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FOREWORD 

The described computer code is one of the results of the IIASA contracted study 
"Modelling of interconnected power systems". Based on the latest results of A. Prdkopa, 
it gives the possibility to compute the Loss-of-Load Probability of a given aggregated 
electric network on IBM/PC-XT or AT compatibles. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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USER'S GUIDE OF THE COMPUTER 
CODE FOR THE CALCULATION OF 
THE LOSS-OF-LOAD-PROBABILITY 

(LOLP) 

L. Eotvos University of Budapest 

1. GENERAL DESCRIPTION 

The algorithm for the computation of LOLP by A. Prdkopa and E. Boros ([3]) has 

been implemented on IBM PC. The main steps of the algorithm are the following. 

First we construct the necessary and sufficient conditions for the demand function to 

be feasible. These conditions consist of linear inequalities which can be determined by the 

Hoffmann-Gale theorem. 

Then the redundant and trivially satisfied inequalities are eliminated. The algo- 

rithm of the elimination procedure was developed by A. Prdkopa and E. Boros in the pa- 

Per [31. 

For the calculation of lower and upper bounds on the probability of a feasible flow 

(that is the probability of the remained inequalities to be satisfied) we have to solve two 

special linear programming problems (see A. Prdkopa [2]). These bounds are usually close 

enough so their mean value can be regarded as the estimation of the probability. The in- 

put data of the LP problems are uniquely determined by the number of the remained ine- 

qualities except of the number of rows involved and of the right hand side values. The 

number of rows to be taken into account is an input data of the computer code (the more 

it is the closer the lower and upper bounds will be). The right hand side values of the LP 

problems consist of the first few binomial moments of the random variable giving the 

number of the not satisfied inequalities among the remained ones. For the calculation of 

the above binomial moments we apply a straightforward procedure which is based on the 

fact that the random demands have discrete probability distribution. 

For the solution of the LP problems we use a special dual type algorithm proposed 

by A. Prhkopa in the paper [2]. 



2. MATHEMATICAL DESCRIPTION 

In this section the main results of the paper [3] by A. Prkkopa and E. Boros are sum- 

marized. The purpose of this short summary is to make the calculations of the computer 

code clear and well defined. 

(i) S o m e  basic notat ions and facts concerning networks 

A network G = ( N ,  A )  is a finite collection of nodes N  and a subset A  of N  x N  

which is the collection of arcs. 

T h e  arc capacity function is a real valued function y ( i ,  k ) ,  ( i ,  k )  E  A  on the set of 

arcs. 

A flow is a real valued function f ( i ,  k ) ,  ( i , k )  E  A  which satisfies the following condi- 

tions 

The definition of y  and f  can be extended to the entire set N  x N ,  so we write 

f ( i ,  k )  = y( i ,  k )  = 0 for ( i ,  k )  E N  x N  and ( i ,  k )  E A .  We will use the notations 

y  ( B ,  C )  = C Y ( i ,  k )  
i E B , k E  C 

where B and C  are subsets of N .  

A  demand function d ( i ) ,  i E N  is a real valued function on the set of nodes. If 

B & N ,  then we assign a demand value d ( B )  to B which is defined by 

A demand function is said to be feasible if there exists a flow f  such that 

f ( N , i )  > d ( i )  forevery i E  N  . ( 2 )  

The relations ( 1 )  and ( 2 )  contain the variables f ( i ,  k ) ,  y ( i ,  k )  and d ( i ) .  It is an im- 

portant problem to find the projection of the convex polyhedron defined by ( 1 )  and ( 2 )  

onto the space of the variables y ( i ,  k )  and d ( i ) ,  i.e. to give a necessary and sufficient con- 

dition in terms of these variables for the existence of a flow satisfying ( 1 )  and ( 2 ) .  This 



problem was solved by Hoffman and Gale in the following theorem: 

Theorem (Hofiman and Gale) The demand function d(i), i E N is feasible if and only 

if for every set H E N we have the inequality 

In power system engineering when considering interconnected power systems, one 

node of the network represents one power system and the whole network represents one 

power pool. T o  each node i a generating capacity z, is assigned, moreover there exists a 

local demand corresponding to  node i which is to  be satisfied first by the use of the gen- 

erating capacity zi. The function 

is a demand function corresponding to  the network (network demand). If ti - zi > 0, 

then a t  node i we need an amount of power ti - zi and if ti - zi  < 0, then a t  node i there 

is a surplus generating capacity of z, - ti which we may term supply. The variable ti 
represents deficiency in the generation and excess local demand. If 

then the total available power generating capacity is enough t o  supply the total demand. 

However, the transmission system may not be able to  allow that the individual power sys- 

tems assist each other to  the extent it is necessary. The above theorem by Hoffman and 

Gale provides us with a necessary and sufficient condition for the possibility of the assis- 

tance, i.e. for the existence of a feasible flow. 

If the ti and/or y(i,k) are random variables then (3) provides us with a system of 

linear inequalities which may not be fulfilled depending on the special values of the ran- 

dom variables. Our task is t o  find the probability 

P(d(H)  5 y(R,  H) for every H N) . (4) 

Subtracting the probability (4) from one we obtain the LOLP of the system. 

(ii) An algorithm for the elimination of redundant inequalities 

The following algorithm developed by A. PrCkopa and E. Boros is applied to  elim- 

inate redundant inequalities out of the system of inequalities (3). 



Let b(H) and e(H) be two binary variables depending on subsets H of N. The equal- 

ity b(H) = 1 means that H derives an inequality of (3) which is not deleted. The other 

variable e(H) is used only in the algorithm. e(H) = 1 means that the set H c N was al- 

ready tested. The subsequent steps of the algorithm are the following: 

Step 0: Let b(H) = 1, e(h) = 0 for all H E N, H # @. 

Step 1: Choose a non-empty subset H c N such that b(H) = 1 and 

e(H) = 0. If there is no such subset H, then STOP. 

Step 2: Let T c N\H be maximal with the property that there is no arc 

between T and H. 

Step 3: Let b(V) = 0 for all V H u T, V n  T # @  # V n  H. 

Step 4:  Let e(H) = 1, and if the inequality derived by the subset H is trivial- 

ly satisfied, then set b(H) = 0. GO TO Step 1. 

(iii) The calculation of the binomial moments 

Let HI,.. ., H, designate those subsets of N which derive those inequalities in (3) 

which are not eliminated by the algorithm described above. Assuming now the demand 

function to be random, we designate by A i  the event that d(Hi) 5 y(fli, Hi) and by xi 
the event that d(Hi) > y(R,, Hi). We want to evaluate the probability 

S, = P ( A , .  . . A,) (5) 

which is one minus the LOLP. 

As the number n of the events A i  may be quite large the direct evaluation of the 

probability (5) requires tremendous computation. This problem can be reduced to the 

evaluation of probabilities of smaller number of events. We can estimate the probability 

value (5) by the solution of two special LP problems to be described later. The right hand 

side values of these LP problems consist of the first few binomial moments of the random 

variable giving the number of the not satisfied inequalities among those which remained 

after the elimination of redundant ones. For the calculation of these binomial moments we 

apply a straightforward procedure which is based on the fact that the random demands 

have discrete probability distribution. 

To keep the presentation relatively simple we make the following assumptions: 

- the arc capacity function y (i, k) ,  ( i ,  k) E A is non-random, 



- the random variable corresponding to the nodes in the network, i.e. d(i), 1 E N 

are independent of each other, 

- the possible values of the random variable d(i) is a finite set of integers D;. 

Now the sample space is the product space R = D l x  . - . x D I N ,  and this consists of 

the set of I NI-tuples w = (wlr .. ., wlNI) ,  where wi E D,, i = 1, .. ., I NI. Introducing the nota- 

tion 

P(d( i )  = j )  = pi,, j  E D,, i E N , 

to  the elementary event w the probability 

is assigned. 

In order to  compute the binomial moments 

we have to compute the probabilities of the form P(&, - - xlk), where 1 1 ,  ..., lk are dis- 

tinct values. This equals 

(iv) The estimation of the probability of a feasible flow 

Let p designate the number of those Ai which not occur i.e. the number of those Xi 
which occur. Then p is a random variable the possible values of which are among the 

numbers 0, 1,. . ., n. Introducing the notation 

the binomial moment gk of the random variable p can be expressed as 



Relaxing the equation (6) by keeping the first m  rows only but prescribing that  

vi > 0, i = 1,.  . ., n  we can maximize resp. minimize the sum vl +- . + v, i.e. we can 

solve the linear programming problems 

maximize ( v , +  v , +  - - .  + u r n +  . - .  + v , )  

subject to  v,  + 2v2 + - + m u m +  . . .  + nu, = g1 

resp. 

minimize ( v , +  v , +  - . .  + u r n +  --• + v,) 

subject t o  v,  + 2v2 + - - + m u m +  - . -  + nu, = g1 

- 
If p,, and Vmin are the optimum values of problems (7) and (8), respectively then 

we have 

As we have 

- 
P ( A 1 .  . . A , )  1 1 - P ( x l  - t e a .  + A,) = 

so we get the required lower and upper bound on the probability value (5) 

- - 
Vmin = 1 - V,, 5 P ( A 1 .  A,) 5 1 - Vmin = V,, . 

If for a given m the lower and upper bound are not close enough, then one can in- 

crease m to  get these bounds closer. 



For constructing a fast solution algorithm of the linear programming problems (7) 

and (8) A .  Prdkopa proved the following theorems (see in [2]): 

THEOREM A A basis in Problem (7) is dual feasible i f  and only i f  it is of the form 

for an even m,  where 

and 

for an odd m, where 

THEOREM B A basis in Problem (8) is dual feasible i f  and only i f  it is of the form 

for an even m ,  where 

and 

for an odd m, where 

l s i , i + l <  j , . . . , k + l < n  . 

In the above theorems ai denotes the column vector belonging to the variable vi in 

the linear equality system of the linear programming problem. 

Using Theorems A and B, unique algorithms developed by A. Prdkopa ((21) solve the 

problems (7) and (8). These can be summarized as follows. Starting by any dual feasible 

basis in either of the problems (7), (8) we check if B- ' 3  2 0 or not. Here S is the vector 

of components gl,.. . ,g,. If yes, then B is primal-dual feasible, hence optimal basis. If 

this is not the case then choose a p such that ( B - l q ,  < 0 and delete the p-th vector 

from B. Theorems A and B guarantee that there is one and only one way to restore the 



basis structure by including a vector (other than the one just deleted.) into the basis. Hav- 

ing done this we analyze again the basic components corresponding to  the new basis, etc. 

This algorithm is a special case of the lexicographic dual simplex algorithm, hence it is 

finite. 

3. DESCRIPTION OF THE INPUT DATA FILE 

The da ta  input of the computer code consists of four type of records. 

Record type 1 

N - the number of nodes in the network. 

Record type 2 

The upper triangular part of the node to node incidence matrix. The matrix ele- 

ments are given rowise (every row in different records). The number of type 2 data  

records equals t o  N-1. We remark that  a nonzero incidence matrix element represents the 

corresponding arc capacity value. 

Record type 3 

In these records the discrete probability distributions of the demand function are 

given. The first record contains the number of discrete values the demand takes on a t  a 

given node. The second record contains the possible values of the demand and the third 

record contains the probability values according t o  the demand values. These three 

records are repeated N times for the different nodes. 

Record type 4 

M - the number of rows t o  be taken into account in the LP problems. 

4. DESCRIPTION OF THE OUTPUT DATA FILE 

In the first line of the output da ta  file the name of the input data  file appears. 

The further content of the output data  file is divided into four parts according t o  the 

different calculations. The elapsed time is measured for every part of the calculations. The 

output da ta  file contains the starting and finishing times together with the elapsed time. 

In the first part the conditions involved in the Hoffman - Gale theorem are generat- 

ed. They do not appear in the output da ta  file as it could take a lot of space also for rela- 

tively small problems. 



The second part of the output data file consists of the zer+one coefficient matrix of 

the remained inequalities and of the calculated right hand side vector. 

In the third part the binomial moments are listed. 

Finally, in the fourth part the solutions of the linear programming problems are con- 

tained. This consists of the nonzero components of the solution vectors and the calculated 

lower resp. upper bounds on the estimated probability value. 

5. SOLUTION OF A TEST PROBLEM 

The four node example problem in [3] has been solved for M = 2. 

The list of the input data file i s  the following: 

The list of the output data file i s  the following: 

The name of the input data file is : N O D E 4 . D A T  

Condition generation started a t  14:29:14.33, finished a t  14:29:14.33 

Solution time= .OO sec 

Elimination started a t  14:29:14.33 



The linear inequality system (after the elimination procedure) : 

Elimination started at  14:29:14.33, finished at  14:29:14.44 

Solution time= . l l  sec 

Binomial moment calculation started at 14:29:14.50 

The binomial moment values are 

Binomial moment calculation started at 14:29:14.50, finished at 14:29:54.44 

Solution time= 39.94 sec 

BINLP optimization started at 14:29:54.50 

Problem name : BINLP (max) 

The nonzero components of the solution : 

The lower bound = .99855471 

Problem name : BINLP (min) 

The nonzero components of the solution : 

The upper bound = .99883008 

BINLP optimization started at 14:29:54.50, finished at  14:29:54.88 

Solution time= .38 sec 



6. SUGGESTIONS FOR FURTHER DEVELOPMENTS 

The straightforward calculation of the binomial moments (right hand side values of 

the LP problems) is a time consuming job. This calculation procedure should be replaced 

by a faster algorithm based on the concept of generating functions (see A. PrBkopa and E. 

Boros [3]). 

For the solution of the LP problems one should improve the dual type solution tech- 

nique for handling individual upper bounds (see A. PrCkopa and E. Boros [3]). If this is 

not possible then one should try to use a general LP solver as the computer code MILP by 

I. Maros [[:I.], where it was still called MICROLP). 
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