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FOREWORD 

Normally, executing an algorithm for solving a Cwembedded problem is stopped 
at  a point where some necessary conditions are satisfied. However, for the Cw 
embedded problem both necessary and sufficient conditions may be found. This 
paper is contributed to explore new optimality conditions some of which are both 
necessary and suffient conditions. They could be used to verify if a solution gen- 
erated by an algorithm is at least a locally optimal solution to the Cwembedded 
problem, and used to construct ascent algorithms for this problem with non- 
convex regions in practical calculations. 

Alexander Kurzhanski 
Chairman 
System and Decision Sciences Program 



ABSTRACT 

In this paper some new optimality conditions for the Cwembedded problem 
with the Euclidean norm are presented. Some of them are bdih necessary and suf- 
ficient for certain non-convex regions. The results associated with optimality con- 
ditions given here could be used to construct ascent algorithms and in practical 
calculations. 

Keywords. Design centering, lineality cone, quasi-differentiable functions, CK 
embedded problem. 
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SOME FURTHER OPTIMALITY CONDITIONS 
FOR 

THE c~EMBEDDED PROBLEM 

Z.Q. Xia, J.-J. Strodiot and V. Hien Nguyen 

INTRODUCTION 

We consider the Cwembedded problem as follows: 

max 
zE S 

min 
€ E n  

min 
vEDC 

where intS # p and 

being bounded and simply connected and satisfying V fi(y) # 0 , y E bdS , i E R, R is a 

finite index set, and 

There are different ways to describe this problem, for instance, 

max r 
r,z 

[I]-[5], [lo]. The function 

p(z) = min min 11  2- y 11 2 
€ E n  vEDc 

is Lipschitzian and quasidifferentiable in the sense of [7]. Some optimality conditions con- 

cerned have been proposed, [ I ] ,  [2], [5] - [lo]. In the case where nonconvex regions are 

determined by convex and complementry convex constraints, say, the generalized Fritz- 

John necessary conditions, 



* * 
where (c ,r ) is an optimal solution to the problem 

rnax r 
c,r 

where 

max g(c+rw) , q(c,r) = max h(c+rw) , 
7(c'r) = W E B ( O , ~ )  wEB(0 , l )  

and a sufficient condition have been proposed, due to [I]. Under the same constraint con- 

dition a necessary condition different from (1.2) could be deducted from [13], [14] and 

(p(-)1/2 is a d.c. function, [14]. In [9] some concrete necessary conditions and expansible 

directions were also described. In [lo] a sufficient condition for general nonconvex regions 

was given. As for the case where all of the constraints which determine a feasible region 

are quasiconvex, or quasiconcave (complementary convex), the necessary and sufficient 

conditions could be found in some literatures, e.g., [6], [7]. The necessary conditions for 

this problem, e.g., (1.2), that have been proposed are not very efficient to be used in the 

practical computation. The sufficient conditions that were presented and proved in [:I.], 

[8] and [ lo], are more efficient to be used in the practical computation and in constructing 

numerical methods. But it seems that for the concrete problem, the CMembedded prob- 

lem, it is possible to find both necessary and sufficient conditions in order to expect to 

provide new bases on which more efficient search techniques could be constructed. 

This paper is contributed to explore new optimality conditions which are both neces- 

sary and sufficient conditions. This is the basic purpose of this paper. 

It should be mentioned that some notations given in [lo], and also used here, are 

listed below: 

+(z,€,y) = Ilz-Y \ I 2  , v Y€Dc , €En, z c s  . 



n(z )  = {€En[  min $(z,€,y) = min min $(z,(,y)) , ~ E S  
uED( €En u E D ~  

Y(z) = u Y(z,O. 
€ E ~ ( z )  

ap(z )  is the quasidifferential of p at z in the sense of [7]. 

CA is the conical hull of the set A .  

LCA is the lineality space in the cone CA . 

G(z;Q) = {z- y I YEQC R n )  = z- Q. Normally, we suppose QC Y(z). 

N+(z;Q) = {h€Rnl <u,h> 2 0, UEG(Z;Q)), or if Q = Y(z), then 

N+(z;Y(z)) = {h€Rnl <u,h> 2 0, U E ~ ~ ( Z ) ) .  

1. SOME FURTHER OPTIMALITY CONDITIONS 

Some notations will be introduced below in order to further develop optimality con- 

ditions to the problem (1.1). The notation 

means that sets A and B can be separated by some hyperplane H(y) at the point y. In 

our present discussion, the hyperplane H(y) is just the tangent hyperplane Tj((y) at the 

point y ~ b d  S, i.e., satisfying 

for some ( E ~ ( z ) .  U,(y)(y) denotes a neighborhood at  y, mostly an Euclidean ball with 

radium E( y). Define 

v v 
A point z is said to be a V-point if zE int S and P(z) = Y(z). A point y ~ P ( z )  is said to 

be an open-type point associated with z. An open-type point is said to be strict if there 

exists E( y )  >O such that 



v 
A point z is called a strict V-pointif every point P(z) is strict. 

Similarly, we can define the opposite type point. The symbol 

means that sets A and B are in the same closed half-space determined by a supporting 

hyperplane H( y) of A or B at YEA n B. Define 

As mentioned above, the supporting hyperplane H(y) is just the tangent hyperplane 

Tft(y) at  yE bd S satisfying the condition (2.1). A point z is said to be a /\-point if 

zE int S and P(z) = Y(z). Each point (z) is called a closed-type point associated 

with z. A point y ~ P ( z )  is called strict if it satisfies the condition (2.2). A point z is 

called a strict /\-point if every point is strict. A point y ~ P ( z )  is called trivial if 

there exists c(y)>O such that 

for some &R(z). In the definition of P(z),  we excluded the case in which for some point 

ye Y(z) and, for all c>0, one has 

The set consisting of the points, in Y(z), satisfying (2.3) is denoted by P(z). Similarly, 

we can define strictness for the points in P(z) and zEint S. 

The other situation is defined as follows. Define 

P(z): = {YE Y(z) l V  00 : U,(y) n bd S n H(y;V ft(,),>)#r and 

U,(y)n bd S n H(y;VfC(y),<) #B for some < ~ n ( z )  satisfying (2.1)) 

where H(y;V ft(y),>) denotes an open half-space, i.e., 

and H(y;V fC(y),<) denotes the other open half-space , i.e., 



A point y ~ P ( z )  is said to be a general type point associated with z. 

Theorem 2.1. Suppose that z is a strict V-point. If the point ZE int S is a locally 

optimal solution to the problem (1.1)) then N+(z; Y(z)) is only the singleton containing 

the zero-vector, i.e., 

dim N+(z; Y(z)) = 0 . (2.4) 

Proof. For the sake of contradiction, suppose that dim N+(z; Y(z)) fO. From the oppo- 

site assumption there exists such an h€Rn that ~ E N + ( z ;  Y(z)) and hfO. Since z is a 

locally optimal solution, there exists a bo>O such that 

for all X~(0,6,). Now we prove that there exists a 6>0 such that (p(z+Xh)-(p(z)>O for 

all X€(0,6), that is, for all X€(0,6), one has 

Suppose that (2.6) is not true. Then there exist sequences {b i ) r  1 0 and {Xi)? such that 

O<Xi<bi and 

A sequence of points {zi)c bd S can be found such that, for any i ,  

Since R is finite and Y(z) is compact, there exist ~ E R  and a subsequence {ik)r~{i)r 
such that the corresponding subsequence {zit) converges to a point g of the boundary of S 

and the whole subsequence {zit} is on the (bd S ) r  where (bd S)r denotes Sn DF Since 

(bd S)r is compact, ~ ~ ( b d  S)? In consequence of the continuity of the function d(.,.) and 

(2.8)) one has 

= d2(z , (bd S)r) = d2(z , bd S) = p(z)  

that is, YE Y(z). In view of h ~ N + ( z ;  Y(z)), we have 



We showed that {z+Xg h)? is included in the closed half-space H+(Z;Z- f ) ,  i.e., 

However the hyperplane {wJ<z-f,w-z> = 0) is parallel to the tangent hyperplane 

TfC(g). Since z is strict, it is impossible for (2.8) to hold. This contradiction shows that 

(2.6) is true. But (2.6) contradicts (2.5). This contradiction shows that 

N+(z; Y(z)) = {0), i.e., dim N+(z; Y(z)) = 0. The proof of this theorem is completed. 

Remark 2.2. If we only assume that z is a v-point, then (2.4) is still a necessary condi- 

tion for a strictly locally optimal solution to the problem (1.1). 

From [lo, Theorem 2.4) and Theorem 2.9 we are able to get a necessary and 

sufficient condition to a locally optimal solution of the problem (1.1) in the case where the 

center is a v-point. 

Optimality Condition 2.3 

Suppose that z is a v-point and strict. z is a locally optimal solution to the problem 

(1 . l )  if and only if 

dim N+(z; Y(z)) = 0 (2.10) 

dim Lcap(z )  = n . (2.11) 

v 
Remark 2.4. Suppose that Y(z) = P ( z ) u P ( z )  and furthermore that 

LC,(,; Y ( , ) )  n ~ ( z ; P ( z ) )  = (01 

Then z is not a locally optimal solution, and (2.12) holds if and only if 

v 
N+ ( z ; ~ ( z ) ) n  int N+ (z;P(z) # o . (2.13) 

Lemma 2.5. If z is a locally optimal solution to the problem (1.1), then 

dim L C B ~ ( Z )  # 0, i.e., dim N+(z; Y(z)) # n. 

Proof. Suppose that dim L C q z ;  Y ( z ) )  = 0. From Theorem 2.1, there exists a non-zero 

direction h ~ i n t  N+(z;Y(z)). Here, for all u€G(z;Y(z)), <u,h> > 0. It follows immedi- 

ately that 



Because C3 p(z)  is compact and ap(z )  = co (2 u 1 UE G(z; Y(z))) , one has 

pt(z;h) = min <u,h> > 0 
~ € 8  p(z)  

Thus ~ ( z , p ( z ) ~ / ~ )  is able to expand continuously along the direction h, and for all r > 0, 

there exists ZE U,(z) such that p(z) > p(z).  This contradicts the fact that z is a locally 

optimal solution. 

Theorem 2.6. If the condition 

dim L ~ ~ ( z , ~ ( z ) )  f O 

holds, then z is a locally optimal solution to the problem (1.1). 

Proof. Let 

dim LCG(z;p(z)) = k > 0 . 

For all y ~ P ( z ) ,  there exists 6(y) > 0 and ~ ( y )  satisfying 0 < r(y) < 6(y) such that 

B ( Z , P ( ~ ) ~ / ~ )  SS(Y) ( Y )  n bd s 

and, for any Z E [ U , ( ~ ) ( Z ) ~ { Z I  <z-Y,z-z> = 011, one has 

In fact, let u: = Proj  z/ Tf(y), w denotes such a point that WE U6(y ) (~ )  n bd S and 

Since, for r(y) small enough, 1 1  u-211 2 1 1  ii-zII where f(ii) = fO ,  ii = z+a(u-z) and 

O<a<l,  we have u - z  1 w - z ,  i.e., (2.15). So, for all 

ZE U,(u)(y)n{zJ <z- y,z-z> 5 01, (2.15) is true. Let g be such a point that 

z-g~(z-P(z) )n~~~( . ,p( , ) )  . 

Then, for any z ~ U , ( ~ ) ( z ) n { z l  <z-J,z-z> 5 01, the relation 

holds. 

Since dim LcG(=;p( 
=) 

# 0, there exists a finite set AC[G(Z;P(Z)) \  {z-g)] n 
G(=;P(z)) such that v-ZECA, i.e., there exists a set of nonnegative scalars {AlJ.. .,AI) 

satisfying CAi>0  and 



For any v ~ { z  1 <z- y,z-z> > 0), there exists at least one y ( v ) ~ X -  A such that 

In fact, from (2.17), one has the following relation 

Therefore there exists at least one iiiiEA such that 

This implies that there exists y (v )~z -A  such that (2.18) holds. Take a neighborhood 

where Fsatisfies 0<F< min ~ ( y )  and ~ ( y )  satisfies (2.16). Of course, the following 
u€(z-A)U{F} 

relation is true 

It follows from this and (2.18) that there exists a neighborhood of z, U,-(z), such that 

V VEUAZ) one has p(z)112 2 p ( ~ ) 1 / 2 .  So z is a locally optimal solution. II 

Optimality Condition 2.7 

Suppose that z is a A-point. z is a locally optimal solution to the problem (1.1) if 

and only if 

It is not easy to treat the situation in which G ( Z ; P ( Z ) ) ~ L ~ ~ ( , ; ~ ( ~ ) )  # {g) and 

CG(Z;P(Z)) is a pointed cone, but (2.12) is not valid. The main trouble is that in this 

case it is possible that although the main body is not able to  expand in a straight line but 

it is able to expand in a curvilinear path. .This situation will be discussed briefly. To this 

end we start with the following optimality condition (from [9]). 



Optimality Condition 2.8 

A point z is a locally optimal solution if and only if there exists E>O such that 

Suppose YE Y(z) and (I€ bd [D,+ 112-y 1 1  B(O,l)] nSn U6(,)(y), where U6,,)(y) is some 

neighborhood of y and Dt is the same as D,. ( 1  can be expressed as 

where yr~{yr l  f(yr) = f ") .  For convenience subscripts of f and y are omitted for tem- 

porality. To begin with we approximate V f(yr)/ 1 1  V f(yr) 1 1 .  Since 

where b(y' , y' - y) E Rn - 0, as y' - y 

Calculate the unit vector in (2.21) 

Substituting (2.22) into (2.20) we obtain the expression of ( I  

From this one has 

Let (-2: = yr-y, then 



and the following equations are satisfied 

In some neighborhood of z we make the approximation 

{ c I ~ ( s - ~ + Y )  = f ( y ) ) n  u,(z) = ~ ~ [ D , + I I ~ - Y  l lB(O,l) in u,(z> 

Consequently, the set 

{r l2Vf(u) T(s-z)+(r-z) T ~ y ( r - z ) = o )  

can be regarded as an approximation to bd IDY+ 11 z-y 1 1  B(O, l ) ] nS  at 2. 

Finally combining (2.19) and (2.23), we obtain an approximate condition 

Because (-2 = yr-y, for some c>O small enough, one has 

Therefore 

- 
c S: = n { z l 2 ~  f((yd T(z-z) + (z-z) T ~ Y e ( z - z )  < 0 ) n  u,(z) 

YtE Y(z) 

It follows from (2.25) that if z is not a locally optimal solution to the problem (1.1) then 

the left hand side of (2.24) is nonempty. So if (2.24) holds then z must be an optimal 

solution (at least locally). 

The problem now is how to verify if (2.24) holds when dim ~ + ( z ;  Y(z)) # 0 and n .  

Take appropriate c>O, a point zN+€N+(z; Y ( z ) ) n  U,(z) and find a r such that i t  satisfies 



In order to avoid infinite programming brought by (2.25) and (2.26) the following sub- 

problem can be adopted, for some [ ~ n ( z )  

with initial point z(')=z. A local solution z(z;€) for the problem (2.27) is near the boun- 

dary bd[DC+ (1 z- yC 11 B(O,l)]. According to the information resulting from the point one 

can choose a method suitable for further checking if (2.24) holds. If needed, the parame- 

ter 6 used for controlling a neighborhood of z can be reduced successively. 

When the region determined by convex constraints and complementary convex con- 

straints and a norm associated with predefined unit convex body (in the case where it has 

a continuously differentiable surface corresponding to the unit convex body), the VD2 

algorithm [I] described a method convergent to a locally optimal solution to the CM- 

embedded problem (the DC problem). In this case the VD2 algorithm can be executed 

continuously without checking optimality conditions until meeting stopping criteria 

prescribed. 

2. OTHER RESULTS 

In this section some results related to checking optimality described in the last sec- 

tion will be presented. With this end in view we first give the following lemma. 

Lemma 3.1. Suppose that y c Q c R n  and z$clQ. Then z - ~ E L ~ ~ ( ~ ; ~ )  if and only if 

both of Proj (z- ~) /N+(z;Q)=o and Proj (y-z)/N+(z;Q)=o hold. 

Proof. Since Proj (z- y)/ N+(z; Q)=o, the hyperplane (or subspace) 

{u I < u , z - y > = 0) separates z- y and N + ( ~ ; Q )  such that 

l l ~ - y ( ( ~ > 0  and <z-y,w>lO, V WEN+(Z;Q) . (3.1) 

Likewise, for y-z it is the same as above, i.e., 

1 1  Y-z112>0 and <y-z,w><O , V w€N+(z;Q) . (3.2) 

From (3.1) snd (3.2), we have 

Since dim N+(z;Q)+ dim LCG(z;Q) = n and L,$~(,;Q) = LN+(z;Q), one has 



I z - y l  LCG(=;Q), i.e., z- yELCG(,;~). This is the proof of sufficiency. Conversely, it is 

easy to  be proved. 

We now study with the aid of quadratic approximation how to  analyze the local 

behavior of boundary a t  a point. According to  this, an algorithm can be constructed, 

which can be used t o  identify the local behavior of boundary a t  a point. 

Given a point y ~ b d  S and its corresponding constraint function f,  and suppose 

further tha t  

where g(y;.) is the approximation of order two for the Taylor expansion of f a t  y. For 

any y k ~ f ( y )  in a neighborhood of y, we can find two corresponding points on 

f(Y') = f ( Y )  and ~(Y ;Y ; )  = f(Y) respectively 

and 

Y; = YT - ~ ( Y T ) v ~ ( Y )  - 

a(y*) and ~ ( y ; )  can be regarded as two mappings 

a :Rn - '+R ,  /3:Rn- l+R. 

Substituting (3.5) into (3.3), one has 

f v f ( y )  T [ ~ ~ - ~ - B ( ~ T ) ~ f ( ~ ) l  + ( Y ~ - Y - ~ ( Y ~ ) v ~ ( Y ) )  T ~ y ( ~ ~ - ~ - ~ ( ~ ~ ) ~ f ( ~ ) )  

From this we have 



Suppose that  V f(y) is not self-conjugate to  Hessian o f f  a t  y. Solving (3.7), one has 

B(YA = [ ( I I  v ~ ( Y )  I I ~ + ( Y T - Y )  T ~ y ~ f ( ~ ) ) h ( ( I ~ ~ f ( ~ )  1 1 2  (3.8) 

+ ( Y T - Y ) ~ H , ~ ~ ( Y ) ) ~  - ( ~ ~ ( Y ) ~ H , ~ ~ ( Y ) ) ( Y T - Y ) ~ H , ( Y T - Y )  

+ o( l l  Y'-Y 112)) I lv f (Y)  T ~ , v f ( ~ )  - 

For the sake of simplicity, let 

a := (Y;-Y)lllvf(~) I 1  , b := Vf (Y) l l lV f (~ )  I 1  , (3.9) 

T T c : = b  H y b ,  d : = a  H y a .  

Made use of (3.9), (3.8) can be simplified as follows 

' 2 1 1 2  ~(y ; )  = [ l + ~ ~ ~ ~ b h ( ( l + a ~ ~ ~  b )2 -~d+~( I I  Y - Y  1 )) ] / c  . (3.10) 

Making Taylor approximation of second order, one has 

Because (y~-y) / (y ' -y ) -+ l  as y;+y, the "-" is taken in (3.10). Therefore, 

For (3.4) and (3.6), we have the similar expansion 

Define 

1 ,  
A(YT): = l ( ~ T - ~ ) ~ , ( ~ T - ~ ) / ~ ~ ~ f ( ~ )  I 

y & ~ f ( y ) n ~ , ( y )  , for some E > O .  



The foregoing development is summarized in the following lemma. 

v 
Lemma 3.2. Suppose YE Y(z). If y ~ ~ ( z ) ( P ( z )  or P(z)) ,  then there exists a U,(y) such 

that A(~;.)so (LO) for all y & T f ( y ) n ~ , ( y ) .  Conversely, if there exists a U,(y) such 
v 

that, for all y &T f ( y )n  ~ , ( y ) ,  A(~; )>o (<O), then y ~ P ( z )  or P(z )  (P(z)). 

According to our hypothesis that for any boundary point y ~ b d  S, Vf(y)fO, for any 

y ~ b d  S there exists a matrix 

that is, the matrix consisting of vectors in a basis of subspace Tf(y)-y, such that, for 

each y k  Tf(y), there is the unique expression 

Substituting (3.15) into (3.14)) we get 

From Lemma 3.2 and (3.16)) it is easy to prove the following theorem. 

v 
Theorem 3.3. Suppose yE Y(z). If YEP(.) (P(z) or P(z)) ,  then CTHy cso (20).  Con- 

v 
versely, if CTHYC<0 (>O), then YEP(Z) (P(z)  or P(z)). If CTHyC is indefinite, then 

yEP(z) . 
Note that although from C ~ H , C ~ O ,  we are not able to conjecture if y must belong 

to P(z).  For convenience, y is put into P(z)  because of /3(y;) = o(ll y;-y 1 1  2, for every 

y& Tf (y )n  UE(y) when c is small enough. 

Now we will discuss an important problem, but a very difficult one as well. How to 

find Y(z)? Clearly, it is the problem we are interested in. Suppose that the set n (z )  has 

been found. For every €ER(z), consider the subproblem 

The problem in question can be described as finding 



= U {YER"~ v is a solution to  the problem(3.17)) . 
En(.) 

The part of inequality constraints in (3.17) can be taken no account of, or straightfor- 

wardly, they can be dropped when finding Y(z,(), i.e., the subproblem 

will be considered. It is evident that (3.17) and (3.18) are equivalent. We assume that 

Y(z,f) is finite. Then 

For convenience, the subscript in (3.18) is omitted and Y(z,f) is used instead of Y(z,() 
v 

temporarily. According t o  the definitions of B(z) , P(z)  and p ( z )  for each gE Y(z,f), 

there exists a 6 ; (~ )>0  such that 

In other words, there exists a 6 , ( ~ ) > 0  such that 

where 

There exists a set {b0(v) I gE Y(z,f)) such that 

n H + ( V - ~ ~ ( ~ O )  ; - v f ( v ) ) n ~ ( z , ~ ( z ) ~ f ~ ) n  y ( z , n  = 
FE y ( ~ , n  

Define 

It is closed, convex and bounded. Clearly 

It can be   roved that,  if Y(z,f) is finite, then there exists a polyhedron PI such that 

Xc in tP l  and f(y) = f O c P I C ,  



i.e., bd PI can separate X and f(y) = f" strictly. 

Given Q # gi and Q c Y(z,fl, consider the following problem 

min l / y - ~ 1 1 ~  

(y€M if needed ) 

where M is a bounded domain containing B(Z,P(Z) 'I2). 

Suppose that Y(z,f) is finite and Y(z,fl\Q # gi. The set determined by the con- 

straints of (3.20) is nonempty, i.e., 

After solved (3.20) each time two cases may happen. One is that yt€bd B ( z , P ( z ) ~ / ~ ) ,  

the other is that  y * ~ b d  B ( z , P ( z ) ~ / ~ ) ,  i.e., d(y * , Z ) > ~ ( Z ) ~ / ~  where y * is a local solution t o  

(3.20), obtained after some algorithms were executed for solving (3.20), e.g., [ 12 1 .  
C a s e  I. In this case, a new touching point has been obtained. The set Q can be enlarged 

after Q = QU{U*}. If there is a need, a new hyperplane 

can be introduced and 

can be added to  the original constraint set of the problem (3.20). Resolve the problem 

again. 

C a s e  11. y * ~ b d  B ( z , P ( z ) ~ / ~ ) .  A hyperplane 

can be constructed where bo(y *) satisfies 

and 



Then the right-hand side of the above inclusion relation is added to  the set of original 

constraints of the problem (3.20). Resolve the problem (3.20) with the enlarged constraint 

set and an appropriately initial point yt(0) such that 

From this, if (3.20) is resolved infinitely, then a sequence of solutions can be formed, 

denoted by {yk?r. In terms of (3.23), one has 

** 
So {yA+y E B ( Z , ~ ( Z ) ' / ~ ) .  Summarizinng the description above, we get the following 

lemma. 

Lemma 3.5. If Y(z,f) is finite and Y(z,f)\Q#@ and Q c  Y(z,f), then, by solving (3.20) 

repeatedly, a new touching point can be found provided that initial points in an infinitely 

iterative process satisfy (3.23). II 

There are two points we have to mention before a strategy is proposed. The first is 

that ,  if vEQ and for some 6>0, the intersection of the hyperplane Tf(f)-6Vf(g) and the 

hypersurface is empty, i.e. 

then the hypersurface is included in the halfspace H+(~-GV f(g);V f(p)), because of f~ C2. 

The second point concerns a basis in (n-1)-dimensional space. Suppose that  the columns 

of C(v) = [ul ,..., u,-J form a basis in Tf(v)-v. For any 6>0, {ul , . . . ,U,-~)  

C(y)+g-GV f(v) is a basis on the hyperplane (manifold) Tf(v)-GV f(v). In addition t o  

these, an engineering infinite o o ~  is defined by a positive number large enough, r,, i.e., 

ooE:=r, controlled by M in (3.20). 

Finally i t  is necessary to  mention the case in which Y(z,f) is an infinite set. But i t  

is not our purpose to  elaborate on the details. We only make a short discussion below. 

It is clear that 

and 



Since bd B ( Z , ~ ( Z ) ~ / ~ )  and Y(z,n are compact, there exists a finite family of neighbor- 

hoods 

covering Y(z,n,  where Q is a finite subset of Y(z,n.  Let c = max{r(y) I YE Q). Then 

In general, we are not able t o  infer from Q c  Y(z,n that 

for some r>O. A finite subset of Y(z,n,  Q, is called a finite N+-c approximation t o  

Y(z ,n  if 

Theorem 3.8. Suppose that Q ic  Y(z,n , i = O,l, . . . , {Q i ) r t  in the sense of the inclu- 

sion relation, { r i ) r10  and Y(z,n is infinite. If for any i = 0,1,. . . , the following condi- 

tion is satisfied 

then 

lim N+(z;Qi) = N+(z;Y(z,n)  . 
i+ 00 

Proof. From (3.26)) one has 

Now we prove the inclusion relation opposite to (3.28). For any fixed z such that  

and any i ,  there exist y,eQi and a, such that O<ai5ci and 

z = yi+aiwi , 



where 1 1  will 51. From this we have 

Since ei+O and Y(z,f) is compact, {y i ) r+z  and ZE Y(z,f). Hence 

It can be seen that l im Q, is dense in Y(z,f) because of {Qi)f and (3.29). Thus 
1+00 

because of cl l im Qi = Y(z,f). Note that {N+(z;Q~))J as {Qi)T. It is easy to prove 
1-.00 

that 

00 00 

N+(z; l im Qi) = N+(z; U Qi) = n N+(z;Q,) = lim N+(z;Qi) . 
1+00 

(3.31) 
i=O i=O i+m 

In view of (3.30) and (3.31), one has (3.27). The proof is completed. o. 
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