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1. Introduction 

Many problem formulations in statistics and stochastic optimization generate estimates 

from data by selecting a "best" or LLoptimal" point xu % = xV( t l , .  . . , t,), frequently by 

choosing % xu to solve a generalized equation in the form 

V 

Choose x E Rn such that O E C g(x, t i )  + N(x), 
i= 1 

where g is a function, {t i} an i.i.d. sequence of random variables, and N a set-valued 

mapping. In stochastic programming, for example, this equation represents the first-order 

necessary conditions for the optimization problem 

minimize :C f (x, t i )  over all x E X c Rn, 

setting r (x ,  t )  = V f(x, t )  and N(x) = Nx(x) - the normal cone to X at x in the sense 

of nonsmooth analysis. In maximum likelihood estimation this equation can represent the 

so-called "normal equations", setting N(x) identically equal to the zero vector; by analogy 

with stochastic optimization, this situation represents the case where no "hard" (i.e. a 

priori deterministic) constraints are placed on the maximum likelihood estimator. In the 

general case, solutions to (1.1) could be called generalized M-estimates. 

Introducing a set-valued map into the normal equations is natural from the point of 

view of optimization, because it permits the specification of constraints that one knows 

must be true (e.g. non-negativity in variance estimation), but at the same time it compli- 

cates the analysis of the asymptotic behaviour of the estimates. For more discussion and 

motivating examples, see Dupaeova and Wets [8]. 

In this paper we develop assumptions under which there are a point x* and a random 

variable u such that &(xu - x*) converges in distribution to E; furthermore, we also 
N N 

indicate how to compute u from the information in (1.1). If u turns out to be normal, 
N N 

then &(xu - x*) is asymptotically normal. The presence of the set-valued mapping N,  
N 

however, leads to asymptotic behaviour that is generally non-normal but that can be 

analyzed using the special techniques of this paper. 

New developments in nonsmooth analysis, in particular the differentiation of set- 

valued maps, makes possible a very general study of the solutions to (1.1) by analyzing 

the local sensitivity of the mapping 

about Eg(-) = Eg(., t l )  (expectation with respect to the random variable t l ) ,  where 

the perturbations are taken over a function space Z - in the case considered here, a 



Banach space. The functions EVg(-) = xr==l g(-, I;) may be viewed as random variables 

with values in 2,  and a Banach space central limit theorem may be applied to reach the 

conclusion that JV(EVg - Eg) converges in distribution to a Gaussian random variable c .  
N 

By analogy with the classical delta method, we then define an appropriate "derivative" of 

J at Eg and conclude that 

The basic pattern in this argument is the "generalized delta method" described in Section 

2. 

In this paper we derive (1.3) for Z = C(Rn : IRn), the space of bounded continuous 

functions frbm Rn into Rn, Eg : Rn + Rn strongly monotone, and N : IRn =$ Rn 
maximal monotone. This setting does not cover all situations in stochastic programming 

or generalized M-estimation, but it seems at present to be the most general in which 

JV(zV - x*) can be expected to converge in distribution. 

All of the early results yielding asymptotic distributions for solutions to (1.1) were 

developed for maximum likelihood estimation. Few papers in this field, with the notable 

exception of Aitchison and Silvey [I], considered constrained problems (and even the excep- 

tional case had asymptotic normality as its goal). In stochastic optimization, constraints 

are fundamental to modelling practical decision problems. Currently there are three ap- 

proaches to deriving asymptotic distributions for solutions in stochastic optimization and 

generalized M-estimation. One technique is based on the fundamental paper of Huber 

[9], whose result has been applied recently to stochastic optimization in DupaEovd and 

Wets [8]. Essentially this technique allows one to pass to parametric analysis by assuming 

asymptotic normality of EVg(xV). .., A second technique is based on the "von Mises func- 

tionals". A basic reference is Kallianpur [lo], and a recent paper applying this concept 

to non-smooth generalized equations involving Clarke subgradients is (a  different) Clarke 

[7] .  Finally, there is the one on which the present paper is based; it was first outlined 
in King [ll], where results for linear-quadratic problems were given. There are strong 

connections between the techniques and also some differences. Huber apparently does not 

require monotonicity or even continuity of g(.,t) - but every application of his result 

imposes these and much more. If these assumptions are granted then the results presented 

here are more general than those based on Huber's theorem. 

The main result is presented in Section 4 along with an example and discussion. 

Section 2 contains the basics of the generalized delta method, and Section 3 the local 

analysis of the mapping J. A brief presentation of the Banach space central limit theorem 

appears in an Appendix. There are many concepts and definitions needed for the smooth 



reading of this paper, and not all readers can be expected to be fully versed in each. 

Accordingly, some brief space has been allotted to a description of the major prerequisites. 

2. Generalized Delta Method 

The definition of the mapping J in (1.2) allows us to generate the asymptotic distribution 

for the solution sequence based on that of the sequence of functions {zU(.)), which as we 

have indicated, are to be regarded as elements of a Banach space Z equipped with the Bore1 

sets 23. A discussion of central limit theory in Banach spaces appears in the Appendix. For 

the purposes of ths section we shall assume that there are z* E Z and a Z-valued random 

variable w with 
N 

where the symbol 27 under the arrow denotes convergence in distribution (weak *-convergence 

of the measures pu induced on Z by the random variables Jv (zu  - z*) to the measure p 
N 

induced by w , which means that 
N 

for all bounded continuous f : Z t IR, cf. Billingsley [5]). 

The "generalized delta method" to be described in this section is a review of the theory 

in King [12] that gives conditions under which the asymptotic distribution of &(2" - x*), 

for xu E G(zU), can be deduced from the limit distribution w and the first-order behaviour 
N N N 

of G, where G : Z =t X is a given set-valued mapping. It takes the point of view that 

&(s" - x*) is a selection from the "difference quotients" &(G(zU) N - x*), i.e. 

fi(.' - x*) E f i (G ( rY )  - I*). 

It shows first that under special circumstances the difference quotients converge in distribu- 

tion as closed-valued measurable multifunctions, and, second, passes to a more specialized 

situation where conclusions about the limit distribution of &(xu - x*) may be drawn 
N 

from that of the difference quotients. The combined result will be summarized in Theorem 

2.2. 

The concept on which the theory is based is the convergence of closed sets in IRn. Let 

{A,) be a sequence of closed subsets of Rn and define the (closed) sets 

(2.3) lim inf A, = {x = lim xu I xu E A, for all but finitely many v )  
u 



(2.4) lim sup A, = {x = lim x, 1 x, E A, for infinitely many u ) .  
v 

We say {A,) s e t  converges t o  A = lim, A,, if A = liminf A, = lim sup A,. Set-convergence 

induces a compact, separable, and metrizable topology on the space F of closed subsets 

of IRn. A closed-valued m u l t i f u n c t i o n  can be viewed either as a set-valued mapping G : 

Z =$ IRn or as a function y~ : Z + F. If (Z,23) is a measurable space then a closed- 

valued multifunction G : Z =$ IRn is measurable if for all C € F one has G-'(C) := {z € 

Z I G(2)nC # 0) belongs to 23. (When the probability space is not explicit, we use the term 

r a n d o m  closed s e t  and employ the notation G.) Equivalently, such a G is measurable if and 
N 

only if y c  is a Bore1 measurable function. If the measurable space (2, 23) comes equipped 

with a measure p ,  then we say that a sequence of closed-valued measurable multifunctions 

{G,) converges in dis t r ibu t ion  to G if and ony if {yG,) converges in distribution to y ~ .  

This definition is due to Salinetti and Wets [14], which paper is recommended to the reader 

who wishes a more detailed exposition of the topics of this paragraph. 

A measurable  select ion g of a multifunction G : Z =$ lRn is a measurable function 

g : domG + lRn such that g(z) E G(z) for all z E domG, where domG, the d o m a i n  of G, 

is the set G-'(lRn) = {z ( G(z) # 0). A closed-valued measurable multifunction always has 

selections; cf. [6], for example. Convergence in distribution of selections of a converging 

sequence of multifunctions has been studied in [12]. 

We pass next to a brief outline of the concepts of "local behaviour" of a multifunction 

needed for the results of this paper. 

We say that a multifunction G : Z =$ lRn is locally upper  L ipsch i t z ian  at a point z if 

there are a modulus X 2 0 and a neighborhood U of z such that 

where B is the open ball in IRn and 1 1  . I( is the norm in Z. This definition is due to 

Robinson [15]. The following geometric notion of a derivative of a set-valued mapping, 

modelled after the original tangency constructions of Fermat, has been recently introduced 

by Aubin [4]. The cont ingent  derivat ive  of a multivalued mapping G : Z =$ lRn at a point 

z E domG and x E G(z) is the mapping G:, whose graph is the cont ingent  cone  to the 

graph of G at (z, x) E Z x lRn, i.e. 

where we denote by gph G the set {(z, x) E Z x lRn I x E G(z )). The contingent derivative 

always exists, because the limsup of a net of sets always exists; and it has closed graph 



(equivalently, is lower semi-continuous), since the lim sup is always a closed set. This latter 

property implies that G+ is closed-valued and measurable [6; 111.31. 

It is worth noting here some further properties and concepts related to the contingent 

derivative. If one has limsup = liminf in (2.6), then, following Rockafellar [21.], we say 

that G is proto-diflerentiable at (z,x)  and we call the common limit the proto-derivative, 

denoted Gi,,. A stronger property that is related to true differentiability (for functions) 

is semi-diflerentiability, which requires that the limit 

lim (G(z + tw') - x)/t 
t l 0  

wl+w 

exists for all w. When it does, it equals the proto-derivative Gi,,(w). For p a Bore1 

measure on Z, we say that G is p-a.s. semi-diflerentiable if (2.7) holds for all w except 

possibly those in a set of p-measure zero. There are strong connections between semi- 

differentiability and convergence in distribution for the sequence of "difference quotients", 

as we shall see in a moment. 

We present first a result needed for the computation of contingent derivatives. From 

the definition, it is clear that G+(w) contains the lim sup of the difference quotients taken 

along the single ray {tw : t > 0), i.e. 

lim sup(G(z + tw) - x)/t c G;,(W). 
t l 0  

To obtain equality in (2.8) one requires Lipschitzian and differentiability properties of G, as 

in [21; Section 51. For the situations considered in this paper, where single-valuedness plays 

a strong role, one has the following result. We say that a closed-valued measurable multi- 

function G : Z 3 Rn is (a.s.) single-valued if the set {z E dorn G 1 G(z) is not a singleton) 

is empty (a set of measure zero). 

Proposition 2.1. Let G : Z 3 Rn be locally upper Lipschitzian and single-valued at z ,  

with G(z) = {x). If the contingent derivative G t ,  is (a.s.1 single-valued, then G is (a.s.) 

semi-differentiable at (z, x) and 

(2.9) limsup(G(z + tw) - x)/t = G:,,(w) 
t l 0  

for (almost) all w E Z. 

Proof. All conclusions except (2.9) are in [12; 4.11; and (2.9) is a simple corollary of that 

proof. 

We are now ready to state the main convergence result. The proof is identical to that 

in [12; 4.31 and will not be given here. 



Theorem 2.2. Let the sequence {z,) of the random variables in the Banach space Z 
N 

satisfy a cen tral limit property 

(2.10) J ; ( t u  - 2')- w; 
v 

and let the closed-valued measurable multifunction G : Z 3 Rn be locally upper Lips- 

chitzian and single-valued at z*, with {x*) = G(z*). Suppose further that: 

(2.11) z* E int dom G; 

(2.12) ~ f .  ,z. (w) % is a.s. single-valued. 

Then G is semi-differentiable at (z*, x*) and for all measurable selections N xu of G(z N ,) and 

u % of G:. ,,. (w) one has 

(2.13) &(%" - x*); 

as random variables in Rn. 

Remark 2.3. The assumption (2.12) implies by the Appendix of [12] that any selection of 

u N of G+(w) % is measurable. Furthermore, if any other multifunction F has F(w) % > G+(w) % 

a.s. and F(w) is a.s. single-valued, then any selection of F(w) will also satisfy (2.13) - 
N N 

the reason being that (2.11) implies dom G+ = Z, see [12; 4.21, and thus F(w) N = G+(w) % 

a.s. 

3. Computation of the Contingent Derivative 

The subject of this section is a simple computation of the contingent-derivative of the 

mapping J defined by (1.2), under continuity and monotonicity assumptions on z* and N. 

The results in this section appeared in part in King [ l l ] .  

A mapping T : IRn 3 Rn is said to be a monotone operator if for all points x E domT 

and y E T(x) one has 

(3.1) (x - XI) . (y  - y') 2 0 Vx' E domT, Vyl E T(xl). 

A monotone operator T is said to be mazimal monotone if gph T is maximal in the par- 

tial ordering (by subsets) of all monotone operators whose graph contains gphT. The 

most important examples of maximal monotone operators are the subgradients of convex 

functions; cf. Rockafellar [18]. A continuous function f : Rn --, Rn that is monotone is 

maximal monotone, and a maximal monotone operator that is everywhere single-valued 

is continuous. Monotone operators T with the property that for some sufficiently small 

6 > 0 the operator T - 61 is monotone, where Ix  = x is the identity operator, are said to 

be strongly monotone. Strong monotonicity imparts stability to generalized operators, as 

the following proposition shows. 



Proposition 3.1. Let N : Rn 3 Rn be a maximal monotone operator, and let z* E 

C(Rn : R n )  be strongly monotone on X = dom N .  Then the solution mapping 

is single-valued at z*, and for all bounded neighborhoods D of J(z*),  the mapping J 

is nonempty, single-valued, and locally upper Lipschitzian on a neighborhood of z* in 

C(D : Rn) ,  the Banach space of continuous functions z : D + Rn equipped with the sup 

norm. 

Proof. Since z* is strongly monotone, there exists 6 > 0 such that F(x)  := -z*(x) - 6x 

is monotone on X. We may rewrite J(z*) as G-'(o), where G : Rn Z Rn is defined to 

be G(x) = F(x) + 62 + N(x). By Rockafellar [17], F + N is maximal monotone on X ,  

and a result of Minty [13] allows us to conclude that G-' is single-valued and Lipschitz 

continuous on all of Rn, with global Lipschitz modulus 6-'. In particular, G-'(0) = J(z*)  

is a singleton. Let D be a fixed bounded neighborhood of J (z* ) ,  and let z E C(D : R n )  be 

such that a = sup{/ z(x) - z*(x) 1 I x E D} is finite. We have 

J(z) c U G-' (a), 
a E a B  

where B is the open unit ball in R n .  It follows that 

Hence, J is locally upper Lipschitzian as a mapping from C(D : Rn)  into R n .  Define now 

the continuous function J, : Rn + Rn by 

If we choose z E C(D : R n )  with sup{lz*(x) - z(x)J 1 x E D )  less than 6 ,  then J, is a 

contraction mapping with a unique fixed point x, = J,(x,) in D. This x, is obviously the 

only point in J(z) ,  and the proof is complete. 

In the rest of this paper we shall suppose that Z = C(D : R n )  for some suitable 

bounded set D,  since the assumptions of 3.1 will always be in force. The computation of 

the contingent derivative is our next task. We shall give two results - an estimate in the 

general case for nondifferentiable z* and N ,  and a more precise result when differentiability 

assumptions hold. 



Proposition 3.2. Let J be as in 3.1 and define the multifunction F : Z =t IRn by 

Suppose that z* is locally upper Lipschitzian at x*. Then F is closed-valued and measur- 

able, and 

(3.3) gph J>-,. C gph F. 

Proof. A pair (w, u) lies in the graph of G+ if and only if there are sequences {t,), {wu), 

and {uu) with t, 1 0, wU --f w (in Z ) ,  and uu --f u (in IRn), respectively, satisfying 

this implies 

0 E **(x* + tuuu)  + tuwu(x* + tUuu)  4- N(x* + tuuu)- 

For each v ,  there is a point au E IRn such that 

and 

Since z* is locally upper Lipschitzian at x* , the sequence {au ) must have cluster points and 

all these cluster points belong to (z*):*(u) by (3.4) and (2.6). The sequence wu converges 

to w in the sup norm in Z,  hence in particular wu(x* + tuuu)  --f w(x*). From this and (3.4) 

it follows that the given point (w, u) E gph J+ satisfies u E F(w), proving (3.3). That F is 

closed-valued and measurable will follow from F having closed graph [6; 111.31, and so we 

now prove this latter claim. Let each element of the sequence of pairs {(wu, uu))  belong 

to gph F and suppose (wu, uu)  -+ (w, u). We aim to show (w, u) E gph F .  Let au satisfy 

and 

-au E N,*,-,(,*)(u*). 

Since z* is locally upper Lipschitzian (2'); is locally bounded, so {au)  has a cluster point, 

say a, that satisfies 

a E (z*)t;(u) + ~(2 . ' ) .  



Passing to a subsequence if necessary we have aV -+ a and uV -+ u with (uV, -aV) E 

gph N+.  But N +  has closed graph so -a E N+(u), and the proof is complete. • 

If a given locally Lipschitz function f : IRn -+ IRn has the property that ff, is single- 

valued everywhere then Proposition 2.1 states that f is actually semi-differentiable at x*. 

It is easy to see that this is equivalent to the property 

lim 
f (x* + tu') - f (x*) 

t l 0  t 
= f:*(u), 

and when this occurs we say, following Rockafellar [20], that f is directionally differentiable 

in the Hadamard sense at x* and f:*(-) equals the directional derivative f l (x*;-) .  (It is 

well known that if f is directionally differentiable in the ordinary sense, i.e. 

and if f l (x*; .) is continuous, then f is also directionally differentiable in the Hadamard 

sense. This simplifies the verification of (3.6).) This derivative has also been studied in 

Robinson [16], where it was called the Bouligand derivative. 

The computation in Proposition 3.2 can now be made precise by making differentia- 

bility assumptions on z* and N. 

Proposition 3.3. Suppose that z* and N satisfy the conditions of Propositions 3.1 and 

3.2. Suppose moreover that z* is directionally differentiable in the Hadamard sense at x* 

and N is proto-differentiable at (x*, -z* (x*)). Then J is semi-differentiable at z*, where 

for each w E Z one has 

and J:, ,=, is single-valued everywhere. 

Proof. The proto-derivative of a maximal monotone operator is the graph limit of the 

sequence of maximal monotone "difference quotient" operators, thus is itself maximal 

monotone; cf. Attouch [3]. Thus N' is maximal monotone, and (z* )'(x*; .) is evidently 

continuous and strongly monotone. Applying Proposition 3.1 to the multifunction F in 

(3.2) we find that F is everywhere single-valued and from Proposition 3.2 we know that 

J+(w) = F(w) for all w (since dom J+ = Z by [12; 4.21). Now apply Proposition 2.1 to J 

and conclude that J is actually semi-differentiable. • 



4. Asymptotics 

The main theorem is presented in this section along with illustrative examples. The target 

is the analysis of the sequence of solutions {xV) N to the problem (1.1). We shall treat the 

xu as selections of the solution mapping J evaluated at EVg(.) = EL1 g(-, t i ) ,  and the 
N 

result will be based on the asymptotic properties of EVg and local properties of J about 

E d . )  = S d . 7  O P ( d 0 .  
There are two sets of assumptions. One set of assumptions delivers the asymptotic 

normality of JV(EVg - Eg); the other set assures enough local "regularity" of the mapping 

J needed to apply Theorem 2.1. The assumptions interact to some extent. In particular 

we may suppose that everything of interest is happening in a bounded subset D of JRn - 

we shall return to this point below. 

Probabilistic Assumptions 

P.l For all x E D, the function g(x, .) : (Z, A) + JRn is measurable. 

P.2 There is some a : 3 -+ IR with J, - la(()12p(d() < rn and 

P.3 There is some x E D with S, - Ig(x,(:1I2P(d() < m. 

In the Appendix we show that these assumptions imply that the functions E V y  are C(D : 

JRn)-valued random variables, that Eg E C(D : IRn), and that 

where w N is a centered Gaussian C(D : JRn)-valued random variable with covariance equal 

to that of g(., tl). 



Analytical Assumptions 

A.l The function Eg : Rn + Rn is strongly monotone on dom N 

A.2 The operator N : Rn 3 Rn is maximal monotone. 

The assumptions A. l  and P.2 imply that Eg is continuous and strongly monotone on 

dom N; it therefore follows from A.2 and Proposition 3.1 that there is a unique point 

x* satisfying 0 E Eg(x*) + N(x*), and that we may without loss of generality view the 

perturbations Eug about Eg as taking place in the Banach space C(D : Rn) ,  where D is 

any bounded neighborhood of x*. 

The main result now follows. This result represents the first application in the liter- 

ature of the generalized delta method and the generalized differentiability techniques for 

set-valued maps to the problem of determining the asymptotic distribution of solutions to 

generalized equations of the form (1.1). The result was foreshadowed in King [I].] but has 

since been much improved. 

Theorem 4.1. Suppose the assumptions P.l-3 and A.l-2 hold. Suppose further that the 

random closed set F - is a.s. single-valued, where 

and where c is a normally distributed Rn-valued random variable with covariance matrix 
N 

C = J[g(x*, ~ ) - E ~ ( x * ) ] [ ~ ( x * ,  [ ) - E ~ ( X * ) ] ~ P ( ~ ,  t ) .  Then ziny sequence {x"} N ofmeasurable 

selections from the solution sets to (1.1) satisfies 

(4.4) - x*) + 2 5  

where u is any selection from F. 
N N 

Proof. Assumptions P.l-3 imply (4.2) as already noted. A simple application of the 

Cramer-Wald argument shows that w(x*) is distributed as a normal N(0, C) random vari- 
N 

able. Assumptions A.l-2 and P.2 allow us to apply Theorem 2.2 to the mapping J defined 

by (1.2), via Propositions 3.1 and 3.2, since F a.s. single-valued implies J+(w) a.s. single- 
N N 

valued. But by Remark 2.3, any selection of F will satisfy (2.13) and the proof is complete. 
N 

Corollary 4.2. If, in addition to P. 1-3 and A.l-2, the function Eg is directionally dif- 

ferentiable in the Hadamard sense at x* and the mapping N is proto-differentiable at 

(x*, -Eg(x*)), then the conclusion (4.4) holds with u equal to the unique selection from 
N 

G, where 
N 



Proof. Follows immediately from Proposition 3.3. 

We present next an example of the application of this result to constrained estimation 

problems. Discussions, comparisons with other results, and extensions are presented in the 

series of remarks following the example. 

Example 4.3. Let us suppose that a minimizing solution is required for the problem 

minimize f (x,  ()P(d() over all x E lRn L 
subject to x E X, 

where for all x E E, f (-, J) : lRn + lR is convex and twice continuously differentiable, and 

where the constraint set X is a closed convex polyhedral subset of lRn. In what follows 

we shall use the notations Nc(x) and Tc(x) for the normal and tangent cones to a given 

convex set C at a point x E C, in the sense of convex analysis [18]. Suppose that the 

gradient mapping Vf : E x lRn + IRn satisfies the probabilistic assumptions P.l-3. It 

follows that all solutions to (4.6) must satisfy the first-order necessary conditions 

In many applications the distribution P is not known, or it is very difficult to compute 

with, and a closed form representation of the objective or its gradient is unobtainable for 

all practical purposes. However, if a sample { t i )  of independent observations with common 

distribution P is available then the solutions may possibly be approximated by a solution 

sequence {xu),  N each element of which solves the computationally more tractable problem 

0 E C Vf (x, J i )  + N , Y ( ~ ) .  
u 

The approximation of solutions to (4.7) by solutions xu to (4.8) is an issue that lies within 
N 

the scope of Corollary 4.2. Our foremost task is to compute the proto-derivative of Nx. 

With the aid of Rockafellar [21; 5.61, we find that for a pair x E X and y E Nx(x) we 

have 

where the mapping on the right is the normal cone to the set 



Set cp* = JVf (x* ,J )P(dJ)  and @* = Jv2f (x* ,J )P(dJ) .  Corollary 4.2 states: if at  the 

solution x* to (4.2) one has 

(4.11) (x - xl).@*(x - xl) > 0, Vx, x1 E X, 

then the solutions N xV to (4.8) satisfy the asymptotic formula 

where u N is the (random) solution to the random quadratic program 

minimize iu-@*u + c .u over all u in Rn 
N 

(4.13) subject to u E Tx(x*) 

u.v* = 0 

and where the random linear perturbation c is distributed as a normal, N ( 0 ,  C*), Rn- 
N 

valued random vector with covariance C* = J([V f (x*, J) - v*] [V f (x*, J) - v*IT)p(dJ). 

As a further aid to the interpretation of the result, we offer the observations that any 

closed convex polyhedral subset can be expressed in the form 

for some matrix A E RmXn and vector b E Rm, and that the tangent cone to such a set 

at x* E X  is given by 

TdY(2*) = {U E Rn ( Aiu 5 0, Vi with .-l,r* = b i } ,  

where Ai = ith row of A. Thus (4.13), for fixed linear term c ,  is a convex quadratic 

program with linear constraints. 

Remark 4.4. It is not necessary to suppose that f (-, J) is twice continuously differentiable 

in Example 4.3., only that the gradient mapping E V  f ( . )  := J V f ( - ,  J)P(dJ)  be Hadamard 

differentiable at x*, as in (3.6), and strongly monotone near x*. Examples with only direc- 

tionally differentiable gradient mappings arise in stochastic linear-quadratic programming 

[Ill. Furthermore, the maximal monotone operator can be taken to be the subgradient 

mapping of a convex function and the proto-derivative formulas worked out from the gen- 

eral results in Rockafellar [22]; thus, in particular, the set X could be a general closed 

convex set (provided some regularity conditions are satisfied at x*). 

Remark 4.5. If we suppose E V  f ( a )  is differentiable and the Hessian H = V ( E V  f (-))(x*) 

is positive definite then Corollary 4.2 resembles standard results in maximum likelihood 



estimation, except in that we allow constraints to be placed on the estimators. In partic- 

ular, there are interesting parallels to be drawn between our result and those of Huber [9] 

in the unconstrained situation. Our probabilistic assumptions P.l-3 correspond roughly 

to Huber's assumptions N1, N3(ii) and (iii), and N4, and our monotonicity assumptions 

correspond practically to Huber's N2 and N3(i), and they imply his condition that xV w + x* 

a.s. Huber's goal is to prove that &(EV f (xY ) - E V  f (x*)) has the same asymptotic dis- 

tribution as &(EYV f (x*) - E V  f (x*)), and then to derive the asymptotic distribution of 

&(xY - x*) via the classical delta method under the assumption that E V  f (-) is FrechCt 

differentiable at x* with invertible Jacobian H.  We achieve the same result, namely that 

&(sY - I*) is asymptotically N ( 0 ,  ( H - ' ) T ~ ~ - ' ) ,  but under our slightly different as- 

sumptions.  or a further discussion of asymptotic theory in stochastic programming from 

Huber's perspective, see DupaEov6 and Wets [ B ] .  



Appendix 

In this appendix we briefly discuss central limit theory for random variables in C(D : IRn), 

the space of continuous IRn-valued functions on a compact subset D c IRn. Further details 

may be found in Araujo and Gin6 [2], on which this presentation has been based. 

For now, let Z be a separable Banach space equiped with its Borel sets 2, and let Z* 

be the dual space of continuous linear functionals on Z. If N z is a random variable taking 

values in Z,  we say that N z is (Pettis) integrable if there is an element E - z E Z for which 

e(E 5)  = E { l (z))  a for all k' E Z*, where E {.) denotes ordinary expected value. (Clearly, if 
Z = C(D : IRn) then E z exists if and only if (E z)(x) = E{z(x)) for every x E D.) The 

N N N 

covariance of z,  denoted cov z is defined to be the mapping from Z* x Z* into IR given by 
N N 

A random variable z taking values in Z will be called Gaussian with mean E z and 
N N 

covariance cov z provided that for all t E Z* the real-valued random variable l ( z )  is 
hr N 

normal N(C(E N z),  cov t(z)) .  N 

Let us now return to the specific case at hand, that of the Banach space C(D : IRn). 

The first assertion leading to (4.2) is that the functions Eug(.) are C(D : IRn)-valued 

random variables. This is a consequence of the following proposition. 

Proposit ion A l .  Let (S, S) be a measurable space, and let g : D x S -+ IRn be continuous 

in the first argument, Vs E S,  and measurable in the second, V s  E D. Then the mapping 

s H g(., s)  is Borel measurable as a mapping from S into C(D : IRn). 

Proof. It suffices to show that for every a > 0, the set 

is a measurable subset of IRn. This follows easily from standard results in the theory of 

measurable multifunctions; see, for example, Rockafellar [19; Theorem 2K]. 

Corollary A2. EVg is a C(D : IRn)-valued random variable for every v = 1,2, .  . .. 

Proof. The probability space in question can be constructed in the standard way by 

taking a countable number of copies of (E, A), i.e. setting S = ~ ( ~ 1  and equipping it with 

the product sigma-algebra. Now write EVg(-) = g(-; ai(s)), where xi : S -+ E 

is the i t h  coordinate projection. Then each member of the sum is a C(D : IRn) valued 

random variable, since by assumption P.l and Proposition A1 the mapping s H g(.; ai(s)) 

is measurable. 



The main result is a "well-known" theorem that does not seem to have been published 

for C(D : R n )  with n >_ 2. The argument presented here was suggested by Professor R. 

Pyke. 

Theorem A3. Suppose that g : D x E -t Rn satisfies the probabilistic assumptions P.1-3. 

Then there exists a Gaussian random variable w N taking values in C(D : R n )  such that 

where for all x E D, w(x) N is a normal N ( 0 ,  C(x)) valued random variable with covariance 

C(x) = cov[E1g(x)]. 

Proof. Each Eug  is a vector of continuous functions (Eug, . . . , Eugn). The conditions 

of the theorem imply that for each j = 1,. . . , n there is a Gaussian random variable in 

C(D : R n )  with zero mean and coveriance equal to cov Elg, which we suggestively call wj, 
N 

such that 

J;(EUgj - Egj); uj; 
cf. Araujo and Gin6 [2;  7.171. It follows that the finite-dimensional distributions of wu : 

N 

&(Egu - Eg) converge to those of w, i.e. for all finite subsets {xl , . . . , xk ) c D one has 
N 

This determines the limit w uniquely as that in the statement of the theorem. Thus by 
N 

Prohorov's Theorem (Billingsley [ 5 ;  6.11) it remains only to show that the sequence {tou) 

is tight in C(D : Rn), i.e. for each E > 0 there is a compact set .4 c C(D : Rn) such that 

Pr{wu E A )  > 1 - E for all sufficiently large v. By adapting the argument of [ 5 ;  8.21 for 

C(D : Rn) we find that the tightness of {wu) is equivalent to the simultaneous satisfaction 

of the following two conditions: 

(i) There exists x E D such that for each 77 > 0 there is cr >_ 0 with 

(ii) For each positive E and 77 there exist 6 > 0 and an integer YO such that 

Pr{ sup I w"(x) N - wU(y)l > E) I 77, Vv 2 vo. 
( z - Y ) < ~  

These conditions follow easily from the tightness of the coordinate sequences {wy ) for 
N 

j = 1, .  . . , n  since 



and similarly for the probability in condition (ii), and hence these can be made as small 

as one pleases by application of conditions (i) and (ii) to the co-ordinate sequences. Thus 

{w") - is tight, and the proof is complete. 
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