
Hazy Differential Inclusions

Aubin, J.-P.

IIASA Working Paper

 

September 1988

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33894594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Aubin, J.-P. (1988) Hazy Differential Inclusions. IIASA Working Paper. Copyright © 1988 by the author(s). 

http://pure.iiasa.ac.at/3123/ 

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


W O R K I N G  P A P E R  

HAZY DIFFERENTIAL INCLUSIONS 

Jean-Pierre Aubin 

September 1988 
WP-88-082 

I n t e r n a t l o n a l  l n s t ~ t u t e  
for Applled Systems Analys~s 



HAZY DIFFERENTIAL INCLUSIONS 

Jean-Pierre A ubin 

September 1988 
W P-88-082 

Working Papers are interim reports on work of the International Institute for 
Applied Systems Analysis and have received only limited review. Views or 
opinions expressed herein do not necessarily represent those of the Institute 
or of its National Member Organizations. 

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 
A-2361 Laxenburg, Austria 



Hazy Differential Inclusions 

Jean-Pierre Aubin 

C E R E M  A D E , UNIVERSIT~  DE PARIS- DAUPHINE 
& 

11 A S A ,  INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS 

ANALYSIS 



FOREWORD 

This paper is devoted to differential inclusions the right-hand sides of 
which are hazy subsets, which are fuzzy subsets whose membership func- 
tions are cost functions taking their values in [O, 001 instead of [ O , l ] .  By 
doing so, the concept of uncertainty involved in differential inclusions be- 
comes more precise, by allowing the velocities not only to depend in a 
multivalued way upon the state of the system, but also in a fuzzy way. The 
viability theorems are adapted to hazy differential inclusions and to sets of 
state constraints which are either usual or hazy. The existence of a largest 
closed hazy viability domain contained in a given closed hazy subset is also 
provided. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Science Program 
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Hazy Differential Inclusions 

Jean-Pierre Aubin 

Introduction 

Instead of characterizing a given subset K c X by its characteristic 
function XK taking its values in (0, I), we represent it by its "indicator" 
?,bK, which is the non negative extended function defined by 

Hence, instead of introducing fuzzy sets1 which are (membership) func- 
tions x taking their values in the closed interval [0, I ] ,  we shall use hazy 
sets which are extended nonnegative functions V : X -+ R+ u {+XI ) .  An 
element belongs to  the hazy subset V if and only if V(x) < m .  This slight 
modification in the definition of fuzzy sets allows us to represent convex 
(respectively, closed) hazy subsets by convex (respectively, lower semicon- 
tinuous) functions. 

A hazy set-valued map from X to  itself is then defined by its graph, 
which is a hazy subset of X x X described by a membership function U : 
X x X -+ R+ U {+XI) .  Since a usual differential inclusion x1 E F(x )  can 
be written in the form 

for almost all t > 0, (x(t) ,  x l( t ))  E Graph(F) 

hence a hazy differential inclusion can be written 

for almost all t > 0, U(x( t ) ,x l ( t ) )  < m 

since this says that (x( t ) ,  x l( t ))  belongs to the hazy subset whose member- 
ship function is U, which is the graph of the hazy set-valued map. 

We shall characterize first the usual closed subsets K which enjoy the 
viability property for hazy differential inclusion: for any initial state xo E 

We refer to [7] for a presentation of fuzzy sets and the bibliography of this book. 

I 



K, there exists a solution x(.) to the hazy differential inclusion starting at  
xo which is viable in K ,  in the sense that for all t > 0, x( t )  belongs to K 
(see 13, Chapters 4,5 & 6) for a presentation of viability theory). 

The next natural step is to use hazy subsets for representing state con- 
straints which are not of the form: either live or die. The idea is then 
to replace the closed subset K by a closed hazy subset V and to replace 
the viability property by the hazy viability property: for all initial state 
x,-, E Dom(V), there exists a solution to the hazy differential inclusion which 
is hazily viable in the sense that 

where w(.) is a function (such as w(t) := V(xo)ePat) which describes a 
given upper estimate of the viability cost, so to speak. It will be convenient 
to provide these functions w(.) as solutions to usual differential equations 

Finally, we shall prove the existence of a largest closed hazy viability 
domain of a hazy differential inclusion contained in a given hazy closed 
subset V (which can be empty; in this case, we shall prove that all solutions 
must eventually leave the hazy subset V). This may be as useful in further 
applications as the existence of a largest closed viability domain of a usual 
differential inclusion, which we use by the way for deriving the hazy case. 

1 Hazy sets and set-valued maps 

We recall that any subset K c X can be characterized by its "indicator" 
$K, which is the non negative extended function defined by: 

It can be regarded as a "cost function" or a "penalty function", assigning 
to any element x E X an infinite cost when x is outside K, and no cost at  
all when z belongs to K. 

We also recall that K is closed (respectively convex) if and only if its 
indicator is lower semicontinuous (respectively convex). 



We are led to regard any non negative extended function U from X 
to  R+ U ($00 )  as another implementation of the idea underlying "fuzzy 
sets", in which indicators replace characteristic functions. Instead of using 
membership functions taking values in the interval [ O , l ] ,  we shall deal with 
membership functions taking their values anywhere between 0 and +m. 

Def in i t ion  1.1 We shall regard an extended nonnegative function U : X I+ 

R+ U { + m )  as a h a z y  se t .  Its domain is the domain of U ,  i.e., the set of 
elements x such that U ( x )  is finite, and the core of U is the set of elements 
x such that U ( x )  = 0. The complement of the hazy set U is the complement 
of its domain and the complement of its core is called the hazy boundary. 

We shall say that the hazy set U is closed (respectively c o n v e x )  if the 
extended function U is lower semicontinuous (respectively convex). 

Hence the membership function of the empty set is the constant function 
equal to +m. 

Def in i t ion  1.2 We shall say that a set-valued map U : X -+ Y associating 
to  any x E X a hazy subset U ( x )  of Y is a h a z y  set-valued m a p .  Its 
g r a p h  is the hazy subset of X x Y associated to  the extended nonnegative 
function ( x , y )  I+ U ( x ,  y) := U ( x ) ( y ) .  

A hazy set-valued map U is said to  be closed if and only if its graph is 
closed, i.e., if its membership function is lower semicontinuous. Its values 
are closed (respectively convex) if and only if the hazy subset U ( x )  are closed 
(respectively convex). It has linear growth if and only if, for some constant 
c > 0, 

U ( x , v )  < $00 =$ llvll 5 c(llxll + 1) 

Hazy Differential Inclusions 

By using indicators, we can reformulate the differential inclusion 

(3) for almost all t ,  x l ( t )  E F ( x ( t ) )  

as 
for almost all t ,  $ ~ ~ ( ~ ( ~ ) ) ( x ' ( t ) )  < $00) 



Then we are led to define "hazy dynamics" of a system by a hazy set- 
valued map U associating to any x E X a hazy set U(x) of velocities 
{v I U(x,v) < +oo). In this case, we can write the associated hazy 
differential inclusion in the form 

(4) for almost all t 2 0, U(x(t), xl(t)) < +oo 

or, equivalently, in the form 

for almost all t 2 0, ( ~ ( t ) ,  xl(t)) E Graph(U) 

which is a hazy subset instead of a usual subset. 
We begin by characterizing usual subsets K enjoying the viability prop- 

erty for hazy differential inclusion: for any initial state xo E K, there exists 
a solution x(.) to  the hazy differential inclusion (4) which is viable in K .  

For usual differential inclusion x1 E F(x ) ,  the Viability Theorem (see 
[ lo ] ,  [3, Theorem 4.2.11) states that under adequate assumptions, a closed 
subset K enjoys the viability property if and only if it is a viability domain 
of F ,  i.e., a subset satisfying 

where TK(x) is the Bouligand contingent cone (introduced in the 30's)' 
defined in the following way: 

This is always a closed cone, equal to the whole space X when x belongs to 
the interior of K, equal to  the usual tangent space of differential geometry 
when K is a smooth manifold and to the tangent cone of convex analysis 
when K is convex. It is a very convenient way to implement the concept 
of tangency for arbitrary subsets, the price to pay being that the collection 
of contingent vectors is only a closed cone instead of a vector space. 

Definition 2.1 We shall say that a subset K c Dom(U) is a viability 
domain of the hazy set-valued map U if and only if 

( 5 )  V x E K ,  3 v E TK(x) such that U(x,v) < +oo 



We begin by proving an extension to the Viability Theorem to hazy 
differential inclusions. 

Theorem 2.2 (Hazy  Viabi l i ty  Theorem)  Let us consider a nontrivial 
hazy set-valued map U from a finite dimensional vector-space X t o  itself. 
Let us assume that it is upper semicontinuous with closed convex images and 
has linear growth. Any  closed subset K c Dom(U) enjoying the viability 
property with respect of U is a viability domain and the converse holds true 

if 
(6) x := sup z E K  u E T K ( z )  inf ~ ( z , v )  < +oo 

P r o o f  - Let us introduce the set-valued map F : K 2. X defined by 

The subset K enjoys the viability property (is a viability domain) for the 
hazy differential inclusion (4) if and only if it does so for this set-valued map 
F. The set-valued map satisfies the assumptions of the Viability Theorem 
(see [3, Theorem 4.2.1]), because the graph of F is closed, its images are 
convex and its growth is linear. Then we infer that K enjoys the viability 
property if and only if it is a viability domain of F ,  and thus, of U .  

When the hazy set-valued map U is continuous, we can select a viable 
solution to the hazy differential inclusion (4) which is sha rpes t ,  in the 
sense that the cost of its velocity's membership is minimal: 

for almost all t ,  U(x( t ) ,  x l( t ))  = inf U(z( t ) ,  v )  
u E T ~ ( z ( t ) )  

We say that a closed subset K is "sleek" the set-valued map z 2. TK (2) 

is lower semicontinuous. Closed convex subsets and smooth manifolds are 
sleek. 

Theorem 2.3 We posit the assumptions of Theorem 2.2. We assume 
moreover that the restriction of the membership function U to  i ts domain 
(the graph of U)  is continuous and that the viability domain K is sleek. 
Then there exists a sharpest viable solution to  the digerential inclusion (4) 
(i.e., which satisfies condition (8)). 



Proof - We introduce the function X defined by 

X(z) := inf U(z,v)  
vETK(z)  

Since the set-valued map z 2-, TK(z) is lower semicontinuous by assump- 
tion, the Maximum Theorem implies that the function X is upper semicon- 
tinuous, because we have assumed that U is upper semicontinuous. 

We then introduce the set-valued map G defined by 

Then G has a closed graph, and the other assumptions of the Viability 
Theorem (see [3,  Theorem 4.2.11) are satisfied. There exist a viable solution 
to differential inclusion z f ( t )  E G(z( t ) ) ,  which is a sharpest viable solution 
to hazy differential inclusion (4.) 

3 Hazy Viability Domains 

Is it possible to speak of hazy subsets having the viability property? 
A way to capture this idea is to introduce a continuous function q5 : 

R+ -t R with linear growth (which is used as a parameter in what follows) 
and the associated differential equation 

whose solutions w(.) set an upper bound to the membership of a hazy 
subset when time elapses. (The main instance of such a function $ is 
the affine function q5(w) := aw - b,  the solutions of which are w(t)  = 

(w (0) - :)e-'( + :). 
We shall say that a hazy set V c Dom(U) enjoys the "hazy viability 

propertyn (with respect to 4) if and only if for all initial state zo E Dom(V), 
there exist solutions to the hazy differential inclusion (4) and to the differ- 
ential equation (11) which are hazily viable in the sense that 

In order to  extend the concept of contingent cone to a hazy subset, we 
need to adapt the concept of directional derivative to membership functions, 



which are only lower semicontinuous. Among the many possibilities, we 
choose the contingent epiderivative DTV(x)(v) of V at  x in the direction v, 
which is defined by 

V (x + h u )  - V (x) 
DTV(x)(v)  := lim inf 

h--ro+,u-v h 

because the epigraph of the function v + DtV(x)(v) is the contingent 
cone to the epigraph of V at  (x, V(x)) (see [ I ] ,  [3, Chapter VII] for further 
information). 

We say that V is contingently epidifferentiable if for all x E Dom(V), 

Vv E X, DTV(x)(v)  > -00 & DTV(x)(v) < co for at  least a v  E X 

We introduce now the "contingent set" T$' (x) (also denoted Tv (x)) ,  the 
closed subset defined by: 

Def in i t ion 3.1 (Hazy  Viabi l i ty  Doma in )  Let the continuous function 
c$ with linear growth be given. We shall say that a hazy subset V is a hazy 
viability domain of a hazy set-valued map U (with respect t o  4) if and only 

if 
(14) V x  E Dom(V), 3 v E T$'(x) such that U(x,v) < +co 

Theorem 2.2 can be extended to hazy viability domains: 

T h e o r e m  3.2 The hazy set-valued map U satisfies the assumptions of 
Theorem 2.2. We  assume that V c Dom(U) is a closed hazy subset which 
is contingently epidiflerentiable. If a closed hazy subset V enjoys the viabil- 
ity property, then it is a closed hazy viability domain of U and the converse 
holds true if 

X := sup inf U(x,v) <+a 
2EK VET,"(=)  

P r o o f  - Let us consider the set-valued map F defined by (7) and 
associate with it the system of differential inclusions 



We first observe that the epigraph EpV of V  (which is closed) is a 
viability domain of the set-valued map ( x ,  w)  2-t F ( x )  x -d(w)  if and only 
if V  is a hazy viability domain. 

Indeed, if v  E F(x )  is such that (v ,  - d (V (x ) ) )  belongs to the contingent 
cone T fp (V ) ( x ,  V ( x ) )  to the epigraph of V  at  ( x ,  V ( x ) ) ,  which is equal to 
the epigraph EpDtV(x) of the contingent epiderivative, we deduce that 

DtV(x ) (v )  + d ( V ( x ) )  F 0. 
Conversely, since F ( x )  is compact and v  I--+ DtV(x )  ( v )  is lower semi- 

continuous, there exists v  € F(x )  such that the pair ( v ,  - d ( V ( x ) ) )  be- 
longs to T f  ( x ,  V  ( x ) ) .  Hence (v ,  -d(V ( x ) ) )  belongs to the intersec- 
tion of F(x )  x - d (V (x ) )  and the contingent cone Tf , (v) (x ,  V ( x ) ) .  When 
w  > V ( x ) ,  we deduce also that the pair ( v ,  -d (w) ) ,  which belongs to 
Dom(DTV(x) )  x R, is contained in the intersection of F(x )  x -4(w)  and 
the contingent cone TfP(v )  ( x ,  w)  because if w  > V  ( x ) ,  

Then the epigraph of V  enjoys the viability property: there exists a 
solution ( x ( - ) ,  w( . ) )  to  the system of differential inclusions (15) which is 
viable in Ep(V),  i.e., which is hazily viable. 0 

For 4 - 0, we obtain the following consequence: 

Corollary 3.3 We posit the assumptions of Theorem 9.2. Then a  closed 
hazy subset V  is a  hazy viability domain (with respect to q5 = 0)  if and only 
if for all initial state xo E Dom(V), the membership function V  decreases 
along a  solution x(.) to the hazy diflerential inclusion (4). 

Remark - Given an closed hazy subset V ,  we can associate with it 
affine functions w  -+ aw - b for which V is a hazy viability domain. 

For that  purpose, we consider the convex function b defined by 

b(a) := sup ( inf 
, . e ~ o m ( ~ ]  ( V I U ( ~ ~ V ) I X ( ~ I )  

DTV (4 (4 + aV (4) 

Then it is clear that V  is a hazy viability domain: 

V x  E Dom ( F )  , inf Dl V  ( x )  ( v )  + aV ( x )  - b(a) < 0  
VEF(Z) 



Therefore, we deduce that  there exists a solution to  the hazy differential 
inclusion satisfying 

A reasonable choice of a is the largest of the minimizers of a €10, m[-t 

max(0, b(a)/a),  for which V (x(t))  decreases as fast as possible t o  the small- 
est level set V-'(] - m, !]) of V. 0 

We proceed by extending Theorem 2.3 on selection of hazy viable solu- 
tions to  hazy differential inclusion which are sharpest, in the sense that  

for almost all t ,  U(x( t ) ,  x f ( t ) )  = inf U(x( t ) ,  v )  
u ~ ~ $ ( z ( t ) )  

Theorem 3.4 We posit the assumptions of Theorem 2.2. We assume 
moreover that the restriction of the membership function U to its domain 
(the graph of U) is continuous and that the hazy viability domain V satisfies 

(17) x T$(x) is lower semicontinuous 

Then there exists a sharpest viable solution to the diflerential inclusion (4) 
(which satisfies condition (16)). 

Proof - The proof is the same than the one of Theorem 2.3, where 
the function X is now defined by 

X(x) := inf U(x,v)  
U E T $ ( ~ ]  

We then need a sufficient condition for the set-valued map x --+ T$(x) 
t o  be lower semicontinuous: 

Lemma 3.5 Let us assume that the epigraph of V is sleek, (i.e., that the 
set-valued map x - &p(DtV(x ) )  is lower semicontinuous) and that the 
restriction of V to  its domain is continuous. If for any x, there exists v 
such that 

DtV(")(fl) + 4(V(")) < 0 

then x --+ T$(x) is lower semicontinuous at  x .  



Proof - We set g ( x )  := -+ (V (x ) ) ,  which is continuous by assump- 
tion. Let v belong to T$(x)  be chosen and a sequence xn E Dom(DT(V) )  
converge to x. Since the set-valued map & p ( D T V ( - ) )  is lower semicontinu- 
ous, and since ( v ,  g ( x ) )  belongs to &p(DTV ( x ) ) ,  there exist a subsequence 
(again denoted x,), a sequence vn converging to v and a sequence E ,  > 0 

converging to 0 such that 

(vn, g (xn) + E n )  E & P(DT V (xn) )  

Since by assumption the pair ( 8 ,  g ( x )  - ao) belongs also to &p(DTV ( x ) )  , 
where a0 := g(x )  - D T V ( x ) ( 8 )  > 0,  we deduce that there exist sequences 
8, converging to 8 and an > 0 converging to a0 such that 

( ~ n ,  g(xn) - an) E &p(Dt V ( x n ) )  

We introduce now 8,  := E n  E [ O ,  11 converging to 0 and un := 
2 ( ~ n + a n )  

(1  - dn)vn +enun converging to v.  The lower semicontinuity of the contingent 
cone to the epigraph of V ,  which is the epigraph of DTV( . ) ,  implies that 
these cones are convex. Hence 

(un,  g ( ~ n ) - ~ n / 2 )  = (1-en) (vn,  g(xn)+&n)+en(vn, g(xn) - an) & P ( ~ T ~ ( X ~ ) )  

which can be written 

DtV (xn) (un) L g(xn) - < g (xn) 

Hence un belongs to T$(x,) and converges to v.  

4 Largest Closed Hazy Viability Domains 

Let us consider now any closed hazy subset of the domain of U ,  which is 
not necessarily a hazy viability domain. The functions q5 being given, we 
shall construct the largest closed hazy viability domain V4 contained in V .  

Theorem 4.1 The hazy set-valued map satisfies the assumptions of The- 
orem 2.2. We assume that V c Dom(U) is a closed hazy subset which is 
contingently epidiferentiable. 

Then for any X > 0, there exists a largest closed hazy viability domain 
V4 contained in V ,  which enjoys furthermore the property: 

for almost a l l t  > 0,  U ( x ( t ) , x l ( t ) )  5 A 



Proof - We know that there exists a largest closed viability domain 
K c Ep(V) of the set-valued map (z,  w) 2-t F ( z )  x -$(w). If it is empty, 
it is the epigraph of the constant function equal to  +m, and in this case, 
the largest closed hazy viability domain is empty. 

If not, we have to prove that it is the epigraph of the nonnegative lower 
semicontinuous function Vd defined by 

Vd(z) := inf X 
(z,X)€K 

we are looking for. Indeed, the epigraph of any membership function of a 
hazy viability domain W being a closed viability domain of the set-valued 
map (z, w) 2-t F ( z )  x --$(w), is contained in the epigraph of Vd, so that V4 
is the largest closed viability domain contained in V. 

For that purpose, assume for a while that the following claim is true: 

if M c Dom(F) x R+ is a closed viability domain of the set- 
valued map (z, w) 2-t F(z) x -$(w), then so is the subset 

If this is the case, K is contained in the closed viability domain K + (0) x 
R+, so that,  being the largest one, is equal to  it. Let us prove this claim. 

First, M + (0) x R+ is closed. Indeed, let a sequence (zn,Xn) of this 
subset converges to some (z,X).Then there exists a sequence of elements 
(zn ,pn)  E M with 0 5 pn 5 An.  A subsequence (again denoted) pn does 
converge to some p E [0, A] because the sequence remains in a compact 
interval of R+. Therefore (z, p)  belongs to M (which is closed) and (z, A) 
belongs to M + (0) x R+. 

Second, M + (0) x R+ is a viability domain. Let (z ,w) belong to 
M + (0) x R+. Hence w 2 VM(z) defined by 

VM(z) := inf X 
(z,X)€M 

We set d := -$(VM(z)). By assumption, there exists v E F(z) such that 
( v ,  d) belongs to the contingent cone to M at  the point (z, VM(z)) E M .  We 
shall check that the pair (v, -$(w)) does belong to the contingent cone to 



M + ( 0 )  x R+ a t  (z ,  w). Indeed, there exist sequences h, > 0 converging 
to 0, v, converging to v and d, converging to d such that 

This proves the claim when w = VM(z). If not, E: := w - VM(z) is strictly 
positive, so that,  for h, sufficiently small, 

because d, converges to d and E + hn(4(w) - d,) is nonnegative for small 
enough h,. 

Remark - If the initial state zo E Dom(V) does not belong to the 
domain of V+, then for any solution (z(.), w(.)) to the system (15) starting 
at  (zo, wo), the state leaves eventually the hazy subset V: 

This happens for all initial state zo E Dom(V) whenever the largest 
closed hazy viability domain contained in V is empty, i.e., when V+ +a. 
0 
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