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FOREWORD 

A local asymptotic theory of adaptive processes of growth with general increments is 
developed for the case when a terminal set consists of more than one connected com- 
ponent. The notions of an attainable and unattainable component are introduced. 
Sufficient conditions for attainability and unattainability are derived. The limit theorems 
are applied in the investigation of the rate of convergence to singleton stable components. 
The relation between the obtained results and the study of asymptotic properties of sto- 
chastic quasi-gradient algorithms in non-convex multiextremum problems is discussed. 
Specifically, the developed approach is used to explore the limit behavior of iterations in 
the Fabian modification of the Kiefer-Wolfowitz algorithm. 
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Chairman 

System and Decision Sciences Program 



CONTENTS 

1 Introduction 

2 Attainable Components 

3 Unattainable Components 

4 Rate of Convergence to Singleton Stable Components of Terminal Set 

5 Analysis of Asymptotic Properties of Stochastic Quasi-Gradient 
Algorithms in Multiextremum Problems 

6 Conclusion 

References 



NONLINEAR ADAPTIVE PROCESSES OF 
GROWTH WITH GENERAL INCREMENTS: 

ATTAINABLE AND UNATTAINABLE 
COMPONENTS OF TERMINAL SET 

W.B. Arthur, Yu.M.  Ermoliev and Yu.M.  Kaniovski 

1. INTRODUCTION 

The study of random processes generated by the generalized urn scheme with balls of 

N colors added by portions of random capacity was begun in the papers [I ] ,  121. Here we 

shall extend the investigation. These processes were called the adaptive processes of 

growth with general increments in the paper [I]. For example, all possible limit (under 

infinite continuation of the process) concentrations of finite products in a special class of 

autocatalytic chemical reactions (see [3]) can be characterized with results of the paper 

[I]. The concentrations are the points of the terminal set B ~ ( T ~ -  in the case where 

reaction with N chemical products is considered. Here the vector function f is completely 

determined by the local (on the molecular level) nature of chemical interaction between 

the reacting products [3]. One application is the problems of adaptation of N new techno- 

logies on a market of risk-averse adopters [8]. In this case the set Bf(TN- gives all pos- 

sible proportions between these technologies when they cover the market. Here the vector 

function f depends on the rules of decision making used by the adopters [8]. Since the 

processes are driven, on average, by nonlinear vector functions, the set B ~ ( T ~ -  can 

contain more than one connected component. Hence the processes under consideration are 

not ergodic. For example with certain initial components in the chemical reactions several 

types of finite products are possible or several variants of the market saturation with the 

technologies are possible (in the probabilistic sense). The connected components of the set 

g f (TN- may contain more than one point. In terms of real chemical processes this may 

mean that a final product of an autocatalytic reaction is not necessarily a homogeneous 

chemical substance, but may be a mixture of several basic ingredients. The ingredients 

constantly undergo interconversions. They can be identified in special cases only ( for ex- 

ample, if the connected component under consideration is a convex polyhedron). As it 

turns out, not all of the components of the terminal set Bf(TN- are attainable with po- 



sitive probability. For example all of the theoretical chemical combinations of initial and 

final ingredients can not be realized in practice. Therefore, the problem of identification of 

the components attainable with positive and zero probability is of special importance in 

the theory of the adaptive processes of growth. Formally speaking, the problem consists of 

contraction or sorting of the set B ~ ( T ~ -  through omitting its connected components 

unattainable (i.e. attainable with zero probability). The sufficient conditions for unat- 

tainable singleton connected components of Bf(TN_ are derived in this paper. They 

are formulated in terms of the local properties of the vector function f in the neighbor- 

hood of the attainable points and resemble the corresponding results in the Lyapunov sta- 

bility theory for ordinary differential equations. It is important to know before the reac- 

tion begins, the totality of outcomes or the set of the final products, one of which is real- 

ized without fail (i.e. with probability 1). They correspond to connected components of 

the set Bf(TN- attainable with positive probability. The sufficient conditions charac- 

terizing the attainable connected components of B ~ ( T ~ -  are derived here. These condi- 

tions are formulated in terms (1) of the local (in the neighborhood of the component 

under consideration) nature of the vector function f; (2) global (on all TN- properties 

of the processes under examination (the set of the values attained with positive probabili- 

ty in the neighborhood of the component, is not larger than the set of values attained 

with positive probability on the rest of the TN- (3) the topological nature of the com- 

ponent itself. 

The rate of convergence of the adaptive processes of growth to the limit value (or in 

terms of autocatalytic chemical reactions, the rate of conversion of initial ingredients into 

the final product in the case when it is unique) was investigated in the paper [2]. One can 

also assume the existence of a rate which characterize the processes of origination of the 

final product of the reactions (where one of the finite number of reliably possible types of 

the finite product is realized). This is confirmed by results given in this paper concerning 

the rate of convergence of the adaptive processes of growth (with general increments) to 

the singleton stable components of the terminal set Bf(TN- (which prove to be attain- 

able under some minimal additional conditions). They demonstrate that the rate of 

development of the predominant trend is the same for both the processes with unique lim- 

it state and the process with a finite number of reliably possible ones (i.e. each is realized 

with positive probability). In order to avoid repetitions we preserve the notations adopt- 

ed in [I], [2]. The attainable and the unattainable connected components of the terminal 

set B ~ ( T N - ~ )  are defined as follows. If for any natural g, i = 1, 2,.. ., N, there will be 

lim pN - (Xn, B) = 0) > 0 then the connected component B of the set Bf ( T~ - I )  
ppl{n+m 

is called attainable, where p ~ -  l ( t ,  T) is a distance from the point t to  the set T in 



def 
R N - '  and Ppl{A) = P{A/X: = i = 1, 2, ..., N, -yl = for any event A E F. 

lim p ~ -  '(X,, B) = 0) = 0 then it is called unattainable. It will be shown here If p ~ l { n + m  

that the attainable components for N 2 2 are the singleton stable components, i.e. the iso- 

lated points 8 E Bf(TN-') n Int TN-' such that for some symmetric positive definite 

matrix Q of dimension (N  - 1) x (N  - 1) and a number e > 0 

for any 6 E (0, e), 6 5 llz - 811 5 e. When N = 2, the attainable components are the mul- 

tipoint stable components, i.e. the isolated intervals (possibly degenerate) [a,  q] which be- 

long to  Bf[O, 1) (0, 1) such that 

b(z) > 0 if z E  (a  - e, a) and r(z) < 0 if Z E  (q, q + e )  - 

(for all sufficiently small e > 0), where Bf(z) = [_b(z), r(z)] .  Apart from the specified 

classes of components, the vertices of the simpled TN- are also attainable. If probabilities 

of ball additions do not depend on time, i.e. are stationary, the connected components of 

Bf(TN-') whose interior is non-empty in R N - I  are also attainable. It will be shown 

that the unattainable ones are the singleton unstable components (i.e. isolated points 

6~ BR(GN) n I n t  GN for which a symmetric positive definite matrix D of dimension 

N x N  and a number e > O  can be found such that 

<DR(y),  y - 6> 2 0 for I l y  - 611 5 e) as well as the singleton saddle components, (the 

isolated points 8 E Bf(T, - such that among eigenvalues of matrix f'(8) at  least one has 

a positive real part). Here GN is the Cartesian product of TN- with [ I  - a ,  c;/']. The 

values a and Co were introduce in Lemma 1 in [ I ]  and the vector-function R was defined 

in Theorem 1 in [2]. (The description of set BR(GN) employs a subset G N  everywhere 

dense in GN and equal to the Cartesian product of L - with R (1 - a, C1/'), where 

R(a,  b) is a set of rational points in the interval (a, b)). We shall use the limit theorem 

method to  characterize the rate of convergence of the stochastic process X,, n 2 1, to the 

singleton stable components of Bf(TN- We present conditions under which the value 

P 1 { ( ,  - 6) < r lim X, = 8) (and more complex distributions of stochastic 
s + m  

processes generated by yt, t 2 n) has a nondegenerate limit as n -+ w, where r is an arbi- 

trary vector in R N  and the inequalities between vectors are understood as coordinate- 

wise. We next demonstrate the applicability of the results obtained here in the study on 

asymptotic properties of stochastic optimization algorithms of the quasi-gradient type [4] 

in the multiextremum problems. By way of example, we elaborate on the Fabian 

modification [5] of the Kiefer-Wolfowitz algorithm [6], which is the most similar to  the 



adaptive processes of growth. 

Prior to setting forth results concerning the attainable and unattainable components 

of the terminal set, it might be well to point out the following. In the theorem of conver- 

gence with probability 1 formulated in [I] and [3] it is required that qn(O, z) 5 a < 112 

uniformly in both z E L N d l  and n 2 1. Similar reasoning shows that the results will be 

valid if qn(O, z) - 112. The above conditions are to prove convergence of the series 

Ert 2. Let us offer another combination of conditions ensuring the convergence (with 
kZ1 

probability 1) to the process under study. Assume that qn(O, z) I a < 1 uniformly in 

z E LN- l, n > 1. Let condition 1) of Lemma 1 in [I] be satisfied. Then all limit points of 

the sequence {y,) belong to GN with probability 1. Choose an arbitrary number 

v E (0, 1). By virtue of assertion c) from Lemma 1 in [I], a number N (v) can be found 

such that for s 2 N (v) we have 

Suppose that condition 2) of Lemma 1 in [I.] is satisfied and lim un = 0. Put 
n+m 

and 

Y,+~(V) = y,(v) + s-l[fi(y,(v)) + G,(y,(v)) + +Y y,(v))l for 3 2 N(v) . 

Here 

If z(y) $ LN- l, then #(y) = 0, Gn(y) = 0, Z(n, y) = 0. Also 



where [a] is the integer part of the real number a. (Therefore fN ,  generally speaking, 

depends on n. For the sake of notational simplicity this dependence is omitted here.) We 

have 

lim C s- ' ~ ( s ,  y, (v) )  = 0 
n'ws>n 

with probability 1. Assume a Lipschitz function G on O(GN) can be found such that for 

any z E G ~ \ B ~ ( G ~ )  the inequality G-(z, 1)g11- '9) 2 p(z) > 0 holds uniformly in 

g E A R(z). Assume further that the set G ( B ~ ( G ~ ) )  does not contain non-degenerate in- 

tervals. Let R, be an event such that equality (2) is satisfied and y,(v) = y,, s 2 1. Con- 

sidering the estimate (1) and the construction of the sequence {y,(v)) we obtain 

Ppl{R,) 2 1 - v. Considering a fixed elementary outcome from R, one can show that 

(The proof is parallel to that of Theorem 1 in [I]). 

As v is arbitrary in this inequality, it follows that 

lim pN(yn, BR(GN)) = 0 = 1 . 
n+w I 

By the same method one can prove convergence (with probability 1) of the sequence {y,) 

in the case where all connected components of the terminal set BR(GN) are required to be 

singleton. 

Thus constraints on the values qn(O, z) can be relaxed in the above convergence 

theorems (with probability I ) ,  but the corresponding assertions should be formulated in 

terms of Lyapunov functions even if N = 2. A similar relaxation of the constraint on 

values qn(O, z) could also be considered in other theorems on asymptotic behavior of 

adaptive processes of growth with general increments. 

2. ATTAINABLE COMPONENTS 

The attainability of singleton stable components was first proved for the case when 

N = 2 and balls are added one at  a time with stationary probabilities [7]. The same arti- 

cle mentioned in attainability of components with non-empty interior in R' (i.e. inter- 

vals). The attainability of singleton stable components with N 2 2 was investigated for 

processes with unit and arbitrary increments in [8], [9]. Conditions of the attainability of 



the vertices of the simplex T N - i  by the adaptive processes of growth with unit incre- 

ments were first derived in [8]. 

THEOREM 1 Let  N = 2 and B = [ a ,  q ] ,  a 5 q,  B E (0, 1 )  be a mul t i -point  stable com-  

ponent  o f  the set B f [ O ,  11, pi > 1,  812 > 1. Assume e > 0 can  be found such that  for all 

z E ( a  - c ,  q + c)  n R(0, I ) ,  n > 1 the following condit ions are satisfied: 

2) for some r > 2 C (il + i 2 ) 'qn( i ,  z )  I C ;  
i~ 2: 

3) there ezist  funct ions q ( i ,  z ) ,  i E 2: such that  

C) Iqn(i, z )  - q ( i ,  z) l  5 an for all i E z:, where lim an = 0 ;  
n - - w  

4 )  for each i E z:, we have qn( i ,  z )  E (0, 1 )  for all z E R(0, 1 )  whenever 

T h e n  we can  conclude that  Pp l {  lim p l ( X n ,  B )  = 0 )  > 0. 
n + m  

PROOF Let c satisfy the above hypotheses and the definition of a multi-point stable 

component. Let 6 satisfy 0 < 6 < c. Set 

where c E R(0, 1 )  n ( q ,  q + 6 ) ,  d E R(0, 1 )  n ( a  - 6, a ) .  The corresponding functions 

are linear with respect to  z outside the interval [ a  - 6,  q + 61; hence B ~ [ o ,  11 = [ a ,  q ] .  

Here for all i E 2: one has 



I 9 , )  E [a - 6, 9 + 61 , 
B(i, z) = 9 ,  1 ,  z E (9 - 6, 1) , 

q( i ,  d),  z ~ ( O , a  -6) . 

By Theorem 4 from [I] 

lim pl(Xn, B) = 0 = 1 , 
~ p . 1 ~  + w I (3) 

where X,(n > 1) is a stochastic process constructed according to  @,(z) that has the same 

initial composition of balls in the urn as X,. By virtue of equality (3) for any 8~ (0, 6) 

and a E (0, I ) ,  an integer m can be found such that  

lim pl(Xn, B) = 0, Xa E (a - 8, q + s), s 2 m > 1 - a > 0 
pp1ln + w I 

Thus, there exists a point g E Sm(Pl) for which 

P lim pl(Xn, B) = 0, xa E (a - c, q + s), L m + l / Y m =  g > O  , In+ w I (4) 

- 
where %(PI) = {y  E R 2 :  Ppl{gm = y) > O), 6 = (Xm, T,)~,  and ym(m 2 1) is 

derived form pm(z), in the same way as 7, was contracted from &(z). Set Sm(P1) = 

{y  E R2 : Ppl{ym = Y )  > 0), ym = (Xm, 7m)T. By their construction Pn(z) and p,(z) 

coincide in the &neighborhood of the interval [a, q]. Furthermore in compliance with con- 

dition 4) 

Sn(Pl) > Sn(p1) for all n 2 1 . (5) 

Because of this, for any y E Sp(P1) with p 2 1 we have 

P lim pl(Xn, B) = 0, X, E (a - 8, q + s), s 2 p +l/gP = y In+ w I 
= P lim pI(Xn, B) = 0, X, E (a - s), q + 8, s 2 p + l / y p  = y . In+ w I 

On the strength of relations (4)-(6) we obtain 

lim pl(Xn, B) = 0 2 Ppl{ym = V) P lim pl(Xn, B) = 0 , 
~ p . ( . + ~  I In+ w 



The Theorem is proved. 

THEOREM 2 Let N 2 2, 2 1, ( i  = 1, 2, ..., N )  and 8 be a singleton stable com- 

ponent of the set B ~ ( T ~ - ~ )  with 8 E Int T N b l .  Assume e > 0 can be found such that for 

all z E uN- ' ( 8 ,  e) n tN - the following conditions hold: 

2) sup C ] i [qqn(i ,  z )  5 C for some q 2 2; 
n 2 l  i E Z y  

3) continuous functions q( i ,  z ) ,  i E 27, can be found such that 

b) C ] i [ 'q( i ,  z )  5 C for some r 2 2, 
i ~ Z f  

C) Iqn(i, z )  - q( i ,  2 ) )  5 on  for all i E 27, n 2 1, where lim on  = 0; 
n+m 

4) for all i E z:, n 2 1, we have qn(i, z )  E (0 ,  1) for each 2 E tn- whenever 

qn(i, z )  E (0, 1) .  

Then we can conclude that Pp l {  lim Xn = 8 )  > 0 .  
n+m 

The proof of this Theorem is similar to that of Theorem 1 and for this reason is om- 

itted. 

We now direct our attention to the adaptive processes of growth with unit incre- 

ments. This situation yields some specific results that have no analogs in the general case 

(for instance, conditions of convergence to vertices of the simplex TN - [8]). 

We define conditions under which the adaptive processes of growth with N 2 2 can 

attain the connected components of the terminal set whose interior is non-empty in 

R ~ - ' .  We shall restrict ourselves to  the examination of processes where probabilities of 

ball addition is independent of time. Since the discussed processes have unit increments, 

N - 1  . 
p { p i ( z )  = 1 )  = qi (z ) ,  i = 1, 2,. .., N - 1 and ~ { p f ( z )  = 1 )  = 1 - C q ' (z )  

i= l  

In the given case the function f ( z )  equals q(z)  - z .  



THEOREM 3 Let ,f3; 2 1 i = 1, 2, . .  ., N. Assume B is a connected component of the set 

B ~ ( T ~  - that has a non-empty interior in R ~ -  l .  Furthermore suppose 

p : LN-  + Int TN - and that f(z) = 0 for all z in a ball uN- '(2, e )  contained in B .  

Then Ppl { lim p ~ -  l(Xn, 8) = 0) > 0. 
n + m  

PROOF Assume that P,(z) (n  2 1, z E LN-1) are N-dimensional random vector in- 

dependent with respect ot  n such that  

Let {X,) n 1 1) be an appropriate adaptive process of growth with both unit increments 

and an initial composition of balls in the urn characterized by the vector P1. Then, as in- 

dicated in [ lo], X, converges with probability 1 to  a random vector X .  x has the Diri- 

chlet distribution concentrated on TN- so has density function (with respect to  the Le- 

besgue measure in R - ') 

where z E TN- Therefore, when uN- l (y ,  6) c TN- we have 

At  the n-th step the processes {X,) and {X,) can assume only values from the set 

It is clear that  r': LN- l  + LN-1, and by the hypotheses of the theorem we have 

def 
r : LN- + Int TN - where the vector function r'(z) = z corresponds to  the process X,. 

So there will be for any z E D, we have 

Due t o  the convergence of X, t o  X (with probability 1) for any 6 E (0, 1) there is an in- 



teger n(c /2 ,  6 )  such that 

whenever n 2 n ( ~ / 2 ,  6). For some integer E(E,  z ) ,  the set D, n uN - ' ( 2 ,  E )  is non-empty 

whenever n 2 A. Then, if n 2 i i  = max ( n ( ~ / 2 ,  S), A(€,  z ) ) ,  we have 

The set D, is finite. Hence, it follows from the above inequality that for some 

z, E D, n u N - ' ( 2 ,  E )  we have 

Note that the functions r and i are the same on uN-'(2, E )  n LN- therefore 

P { X m  E uN- ' ( 2 ,  E ) ,  m 1 n / X n  = z,) = P { X m  E uN- ' ( 2 ,  E ) ,  m > n / ~ ,  = I,) , 

i.e., considering inequality (6), 

P { X ,  E u N - ' ( 2 ,  c), m 2 n / X ,  = z,) > O . 

From this via the second of inequalities (7) and estimate (8) we obtain 

P p l { J i m m ~ ~ - l ( X n ,  8 )  = 0) t P p l { X ,  E uN-'(2, E ) ,  

The Theorem is proved. 

3. UNATTAINABLE COMPONENTS 

It is worthwhile to  begin with results pertinent to the general processes of the sto- 

chastic approximation-type and then to apply them to  the study of the adaptive processes 

of growth. 

Consider the following recursion relation in R ~ ( M  2 1 ) :  



Here {P, ) ,  {a,), (7 , )  are sequences of positive numbers, f and w, are non-random Borel 

vector functions. The { z )  are sequence of functions such that each 

z,(-) : t2 x RM - RM is F x BMmeasurable (where BM is the o-algebra of Borel sets in 

RM).  For fixed y ,  { z , ( ~ ) )  is a sequence of independent random vectors with zero mean. 

In what follows we consider two situations: (1 )  7,  > _r > 0 for all s and (2) lim 7, = 0. 
8 + 0 0  

LEMMA 1 Let us assume that the following conditions are satisfied: 

1) there ezist a symmetric positive definite matriz D of dimension M x M and a number 

e > 0 such that (for all z from the closed ball OM(=*, e))  we have 

where X > 0, 0 5 p I 1; 

4) 0 < _c I lim inf E<Dzt(z),  zt(2)>; 
f= 1 1 % -  % * / I  5 € 

5 )  if rt - 0 as t - w, then Jl f (z)JI  5 A112 - z*117 for llz - z*ll I E ,  for some 0 < 7 5 1;  

otherwise 1 1  f(z)II 5 A for 112 - z*11 5 e; 

a," 
t - w, then x < w; 

121 Pt 

6)  x ~f7f  < w, tFl ' $!- r < w, where gt = x P:.: furthermore, i f  7,  - 0 as 

a t f f t  
7) at -+O a s t  -+ w and x - < w ;  

t t l  -dgt+ l  

t t l  

*t 
8) l i m -  = d ,  where d is a positive number or + w ;  

t=o a t7 f  

Pt+ l  821 

9) i f  p = 1, then F  < _c when rt -+0 and 
F +  7 - ' 6 ~ ~  

2Xd + 1 2Xd + 1 
< _c when 7 t  2 _r > 0 ,  

where F = lim sup E< Dzt(z) ,  zt(z)> and 6= max < Dz, z> (by condition 
~ - * ~ ~ ~ z - z * / I < E  1 1 ~ 1 1  = 1 

2) F is finite). 

We conclude that P{z,  -+ z* /z l  = z )  = 0 for any z.  



PROOF Without loss of generality it may be assumed that z* = 0. Consider z  from 

( z ,  ) Put V ( t ,  z )  = Tt  - W ( z ) ,  z  = u, U ( z ) = < D z , z > ,  where 
(0 f 

e u - v  
W ( z )  = $ ?du, T f  =- l nP t ,  and rpt  = cg t ,  ( C  is a positive constant whose value 

0 uV 

will be estimated below). The following relations are given for z  > 0 in [ l l ,  p. 1451 

W ( Z )  2 0, ( W ( z )  > 0 for > 0) , 

W ' ( z )  > 0 , 

W ( z )  = In z  + O(1) as z + 00 , 

W'(z)zX 5 const , 

I W " ( z )  lzV 5 const , 

W"'(z)zu 5 const , 

where 0 5 x 5 1, 0 5 v 5 2, 0 5 u 5 3. Performing the second-order Taylor series expan- 

sion we obtain 

where 

Considering that 

we obtain 



y = p;$l[c@7:z + 2 4 < @ ( t ,  z ) ,  Dz> + 7,"< D@(t ,  z ) ,  @ ( t ,  z )> ]  . (21) 

Substituting equality (21) into (19) we have 

where 

+ 2 ~ @ ; ~ , " z l [ 2 < @ ( t ,  z ) ,  Dz> + Bt<D@(t, z ) ,  @( t ,  z )> ]  + 
+ 4@E<@(t, z ) ,  Dz><D@(t,  z ) ,  @ ( t ,  z ) > )  . 

On the basis of equality (20) we obtain 

Note that 

E<@(t, z ) ,  D Z > ~  5 <Dz,  z> l<D@( t ,  z ) ,  @( t ,  z )>  , 

l < D @ ( t ,  z ) ,  @ ( t ,  z )>  = <Df (z ) ,  f (z )> + c r , " < ~ w ~ ( z ) ,  wt(z)> + 

+ ~ , " E < D z ~ ( z ) ,  z t (z)> + 2at<Df (z ) ,  wt (z)> . 

The use of expressions (12))  (18) )  (20) and (24) yield 

s," 
X -  €< D@(t,  z ) ,  @(t,  z )>  5 2[z W ( z )  - I.] - 

Pt+1 I 



Taking into account both inequality (11) and condition 1)  we obtain 

If c < 2_c, then on the strength of condition 4) we have (for all sufficiently large t )  

Let 1.1 < 1 and suppose rt -+ 0 as t -+ oo. Assume tha t  from the very beginning c was 

-P 
chosen so small t ha t  X - < 0. Then by virtue of relation (12), conditions 2) and 

c d 
8),  we obtain (for all sufficiently large t )  

Combining (25) and conditions 2), 3), 5) and 8) we see tha t  when 1.1 < 1 and -yt 2 _r > 0 

we have (for all sufficiently large t )  

812712 * 
'6' t 

l+ 

z W'(z)- t < D @ ( t ,  z ) ,  @(t,  z )>  - Xz W'(z)- 5 
P t + 1  P t + l  

Here E = 2 7 - 2 [ ~ 2  - + SUP a; sup 1 1 ~ ~ ( ~ ) 1 1 ~ ]  + F. (It is necessary t ha t  c is chosen small 
t > l  I lz l lSr 



- Pf  
enough that  X - > 0 ) .  Consider p = 1.  If rt + 0  then by conditions 8) and 9) we 

c d 

obtain for c > 2 F  and all sufficiently large t  
1  + 2Xd 

If rt > - 7 > 0  then, applying conditions 2 ) ,  3),  5 ) ,  7 )  and equality ( 2 5 ) ,  we have 

E < D @ ( t ,  z ) ,  @ ( t ,  z )>  < ZA2[1 + o t ( l ) ]  + 7 ? ~  , 

Hence if c > 2 ( F +  - 7 - l 2 ~ ~ ) / ( 1  + 2Xd)  by conditions 8 )  and 9) we obtain (for all 

sufficiently large t )  

where o t ( l )  -+ 0  as t  + oo. If rt + 0 ,  then in view of relations ( 1 5 ) ,  ( 1 6 ) ,  ( l a ) ,  ( 2 5 )  and 

condition 5 )  we obtain 



where the letter C denotes the constants whose values are not essential to the argument. 

From condition 3) ,  with regard to relation (15), it follows that 

2 W'(2)- 
dcp, 

Pt7t I < D w ~ ( z ) ,  z>1 < cp ta t  w*(z)\/s- < c P t f f t  

'Pt+1 'Pt 4G 

Using relation (12) and estimate (16) we obtain 

Since 

<D@(t ,  z ) ,  @(T, z ) > ~  L 27[<Df(z) ,  f ( z ) >  + 
+ a?< ow t ( z ) ,  W ~ ( Z ) > ~  + r f < ~ z ~ ( z ) ,  z t ( ~ ) > ~ ]  . 

We have, (by conditions 1)-3), 5 )  and relations (12) and (16))  

W''(z)Pi" 
'4 

- E< D@(t ,  z ) ,  @( t ,  2)>2 5 
2'Pt2+ 1 i:~, when rt 2 _r , (40) 

and 

W"(4PI4 - E<D@(t, z ) ,  @ ( t ,  z ) > ~  5 
2PT+ 1 

By applying conditions 3 ) ,  5) and inequalities (12) and (16) we obtain 

Similar reasoning allows the following estimates: 

when rt -t 0 . 
'4  ' ' 2  

Pt4r T 
- W8'(r)  2 7  E<D@(t, z ) ,  @(t ,  z )>  5 

Pt+l 

PT 
a:;: 

+ Ptrt 
4 4  + I 

+ -  



at73 
' 2  

- Wa(z)z7 E< D @ ( t ,  z ) ,  @ ( t ,  z ) >  5 + 
V t + l  

a12 2 

+ - + I 1'1 8t7t when 7 t  -r 0  , 
a:;? dC1+1 d G  

and 

a; - Wn(z) -  € < @ ( t ,  z ) ,  D z > < D @ ( t ,  z ) ,  @ ( t ,  z ) >  5 
Vt2+ 1 

Since W ( z  + B y )  - W ( z )  = Wff ' ( z  + &), B E  (0 ,  B ) ,  the value R t ( z )  can be represented 

in the form 

where 

1 1 
B t ( z )  =- -PWff '(z + 6 y ) B y 3 x r ,  P t ( z )  = - -E [Wa(z  + B y )  - w " ( z ) ] Y ~ x ~  , 

2  2  

and 

r = { w : z / 2 +  6 y  > 0 )  

('I' is complement of I' in R) .  On the strength of equality (21)  we have 

y 2 2 p z l / 3 t < @ ( t ,  z ) ,  Dz> 2 - 2p;; ',atl@(t, z ) 1 d - 1 / 2 ~ p t / 2  2 

2 - c p ~ + l [ ~ p ~ ~ @ ( t ,  z)l& . 



By virtue of inequality (17) and the fact that z + by = 212 + z/2 + by > z/2 on r, we 

obtain 

Applying inequalities (13)) (47) and (48) and ~roceeding in the same way as in the deriva- 

tion of estimate (48) we have 

It follows from the inequality z/2 + Jy 5 0 that y 5 0. Consequently, 

W"(z + By) - W"(y) < 0 and y < Jy < - -12. Then using estimates (16) and (47) 

at" 2 
Pt(z )  L C- l (  W"(z + By) - WU(z)I.JiS(t, z ) )  Xerz I 

P t + l  

(The argument follows the same reasoning as the derivation of estimates (40) and (41).) 

It should be emphasized that when p = 1 condition 9) enables us to choose c so that both 

inequalities were satisfied at  a time: either (28) and (29) or (28) and (30). Relations (22), 

(23)) (26)-(31)) (33)-(36)) (40)-(46), (49) and (50) give 

and by conditions 6) and 7) 



Pi  
stems from assertion 5) in (12, Notice that if rt > _r the convergence of series - 

-1 - 7 
t ? l  'Pt+ l  

p. 2911. According to  relations (10) and (14) there will be 

Let {Xt) be an arbitrary sequence converging to  zero as t -+ oo. On the basis of estimate 

(53) we have as t -+ oo 

Due to  equality (14) the function V(t, z) is uniformly bounded below with respect to 

t > 1 for z E UM(0, c). So by adding a positive constant if necessary, we may consider it 

to be non-negative on this set. By virtue of relations (51) and (52) the pair {Qt ;  7t),  

t > 2, is a non-negative supermartingale. Here we have Qt = V ( K  zi) + p3, 
3 > i 

t^ = min ( t ,  z), T denotes the first exit time of the process z, (s 2 1) from OM(0, c) and T~ 

is a o-algebra generated by z l ,  22,. . ., zn Then, on the one hand, the finite limit of Qt ex- 

ists with probability 1 as t -+ oo [13, p. 1431. On the other hand, by relations (50) and 

(52) we see that Qt -, - oo as t -+ oo on any trajectory z3(w), s > 1, converging to  0. 

From this it is inferred that P{z3 -+ O/zl = z) = 0 for any z (see also Lemma 5.4.1 in 

111, p. 1501). And so the Lemma is proved. 

REMARK 1 The validity of condition 9) of Lemma 1 may follow from the fact that 

E<Dzt(z), z t (z)> is continuous with respect to  z a t  z* and also (in the case when 

7t 2 - 7 > 0) from the continuity of the vector function f a t  the same point. 

REMARK 2 If one considers those rules for variation of numerical sequences which are 

currently popular in the theory of stochastic approximation, the parameters in algorithm 

(9) become: Bt = bt-P, rt = gtq and at = at-a. Then conditions 7)  and 8) hold if b > 0,  

g > O ,  a > 0 ,  O < p I l ,  P - 7 > 1 / 2 ,  a + ? > -  112. (Furthermore 

2p-y - 7 + 7 ( l  - 7)  > 0 when 7 < 0). 

LEMMA 2 Assume that conditions 2)) 3)) 5)) 7) and 8) of Lemma 1 hold, with 7 = 1 in 

5). Suppose that following conditions also hold: 



1) j(z*) = 0 and the vector function f is diflerentiable at the point z* with matriz oj 

derivatives A ;  

4 )  E Z ~ ( Z ) Z ~ ( Z ) ~  = D ( z )  + d t (z ) ,  where the matriz D ( z )  is continuous with respect to z 

in the neighborhood of the point z*, D(z* )  is positive definite, and 

lim sup 1 1  d f ( z )  1 1 ,  = 0 jor some c > 0.  
f'OO 112- < E  

Conclusion: i f  at least one eigenvalue of the matriz A has a positive real part, then 

P{zS + z* /z l  = Z )  = 0 for any z .  

PROOF Without any loss of generality we put z* = 0. Let X = X 1  + i X 2  be an eigen- 

value of A and X 1  > 0 ;  let u = ul + iu2 be a left eigenvector corresponding to A, i.e., 

uA = Xu or 

where i = m. Introduce two-dimensional vectors 

Then, on the basis of relations (9) and (55) we have 

where A,(y ( 2 ) )  = F,( y ( z ) )  - B y ( z )  and B is a 2 x 2 matrix with Bl1 = X 17 B~~ = - A 2 7 

B2' = X 2 ,  B~~ = X I .  Note that 

Also, by condition 1) we have 

sup IlA,(y)(( 5 r(6) 1 1  y 1 1    uniform el^ with respect to y E R ~ ) ,  lim r(6) = 0 . (58) 
Ilzll 5 6 6+0 

The matrix B has eigenvalues X 1  f i X 1 .  According to the Lyapunov theorem [14, p. 2101, 

for any number p E (0 ,  X I )  there exists a symmetric positive definite matrix Dp (of di- 

mension 2 x 2) such that 



<D,By, y> 2 p<D,y) y >  forevery y E R~ . 

It follows from relations (58),  (59) that 

IIFZ(Y>II 5 IllBllo + r(6)lllvll , 

<D,FZ(y), Y >  L [P  - r l (6) ]<D,~,  Y > ,  lim r1(6) = 0 , 
6+0 

Condition 4)  and the symmetry of matrix D, imply 

Hence, making use of condition 4 ) )  positive definiteness of the matrix D, (consequently 

D: > D : ~  and D? > Di l  114, p. 2091)) and the fact that the vector u is non-zero, we 

have 

lim f<D,Zt(0), Zt(0)> > 0 . 
t = z E  (62) 

By condition 4 ) )  for 6 E (0 ,  c) 

Em sup I f<  D,Zt(z), Z t (z)> - 
t + llzll5 6 

- f<D,Zt(0), Zt(0)>l 5 ~ ~ ( 6 ) )  lim ~ ~ ( 6 )  = 0 
6+0 

Select and fix 6 so small that (by virtue of relations (57))  (60)-(63)) 

D + r2(6) < D - ~ ~ ( 6 )  when rt -, 0 , 
1 + 2[P - r1(6)ld 

and 

- 2 )  when 7t 2 _r > 0 , (65 

where D = D;<D(0)ul, u l>  + 2D:<D(0)ul, u2> + D? <D(0)u2, uz>,  5 - is the 



largest eigenvalue of the matrix Dp. Let us consider the Lyapunov function 

V ( t ,  z )  = Tt - W ( z ) ,  z = 
<D,Y, Y> 

for y E R ~ ,  llyll 5 26(11ulll + IIu211), where the se- 
Pt+l 

quences { T t ) ,  { p t )  and the function W are the same as in Lemma 1. We repeat the prop- 

er reasoning (with 7 = 1 by estimate (60)). We obtain (for any z € R ~ )  

To complete the proof it suffices t o  note that estimate (57) implies 

REMARK 3 Condition 4)  of Lemma 2 can be made weaker if, instead of the non- 

singularity of D ( z )  *), we require 

t o  be positive for some p E (0 ,  XI) .  

Slight modifications in the reasoning given in [ l l ,  p. 1501 lead to  the following result. 

LEMMA 3 Let f (z* )  = 0 and assume the following conditions hold: 

1 )  one can find a symmetric positive definite matriz D of dimension M x M and a 

number c > 0 such that 

< D f ( z ) , z - z * >  > O  foral l  z from DM(z*,c)  ; 

2) I I fzt(z)zt(z)  - A ( z )  l l &  rt uniformly in z E oM(z* ,  c ) ,  where lirn rl = 0, 
t - 03  

def 
TTA ( z * )  = C k i ( z * )  > 0; 

i= l  

3)  i f  z E u M ( z * ,  c )  then 

l l f ( ~ ) 1 1 ~  + IT r [A(z )  - A(z*) ] l  I C(lz - z*IIY for some v ~ ( 0 ,  21 ; 

" < r n .  gt = C P:~ : ,  and furthermore i f  rt -0, then C 
- v,z 

s z t  t L l  Pt+l 



Then P{z, -+ z*/zl = z)  = 0 will be for any z. 

Comparing the hypotheses of Lemma 1 and 3 we see that Lemma 3 requires more 

smoothness of the functions f(z) and Ert(z)zt(z) T(t > 1) (in the neighborhood of the 

point z*). However, condition 1) of Lemma 3 is weaker than condition 1) of Lemma 1. In 

the optimization problems (when f(z) is the same as the subgradient of some non-smooth 

function Q(z)) condition 1) of Lemma 3 implies that Q is convex in some neighborhood of 

the local minimum z*. While condition 1) of Lemma 1 is an analog of the acute minimum 

condition [15]. (Specifically, when p = 1 this is a condition that Q is strongly convex in 

the neighborhood of the point z* [15]). Lemma 2 differs from the above assertions by the 

fact that the vector function f can behave differently along different directions passing 

through the point z*. Here z* may be interpreted as a saddle point for the optimization 

problem. A result similar t o  that of Lemma 2 was derived in [16], but disturbances were 

considered as independent of the space coordinate there. Lemmas 1 and 2 differ from the 

known results [ l l] and [16] in that they permit the study of algorithms of random search 

for extremum of functions assumed to  be free of random disturbances where, as a rule, 

7, + 0 as s + oo [17, Chapter 51. 

We now apply the described results to  analyze the adaptive processes of growth with 

general increments. It should be noted that in the given case we have Pt = t - l  and 

-yt = 1, so d = 1. 

If 6 is a singleton component of the set BR(GN) then 8 will denote the N-1- 

dimensional vector whose entries are the first N-1 coordinates of 6. 

THEOREM 4 Assume N > 2, 2 l ( i  = 1, 2,. . ., N). Let 8" be a singleton unstable 

component of the set BR(GN). Assume the following conditions are satisfied: 

a)  for some r > 4 sup ]i['q,(i, z) 5 C, 
u l l i E Z , N  

b) values q(i, z), i E z:, ezist such that x q(i, z) = 1, and x ] i [qq( i ,  z) 5 C 
~ E Z :  ~EZ: 

for some q 2 2; furthermore if p = 1 the functions q(i, z) ( i  E 2:) are continu- 

ous on uN- '(0, e) n lN- and the series x ] i [2q(i ,  2) converges uniformly 
i€Z$ 

on this set (it holds true in particular for q > 2); 



d )  l im ~ r ,  = 0 and u- l ~ ~ l N + K  < oo (keeping in  mind Remark 2 in  [ I ] ,  
n+m n 2 1  

C n-  ' u n  < oo when the distributions qn( a ,  ) ( n  2 1 )  and q( a ,  . ) are con- 
n 2 1  

strained), where n = min ( r ,  q )  - 1; 

2 )  for a symmetric positive definite matriz D of dimension N x N ,  i f  y E UN(6,  6) n G N  
then 

where X > 0 ,  p  E [0, 11; 

3) T r S ( y )  2 cl for y E ~ ~ ( 6 ,  E )  n G N J  where S ( y )  is  the symmetric positive semi- 

definite matriz of dimension N x N with elements given b y  the following relations: 

Then there will be Pp,{yn - 8) = 0 for any PI ,  and more over P p l { X n  - 8 )  = 0 for 

p =  1. 

PROOF T h e  use o f  condition I ) ,  estimates ( 7 )  and ( 8 )  f rom [ I ] ,  as well as the assertions 

a ) ,  b )  from Lemma 1 [ I ]  and b ) ,  c )  from Lemma 1 [2] gives 

Here 



Since the trace of a matrix does not depend on the choice of orthonormal basis, we may 

assume that D is diagonal. Then, by condition 3))  we have T T D S ( ~ )  > 
TrS(y) 2 _dcl > 0 for y E ~ ~ ( 8 ;  c) n SN, where _d = min <Dz, z > .  It is possible now 

11211 = 1 

to  complete the proof by employing Lemma 1. Proper allowance must be made here for 

the fact that if p = 1, the matrix S ( Y )  and the vector function R(y) will be continuous on 

the set UN(( c) n gN (by condition 2) and the continuity of the sum of uniformly con- 

verging series of continuous functions [12, p. 4311). This circumstance permits satisfying 

condition 9) of Lemma 1 through a decrease in c. In as much as the function p(z) is also 

continuous in this case (by virtue of assertion c) of Lemma 1 [2]), the last co-ordinate of 

the vector 8" is equal t o  p(8) and hence 

The Theorem is proved. 

THEOREM 5 Assume N 2 2, Pi _> l ( i  = 1, 2,. . . , N). Let 8 be an isolated singleton 

connected component of the set b f ( ~ ~ - ~ ) .  Suppose that condition 1) of Theorem 4 holds 

as well as 

2) the partial derivatives m, i E z:, k = 1, 2,. . . , N - 1, ezist and are continu- aZk 
ous on the set UN- (8, ) n L N  , and the series x ] i [2q(i ,  z) and 

i ~  z+N 
. , a q ( i , ~ )  . -  C 1  ) J - 1, 2, ... , N, k = 1, 2, ..., N - 1, both converge uniformly on this 

i €  z~ azk 
set; 

3) the matriz ~ ( 6 )  is non-singular. 

Then, if a least one of the eigenvalues of the matriz f (8) has a positive real part we 

will have Ppl{Xn + 8) = 0 for any P1. 

PROOF As a whole, the reasoning is similar t o  that used in Theorem 4 and rests on the 

application of Lemma 2. Let us only note that by condition 2) and assertions c),  d) of 

Lemma 1 [2] the matrix S(y)  is continuous on UN(8; c) n SN,  the vector function R(y) is 

continuously differentiable on this set, and the function p(z) is continuously differentiable 

on UN-'(8, c) n LN-1. Also consider that only the last element of the matrix 

~ ' ( 6 )  N-th column is non-zero and equal t o  -1 (see condition 6) of Theorem 1 in [2]). 

Therefore, a correspondence is established between each eigenvalue with a positive real 

part of the matrix f (8) and the eigenvalue with a positive real part of the matrix ~ ' ( 6 )  



using results obtained in [18] and of  the fact that ~ ( 0 )  > 0. 

T h e  Theorem is proved. 

THEOREM 6 Let N 2 2, 2 l ( i  = 1, 2,. . ., N ) ,  and let 6 be a singleton unstable con -  

ponent of the set B ~ ( G ~ ) .  Assume c > 0 can be found such that for 

E u N - l ( 8 ,  6 )  n L ~ - ~ :  

1 )  sup C ]i[ 'q,(i, z )  5 C for some r 2 4; n 2 1 .  t€Z,N 

2) there ezist values q ( i ,  z ) ( i  E 2:) such that: 

b) C ] i [ Q q ( i ,  z )  5 C for some q 2 2, 
i €  Z,N 

C) Iqn(i, z )  - q( i ,  z ) J  5 a ,  for all both i E 2: and n 2 1, 

d )  l im a n  = 0 ;  
n + m  

3) i f  the distributions q,( -, . ) ( n  2 1)  and q( a ,  .)  are unrestricted, then: 

n-1 
a )  C n-lanW < 00, where K = min ( r ,  q) - 1 ,  

and 

b) the continuous partial derivatives (i E z:, k = 1, 2,.. ., n - 1)  ezist a z  
aq( i ,  2 )  and also series C ] i[2q(i, z )  and C iJ ( j  = 1, 2,. .  ., N ,  

;E z,N IE z$ azk  
k = 1, 2,. . ., N - 1)  converge uniformly with respect to z ,  otherwise (i.e. if these 

distributions are restricted) 

a') C n - l a ,  < w, 
n 2 l  

and 

b') the functions q( i ,  z ) ( i  E 2:) are continuous at the point 8 and q ( i ,  z )  - 

q( i ,  8) 1 < Cllz - ellY for some v E ( 0 ,  11 and all i E 2:. 

Furthermore, suppose that 

4 )  TrS(8)  > 0 ,  

and 



5)  one can find a symmetric positive definite N x N matriz D such that 

< D R ( y ) ,  y - 6> 2 0 for y E uN(& E )  n G N  

Then P P I { X n  -+ 8 )  = 0 for any P1. 

If the quantity of balls added into the urn is the same at each step then conditions of 

Theorems 4 and 6 are simpler. By way of illustration we shall give the statements of 

Theorems 4 through 6 for the above situation. Assume v 2 1 balls are added at each step 

into the urn. 

THEOREM 4' Let N 2 2, 2 l ( i  = 1, 2, ..., N )  and let 8  be a singleton unstable com- 

ponent of the set B ~ ( T ~ -  Assume e > 0 can be found such that for 

z E uN- ' ( 8 ,  E )  n L N - l  values p ( i ,  z )  ( i  E z:, ] i [  = v) ezist and 

2) T rD (z )  2 cl > 0, where D ( z )  is a symmetric positive semi-definite matriz of dimen- 

sion ( N  - 1) x ( N  - 1)  whose elements are given by the following relations: 

3) one can find a positive definite ( N  - 1) x ( N  - 1) matriz S such that 

where X > 0, p E (0 ,  11; 

4 )  for all n 2 1, i E Z:(]i[ = v) we have lq(i, z )  - qn(i, 2 ) /  5 on, where lim o n  = 0 
n+o3 

and furthermore C n - l a ,  < oo; 
n z l  

5 )  i f  p = 1, then the functions p ( i ,  z )  ( i  E z:, ] i [  = v) are continuous at the point 8 .  

Then we conclude that PBI(Xn 4 8 )  = 0 for any P1 

THEOREM 5' Assume N 2 2, 2 1 i = 1, 2, .. ., N )  and let 8 be an isolated singleton 

connected component of the set B ~ ( T N -  Suppose that conditions 1) and 4) of Theorem 

4' hold and also 

2)  the functions z ) ,  i E 27, ]i[ = v, are continuously differentiable on the set 

uN-l(e, E )  n L , - ~ ;  



3) the matrix D(0) is non-singular. 

Conclusion: i f  at least one eigenvalue of the matrix f (0) has a positive real part, then 

Ppl {Xn + 0) = 0 for any P1. 

THEOREM 6' Let N >_ 2, 2 1, i = 1, 2,. . ., N, 0 - be a singleton unstable component 

of the set B ~ ( T ~ -  conditions 1) and 4) of Theorem 4' be satisfied, and 

2) the functions q ( i ,  z ) ,  i E 27, ] i [  = u, are continuous at the point 0, and the inequali- 

ties Iq(i, z )  - q ( i ,  0)I 5 C ( J z  - 0ll" ( i  E 27, ] i [  = u)  hold for some e > 0, o E (0 ,  11 

and all z E uN- ' (0 ,  c )  n L N -  

3) TrD(0) > 0. 

Then for any PI there will be Ppl {Xn + 0) = 0. 

REMARK 4 If the balls are added one-by-one into the urn, i.e. u = 1 ,  0 E Int TN - 

the corresponding functions q ( i ,  x ) ,  i E 27, ] i [  = 1 ,  are continuous a t  the point 0, then 

the matrix D(0) is non-singular as demonstrated in the proof of Theorem 2 in [8] .  

4. RATE OF CONVERGENCE TO SINGLETON STABLE COMPONENTS 

OF TERMINAL SET 

The limit theorems from (21 characterize the rate of convergence of the adaptive 

processes of growth to  the limit in the case when the terminal set consists of a single 

point. It is shown in [9] that the rate of convergence to the singleton components of the 

terminal set can be studied in a similar manner. By the same line of reasoning as in [9] we 

shall obtain analogs of the results in [2] for the situation when the terminal set consists of 

more than one stable singleton component. Put  

n+s u+s+l 
zn(t)  = -(Y,+, - 6) for C i - ' 5  t < C , 

where n >_ 1. Consider functional (o which is measurable on D ~ [ o ,  TI and continuous on 

CN[O, TI (the space of continuous N-dimensional vector functions given on [0, T ]  with 

the uniform convergence topology (at N = 1 it is simply C[O, TI ) ) .  Let F ~ I ~ ( ~ )  denote 

the value Ppl{(o(zn) < y ,  lim Xm = 01, where n 2 1, y E (- m, m ) .  
m+w 

THEOREM 7 Suppose that N 1 2, 2 l ( i  = 1, 2,. . ., N )  and also 0 E B ~ ( T ~ -  Let 

the sequence {X,) converge uith probability 1, and let for some c > 0 the following condi- 



tions hold for z E u N - l ( 8 ,  c) n L N - l :  

1 )  r 2 3 can be found such that sup C ]i[ 'q,(i, z )  5 C ;  
" 2 1  ;,=zf 

2 )  continuously differentiable functions q ( i ,  z ) ( i  E 27) ezist and such that: 

b) for some q 2 3 we have C ] i [qq( i ,  z )  5 C ;  

C )  1q(i, z )  - q,(i, z )  6 a ,  for both n 2 1 and i E 2 7 ;  

. d q ( i ,  2 )  d )  series C il ( j  = 1,  2, ..., N ,  k = 1,  2,. . ., N - 1 )  converge uniformly. 
i ~ Z 2  a z k  

Also assume that: 

N+n 

3) lim a,n 2n = 0 ,  where z = min ( r ,  q)  - 1 (respectively lim a,& = 0 i n  the 
n+oo n+oo 

case when the distributions q,( ., . ) ( n  2 1 )  and q( ., . ) are restricted); 

1 
4) the rnatriz p(e)-  l f ( 0 )  + T I N  - * stable. 

Then J'?le + J ' P * ~  weakly as n + oo. Here 

{ p ( r )  < y ) ,  y E (- oo, oo) 
m+oo 

Also r is  a stationary solution (being a Gaussian Markov stochastic process) of the stochas- 

t ic differential equation of the following form 

dr = A + -IN rdt + ~ ( e ) ' / ~ d w ~  , I : I  
where 

- ~ j ] i [ ) ~ ( i ,  e) ,  0,  k = 1, 2 ,..., N - 1 ,  A Nj  = aP(e) 
a z j  ' 

cNj(e) = cjN(e) = p(e)-' ] ; [ ( ; j  - e j ] i [ ) q ( i ,  e ) ,  j = 
i €Z f  



PROOF By virtue of the assertion d) of Lemma 2 from 121, the functions f and p are 

continuously differentiable on the set uN-l(8, c) if condition 2) holds, and hence R is 

continuously differentiable on ~ ~ ( 6 ,  c). From condition 4) 

min IIXf(z) + (1 - X)p(e)(e - z)11 =y (z )  > O  , 
E [O, 11 

holds for some <E(O, c) (when z E uN-l(8, 4). Due to results derived in [ la ]  the eigen- 

values of matrix p(8)-' f'(8) are also the eigenvalue of the matrix A. Bearing in mind 

that the remaining eigenvalue of the matrix A is equal to - 1 we see that condition 3) 

provides for the stability of the matrix A. By the Lyapunov theorem [14, p. 210) for any 

number T E (0, w(- A) - 112) one can find a symmetric positive definite N x N matrix 

Q, and a number e, E (0, 4 such that when y E ~ ~ ( 6 ,  c,) n g N  o ne has 

Here w(- A) = min ReXi(- A), Xi(- A) is an eigenvalue of the matrix - A .  Fix 
i=1,2, ..., N 

one such T. Set 

where s >_ 1, z E f.!N-l. Then the corresponding functions f, and f have the following 

form 

f J ( 4  for - 811 < c,, 

fJ(e) +pJ(8)(8 - 2) for 112 -811 , 

f(z) for llz - ell < €1, 

?(.I = p(8)(8 - z) for 112 - ell 2 6, 

Proceeding from the vector of initial combination of balls in the urn pn we construct an 

adaptive process of growth according to random vectors D8(z), s 2 n. Let X,, ,,(p,,) be a 

vector composed of proportions of balls of the first N - 1 colors in the urn at  the time in- 

stant rn > n, and let ~,,,(8,) be a total number of the balls in the urn at  this instant. 

Note that 

{f(z)} for 112 - ell f c,, 
{ f ( ~ ) , ~ ( e ) ( e  - z)} for (lz - 811 = C, 

In view of relations (66) and (67) we obtain for z f 8, g E B ~ ( Z )  



1 
Here G ( z )  = - -<g,(z - 8),  z - 8> and 0, is a matrix of dimension ( N  - 1) x ( N  - 1) 

2 

whose elements are the same as the corresponding elements of Q, X E [0, 1.1. By applying 

Theorem 1 [ : I . ]  with the Lyapunov function G ( z )  we obtain 

with probability 1 as m - oo. Put 

n+s n+s+l 
( t )  t) -(y:$; -8 )  for C i - I  < t < C 1-l , %m, n 

where y:" = (X,, .(Bn), 7m, n(Bn) /m)  and 6 = (8 ,  ~ ( 8 ) )  T. In the light of Theorem 1 

B 
from [2] the stochastic processes r;, converge weakly to r in DN[O, TI as rn - m. Due 

to the continuity of the process z (by the conditions for the continuity of Gaussian 

processes [19, p. 2381) as m - oo 

weakly for any functional p which is measurable on DN[O, TI and continuous on 

cN[O, TI. This follows from the general theorems of weak convergence of measures in 

functional spaces [19, p. 5191. Here 

for any y E (- oo, oo). 

Introduce the events 

A6,n = {IIXn - 811 < 61, B6,, = {IIX, - 811 < 6, 8 2 n ) ,  n 2 1, 6 E (0 ,  c,) 

By hypothesis Xn converges with probability 1. Therefore for any a > 0 we can find 6 and 

n(6)  such that  for n 2 n(6)  



(where the sign A denotes the symmetric difference). Using the Markovian properties of 

the process y,(s 2 I ) ,  the Lebesgue Dominated Convergence theorem and relation (70) we 

have (for n 1 n(8)) 

Similarly, 

where y is an arbitrary point of the continuity of non-decreasing function F,,', lpl is a 

conditional expectation when the initial ball composition is fixed in the urn, and Pp is a 

conditional probability when the ball composition Pn is fixed in the urn in the time in- 

stant n .  Since o is arbitrarily small, the inequalities (71) and (72) yield the required 

result. 

The Theorem is prove. 

Similar reasoning and the appropriate Theorems from [2] lead to  the following 

results. 

THEOREM 8 Let N = 2(P; 2 1, 812 > 1) and let 8 E B ~ [ o ,  11. Assume that the sequence 

{X,) converges (with probability 1) and also that one can jind a real number c > 0 such 

that jot z E (8 - c, 8 + c) n R(0 ,  1): 

1) sup C ] i [2gn(i ,  2) 5 C for some r > 3; 
" l l i E Z ?  

2) there ezist continuous junctions q(i, z ) ( i  E 2:) such that 

b) C ]i[qq(v, z) 5 C for some q > 3, 
i €  z2, 



C) Iq(i, z) - qn(i, z ) (  5 an for all n > 1, i E  z:, 
d) continuous derivatives q'(i, z) of the functions q(i, z )  ezist on the sets 

(8 - C, 8) n R(o, 1) and (8, 8 + C) n R(o, I), 

e) the series q z )  = 1 ,  converge uniformly on both 
I E Z ~  

(8 - C, 8) n R(0, 1) and (8, 8 + C) n R(0, 1). 

Furthermore the following conditions hold 

2 + K  

3) lirn n 2K an = 0, where K = min ( r ,  q) - 1 (respectively, lirn 60, = 0 in the 
n + m  n + m  

case when the distributions qn( ., a )  (n 3 1) and q( ., . ) are restricted); 

4) p(8)- 'max [f(B + o), f'(8 - o)] < - 112. 

Then F ~ Y '  + p ~ * '  weakly as n + m .  Here 

{cp(Z) < y}, y t(- m ,  m )  . 

Also ,? is a stationary solution (being a Markov stochastic process) of a stochastic 

differential equation of the form 

where 

p ( e ) - l f ( e + o )  for 2' > O ,  

for z1 = 0 , 
p(e ) - l f (e -o )  for z1 < O  ; 

I p'(8 + 0) for z1 > 0 , 
A2'(z)= 0 ,  for z1 = 0 , 

p'(e - 0) for z1 < 0 ; 

both A12(z) = 0 and ~ ~ ~ ( 2 )  = - 1 for all z E R ~ .  

Suppose a t  N = 2 

n + a  n + s + l  

vn(t) = J 1n;L:a) ( X n + - )  for C ( i l n i ) - ' s t <  C ( i1ni)- I  , 
i =  n i =  n 

where n _> 2. For any functional cp (measurable on D[o, TI and continuous on C[O, TI) 

denote by F:B'(~) the value Ppl{cp(vn) < y, lim Xm = 81, where y E (- m, m). 
m+m 



THEOREM 9 Let N = 2 and the number of balls added into the urn at each step be con- 

stant and equal to u > 1. Assume /?: > 1, /?: > 1 and 0 € B ~ [ o ,  11. Moreover, suppose that 

the sequence {X,) converges (with probability 1) and that the following conditions are 

satisfied: 

1)  for some r > 0 when z E (0 - r, 0 + r )  n R ( 0 ,  1)  the functions q ( ( i ,  u - i )  T ,  z ) ,  

0 5 i 5 v, can be found for which I q ( ( i ,  v - i) T ,  z )  - q,((i, u - i) T ,  z)l 5 a,, 

n 3 1, uith f ( z )  = X(z - 8); 

2 )  2X = - v, lim & X G a n  = 0 .  
n + w  

Then FZI' - Fp,e weakly as n - m, where F ~ B ~ ( ~ )  = Pa,{,,, lim X ,  = 

B ) P { p ( v )  < y ) ,  y E (- co, co). Also v is a stationary solution (being the Gaussian Mar- 

kov stochastic process) of the stochastic diferential equation of the form 

def 
~ ( 0 )  = C ( i  - ~ e ) ~ q ( ( i ,  v - i ) T ,  e)  - . 

i = 0 

The results of Theorems 7-9 have a conceptual meaning in the case when the singleton 

component 0 is attainable. The sufficient conditions that afford the aforesaid are stated in 

Theorems 1 and 2. Applying Theorems 1, 2, 4-9, one can derive an expression, accurate to 

higher-order small values as n - co, for the distribution function of X ,  in the case when 

all connected components of the set B f ( T N - ' )  are singleton components and each of 

them is stable, unstable, or a saddle one. However, we shall not dwell on this result in 

more detail here, yet shall offer a similar assertion for the stochastic optimization algo- 

rithms of the quasi-gradient type in the section below. 

5. ANALYSIS OF ASYMPTOTIC PROPERTIES OF STOCHASTIC 

QUASI-GRADIENT ALGORITHMS IN MULTIEXTREMUM 

PROBLEMS 

Consider the Fabian modification [5] of the Kiefer-Wolfowitz procedure (61 as an ex- 

ample of these algorithms. The set of values assumed by sequential approximations is 

therefore discrete, as with the adaptive processes of growth. 

Since we do not seek maximal generality, suppose there are random variables 

( , ( z )  = f ( z )  + e,. Where f is a function continuously differentiable on the entire real line 

and e,(s > 1)  are independent observations of the random variable e having a zero mean. 



We need to estimate the extremum points of the function f on the basis of the random 

variables <,(z)(s 2 1).  Put 

z , + ~  = Z ,  - p,sgn G,(z,), s 2 1, zl = const , (73) 

- 
where G,(z) = [ < 2 , - 1 ( ~  + a,) - c2,(z - d,)]a, l ,  {BE) ,  { a , )  are sequences of positive 

numbers. Assume that  the distribution function F of the random value e is continuous. 

Then 

where G is a distribution function of two independent random values with the distribu- 

tion functions F,  i.e. 

'gn G 8 ( z )  = ' 

Based on relations (73) and (74) )  the variable z,(s 2 1)  may assume a finite number of 

- 1 with probability G ( f ( z  - a,) - 

- f ( z  + a,)) , 
1 with probability 1 - G ( f ( z  - a,) - 

- f ( z  + a,)) 7 

8 - 1 
values: zl + C (f / I i ) .  Because of this, a line of reasoning similar to  that  in Theorem 1 

i= 1 

yields the following result. 

THEOREM 10 Assume that the derivative f of the function f ezists and is continuous 

over the entire R~ and that f ( z )  = 0 for all z E S ,  where S = [a ,  b ] ,  a 5 b. Suppose the 

following conditions hold: 

1) f ( z )  E (0 ,  1 )  for z E (- W ,  4 ;  

2) the derivative F' ezists and is continuous uniformly on (- cm, cm); 

3) for some c > 0 ,  Y E  (0 ,  11, and real number C > 0 the derivative f satisfies I f ' (z )  - 

f ( y ) (  I Clz  - ylV for all z ,  y E [a - c, b + €1; 

4 )  f ( z )  < 0 for z E [a - E ,  a )  and f ( z )  > 0 for z E ( b ,  b + €1 (with the same E as in 

3)); 

5 )  C /3,a8 = cm, C 862 < cm, lim a, = 0 .  
r > l  a > 1 8 + 0 0  

Then P{ lim ~ ~ ( z , ,  S )  = O/z l )  > 0 for any z l  E (- cm, cm). 
8 + 0 0  



Theorem 10 differs from the traditional assertions concerning the convergence of 

quasi-gradient algorithms [4] by its local nature. In the non-convex multiextremum prob- 

lems it gives the sufficient conditions of convergence (with positive probability) from any 

initial approximation to each of the isolated connected components of the set of local 

minima. The analog of condition 4 )  of Theorem 1 is condition 1) in Theorem 10. It en- 

sures that z,(s > 1) assumes each of the possible values with positive probability. From 

the standpoint of the ordinary Kiefer-Wolfowitz procedure, the analog t o  this condition 

will be the existence (almost everywhere) of the positive density of distribution e with 

respect to Lebesgue measure in R'. 

The most comprehensive description of asymptotic properties of the Fabian 

modification of the Kiefer-Wolfowitz algorithm in the multiextremum problems is given 

in the Theorem below. 

THEOREM 11 Suppose that f' ezists and satisfies a Lipschitt condition on R'. Assume 

that the set of zero of f consists of a finite number of points B;, i = 1, 2,. . ., N ,  qj, 

j = 1, 2,. . ., K, and that f is twice continuously diferentiable in  the neighborhood of each 

of the points 8; with f"(Bi) > 0 .  Furthermore, suppose f ( z ) ( z  - q,) 5 0 i n  the neighbor- 

hood of each of the points q,, and that n ~ ( 0 ,  11 ezists such that J f ( z ) J  < Clz  - qjlK. Let 

F be diferentiable on the entire real line with uniformly continuous derivative. 

Then, i f  P, = bs-2/3, as = a ~ - l / ~ ,  b > 0,  a > 0 and 

4ab G'(0)  min f"(0;) > 113, the distribution function P{zs  < y / z l )  equals 
1 = 1 , 2 ,  ..., N 

with an accuracy of the order of o ( r ( s ,  y ) )  as s + w. Here 

PROOF The convergence of the sequence {z,) with probability 1 can be determined 

through a slight modification (taking into account the non-stationarity of the value 

E<,(z))  of the proof given in [20]. Then we use the same reasoning as in the proof of 

Theorem 7, along with the application of Lemma 3, the results on asymptotic normality 



of the stochastic approximation procedures [21], and the full probability formula. 

The theorem is prove. 

6. CONCLUSION 

The attainable and unattainable terminal set components for the adaptive processes 

of growth with general increments are described. The sufficient conditions are derived for 

the attainability and unattainability. The rate of convergence of the adaptive processes of 

growth to  the singleton stable components of the terminal set is characterized in terms of 

the limit theorems. We have also demonstrated a relationship between the asymptotic 

theory of adaptive processes of growth and the study of the limiting behavior of iterations 

of the stochastic optimization algorithms of the quasigradient type in the non-convex 

multiextremum problems. 
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