PrCkopa, A.: "On probabilistic constrained programming", in: Proceedings of the
Princeton Symposium on Mathematical Programming, Princeton University Press,
New York, (1970) pp.113-138.
PrCkopa, A.: "Logarithmic concave measures with applications to stochastic pro-
gramming", Acta Sci. Math. (Szeged.) 32(1971.) pp.301-316.

PrCkopa, A.: "A class of stochastic programming decision problems", Mathematische
Operationsforschung und Statistik, 3 (1972) pp.349-354.

PrCkopa, A.: "Contributions to stochastic programming", Mathematical Program-
ming 4(1973), pp.202-221.
PrCkopa, A.: "Eine Erweiterung der sogenannten Methode der zuliissigen Richtungen
der nichtlinearen Optimierung auf den Fall quasikonkaver Restriktionen", Mathema-
tische Operationsforschung und Statistik, 5(1974), pp.281-293.

Prkkopa, A., S. Ganczer, I. Deak and K. Patyi: "The STABIL stochastic program-
ming model and its experimental application to the electricity production in Hun-
gary", in: Stochastic Programming, Proceedings of the International Conference on
Stochastic Programming, ed. M.A.H. Dempster, Academic Press,(1980), pp.63-82.
RapcsBk, T.: "On the numerical solution of a reservoir model", doctoral dissertation,
University of Debrecen, Hungary (1974). (in Hungarian).

Szbntai, T.: "A PrCkopa-fele STABIL sztochasztikus programozasi model1 numerikus
megoldasarol", Alkalmazott Matematikai Lapok, 2(1976) pp.93-101.(in Hungarian)

Szintai, T.: "Calculation of the multivariate probability distribution function values
and their gradients", WP-87-82, IIASA, Laxenburg.
Wolfe, P.: "Methods of nonlinear programming", in Recent Results in Mathematical
Programming, ed. Graves, R.L., McGraw-Hill, (1963) pp.76-77.

