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FOREWORD 

In order to develop efficient solution techniques for problems involving decision mak- 
ing under uncertainty, it is important to understand the connections between the various 
models that have been suggested in the literature and to identify the features of various 
models that engender the computational stumbling blocks. The authors undertake a sys- 
tematic study of stochastic dynamic optimization models. 
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STOCHASTIC DYNAMIC OPTIMIZATION 
APPROACHES AND COMPUTATION ' 

Pravin Varaiya and Roger J-B Wets 
University of California, Berkeley-Davis 

The description of stochastic dynamical optimization models that follows 
is intended to exhibit some of the connections between various formulations 
that have appeared in the literature, and indicate some of the difficulties 
that must be overcome when trying to adapt solution methods that have 
been successfully applied to one class of problems to an apparently related 
but different class of problems. The emphasis will be on solvable models. 

We begin with the least dynamical versions of stochastic optimization 
models, one- and two-stage models then consider discrete time models, and 
conclude with continuous time models. 

1 ONE-STAGE MODELS 

We consider the following simple one-stage stochastic optimization problem: 

minimize E{ho(z, t ) }  
subject to h;(z) < 0, i = 1,.  . . , s ,  

h;(z)=O, i = s + l ,  . . . ,  m, 
Z E Z C R "  

where [  is a random vector with support E c RN and distribution P. We 
are looking for a vector z* that is feasible, i.e., belongs to 

and minimizes E{ho(-, t ) )  on S. Of course, this is just a special instance of 
a nonlinear programming problem. Indeed, after integration, the objective 
can be rewritten as 

minimize Eho(z), 

where for each z, 

- 
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Such a function is called an exyecta,f ion fuizctiorral; the study of its properties 
is a major theme of the theory of stochastic pl-ogramming. However, even 
this "simple" stochastic optimization problem cannot. be solved by standard 
nonlinear optinlization algorithms. The problem is kv i  th the evaluation of 
Eho or its (sub)gradient. There are a few cases that can be managed: 

1. when the function ho(z, -) is separable so tha.t 

(with Pj the marginal distribution function), 

2. when Z = {tl, . . . , tL) is finite and L is not too large, then 

(where pe = P[[ = te]), 
3. if ho is convex, sufficiently smooth, easy enough to evaluate and P is a 

multidimensional normal, Gamma or Dirichlet distribution function. 

The first case simply reflects the fact that univariate calculus, as well as 
one-dimensional numerical integration routines, are well developed. That is 
definitely not the case for multivariate calculus and multidimensional numer- 
ical integration. In the second case, the evaluation of Eho, or its gradient, 
a t  a point z is reduced to evaluating ho(z, t'), or its gradient V, fo(z, te), for 
each te in Z. And, in the third case, there are specific subroutines (developed 
by Hungarian computer scientists for stochastic programming problems) that 
combine Monte-Carlo techniques with some of the specific properties of those 
distributions. Because sampling is involved, the evaluation of ho(z, t) at  any 
point t in E should be "cheapn enough; unfortunately that is seldom the case 
in the most important applications. 

Because of this state of affairs, the research in stochastic programming 
has been concerned with either identifying classes of models that rit in those 
"solvable" categories, designing reliable and efficient solutions procedures for 
such problems, or developing theories and procedures that would allouls us 



to solve any problem by solving approxiillatiilg problems that belongs to the 
"solvable" categories. 

One version of the one-stage model that has received limited attention in 
the literature is the case when the probability distribution o f t  depends on z. 
In terms of the essential objective, the problem would take on the following 
form: 

find z* that minimizes h ( z , t ) dP ( t ; z ) .  J 
Again, this is just  a nonlinear optimization problem and an evaluation of the 
objective at  any point z is not more complicated than it was before. What 
has changed are the properties of the function: 

For example, when P does not depend on z, the convexity of E h  follows 
immediately from the convexity of h ( . , t )  for all t .  That  is no longer the case 
when P depends on z. Similarly, the (sub)gradients of E h  can no longer be 
obtained by the (relatively) simple formula: 

The stochastic approximation-like techniques, e.g., stochastic quasi-gradient 
methods, can no longer be used to find (almost surely) a solution, at  least 
not in the form in which these techniques have been used up to now. In fact, 
in this situation, the properties of E h  ma.y very well have nothing in common 
with those of h(., t ) .  

The challenge would not be so much to design general solution proce- 
dures for this (richer, but ungainly) class of problems, but to identify those 
that possess properties that would still allow us to use Uclassicaln solution 
procedures. Clearly, it all has to do with the type of dependence of P on z. 
For example, if P is defined on R ~ ,  and P ( t ;  z)  = Q ( t  + Hz) ,  where Q is a 
probability distribution function and H is a (given) matrix of the appropri- 
ate size, the problem takes on the following form (after a simple change of 
variables): 

find z* that minimizes h(z, ( - H z )  dQ((). J 
The properties of E h  will thus depend on the properties of h(z, t) viewed as 
a function of (z, t) jointly. 



2 TWO-STAGE MODELS 

In addition to a (first stage) decision zl, this model allows for a second 
stage or recourse decision z2 that is taken after full or partial information is 
obtained about the values of the random components of the problem. The 
problem can be formulated as follows: 

minimize flo(zl) + E{f2o(z2((), 0 )  
subject to  f l i (z l)  1 0, for i = 1, ..., ml ,  

f 2 i ( ~ 1 , 2 2 ( ( ) , ( ) 5 0 a . ~ . ,  f o r i = l ,  ..., m2, 

where the function 2 2  can depend (measurably) on ( in a way that is con- 
sistent with the information that will be available in the second stage, i.e., 
when taking the recourse decision. A much more detailed discussion of the 
the modeling of the information process will follow; for the time being let us 
assume that full information is available before choosing 22. 

If we define 

and 
f,(z) := f l i (z)  for i = 1,. . . , nzl, 

we see that,  a t  least from a theoretical viewpoint, the two-sta.ge model can 
be analyzed in the framework provided by the one-stage model as long as 
we allow for a sufficiently general class of functions fo,  viz., infinite-valued 
(to account for the cases when for given z1 and some ( there is no z2 that 
satisfies the second-stage constraints) and nondifferentiable (the infimal value 
of a mathematical program is seldom a differentiable function). Because, it 
covers a large number of applications, and because it is in some sense the 
first hurdle that must be mastered when considering dynamical optimization 
models, much of the algorithmic research in stochastic programming has been 
oriented a t  solving two-stage (recourse) models. 

At first sight, the two-stage model may appear very restricted in its dy- 
namical aspects. However, it is important to  keep in mind that "stages" do 
not necessarily refer to time units. TLey correspond to stages in the deci- 
sion process. The variable 2, refers to all the decisions that must be taken 
before there will be any information about the values to be assigned to the 



random elements of the problem. The variables z2 model all the decisions 
that will be made after the available information about these values will be 
collected. For example, zl could represent a sequence of decisions (control 
actions) to be made over a given time horizon, say 211, ..-, zit, ..., ZIT, and 
2 2  = (zZ1, ..., z ~ t ,  ..., z2T), representing a similar sequence of decisions used to 
correct the basic trend set by the zl-variables. Each one of the zzt refers 
to a decision to be made at time t in response to the situation that would 
result from choosing zl and obtaining information about the random events 
that can be observed up to time t. Such models could be called dynamical 
two-stage models. As a special case, we could have zl = 211, ..., zit, and 
2 2  = z ~ , ~ + l ,  ..., Z ~ T ,  which would correspond to a mid-course correction. And, 
of course, there is no need to restrict oneself to discrete time. 

Let us now turn to the case when the recourse decision must be made 
under less than full information. Before we start, let us stress the fact that 
although one may not observe (, there are many cases when the observations 
made allow us to recover enough information about the values of ( that one 
can still refer to it as full information. This has sometimes been the source of 
some confusion between the "stochastic programming" formulation and the 
"stochastic optimal control" formulation. A typical, and simple, example 
could go as follows: instead of (, we observe the "state" xl  of the system, 
with the state defined by a relation of the form: 

In such cases, instead of viewing the recourse decision as a function of (, we 
could equally well think of it as a function of the "state" of the system. 

If only partial information will be available, let G be the (sub)field of 
events that could be observed before taking the recourse decision; let d 
be the field of all events generated by t. In these terms, partial information 
would mean that G is a proper subcollection of A. Since the recourse decision 
z2 can only depend on the information that will become available, it must 
be 6-adapted or, equivalently G-measurable. Moreover, in evaluating the 
performance of a particular decision, only those events that lie in 6 can be 
taken into account, thus rather than using fia(z2,t) as the objective function 
of the recourse problem, we would replace it by 



Also, feasibility of a recourse function z2 can only be checked up to events 
that lie in G. Thus, a. feasible first stage decision is one that satisfies the first 
stage constraiilts f l i (z l)  5 0, i = 1, .., ml and to which one can associate a 
G-measurable function z2 such that almost surely satisfies: 

This latter condition, may or may not impose restrictions on the choice of 
z1 beyond those already imposed by the first stage constraints. If it does, 
one refers to them as induced constraints. Otherwise, the problem is said 
to have relatively complete recourse. This can also be expressed in terms 
of a certain property (G-nonanticipativity) of the multifunction determined 
by the constraints; we shall return to this in the context of the multistage 
models. 

Although the observations may very well depend on zl, so far, we have 
only dealt with the case when the information available about the values 
taken on by the random quantities of the problem do not depend on the first 
stage decision. The solution of the two-stage model, defined at  the beginning 
of this section, can be found by first finding z; the optimal solution of the 
(finite dimensional) nonlinear program: 

minimize fO(zl) subject to f i(zl) < 0, i = 1, .  . . , ml,  

with the functions fi, i = 0,. . . , m.l, as defined above, and then solving for 
each [ (in the support of the probability measure), the deterministic nonlinear 
program: 

minimize E{fZO(z2, - )  I GI([)  subject to fii(z;, z2,<)  I. 0, i = 1, .  . . , m2. 

As long as as there is a consistent rule for choosing the optimal solution 
when there are multiple (optimal) solutions, this will define an optimal G- 
measurable function z;. In most applications, only the here-and-now deci- 
sion, i.e., the first stage decision, is of interest, and then there is no need to 
explicitly calculate the optimal z2 function. 

In general, all of this is no longer possible if the probability distribu- 
tion of the random quantities depends on the first stage decision, or i f  the 
information (derived from the observations) depends on zl. 



To indicate that the (sub)field of events depends on 21, let us denote it 
by G(zl). The two-stage problem is then to find a pair (z l ,  z2) in 

that satisfies the constraints and minimize the objective function as defined 
above. The space ZG is no longer a linear space (as was the case when the field 
of information did not depend on zl), in general it is neither convex (not even 
connected), nor closed. The nonlinearities introduced by the dependence of 
the information field on zl have changed the essence of the problem, and 
usually, it is a much more difficult problem to solve. The solution cannot' 
be found, as before, by solving (in sequence) finite dimensional optimization 
problems. The optimal first stage decision cannot be found without finding 
an explicit description of the associate (optimal) second-stage decision func- 
tion. There are examples in the literature (not exactly formulated in these 
terms), beginning with one due to Witsenhausen, that illustrate all of these 
difficulties. The fact that the problem becomes so complicated may suggest 
that there is a need to consider more carefully its formulation. 

We shall return to this in the context of stochastic control models. 
For purposes of illustration, let us consider a simple example: let 

and for i = 1,. . . , tn2, 

where Ti, Wi are (fixed) vectors, and hi is a random variable. Assuming that 
we have observed h, to find the optimal recourse decision, the problem that 
needs to be solved is a linear program. And, from parametric programming, 
we know that there is a piecewise linear function of h - Tzl that yields the 
optimal recourse decision. If we do not observe h, or equivalently the "state" 
h-Tzl, but instead information is some (nonlinear) function of h-Tzl, then, 
in general, we loose the piecewise linearity of the optimal recourse decision 
with respect to the state. In order to be able to deal with such problems, we 
may very well want to restrict the class of acceptable second-stage decision 
functions to those that that depend on a finite number of parameters. 

There is also the question of the dependence of the probability measure 
on the first-stage decision. We already discussed this in the framework of 



the one-stage model. The situation is not any different here. There are 110 

new conceptual 01. theoretical difficulties, beyond those that we mentioned 
in Section 1, except that we may have to deal with complications generated 
by the dependencies of P on zl and by the restriction of zz to the class of 
functions that are G(r l )  measurable. 

MULTISTAGE MODELS 

Conceptually, multistage models are straightforward extensions of two-stage 
models. There are a few technical details that need to be taken care off, but 
most assertions one can make about such models follow from those that have 
been established for two-stage models. However, it does pay to analyze in 
more detail the dynamical aspects of the problem. The real challenge comes 
from having to deal with what has been called "the curse of dimensionality" 
in the design of solution procedures. We shall begin with a rather general 
formulation whose main virtue is that it is simple from a notational and 
conceptual vieurpoint. As in the previous section, we start with the case 
when the information (inferred from the observations) and the distribution 
of the random quantities do not depend on past decisions. Once more, let us 
stress the fact that we do not exclude the possibility of having the observation 
values depend on earlier decisions (controls). 

Although stages of a multistage stochastic optimization problem do not 
necessarily correspond to time periods, let us use t = (1,.  . . , T) to  denote 
the stage-index and refer to it, by abuse of language, as "time". Let [, denote 
the random quantities that are observed at  stage t before we have to make 
our decision, i.e., the t-th stage decision function z, can depend on all past 
observations [' := {[,, s = 1,. . . , t). 

With T = 2 and a degenerate random vector (i.e., whose distribution 
is concentrated a t  one point), we recover the two-stage model; the variables 
denoted [ then, are now called t2. We are now allowing for the possibility 
that the problem considered in Section 2, was actually one of a possible 
collection of problems obtained after observing tl. This slight generalization 
of the model comes from a shift in the type of questions that we like to 
see answered. In the two-stage model, the emphasis was on calculating an 
optimal first-stage decision, and this is still the case for many multistage 
problems, but for another wide range of models the accent will be on finding 



an optimal decision (control) rule that could be applied at all stages. 
The random quantities of the problem will again be denoted by [ ~vitll 

[ = ( t l ,  . . . , tT). The dependence of the (recourse) decision on past observa- 
tions can be expressed in the followillg terms: let (Z, A, P) be the underlying 
probability space and let Bt be the (a-)field of events generated by the obser- 
vations up to time t ;  this corresponds to the a-field generated by the random 
vector ('. The dependence of zt on the past observation can thus be expressed 
in terms of the measurabilit,~ of zt with respect to Bt, in other words, zt must 
be &-adaptable. 

The constraints that are explicitly included in the formulation of the 
problem, will be represented by a multifunction: 

r ( t ,  () := {zt = (zl ,  . . . , zt) that satisfy the t-th stage constraints). 

- 
(We use, somewhat indiscriminately, zt to designate a function from into 
the decision space, say Rnt,  and a point in its range.) 

Thus the multistage recourse problem, is to find 

for t = 1,. . . , T, zt Bt - measurable, 
for t = 1,. . . , T, zt E r ( t ,  [), , 
that minimizes E{ho((zl((), . . . , zT([)), ()I.  

Most of the theory developed for one- and two-sta,ge models can be applied 
to the multistage problem to obtain the basic properties of the determinis- 
tic equivalent problem, a number of useful characterizations of the optimal 
solutions (linearity, piecewise linearity, etc.), as well as necessary and suffi- 
cient optimality conditions. However, as already mentioned earlier, one is 
also interested in the dynamical properties of the solution, in particular in 
the role played by the dynamical restrictions on the zt that comes from the 
Bt-measurability condition. 

Let Z be the space of all (A-measurable) functions z := (zl , .  . . , zT) de- 
fined on Z such that for all t ,  zt is &-measurable; such functions will be 
called nonanticipative. It is a linear subspace of the space of A-measurable 
functions. From this simple observation follows an important optimality cri- 
terion: assuming that the problem at  hand satisfies a Ustandard" conctraint 
qualification, and the constraint-multifunction is nonanticipative, a neces- 
sary condition for optimality of z*, that is also sufficient in the convex case, 



- 
is that there exist nlultipliers p = ( p , ,  . . . ,pT)  defined on J, orthogonal to 2, 
i.e., such that 

E{pt(-)IBt} = 0 a.s., for t = 1, .  . . , T ,  

and for almost all J: 

z*(J) E argmin{h,-,(z, J )  - p(J) z(zt  E I?(t , .) a.s., for t = 1. . . . , T} 

Ihowledge of these multipliers would reduce the problem to one of point- 
wise minimization. One can interpret these multipliers as a price system 
associated with the nonanticipativity restrictions; a beautiful economic inter- 
pretation of these multipliers in terms of insurance prices has been sketched 
out by I. Evstigneev from C.E.M.I.(Moscow ). 

To state the optimality condition, we mentioned the concept of nonantic- 
ipativity of the constraint multifunction. By this one means the following: at 
any time time t there are no constraints induced on zt beyond those already 
imposed by I?,, s = 1,. . . , t; i.e., there are no constraiilts induced by potential 
future infeasibilities. This means: if zt satisfies all the constraints up to time 
t ,  there exist functions z t + ~ ,  . . . , z ~ ,  such that the resulting z is feasible for 
the multistage recourse problem. We referred to this, in Section 2, a.s rela- 
tively complete recourse. By deriving the induced constraints and including 
them explicitly in the formulation of the problem, any multistage recourse 
problem can be reduced to one with relatively complete recourse. However, 
deriving the induced constraint is not necessarily an easy task, and thus 
the general optimality theory must (and does) make provisions for the case 
when I? is not necessarily nonanticipative, and the solution procedures must 
(and do) cope with the presence of these induced constraints (by introducing 
feasibility cuts). 

In the choice of a solution technique, we have a t  our disposal all the ex- 
perience gained from the study of one- and two-stage models, but all the 
difficulties that we have encountered so far are compounded by the fact that 
the number of possible realizations is exponentially increasing with the num- 
ber of stages, the so-called "curse of dimensionality". The only possible 
remedy is decomposition. Decomposition not only with respect to possible 
realizations, but also, whenever possible, with respect to time (i.e., stages). 

We have seen that introducing the multipliers associated with the nonan- 
ticipativity constraints, suggests a potential decomposition with respect to 
the sample (realization) space. This and the notion of an average problem 



l~ave lead to the aggregation principle whicl~ allows us to solve any multistage 
recourse problem, by solving (repeatedly) deterministic versions of the origi- 
nal problem for particular realizations of 6, sometimes called scenarios. The 
basic idea is captured in the hedging algorithm. 

3.1 Partial Information, etc. 

If instead of observing, or being able to infer, the values assumed by ti, the 
information to which we have access determines a field Gi, a strict subset of a -  
field Bt of possible events, the (recourse) decision must now be Gi-measurable. 
Let Z p  be the subspace of Z consisting of all A-measurable functions z so 
that for all t ,  zi is Gt-measurable. This is a linear subspace of Z. The same 
arguments, and the same conditions as before, except for Bt-nonanticipativity 
of the constraint-multifunction replaced by G,-nonanticipativity, will yield the 
following optimality criterion: if z* solves the multistage recourse problem, 
there exist multipliers q = (ql,. . . , qT) defined on E such that 

E{qt(.) (Gt )  = 0 a.s., for t  = 1 ,..., T, 

and for almost all [: 

z* (I) E argmin{ho(z, [) - q([) - z (zi E I'(t , [), for t = 1. . . . , T )  . 

These conditions are of the same nature as those we already know for the 
full information case, the only differences are the stronger constraint qual- 
ification (nonanticipativity of I ' ( t , - ) )  with respect to St, and the fact that 
now conditional expectation of qt is taken with respect to a coarser a-field. 
Again there is a rich economic interpretation that can be attached to these 
multipliers. If p corresponds to the multipliers associated with full informa- 
tion, then q - p yields a price system that could be used to determine if it 
would be desirable or not, to seek full information; one could think of these 
multipliers as an information price-system. 

As for the two-stage model, it is not always possible to express the in- 
formation collected (from observations) independently of past decisions. We 
need to consider also the wse when the information fields Gt depend on 
z i - ~  - - (zl, . . . , zT); we then write Gt(zt-I). And all the difficulties men- 
tioned in connections with the two-stage model are still all present, except 



more so. The mathematical coml>lesity generated by asking even the simplest 
of questions about such models is mind-boggling. 

Because the search for an optimal solution will necessarily require, at  each 
iteration a total description of [ H zt(() for all t, the challenge created by 
this formulation of the multistage recourse inode1 may be, for ever, beyond 
our computational capabilities, unless one replaces the decision space and 
the sample space by a discrete set. In this discrete case, finding the optimal 
solution becomes a questioil of enumerating all p~ssibilit~ies, and this can 
be organized via dynamic programming techniques. And even that is only 
possible if the number of decisions in each time step (stage) is rather limited. 
One other approach is to replace the search for an optimal z* with the search 
for the best z in a given class. We return to this in the context of the the 
stochastic optimal control model. 

Finally, we could also have to deal with the dependency of the probability 
distribution on past decisions zt-'. The added complexity is a function of 
the form of the relationship between P and z and the properties of ho and 
I?, when viewed as functions of (z,[), just like for the one-stage model. 

3.2 Stochastic Optimal Control Models 

As we shall see, the formulation of the discrete-time stochastic optimal con- 
trol inodel is very similar in nature to tha.t of the multistage recourse models. 
However, the relationship between these models has not always been very well 
understood. The basic reason is motivation: the concept of solution is some- 
what different in both models. The multistage recourse model is, in many 
cases, only concerned with zl, the other decisions are of little interest. The 
stages 2 to T are only included in the problem to help evaluate the costs 

. that may result from a particular choice of zl. To the contrary, most of the 
motivation for the research on stochastic control problems comes from a class 
of applications where it is the decision rule (to be used in all time periods) 
that is of interest, i.e., the rule that will allow us to pass from observations 
to decisions. Hence, the insistence of finding a rule that depends on the ob- 
served (or estimated) state and not on the information we may infer about 
the underlying stochastic phenomena. This is only possible if there is a cer- 
tain similarity between the stages. From a theoretical viewpoint, neither the 
multistage recourse model nor the stochastic optimal control model is a spe- 
cial case of the other, but there are fundamental differences when it comes to 



what practitioners will identify as "solvable" problems. Algorithmic research 
on multistage recourse models is oriented towards mathematical program- 
ming techniques, whereas the solution technique favored in the stochastic 
control literature is dynamic programming. This places natural limitations 
on the type of problems that can be approa.ched in either way. 

We consider the following formulation of a discrete time, finite horizon, 
stochastic optimal control problem: 

with initial state xa about which we may only have probabilistic information. 
The variables xt denotes the state of the system, ut is the control, and C,' 
models the system's disturbances (with given probability distribution). The 
observations yt = (yl, . . . y,) that are available to the controller at time t are 
related to the state of the system by: 

where C: are disturbances that affect the observations (again with known 
probability distribution). The choice of a control 1a.w is subject to system 
constraints (state-space constraints and control constraints): 

and information constraints: 

for t = 1, . . . T, ut is Yt - measurable, 

where yt is the a-field generated by the observations, i.e., yt = a{y, I s < t ) . 
The choice of the control ut  must be a (measurable) function of the ob- 

servations, let us denote it gt ,  

"t := 9t(yt) = gt(y1, - .  , yt) E Ut. 

The vector-valued function 

is called the feedback law. Given g,  we can define stochastic processes {x: ) , {yf ) , {uy ) 
with 

x: = ft(x:-l, u:, C'), 



Figure 1: A controlled stochastic sj-stem 

In the ensuing development, we usually drop the reference to g when referring 
to u, x or y but it is implicitly always there. Figure 1 gives a block diagram 
representation of the dynamics of the system. 

The objective is to choose a feedback control law g' that minimizes costs 
(or maximize performance): 

The function plays the role of a terminal condition. 
The relation between this model and the multistage recourse model is 

immediate. Indeed, simply set zt := (xt,ut), (t := (C:,C:), (0 := XO, ( := 
( (o, . . - , (T) ,  Zt = &  X Ut, 

and 



The information constraint, which in the case of the stochastic optimal con- 
trol model is explicitly included in the model in terms of a feedback law, 
would in the case of the multistage recourse model take the form: zt must 
be Lit(zt)-measurable, where Lit(rt) := y t .  

There are thus no significant differences between these two models, at  
least as far as formulation goes. Certainly, any general theoretical result 
known about any one of these n~odels, has a counterpart for the other one. 
To cite just a couple of examples, the optimality conditions mentioned ear- 
lier can easily be reformulated so that they apply to the stochastic control 
model. Similarly, qualitative results obtained about the value function of 
stochastic control problems could be applied to the corresponding class of 
multistage recourse problems. There are a few results that admit easy trans- 
lation, whereas others are not so readily adaptable. There are two major 
features of stochastic control models that are not explicitly included in the 
recourse models. Ho\vever, the differences are more a matter of perception 
(and formulation) than factual. First, the stochastic control model includes 
an explicit expression for the observation process, and second we are to use 
a feedback law based directly on the actual observations (rather than on the 
information gathered about "nature" : t). 

As for multistage recourse problems, the major classifications for sto- 
chastic control models is based on the type of feedback that will be called 
for, orland the level of information that will be available to the controller. 

OPEN LOOP : No information is collected that would enable us to ad- 
just earlier decisions. This corresponds to having yt E ht = 0 for 
t = 1, . . . , T. The selection of ut ,  can as well be made from the very 
outset. We could extend this model to include those cases that allow 
for n lo~a l "  adjustments, i.e., adjustment that are made a t  time t that 
do not affect the selected trajectory but try to remedy local deviations 
from a desired state. This latter case is then of the same nature as 
the dynarnical two-stage model mentioned in Section 2. Such models 
are sometimes used with a rolling horizon, however the use of such an 
approach cannot always be recommended, since it arbitrarily ignores 
feedback (or recourse) possibilities that are inherent to all stochastic 
optimization problems. One further restriction would be to insist on 
myopic controls. 

COMPLETE INFORMATION : Full information is available about the 



state, i.e. 
2 

?Ji = x-.t(.~i-I, c 1  = 21-1; 

we refer to this case as full state-iizfoi-mation. This should not be 
confused with what we have called full information in the framework 
of the multistage recourse model. In fact, full state-information, ma.y 
or may not correspond to the full information case. A nice ca.se when 
one can identify full state-information with full information, is when 
(cl and c2 are strongly correlated): 

If in addition, the random variables Ct are time-independent, then dy- 
namic programming techniques can be used as a solution technique. 
This is the first time that we encounter in our discussion, this indepen- 
dence condition. This is not a modeling choice, but one dictated by the 
solution technique; inore about this later. 

PARTIAL INFORMATION : This is the general case. Let us stress 
once more that this does not correspond to what we have been calling 
partial information in the context of the multistage recourse model; 
to make sure that this distinction is not lost, we shall refer to this 
case as partial state-information. Here again is it is possible to appeal 
to dynamic programming techniques for finding the optimal feedback 
law. Instead of using the state of the system we rely on on an extended 
notion of state, viz., conditional distributions (on the state-space) will 
play the role of the state. These conditional distributions are sometimes 
called hyperstates or information states. 

FEEDFORWARD : In this case the information available at  time t ,  is 
either C,' or a function of cj, in other words the information is a random 
variable strongly correlated with cj .  If we take c: to be such a variable, 
then in terms of the stochastic optimal control problem, we could think 
of it as the case when 

Y t  = c;. 

We receive direct informati011 about the underlying stochastic phenom- 
ena. Without any need to adjust the information collected, we are in 



the framework of the multistage recourse model with full or partial 
information. 

RESTRICTED FEEDBACK : Rather than allowing for g to be just any 
measurable function of the observations, we may want to restrict the 
class of admissible feedback laws to a particular (parametrized) class of 
functions. We already discussed this option in the context of the mul- 
tistage recourse model. From a computational view point, this looks 
very attractive. But, before we really can use this approach, there are 
many unresolved theoretical questions that deserve serious investiga- 
tion. hlIore precisely, we need to characterize, as well as possible, the 
properties of optimal feedback and obtain error bounds when restric- 
tions are placed on the class of admissible controls. Note that there are 
some models for which the optimal law is known and can be charac- 
terized in terms of a finite number of parameters, e.g., (s, S)-policies, 
impulse controls, certain bang-bang situations, etc.. 

The stochastic optimal control model may also include a filtering equa- 
tion, i.e. a process used to analyze the observations in order to obtain an 
estimate of the state of the system. Instead of using the data that comes 
from the observations, we are to use the filtered data. If the filter is known a 
pn'ori, then our formulation already allows for such a possibility, we simply 
define kt appropriately and take yt to be the filtered data. If, we are allowed 
to choose both an optimal control and an optimal filter, the problem is not 
so simple. In a few cases, one can appeal to the Separation Lemma which 
alloivs us to first calculate an optimal filter, and use it (redefining kt) to  cal- 
culate the optimal feedback law. In general, the situation is unfortunately 
much more complex. Although this is an important issue, we shall not be 
concerned with it here; we implicitly assume that we are using raw data (ob- 
servations) or if it is filtered data (state estimates) the function kt has been 
defined so as to include the filtering process. 

There is a substantial literature devoted to the characterization of opti- 
mality centered around the Hamilton-Jacobi-Bellman equation (discrete or 
continuous time versions). The suggested solution methods for stochastic 
control problems are mostly based on solving that equation. They range 
from discretization (of state-space, controls and possible realizations) to 
Monte-Carlo simulations passing through finite element approximations of 
the Hamilton-Jacobi-Bellman equation. We shall only discuss the "discrete" 



case, and this in the settiilg of full or partial state-information; for sim- 
plicity's sake, we also assunle that there no state-space constraints. i.e.. no 
constraints of the type x t  E Xi. 

This approach relies on a crucial assumption that has not been needed 
up to now: 

Assunlption: The random variables xO, i:, i t2,.  . . , (+, (+ are mutually 
independent. 
This has the follonring implication: for all g, 

Pg{xt E D I xt-1,. . - ,xo,ut , .  . . , % I ,  

= P{zt E D 1 xt-1, u t )  independent of g ,  

= p{i: E Q ( x ~ - ~ , ~ ~ ) }  

where 
Q(xt-1, ut) := {i I ft(xt-1, ~ t r  0 E D I .  

We can reformulate the problem in terms of the following equivalent hlarkov 
Decision Problem: given the "controlled transition probabilities" 

and the observation channel transition probabilities, 

find g = (gl,  . . . ,gT), that  minimizes 

where 
G(x,  U) := /C~(~ ,U,C: )P(~C: ) .  

3.2.1 Full state-information 

Now, i f  for all t = 1,.  . . , T, full state-information is available, i.e., yt x,, 
we define recursively the real-valued functions: 



with & - 0.  Then 

1 

\/I(x) = min{Eg ~ t s ( x S . u s )  I xt = x) .  
9 s= t 

then 
ut = g ; ( ~ ~ - ~ ) ,  for t = 1,. . . ,T.  

is the optimal feedback law. In particular, note that ut is Markovian, in that 
it only depends on = y t  and not on earlier observations Y , - ~ , .  . . , yl. 

3.2.2 Par t ia l  s tate- informat ion 

When only pa.rtia1 information is available, i.e., yt # st-1, let 

denote the information available when choosing ut. Fix the feedback law g, 
and define 

x f (dx  I vt) := PIX: E d x  I vt). 

A fact which is of crucial importance to the development that follows is that 
x: does not depend on g. It can be shown that there exists an operator St, 
sometimes called a 'filter', such that for t = 1,. . . , T ,  

and 
x l ( dx ) v1 )  = P{xo E d x I y l )  



Let II be the space of all probability distributions on the state-space. For 
example, if xi E (1, .  . . , I}, then 

In a manner similar to that used in  the full state-informa.tion case, we define 
real-valued functions, but on II, the hyperstate-spa.ce:. 

:= E{@(Z) I nT(- I vT) = n}, 

K(n)  = min E{Zt(x, u) + V + ~ ( s t [ ~ , ~ t + l ~ ~ ] )  I ~ t ( .  I vt) = 
uEUt 

Then, for all g,  

and 

ut = s;(.t(. I vt>> 

is the optimal feedback law, where g; is the argument that yields the mini- 
mum in the expression that defines 14. 

3.2.3 Co~npu ta t i ona l  implications 

We have given a rather detailed description of the theoretical underpinnings 
of the methods used in practice to solve discrete-time stochastic optimal 
control problems. The reason is that we want to stress the differences between 
this approach and that favored for multistage recourse models. In both cases, 
full or partial state-information, the strategy has been to reduce the control 
problem to a Markov decision problem. To achieve this and to be able to 
solve the problem, we had to impose two unwelcome restrictions: 

1. time-independence of the random variables plus independence between 
the disturbances that affect state and observations (althought this lat- 
ter restriction is inessential), 



2. finite state-space, which in turn implies finitely distributed random 
variables and discrete control space. 

These limitations are not always easy to justify in applications. At our 
present sta,ge of development, that seems to be the price that needs to be 
pa,id to build a feedback control law based on illformation obtained about the 
state of the system rather than information about the underlying stochastic 
process. 

Unless the state-space is actually discrete and the underlying stochastic 
process {(t)T=l consists of independent random variables, the solution ob- 
tained by solving the Markov decision model is, at best, an approximation 
of the problem at hand. 

CONTINUOUS-TIME MODELS 

We shall be very brief: there is not much to report from a (practical) com- 
putational viewpoint. Although the discrete time model did allow for a wide 
variety of stochastic disturbances, the only case that has really been studied 
in continuous-time is when the disturbances can be modeled by white noise 
(although, now, there are also martingale techniques). Defining the vari- 
ables as the obvious continuous-time analogues of those of the discrete- time 
models, the continuous-time recourse model takes the for11-I: 

minimize E{J ho(zt (J),  Jt)dt) 

subject to  zt E r ( t , J )  for all t ,  

zt Bt - measurable for all t ,  

where J = (Jt) is a (continuous-time) stochastic process, Bt is a a-field gener- 
ated by earlier observations that may or may not depend on past decisions. 
Again the question of the nonanticipativity of the constraint-multifunction 
needs to be broached, and it plays a role in the type of conditions that can 
be used to characterize optimal solutions, etc.. 

The continuous-time version of the stochastic control problem that has 
received most of the attention in the literature is: 

minimize E{J ct(xt, ut, <:)dt) 

suchthat d x t  = f t (x t ,u t )d t+a l (x t )d( / ,  fo r t  E [O,T], 

dyt = kt(xt)dt + az("t)d(:, 



where C: and are Wiener processes (or more generally semi-martingales) 
that model disturbances that affect system and observations. The variable 
ut is the control that is subject to the information constraint: 

ut is yt - measurable, 

with yt, as before, the a-field generated by the observations {y, ( s  5 t ) .  
There are some technical difficulties with giving a precise meaning to this 
constraint. To do so, one usually relies on a measure transformation (Gir- 
sanov's Lemma). 

The continuous-time versions of the multistage recourse model as well as 
the stochastic optimal control inodel are (mathematical) analyst's delight. As 
soon as one goes beyond the quadratic regulator problem (a  linear-quadratic 
model), there are essentially no closed-form solutions and most of the theory 
has been oriented at finding qualitative characterizations of optimal solutions. 
One could consult the work of Back and Pliska for the continuous-time re- 
course model, and that of Ii;rasovskii, Fleming, Rishel, Kushner, Varaiya, 
Bensoussan, Evans, Lions (pkre & fils), Davis, I<rylov and many others, for 
the continuous-time stochastic control model. The most computationally 
oriented work is probably that of Haussmann (Univ. British Columbia), be- 
ginning with his work on the stochastic maximum principle. However, very 
little success can be reported about the passage from theory to computation- 
ally implementable techniques; we exclude here, for obvious reasons, methods 
based on Monte-Carlo simulations and stochastic approximation techniques 
(that have a limited range of applicability). 

Certain continuous time models have equivalent discrete- time (or dis- 
crete state-space) formulation, and sometime this can be exploited to solve 
(by successive approximations) more complicated problems. Let us give two 
examples. If the dynamics of the system are described by a continuous-time 
Markov chain (finite state-space), i.e., 

it is usually possible to convert to problem to one in discrete time by a 
technique know as uniformization. The second example is a little bit more 
involved. It is a class of problems studied first by Vermes (Hungary), and at 
present, under further investigation by Davis (Imperial College). The state 
at any time t is the sum of a jump process (Markov jumps that occur at  



random times) and a dynamical system described by a,n ordinary differential 
equation that can be controlled. Certain maintenance problems and capacity 
expansion problems are easy to cast in this mold. Problems of this type 
can be converted to multistage recourse problems (possibly with an infinite 
number of stages), where each stage corresponds to the evolution that takes 
places between jumps and the (recourse) costs are random variables whose 
values depend on the length of time between jumps. 
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