
NOA1: A Fortran Package of
Nondifferentiable Optimization
Algorithms Methodological and
User's Guide

Kiwiel, K. and Stachurski, A.

IIASA Working Paper

WP-88-116

December 1988

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33894561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Kiwiel, K. and Stachurski, A. (1988) NOA1: A Fortran Package of Nondifferentiable Optimization Algorithms

Methodological and User's Guide. IIASA Working Paper. WP-88-116 Copyright © 1988 by the author(s).

http://pure.iiasa.ac.at/3090/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

W O R K I N G PAPER

I n t e r n a t i o n a l I n s t i t u t e
for Applied Systems Analysis

NOA1: A FORTRAN PACKAGE OF NON-
DIFFERENTIABLE OPTIMIZATION
ALGORYTHMS METHODOLOGICAL AND
USER'S GUIDE

K . Kiun'el
A . Stachurski

December 1988
WP-88-116

Working Paper8 are interim reports on work of the International Institute for
Applied Systems Analysis and have received only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute
or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

Foreword

This paper is one of the series of 11 Working Papers presenting the software for interactive
decision support and software tools for developing decision support systems. These products
constitute the outcome of the contracted study agreement between the System and Decision
Sciences Program at IIASA and several Polish scientific institutions. The theoretical part of
these results is presented in the IIASA Working Paper WP-88-071 entitled Theory, Software
and Testing Ezamples i n Decision Support Systems. This volume contains the theoretical
and methodological bacgrounds of the software systems developed within the project.

This paper constitutes a methodological guide and user's manual for NOA1, a package
of Fortran subroutines designed to locate the minimum of a locally Lipschitz continuous
function subject to locally Lipschitzian inequality and equality constraints, general linear
constraints and simple upper and lower bounds. The user must provide a Fortran subroutine
for evaluating the (possibly nondifferentiable and nonconvex) functions being minimized and
their subgradients. The package implements several descent methods, and is intended for
solving small-scale nondifferentiable minimization problems on a professional microcomputer.

Alexander B. Kurzhanski
Chairman

System and Decision Sciences Program

NOA1: a Fortran Package of Nondifferentiable
Optimization Algorithms

Methodological and User's Guide

Krzysztoj C. Kiwiel and Andrzej Stachurski

Systems Research Institute, Polish Academy of Sciences

Contents

I Theoretical Guide for NOA1: a Fortran Package of Nondifferentiable
Optimization Algorithms 1

1 Introduction 1

2 An overview of algorithms of N O A l 3
. 2.1 Unconstrained convex minimization 3

. 2.2 Linearly constrained convex minimization 7
. 2.3 Exact penalty methods for convex constrained problems 8

. 2.4 The constraint linearization method 10
. 2.5 Feasible point methods for convex problems 11

. 2.6 Methods for nonconvex problems 11

11 User's Guide for NOA1: a Fortran Package of Nondifferentiable Op-
timization Algorithms 13

3 Introduction 13

4 Userwritten subroutines 13
. 4.1 Input dataflow 13

. 4.2 Problem subroutines 14
. 4.3 Scaling and modifying the problem 15

. 4.4 The main program 16

5 Input 17
. 5.1 Input parameters of N O A l 17

. 5.2 Input parameters in workspace arrays 18
. 5.3 Subroutine I N P R M T 19

. 5.4 Parameter definitions 20
. 5.5 Parameter restrictions 23

. 5.6 Practicalities 23

6 Output 24
. 6.1 Initial output 24

. 6.2 Iteration log 25
. 6.3 Exit conditions 26
. 6.4 Solution output 27

. 6.5 Summary output 28

7 System information 2 8
. 7.1 Distribution diskette 28

. 7.2 Problem-dependent subroutines 29
. 7.3 A testing example 30

8 References 30

A The main program MAINOA

B Subroutine USERS

C Subroutine QUADR

D Data for QUADR

E Results for QUADR

F Summarized results for QUADR

Part I

Theoretical Guide for NOAI: a Fortran
Package of Nondifferent iable
Optimization Algorithms

1 Introduction

NOAl is a collection of Fortran subroutines designed to solve small-scale nondifferentiable
optimization problems expressed in the following standard form

minimize f (z) :=max{ f , (z) : j= 1, ..., mo} , (l a)

subject to F , (z) s O for j = l , . . . , m r , (lb)

F j (z) = O for j = m r + l , ..., m r + m ~ , (1 ~)

A z s b , (Id)

L zi < z , < z Y for i = l , . . . , n , (14
where the vector z = (z l , . . . , z ,) ~ has n components, f j and Fj are locally Lipschitz con-
tinuous functions, and where the m~ by n matrix A, the mA-vector b and the n-vectors zL
and zu are constant; A is treated as a dense matrix.

The nonlinear functions f, and Fj need not be continuously differentiable (have continuous
gradients, i.e. vectors of partial derivatives). In particular, they may be convex. The user
has to provide a Fortran subroutine for evaluating the problem functions and their single
subgradients (called generalized gradients by Clarke (1983)) at each z satisfying the linear
constraints (ld,e). For instance, if Fj is smooth then its subgradient gFj(z) equals the gradient
V F,(z), whereas for the max function

Fj (z) = max { Fj (z; Z) : z E Z } (2)

which is a pointwise maximum of smooth functions Fj(., .) on a compact set 2, gFj(z) may
be calculated as the gradient V,F,(z; z(z)) (with respect to z) , where z(z) is an arbitrary
solution to the maximization problem in (2). (Surveys of subgradient calculus, which gen-
eralizes rules like V(Fl + F2)(z) = VFl(z) + VF2(z), may be found in Clarke (1983) and
Kiwiel (1985a) .)

NOAl implements the descent methods of Kiwiel (1985a-d,1986a, 1986c,1987), which stem
from the works of Lemarechal (1978) and Mifflin (1982).

A condensed form of problem (1) is to

minimize f (z) over all z in Rn (3 4

sat isfying F I (~) 5 0,

F E (~) = 0,

Az 5 b,

zL 5 z s z U ,

where f is the object ive function,

is the inequal i ty cons t ra in t function,

is the equa l i ty cons t ra in t function, the r n ~ inequalities (3d) are called the genera l l inear
const ra in ts , whereas the box const ra in ts (3e) specify upper and lower s imp le b o u n d s
on all variables.

The standard form (1) is more convenient to the user than (3), since the user does not
have to program additional operations for evaluating the max functions f , FI and FE and
their subgradients. On the other hand, the condensed form facilitates the description of
algorithms.

The linear constraints are treated specially by the solution algorithms of NOA1 , which are
feasible with respect to the linear constraints, i.e. they generate successive approximations
to a solution of (1) in the set

SL = { z : A z < b and zL 5 z < zU) .

The user must supply an initial estimate 2 of the solution that satisfies the box constraints
(zL 5 2 5 z u) , and the orthogonal projection of 2 onto SL is taken as the algorithm's starting
point.

Two general techniques are used t o handle the nonlinear constraints. In the first one,
which minimizes over SL an exact penalty function for (I) , the initial point need not lie in

SF = { z : Fl(z) < 0 and FE(z) = 0)

and the successive points converge to a solution from outside of SF . The second one uses a
feasible point method for the nonlinear inequality constraints, which starts from a point in

and keeps the successive iterates in SI . The choice between the two techniques is made
by the user, who may thus influence the success of the calculations. For a given level of
final accuracy, the exact penalty technique usually requires less work than the feasible point
technique. On the other hand, the feasible point technique may be more reliable and is more
widely applicable, since it does not in fact require the evaluation of f and FE outside of
SL n SI.

N O A l is designed to find solutions that are locally optimal. If the nonlinear objective
and inequality constraint functions are convex within the set SL, and the nonlinear equality
constraints are absent, any optimal solution obtained will be a global minimum. Otherwise
there may exist several local minima, and some of these may not be global. In such cases
the chances of finding a global minimum are usually increased by restricting the search t o a
sufficiently small set SL and choosing a starting point that is "sufficiently close" t o a solution,
but there is no general procedure for determining what "close" means, or for verifying that
a given local minimum is indeed global.

N O A l stands for Nondi f ferent iable Opt imizat ion A lgor i thms, version 1.0.
In the following sections we introduce some of the terminology required, and give an

overview of the algorithms used in NOA1.

2 An overview of algorithms of N O A l

The algorithms in N O A l are based on the following general concept of descent methods for
nondifferentiable minimization. Starting from a given approximation to a solution of (I) ,
an iterative method of descent generates a sequence of points, which should converge to a
solution. The property of descent means that successive points have lower objective (or exact
penalty) function values. To generate a descent direction from the current iterate, the method
replaces the problem functions with their piecewise linear (polyhedral) approximations.
Each linear piece of such an approximation is a linearization of the given function, obtained
by evaluating the function and its subgradient a t a trial point of an earlier iteration. (This
construction generalizes to the nondifferentiable case the classical concept of using gradients
to linearize smooth functions.) The polyhedral approximations and quadratic regularization
are used t o derive a local approximation to the original optimization problem, whose solution
(found by quadratic programming) yields the search direction. Next, a line search along this
direction produces the next approximation t o a solution and the next trial point, detecting
the possible gradient discontinuities. The successive approximations are formed to ensure
convergence to a solution without storing too many linearizations. To this end, subgradient
selection and aggregation techniques are employed.

2.1 Unconstrained convex minimization

The unconstrained problem of minimizing a convex function f defined on Rn is a particular
case of problem (1). In N O A l this problem may be solved by the method with subgradient
selection (Kiwiel, 1985a).

Let gf(y) denote the subgradient of f at y calculated by the user's subroutine. In the
convex case

f (4 2 f (Y)+(gf(Y),z-Y) for all 2, (4)

where (-, -) denotes the usual inner product. Thus at each y we can construct the l ineariza-
t ion of f

f(.; Y) = f(Y) + (S ~ (Y) , Z - Y) for all z , (5)

which is a lower approximation t o f .
Given a user-provided initial point z l , the algorithm generates a sequence of points z k ,

k = 2,3, . . . , that is intended to converge to a minimum point of f . At the k-th iteration the
algorithm uses the following po lyhedra l approximation t o f

P (z) = max { f (z; y j) : j E J! } (6)

derived from the linearizations of f at certain trial po in ts yJ' of earlier iterations j, where
the index set Jf c { 1 , . . . , k } typically has n + 2 elements. Note that jk may be a tight

approximation to f in the neighborhood of trial points yj, for j in J:, since f (yj) = j k (y j) .

The best direction of descent for f at z k is, of course, the solution ik to the problem

minimize f (zk + d) over all d in Rn ,

since zk + ik minimizes f . The algorithm finds an approximate descent direction dk t o

^k k minimize f (z + d) + ld12/2 over all d , (7)

where the regularizing penalty term (d12/2 tends to keep zk + dk in the region where jk may
be a good approximation to f (I - I denotes the Euclidean norm); without this term (7) need
not have a bounded solution.

The nonpositive quantity
vk = j k (zk + dk) - f (~ ~) (8)

is an optimality measure of z k , since

The algorithm terminates if

Ivkl 5 4 1 + If (zk)l),

where s, is a positive final accuracy tolerance provided by the user. Thus for s, = 10-I
and 1 2 4, we may hope to achieve the relative accuracy of about (1 - 1) leading digits in the
objective value (considering also zeros after the decimal point as significant), i.e. typically a t
termination

If (z') - f (zk) 1 is about lo-('-') max { 1 f (z*)) , I) , (11)

where z* is a minimum point of f . (Of course, such estimates may be false for ill-conditioned
problems.) In practice vk usually converges to a negative number, small relative to

max { f (zk) , 1) .
The stopping criterion (10) usually works with s, set to or but it is not always

reliable. For instance, if f is polyhedral and bounded from below then termination should
occur a t some iteration with vk = 0 (and optimal zk) . In practice computer rounding errors
prevent the vanishing of vk. The search direction finding subproblem (7) is solved in NOAl
by the subroutine QPDF4 for quadratic programming (Kiwiel, 1986b), which calculates the
quantity

ck = j k (zk + dk) - f (~ ~) (12)

and gives vk a nonpositive value according to some dual estimate; in theory G k should equal
vk. The smallness of Ick - vkl relative to Ivkl indicates good accuracy of QPDF4. The accuracy
usually deteriorates in the neighborhood of a minimum point of f (when too small accuracy
tolerance s, prevents termination), or earlier for ill-conditioned problems. The case of Gk 2 0,
i.e. inability to find a descent direction, enforces abnormal termination.

If the algorithm does not terminate, then the negative value of vk (see (8)) predicts the
descent f (zk + dk) - f irk) for the step from z k to zk + dk. Usually vk over-estimates the
descent because f (.) 2 f k (-) and jk need not agree with f a t zk + dk if its linearizations do
not reflect discontinuities in the gradient of f around zk (too few of them make up jk, or
they were calculated a t y j far from zk) . Thus two cases are possible when a line search is
made to explore f along the segment joining zk and zk + dk. Either jk is a good model of
f and it is possible to make a serious step by finding a stepsize t i > 0 such that the next
iterate

zk+l - k k k - z + tLd

has a lower objective value than zk , or a null step zk+' = zk (t i = 0) combined with
calculating the linearization f (-; yk+') a t a new trial point

with tk E (O,l] may be used to get the next improved model fk+' of f . (Since 0 5 t i < t k ,
t i and tk are called left and r i gh t stepsizes respectively, although they may coincide if
t i > 0.) More specifically, a serious step with t i > 0 is made if

where mL, mu and t are positive parameters less than 1, whereas

is the linearization error of f (-; y) a t z. These conditions ensure a significant objective decrease
(i.e. t i and mLt i vk cannot be too small). On the other hand, a null step with t i = 0 and
tk E [f, 11 must ensure that the new linearization satisfies

for some fixed mR E (0, I) , so that its incorporation will make jk+' a better approximation
to f along the direction dk from zk+' = zk than f k was, thus enhancing generation of a
better next direction dk+' .

For technical reasons, the linesearch parameters must be positive and satisfy mL + mu <
mR < 1 and f 5 1. By changing the standard values mL = 0.1, mR = 0.5, mu = 0.01 and
t = 0.01, the user may strongly influence the algorithm's efficiency on a given problem. Note
that the total amount of work in solving a problem depends on the number of function and
subgradient evaluations as well as on the number of iterations. The algorithm may require
only one objective evaluation per iteration. This is justified if the cost of one objective
evaluation dominates the effort of auxiliary operations (mainly a t quadratic programming)
per iteration. In the reverse case, one may wish to decrease the number of iterations a t the
cost of increasing the number of objective evaluations.

More specifically, the line search checks if t r ia l s tepsizes t in [f, 11, starting with t = 1,
satisfy the sufficient descent criterion

(are candidates for t i) . Hence if the threshold stepsize f is set to 1, only t = 1 need be tested,
and a serious step with t i = 1 will occur if

(see (8) and (13a)), i.e. f k must be very close to f at zk + dk if mL approaches 1. In
practice mL > 0.5 may result in many null steps (the algorithm concentrates on improving its
models f k of f between infrequent serious steps), whereas mL < 0.1 may produce (damped)
oscillations of { z k } around the solution (little descent is made a t each serious step). For
a smaller threshold t < 1, more stepsizes t are tested (typically two for f = 0.1, three for
t = 0.01), and there are fewer null steps. In practice decreasing f from 1 t o 0.01 will usually
decrease the number of iterations a t the cost of more function evaluations.

It is worth adding that for a polyhedral f one may frequently use the values mL = 0.9,
m~ = 0.95, mu = 0.01 and f = 1, which are inefficient for general functions.

To sum up, it is reasonable t o set mL and f i n the ranges [0.1,0.9] and [0.01,1.] respectively,
and use mu = 0.001 and mR = (1 + mL)/2.

The user may trade-off storage and work per iteration for speed of convergence by choos-
ing the maximum number Mg of past subgradients (linearizations) involved in the approx-
imations jk (more linearizations increase the model accuracy). To ensure convergence, the
algorithm selects for keeping the linearizations active at the solution to subproblem (7) (their
indices enter J:+' together with k + I) , whereas inactive past linearizations may be dropped
(i.e. overwritten in the memory by new ones, if necessary). More linearizations enhance faster
convergence by producing more accurate f k , but the costs of solving subproblem (7) may
become prohibitive. Using Mg greater than its minimal possible value n + 3, Mg = 2n say,
frequently increases the overall efficiency.

An additional increase of modelling accuracy may be possible when f is the pointwise
maximum

f (z) = m a x { f i(z) : i = 1, ..., mo)

of several convex functions fi with subgradients gf,. The user may choose a positive activity
tolerance E , and the maximum number I , of additional linearizations of fi at zk that will
augment j k . Then subproblem (7) employs

jk (z) = max { f (z ; yj) : yj E J: ; j, (zk) + (g fi (zk) , z - zk) : i E Lk),

where Lk contains a t most 1, indices of the &,-active functions f i (zk) 2 f (z k) - E, . However,
these additional linearizations may overwrite some past ones (if Mg is too small), and this
may or may not increase the accuracy of jk at points remote from zk .

If space limitations prevent the algorithm from storing sufficiently many (Mg > n + 3)
past subgradients, the algorithm may be run with Mg 2 3 by employing subgradient aggre-
gation instead of selection. This will usually decrease the speed of convergence (sometimes
drastically !).

The algorithm described so far is rather sensitive to the objective scaling, especially to
the multiplication of f by a positive constant, mainly due t o the presence of the arbitrary
quadratic term in subproblem (7). For greater flexibility, the user may choose a positive
weight u in the following version of (7)

minimize f k (zk + d) + uld12/2 over all d. (16)

The standard value u = 1 suffices for well-scaled problems. If f varies rapidly, increasing u
will decrease Idkl, thus localizing the search for a better point to the neighborhood of zk . For
instance, if the initial derivative v1 of f at z1 in the direction dl is "large" (e.g. v-' < - lo5),
one may try a larger u, u = 100 say, in the next algorithm's run on the same, or related
problem. On the other hand, too "large" u will produce many serious, but short steps with
very small (zk+' - zkl, and convergence will be slow. We may add that for piecewise linear
objectives smaller values of u are less dangerous than too large. Moreover, large errors may
arise in the solution of (16) by the subroutine QPDF4 if u is small (u < then i t is better
to multiply f by a small number and set u = 1.

In the general case of u > 0, the optimality estimate (9) becomes

This suggests that the accuracy tolerance E , should be decreased when a larger u is used;
otherwise, "false" convergence will occur.

2.2 Linearly constrained convex minimization

The box constrained problem with a convex f

minimize f (z)
subject to z f < z < z y for i = 1 , . . . , n,

may be solved in NDAl by a modification of the method described in the preceding section
(Kiwiel, 1985c,1986~,1987).

The presence of finite upper and lower bounds ensures the existence of a solution and
prevents divergence of the algorithm, which must occur when there is no solution (then
lzkl tends, in theory, to infinity; in practice - until an arithmetic overflow terminates the
calculation). It is always advisable to place bounds of the form -1000 5 z, 5 1000, which
should not be active when the solution lies inside the box.

The objective f and i ts subgradient g, will be evaluated only inside the box [zL, zu] . This

may be used to eliminate regions where f is undefined. For example, if f (z) = zii2 + exp(z2),
i t is essential to place bounds of the form z l 2 z2 5 20.

If the user specifies an infeasible initial point z l , it is projected on the box (by replacing
z: with max { z f , min (z,, z y))). Successive zk remain in the box.

At the k-th iteration, an approximate feasible descent direction dk is found to

-k k minimize f (z + d) + uld12/2,
subject to zf 5 zf + d, 5 zy , for i = 1 , . . . , n (19)

This subproblem is a natural extension of (16). Consequently, the preceding remarks on the
choice of parameters remain in force.

We may add that the introduction of box constraints only slightly increases the work a t
the search direction finding.

For the problem with general linear constraints

minimize f (z) , subject to Az 5 b, (Zo)

the search direction finding subproblem becomes

-k k minimize f (z + d) + uld12/2,
subject to ~ (z ~ + d) 5 b

Due to rounding errors, the calculated direction dk need not be "strictly" feasible. To measure
the infeasibility of a direction d from zk , we use the cons t ra in t v io lat ion func t ion

defined in terms of
h(z) = max{A;z- b' : i = 1, . . . , m ~) ,

where A, denotes the i-th row of A. Subproblem (21) is equivalent to the unconstrained
problem

minimize jk (zk + d) + uld12/2 + cvz(d) over all d (z3)

when the pena l t y parameter c is sufficiently large. Hence we may test increasing values
of c until the solution of (23) is feasible, and hence solves (21). Starting from c = p , where

p > 0 may be provided by the user, each successive c is multiplied by 10 until the solution
dk of (23) passes the feasibil i ty tes t

where EF is a positive absolute feasibil i ty tolerance. If this test is failed by even "very large''
c, the calculation terminates. This occurs if c > where EM is the re lat ive machine
accuracy (the smallest positive E for which 1 + E > 1 in the computer's arithmetic).

No computational difficulties should arise if the linear constraints are well-scaled and the
feasibility tolerance E F is large enough. In particular, it may be necessary to ensure that the
coefficients of A are of order 1 and EF > ~ ~ ~ 1 ' . For instance, if the coefficients of A result
from measurements corrupted by errors of magnitude one should set EF =

If the initial point specified by the user is not feasible to within the tolerance E F , the
algorithm tries to project it onto the feasible set (by using a version of (23)). If the projection
is successful, each successive zk satisfies the linear constraints to within E F . Moreover, f (y)
and gj(y) are calculated only at E F - feasible points with h(y) 5 E F .

A combination of the preceding techniques is used for the problem

minimize f (z) over all z

satisfying Az 5 b, zL 5 z 5 zU .

In this case, all trial points satisfy the simple bounds exactly, and the general linear con-
straints to within E F .

2.3 E x a c t p e n a l t y methods for convex c o n s t r a i n e d problems

The convex minimization problem

minimize f (z) over all z
satisfying Fj(z) < 0 for j= 1, . . . , mr, (25)

F , (z)=O for j = m r + l , . . . , m r + m ~ ,

where the functions f and Fj, j = 1 , . . . , mr, are convex and the functions Fj,
j = mr + 1, . . . , mr + m ~ , are affine (linear), may be solved in NOAl by the unconstrained
minimization of the exact penal ty funct ion

where p > 0 is a fixed penal ty coefficient, and the constraint violation is measured by

F (z) = max i Fj(z) : j = 1 , . . . , m ; JF,(z)(: j = mr + 1,. . . ,m r + mE).

Each solution z, to the problem

minimize e(z; p) over all z in Rn (27)

solves (25) if i t is feasible (F(zp) 5 0). This holds if p is sufficiently large, (25) has a solution
and its constraints satisfy the generalized Slater constraint qualif ication, i.e. for some z s

The methods with a fixed penalty coefficient require the user to specify a sufficiently large
p. For well-scaled problems one may usually choose p in the interval [10,100]. If p is too
small, (27) need not be equivalent to (25), and the algorithm may diverge when the penalty
function has no finite minimum. On the other hand, too large p hinders the minimization of
the penalty function, which becomes ill-conditioned, (If p is large, the algorithm must hug
the boundary of the feasible set.)

The first method in NOAl solves (26) by one of the algorithms for unconstrained minimiza-
tion. At the k-th iteration, a polyhedral approximation i k (- ; p) to e(.; p) is constructed from
the past linearizations of e(.; p) (see (5) and (6)). (These linearizations are calculated as in
(5) from subgradients of the functions of (25), which are evaluated by the user s subroutine.)
The k-th search direction dk is chosen to

minimize i k (zk + d; p) + u1dl2/2 over all d P8)
(see (16)). Termination occurs if

where ~s and € F are positive final accuracy and feasibility tolerances, provided by the user,
whereas vk is a dual estimate of the predicted descent i k (zk + dk; p) - e(zk; p), which satisfies
the optimality estimate

where z* is a solution to (25). This method does not exploit the specific structure of e(.; p).
The second method exploits the additive structure of e(-; p) by constructing separate

polyhedral approximations f k and kk to the objective f and constraint function F . Thus
the method may use a more accurate polyhedral approximation to e(.; p)

in the search direction finding subproblem (28), which usually enhances faster convergence.
Both methods may be allowed to choose the penalty coefficient automatically during the

calculations (Kiwiel, 1985d). Then a t the k-th iteration we set p = pk in (28) and (31). The
initial p1 may be specified by the user. The penalty coefficient is increased only if zk is an
approximate solution to (27) (i.e. zk minimizes e(.; pk) to within some positive tolerance bk) ,
but it is significantly infeasible (i.e. F (z ~) is "large"). The specific rule for updating pk is

if -uk > bk or F (z ~) I -uk set pk+l = pk and bk+' = bk;
otherwise set pk+l = cppk and bk+' = cubk, (32)

where cp > 1 and c, E (0 , l) are parameters that increase the penalty and decrease the
accuracy tolerance of unconstrained minimization bk; 6' = lull. Usually one may use p1 = 10,
cp = 2 or cp = 10, and c, = 0.1. Larger values of cp and c, enable a faster growth of the
penalty coefficient a t earlier iterations, if the initial p1 was too small. On the other hand,
very large values of penalty coefficients slow down convergence.

When employing the exact penalty methods, the user should place sensible upper and
lower bounds on all variables. If the box defined by such bounds is not too large, the penalty
coefficient will quickly reach a suitable value and then will stay constant. Moreover, box
constraints ensure the existence of a solution and prevent the algorithm from diverging.

We may add that the automatic choice of the penalty coefficient may produce a very large
value of pk. The methods terminate at the k-th iteration if pk+' > where EM is the
relative machine precision. Such abnormal termination may indicate that the constraints are
not regular (e.g. are inconsistent), or that they are ill-scaled.

In the current version of NOAl additional general linear constraints Az I b can be handled
only by the first method that does not exploit the structure of the penalty function.

2.4 The constraint linearization method

The convex constrained problem

minimize f (z) , subject to F (z) I 0 (33)

with a convex f and a convex F satisfying the Slater condition (F(zs) < 0 for some zs) may
be solved in NOAl by the constraint linearization method (Kiwiel, 1987), which is frequently
more efficient than the algorithms of the preceding section.

At the k-th iteration the algorithm uses polyhedral approximations f k and kk to f and
F in the search direction finding subproblem

minimize f k (z k + d) + u ~ d 1 * / 2 (3 4 4

^ k k subject to F (z + d) < 0, (34b)

where u > 0 is the weight of the regularizing quadratic term. Its solution dk is an approximate
descent direction for the exact penalty function (26), provided that the penalty parameter
p = pk is greater than the Lagrange multiplier bk of the constraint (34b). Hence the algorithm
sets pk = pk-I if bk 5 pk-l ; otherwise

pk = max { bk, cppk-l 1,

where C, > 1 is a user-specified parameter (usually c, = 2), and p0 = 0. With dk(. ; pk) given
by (31), the predicted descent

satisfies the optimality estimate (30), which justifies the termination test (29). The line
search from zk along dk uses the rules of Section 2.1 applied to e(.; pk).

Subproblem (34) is solved by finding dk to

^k k minimize f (z + d) + u l d 1 * / 2 + c m a x { k k (z k + d) , O } , (36)

where the penalty coefficient c is chosen as in Section 2.2 (cf. (23)). Abnormal termination
with c > may indicate violation of the Slater constraint qualification, ill-scaling of the
constraints, or that the infeasibility tolerance EF is too tight. These factors also may enforce
termination due to pk >

Additional linear constraints

are handled by the techniques of Section 2.2. In this case the Slater constraint qualification
reads: F(zs) < 0, Azs 5 b and zL < z s 5 zu for some z s . Once again, we stress that the
presence of box constraints may be crucial to the algorithm's convergence.

2.5 Feasible point methods for convex problems

The convex constrained problem (33) may be solved in NOAl by the feasible point method
(Kiwiel, 1985a), which uses polyhedral approximations f k and Pk of f and F in the search
direction finding subproblem

minimize ~ ~ (z ~ + d) + u(d12/2 over all d, (37)

where u > 0 is a scaling parameter, whereas

a k (z) = max { i k (z) - f (zk) , Pk (z))

is the k-th polyhedral approximation to the improvement function

~ (z ; zk) = max { f (z) - f (z k) , ~ (z)) for all z.

Thus, if F (zk) 5 0, we wish to find a feasible (Pk (zk + dk) < 0) direction of descent
^k k (f (z + dk) < f (z k)) , whereas for F (zk) > 0, dk should be a descent direction for F at zk

(Pk (zk + dk) < F(zk)) , since then we would like to decrease the constraint violation.
The algorithm runs in two phases. At phase I successive points zk are infeasible, and

the line search rules of Section 2.1 are applied to F . Finding a feasible zk starts phase 11,
in which the line search rules are augmented to ensure feasibility of successive iterates. Of
course, phase I will be omitted if the initial point z1 is feasible.

The algorithm requires the Slater constraint qualification (F(zs) < 0 for some z s);
otherwise, it may terminate at a point zk that is an approximate minimizer of F .

The algorithm is, in general, more reliable than the exact penalty methods of Sections 2.3
and 2.4, because it does not need to choose penalty coefficients. Unfortunately, its convergence
may be slower, since it cannot approach the boundary of the feasible set at a fast rate.

Additional linear constraints are handled as in Section 2.2.

2.6 Methods for nonconvex problems

Minimization problems with nonconvex objectives and constraints are solved in NOAl by nat-
ural extensions (Kiwiel, 1985a, 1985b, 1986a, 1986c) of the methods for convex minimization
described in the preceding sections. Except for the constraint linearization method of Sec-
tion 2.4, each method has two extensions, which differ in the treatment of nonconvexity. The
methods use either subgradient locality measures, or subgradient deletion rules for localizing
the past subgradient information. Advantages and drawbacks of the two approaches depend
on specific properties of a given problem.

For simplicity, let us consider the unconstrained problem of minimizing a locally Lipschitz
continuous function f , for which we can calculate the linearization

by evaluating f and its subgradient gf at each y. At the k-th iteration, several such lineariza-
tions computed at trial points y ~ , j E 53, are used in the following polyhedral approximation

to f around the current iterate zk

where the subgradient locality measures

with a parameter 7 , > 0 indicate how much the subgradient gj(yj) differs from being a
subgradient of f at zk . Observe that in the convex case with 7 , = 0 the approximation (38)
reduces to the previously used form (6) (cf. (4)). More generally, for 7 , > 0 the subgradients
with relatively large locality measures cannot be active in jk in the neighborhood of zk . Thus
even in the nonconvex case jk may be a good local approximation to f , provided that it is
based on sufficiently local subgradients. This justifies the use of jk in the search direction
finding subproblems of the preceding sections (cf. (7), (16), (19), (21), (28), (37)).

Ideally, the value of the locality parameter 7 , should reflect the degree of nonconvexity of
f . Of course, for convex f the best value is 7 , = 0. Larger values of 7 , decrease the influence of
nonlocal subgradient information on the search direction finding. This, for instance, prevents
the algorithm from concluding that zk is optimal because jk indicates that f has no descent
direction a t zk . On the other hand, a large value of 7 , may cause that after a serious step
all the past subgradients will be considered as nonlocal a t the search direction finding. Then
the algorithm will be forced to accumulate local subgradients by performing many null steps
with expensive line searches.

In the strategy described so far the influence of a subgradient on f k decreases "smoothly"
when this subgradient becomes less local. More drastic is the subgrad ient delet ion s t ra t -
egy, which simply drops the nonlocal past subgradients from j k . In this case, we set 7 , = 0
in (39) and define the local i ty rad ius

of the ball around zk from which the past subgradients were collected. As before, the approx-
imation jk is used to generate a search direction dk. A local i ty reset of the approximation
occurs if

k
Idkl F mas (41)

where ma is a positive parameter. This involves dropping from J: an index j with the largest

value of (z k - yjI, i.e. the most nonlocal subgradient is dropped so as to decrease the locality
radius ak . If the next dk satisfies (41), another reset is made, etc. Thus resets decrease the
locality radius until it is comparable with the length of the search direction Idkl.

Dropping the j-th subgradient corresponds to replacing a j (zk , y ~) in (38) by a large
number. Moreover, the frequency of resets is proportional to the value of ma in the test (41).
Therefore, our preceding remarks on the choice of 7 , are relevant to the selection of ma.

In practice one may use 7 , = 1 and ma = 0.1, increasing them to 7 , = 10 and ma = 0.5
for strong nonconvexities.

Both strategies use line searches similar to that of Section 2.1. Additionally, the subgradi-
ent resetting strategy requires that a null step (zk+' = zk) should produce a trial point yk+'
close to zk in the sense that l y k + ' - z k (is of order ak . Since l y k + ' - zkl = tkldkl, the right
stepsize tk should be sufficiently small. This can be ensured either by testing progressively
smaller initial trial stepsizes, or by introducing the direct requirement

where c d E [0.1,0.5] is a parameter, e.g. c d = ma.

Part I1

User's Guide for N O A l : a Fortran Package
of Nondifferent iable Optimization
Algorithms

3 Introduction

NOAl is a collection of Fortran subroutines designed to solve small-scale nondifferentiable
optimization problems expressed in the following standard form

minimize f (z) := max{ f j (z) : j = 1, ..., mo) , (4 2 4

subject to Fj(z) 5 0 for j = 1 , . . . , r n ~ , (42b)

Fj(x) = 0 for j = m I + 1,. . . , m ~ + mE , (424

A z < b , (4 2 4

L xi < Z i < ~ y for i = l , . . . , n , (424

where the vector z = (X I , . . . , z,)T has n components, f, and Fj are locally Lipschitz con-
tinuous functions, and where the r n ~ by n matrix A, the m~-vector b and the n-vectors zL
and xu are constant; A is treated as a dense matrix.

We assume that the reader is familiar with the theoretical guide (Part 1 of this report),
which describes the algorithms implemented in NOA1. Some additional information can be
found in Kiwiel and Stachurski (1988).

NOAl runs on IBM PC/XT or AT compatibles under the DOS operating system, version
3.1 or higher. The computer should have a t least 512 kB of memory, a hard disk and an
8087 or 80287 mathematical coprocessor. The source code of NOAl is written in Fortran 77;
however, the object files were created by the Lahey Fortran 77 Compiler F77L, version 2.21.
The user's subroutines should be compiled by the same compiler.

We wish to stress that NDAl is still a t an experimental stage, and we intend t o increase
both its efficiency and user friendliness. Any feedback from the users will be most welcome.

4 User-written subroutines

4.1 Input data flow

Some or all of the following items are supplied by the user:

Main program MAINOA

Problem subroutine (called, e.g., USERS)

Input data file

Data read by USERS on its first entry

Data read by USERS on its last entry.

The order of the files and data is important if all are stored in the same input stream.
The main program allocates the workspace for NOAl and the user's problem subroutines,

opens the primary input and output files (called FORT1 and FORT^), reads the algorithm's
parameters and calls NOAl to solve the problem.

The user's problem subroutine defines the objective and constraint functions and their
subgradients.

The input data file defines various problem and run-time parameters (number of variables,
iterations limit, etc.). Its name and unit number are defined a t compile time (in the main
program). It will normally be the first data set in the system card input stream.

4.2 Problem subroutines

Consider the following optimization problem

minimize max{ F/ (x) : I = 1,. . . , M O B) (4 3 4
s . t . F / (x) < O for I=1, . . . , M O B + M I (43b)

F / (x)=O for I = M O B + M I + 1, ..., M O B + M I + ME (43c)
F;(x) < 0 for I = M E P F S l , . . . , M E P F S M F I (4 3 4
(AI , X) < BI for I = 1 , . . ., N L I N E Q (434
X; 5 XI < X: for I = l , . . . , N (43f

where M O B L 1 , MILO, M m , M E P F = M O B + M I + M E , M F I 2 0 , N L I N E Q ? 0, and
X and AI are N-vectors. (The two groups of nonlinear inequality constraints are distin-
guished because they are handled in NOAl by the exact penalty and feasible point techniques,
respectively.)

The user's problem subroutine evaluates the problem functions F;, I = 1 , . . . , M E P F +
MFI, and their subgradients. Its name must be declared EXTERNAL in the main program.
The name is arbitrary (but it must differ from the names of NOAl subroutines; see section
7.1). (If you use the default segments MAINOA and USERS, your subroutine must be called by
USERS; see appendix B).

Specification:

SUBROUTINE PROBLM(X,N,I,F,GRAD,IFLAG,IU,LIU,RU,LRU)
IMPLICIT REAL*~(A-H.0-Z)
DIMENSION X (N) ,GRAD (N) , IU(L1U) .RU(LRU)
COMMON /NEWX/ NEWX

Parameters:

X (* > (Input) An array of dimension N containing the current values of variables z; if
IFLAG>O . (If IFLAG=O , the values of z; may be undefined if they have not been
set by the main program. Then you must set them.)
(Output) The current values of z;.

(Input) The number of variables.

(Input) The problem function number if IFLAG>O.

(Output) The computed value of F! (X) if IFLAG=l; otherwise, do not change F

GRAD (*) (Output) The computed subgradient vector of F: at z = X if IFLAG=2; otherwise,
do not change GRAD.

IFLAG (Input) If IFLAG=O, N O A l is calling your subroutine for the first time. Some data
may need to be input or computed and saved in local or COMMON storage (or in
arrays I U and RU). In particular, you may set the initial point X.
If IFLAG=1, set F to F,?(x) without changing X, GRAD, and NEWX.
If IFLAG=2, set GRAD to the subgradient of F: a t X without changing X , F, and
NEWX.
If IFLAG>3, N O A l is calling your subroutine for the last time. You may wish
to perform some additional computation on the final solution X. In general, the
last call is made with IFLAG=2+INFORM, where INFORM indicates the status of the
final solution. In particular, if IFLAG=3, the current X is optimal; if IFLAG=4, the
iterations limit was reached, etc. (see section 6.3). In some cases, the solution is
nearly optimal if IFLAG=7; this value occurs if the QP subroutine was unable to
find a descent direction. Do not change X, F, GRAD and NEWX.
(Output) If for some reason you wish to terminate the solution of the current
problem, set IFLAG to a negative value, e.g. -1. This value will be given to
INFORM on exit from NOA1. In particular, you must terminate the solution if the
arrays I U and RU are too small for your problem.

IU(*) (Input/Output) An array of dimension L I U declared in the main program. You
may use it for storage; it is not accessed by NOA1.

L I U (Input) The declared dimension of I U .

RU(*) (Input/Output) An array of dimension LRU declared in the main program. You
may use it for storage; it is not accessed by NOA1.

LRU (Input) The declared dimension of RU.

NEWX (Input) If NEWX=O and IFLAG=1 or 2, X was not changed since the latest exit from
PROBLM. Then you may save some work by exploiting some results of the preceding
calculations (saved in I U and RU) performed with the same X. NEWX=1 means X
was changed. Do not change NEWX.

4.3 Scaling and modifying the problem

You may scale and modify your problem without changing the problem subroutine.
Suppose that we wish to replace in problem (43) the functions F: by

~ / (X) = S ~ I * (F Y (X) - S Z ~ - ~) , I=1, ..., M T O T ,

where SzI and SzI-l are the multiplier and shift for the I-th function, and
M T O T = M O B + M I + M E + M F I . Tothisend,settheparameterNEEDSC (IWORK(14)) to
1 and store in the WORK array, starting from position 100, the scaling factors SI,
I = 1 , . . . , 2 * M T O T , or simply use subroutine INPRMT for reading NEEDSC and SI (see
section 5.3). Of course, N O A l will scale the subgradients of k: automatically.

For example, you may relax inequality constraints that seem inconsistent by using SzI = 1
and positive SzI-l for I = M O B + 1, . . . , M O B + M I . On the other hand, SzI and SZI-

for I = 1,. . . , M O B may be interpreted as weights and components of a reference point for
a multiobjective problem with objectives F;, I = 1 , . . . , MOB.

The problem subroutine assumes the natural order of the problem functions of (43). On
the other hand, this subroutine may be viewed as a black box for evaluating certain func-
tions and their subgradients, which may define many optimization problems in the following
way. First we choose the numbers M O B 2 1, M I 2 0, M E 2 0, M F I 2 0, and let
M E P F = M O B + M I + M E , M T O T = M E P F + M F I . Next, for I = 1,. . ., M T O T we
choose indices I S (I) > 1 and form the problem

U minimize max{ FIS(,)(X) : I = 1 , . . . , M O B) (4 4 4

s. t . F&(,)(x) 5 0 for I = M O B + 1 , . . . , M O B + M I (44w

FYs(,)(x) = O for I = M O B + M I + l , ..., M O B + M I + M E (44c)

F&(,)(x) 5 0 for I = M E P F + 1 , . . ., M E P F + M F I (44d.)

(AI, X) 5 BI for I = 1 , . . . , N L I N E Q (444
x:< X I ~ X Y for 1=1, . . . , N (44f

The only restriction on the choice of IS is that the problem subroutine should be able to
evaluate F L (~) . The vector IS can be read by subroutine INPRMT (see section 5.3). Additional
scaling involves replacing the functions of (43) by

~ ~ (X) = S ~ I * (F & (~) (X) - S ~) , I=1, . . . , M T O T .

4.4 T h e main program

The default main program MAINOA (see appendix A) should suffice for most applications. The
advanced user may wish to modify i t , using the following guidelines.

The segment which calls subroutine NOAl should contain the following elements:

1. Type declaration
IMPLICIT REAL * 8(A-H,O-Z)

2. Declaration of NOAl workspace arrays IWORK(LIW0RK) and WORK(LW0RK). Their dimen-
sions LIWORK and LWORK depend on the size of the problem (see section 5.1).

3. Declaration of the user's workspace arrays IU(L1U) and RU(LRU) that will be passed to
the problem subroutine. Their dimensions LIU and LRU are arbitrary.

4. Declaration of the array X for storing the solution. Its dimension must not be less than
the number of variables.

5. Common block with machine tolerances (see appendix A)
COMMON /MCHTOL/ EPSMCH,RTMIN.RTMAX

6. Declaration
EXTERNAL USERS

if the default subroutine USERS is used for linking several problem subroutines; oth-
erwise, replace USERS by the name of your subroutine (also in the calling sequence to
NOA 1 ; see below).

7. Statement that sets N to the number of variables.

8. Statement that store the algorithm's parameters in IWORK(1)' . . .,IWORK(30) and
WORK(l),. . .,WORK(21) (see section 5.2).

9. Calling sequence
CALL NOAl(USERS,IU,LIU,RU,LRU,N,X,

* IWORK,LIWORK,WORK,LWORK)

Program MAINOA also contains the blocks

COMMON /IEXAMP/ IEXAMP
COMMON /NINOUT/ NIND.NOUTD

If subroutine USERS (see appendix B) is used, it reads from the file number NIND (=1 by
default) the parameters IEXAMP and NEEDX. IEXAMP contains the number of the problem
whose subroutine will be called by USERS. NEEDX=l means that subroutine USERS will read
the initial point z from the file number NIND before the first call to the problem subroutine.
If NEEDX=O, the initial z must be set on the first entrance to the problem subroutine (with
IFLAG=O; see section 4.2).

5 Input

5 .1 Input parameters of N O A l

Subroutine NOAl solves the optimization problem.

Specification:

SUBROUTINE NOAl(USERS.IU.LIU.RU,LRU.N,X,
* IWORK,LIWORK,WORK,LWORK)

IMPLICIT REAL*8(A-H,O-2)
DIMENSION IU(L1U) ,RU(LRU) ,X(N), IWORK(LIWORK), WORK(LW0RK)
EXTERNAL USERS

Parameters:

USERS The name of subroutine USERS (see appendix B and section 4.2)' or any other
name of the user's problem subroutine.

IU(*) An array of dimension LIU used by the user's subroutine.

L IU The dimension of IU.

RU(*) An array of dimension LRU used by the user's subroutine.

LRU The dimension of RU.

N The number of variables (the dimension of z).

X(*> An array of dimension N for storing the variables z. It contains the initial point
z, unless it will be read on the first entry to subroutine USERS.

IWORK (*) An array of dimension LIWORK used as workspace by NOA1.

LIWORK The dimension of IWORK.

WORK(*) An array of dimension LWORK used as workspace by N O A l

LWORK The dimension of WORK.

The minimum values of LIWORK and LWORK depend on the problem size in a rather com-
plicated way; on exit from N O A l they are stored in IWORK(98) and IWORK(99) (and can be
printed; see section 6.1). N O A l will exit with INFORM=IWORK(1)=900 if the values of LIWORK
and LWORK are too small.

5.2 Input parameters in workspace arrays

The first 30 elements of array IWORK and 21 elements of WORK store certain parameters in the
following order:

IWORK :
1.MODE 7.MOB 13.NEEDIS 19.ISHOR 25.IMPLDI
2.ITERMX 8.MI 14.NEEDSC 20.LENB 26.LBTDIL
3.MAXFEV 9.ME 15.ICONVX 21.MODLSR 27.MSGFLS
4.MSGFRq 10.MFI 16.IEXTCO 22.LSRCHV 28.MSGFqP
5.NOUT 11 .NLINEq 17.IPENAL 23. ITqPST 29.MSGSUM
6.MGRDMX 12.IBOX 18.LAUGMX 24.IDELqP 30.NSUM

WORK :
1 .EPSTOP 7.GAMSPR 12.DMRqP 17.BETD IL
2.EPSFSB 8.TBARCF 13.DMVLS 18.DMBTDL
3.RHO 9.TBARMX 14.EPSACT 19.RHOCF
4.SHIFTX 10.DMLLS 15.EPSqPS 20.DLTVCF
5 .UqP 11.DMRLS 16.EPSqPC 21 .DTDCF
6.DMA

These parameters are explained in section 5.4.
If the list I S is used (NEEDIS=l) to reorder the problem functions (see section 4.3), i t is

stored in array IWORK as follows

I W O R K (~ ~ + I) = IS(I) for I = 1 , . . . , M O B + M I + ME + MFI = M T O T .

Similarly, the scaling vector S (if any; see section 4.3) is stored in WORK as

wORK(99 + I) = SI for I = 1,. . . , 2 * MTOT

if NEEDSC=l.
When the box constraints zL < z < zu are present we have IBOX=l (otherwise IBOX=O).

Let
B o X (I) = zy and BOX(N + I) = zf for I = 1 , . . . , N,

KBOX = 100 if NEEDSC = 0, KBOX = 100 + 2 * MTOT otherwise

The box da ta are stored in WORK after the scaling data:

WORK(KBOX + I - 1) = BOX(I) for I = 1 , . . . , 2 N .

If NLINEq> 0, our problem has m =NLINEq general linear constraints of the form
Cj ai jz j 5 b,, i = 1 , . . . , rn. Then

is stored in WORK, starting from position

KBA = KBOX if I B O X = 0, KBA = KBOX + 2N - 1 if I B O X = 1 ,

i.e. after the box data (if any), according to the scheme

WORK(KBOX + I - 1) = BA(I) for I = 1 , . . . , NLINEq * (N + 1) .

5.3 Subroutine INPRMT

Subroutine INPRMT reads certain parameters and data into the initial parts of arrays IWORK
and WORK.

SUBROUTINE INPRMT(MODE,IWORK,LIWORK,WORK.LWDRK,
* NIN,NOUT,N,IFLAG)

IMPLICIT REAL*~(A-H, O-Z)
DIMENSION IWORK(LIWORK),WORK(LWORK)

Parameters:

MODE (Input) If MODE=1 or MODE=3, the values of all the 50 parameters (except NOUT)
are read from the file number N I N and are stored in IWORK and WORK as described
in section 5.2. If MODE=1, the vectors IS, S, BOX and BA are read as well (see
section 5.2).
If MODE=2 only the parameters ITERMX , MAXFEV, MSGFRq , EPSTOP and EPSFSB
are read into IWORK and WORK.

IWORK(*) (Output) An integer workspace array of NOA1.

LIWORK (Input) The dimension of IWORK (at least 100).

WORK(*) (Output) A workspace array of NOA1.

LWORK (Input) The dimension of WORK.

N I N (Input) The unit number for input.

NOUT (Input) The unit number for output.

N (Output) The number of variables.

IFLAG (Output) IFLAG=O means no error occured. IFLAG>O means the input parameters
were wrong (IFLAG=1 if NOUTCO; for other values of IFLAG some diagnostic will
be printed on the file number NOUT).

Subroutine INPRMT starts by printing a header (see appendix E). Then it prints the
algorithm's parameters in the following groups:

1. MODE,
2. ITERMX. MAXFEV, MSGFRq,
3. EPSTOP, EPSFSB,

4. N, MGRDMX, MOB, M I .
5. ME, MFI, NLINEfJ, IBOX,
6. RHO, SHIFTX,
7. NEEDIS, NEEDSC. ICONVX, IEXTCO,
8. IPENAL, LAUGMX, ISHOR, LENB,
9. u q p ,

10. DMA, GAMSPR, TBARCF, TBARMX,
11. DMLLS , DMRLS , DMRQP , DMVLS ,
12. MODLSR. LSRCHV,
13. EPSACT.

14. ITqPST, EPSqPS. EPSqPC, IDELUP,
15. IMPLDI. BETDIL, LBTDIL, DMBTDL.
16. MSGFLS, MSGFqP, MSGSUM, NSUM,

17. RHOCF. DLTVCF. DLTDCF.

The above groups of parameters correspond to consecutive records read in free format
(see appendix D). In fact, the first record, i.e. the value of MODE, is read by the main program
M A I N O A (see appendix A), whereas subroutine INPRMT reads records 2 through 17. Each
record is printed before the next one is read; this helps in localizing fatal read errors.

Next, the following data are read (if any):

i. I S if NEEDIS=l,

ii. S if NEEDSC=l ,

iii. BOX if IBOX=l ,

iv. BA if NLINEq>O

(see section 5.2). Each group of data is read in free format, and then printed with headers
ISCALE. SCALE, BOX, BLINEq and ALINEq, respectively.

5.4 Parameter definitions

The following is an alphabetical list of input parameters. In parentheses we give restrictions
on their values, and typical values that suffice for most problems. Further suggestions on the
choice of parameters are given in Kiwiel and Stachurski (1987, 1988).

Parameter list:

BETDIL Not used in this version of NOA1.

DLTDCF Coefficient cd for decreasing the locality radius a t line searches for nonconvex
problems (0 < cd < 1; usually cd = 0.1).

DLTVCF Coefficient c, for decreasing the unconstrained minimization tolerance a t automatic
penalty updating with IPENAL=2 (0 < c, < 1; usually c, = 0.5), or for controlling
linearized infeasibilities within the constraint linearization method with IPENAL=l
(0 <_ c, < 1; usually c, = 0).

DMBTDL

DMLLS

DMRLS

DMRQP

DMVLS

EPSACT

EPSFSB

EPSQPC

EPSQPS

EPSTOP

GAMSPR

I B O X

ICONVX

IDELQP

IEXTCO

IMPLD I

IPENAL

I SHOR

I TERMX

ITQPST

LAUGMX

LBTDIL

LENB

Coefficient ma of the locality reset test for nonconvex problems (ma > 0; usually
ma = 0.1).

Not used.

Line search parameter m~ (0 < m~ < 1; usually mL = 0.1).

Line search parameter mR (0 < mR < 1; usually mR = 0.5).

Coefficient m g p for testing the QP accuracy (mR<mQp<l; usually m g p = 0.999).

Line search parameter mu (0 < mu < 1; usually m, = 0.01).

Activity tolerance E, for additional linearizations a t direction finding (E, > 0;
usually E, = 0).

Final feasibility tolerance EF for linear and nonlinear constraints (sF > 0; usually
EF =

Use 2.23-16.

Use 2.23-16.

Final relative optimization accuracy tolerance ES (E ~ > 0; usually ES =

Subgradient locality measure parameter 7s for nonconvex problems (7s > 0;
7s = 0 for convex problems; for nonconvex problems either use 7s = 1 or 10 or
set 7s = 0 so that the subgradient deletion strategy is employed).

I B O X = 1 means there are box constraints; IBOX=O otherwise.

ICONVX=I means the problem is convex; ICONVX=O otherwise.

Controls QP refactorizations (use 1DELQP=1000).

IEXTCO=1 means a separate polyhedral model of the total constraint function will
be used a t direction finding (this is usually more efficient); IEXTCO=O otherwise.

Not used.

Indicates the penalty updating strategy (0 - no penalty updating, 1 - the con-
straint linearization method, 2 - the exact penalty method).

Not used

The maximum number of iterations allowed (ITERMX> 1; usually
ITERMX = max(lON, 30)).

Use 1000.

The maximum number of EPSACT-active linearizations that will augment the search
direction finding subproblem (L A U G M X ~ 0; usually LAUGMX=O).

Not used.

Not used.

LSRCHV Not used.

MAXFEV

MGRDMX

MOB

MODE

MODLSR

MSGFLS

MSGFRq

MSGSUM

N

NEEDIS

NEEDSC

NLINEq

NOUT

The maximum number of problem function evaluations (MAXFEV> 1; usually
MAXFEV= 4 * ITERMX).

The maximum number of stored subgradients. For subgradient selection use
MGRDMX not less than N + 3 (+2 if MFI > 0, +4 if M I +ME > 0, +NLINEq+l if
NLINEq > 0). If MGRDMX is too small, N O A l will either switch to the less efficient
subgradient aggregation strategy or terminate with a message.

The number of nonlinear equality constraints mE > 0.

The number of nonlinear inequality constraints that are handled by the feasible
point technique.

The number of nonlinear inequality constraints mr that are handled by the exact
penalty technique.

The number of objectives mo 2 1.

Indicates the mode of entrance to NOAl. The possible values of MODE are:

1 Start solving a new problem (subroutine INPRMT reads all the parameters,
and then N O A l calls the user's problem subroutine with IFLAG=O before the
solution starts).

2 Continue the solution with the new values of ITERMX, MAXFEV, MSGFRq,
EPSTOP and EPSFSB which are read by subroutine INPRMT (this is useful for
obtaining intermediate printouts).

3 Continue the solution with new values of all the parameters.

9999 Terminate the session.

Not used.

Message level for line search printouts to the file number NOUT (MsGFLSL 0; usually
MSGFLS=O).

Message level for UP printouts to the file number NOUT (MSGF~P> 0; use MSGFqP=2
for useful warnings about ill-conditioning) .

Message level for the iteration log (see section 6.2); MSGFRq> 0.

Message level for summary output to the screen (see section 6.5); MSGSUM> 0.

The number of variables n.

NEEDIS=l means the list IS is used for reordering the problem functions (see
section 4.3); NEEDIS=O otherwise.

NEEDSC=l means the problem functions are scaled (see section 4.3); NEEDSC=O
otherwise.

The number of general linear constraints (N L I N E ~ ? 0).

The unit number for primary output (NOUT > 0).

NSUM The unit number for summary output (NSUM 2 0).

RHO The initial penalty coefficient p (e > 0 ; usually e = 10 or 100).

RHOCF Coefficient c, for increasing the penalty coefficient (c, > 1; usually c, = 2).

SHIFTX The length l y 2 - z'l of the first trial step, which should roughly estimate the
distance from z' to the solution (SHIFTX > 0; usually SHIFTX = 1 - use smaller
values for very rapidly varying functions).

TBARCF Coefficient for diminishing trial stepsizes on nonconvex problems when GAMSPR = 0
(TBARCF > 0; usually TBARCF = 0.8).

TBARMX The threshold i? for serious stepsizes (0 < t 5 1; usually t = 1 or 0.1 for con-
vex problems, t = 0.1 or 0.01 for nonconvex ones, with smaller values preferred
when one wishes t o decrease the number of iterations a t the cost of more function
evaluations).

UQP The weight u of the quadratic term a t direction finding (u > 0; usually u = 1).

5.5 Parameter restrictions

If the parameter restrictions given above are violated, NOAl will terminate with INFORM
(IWORK(1)) set to 904 through 910 and a suitable message. Moreover, the following combi-
nations of parameter values are forbidden:

1. ICONVX .EQ. 1 .AND. GAMSPR. GT. ZERO .OR. ICONVX .EQ. 0 .AND. GAMSPR
.EQ. ZERO .AND. DMA. EQ. ZERO

2. IEXTCO .EQ. 1 .AND. (MI+ME .EQ. 0 .OR. MFI .GT. 0)

3. IPENAL .EQ. 1 .AND. (ICONVX .EQ. 0 .OR. IEXTCO .EQ. 0 .OR. DLTVCF .GE.
ONE .OR. RHOCF .LE. ONE)

4. IPENAL .Eq. 2 .AND. (MI+ME .EQ. 0 .OR. NLINEQ .GT. 0 .AND. IEXTCO .EQ.
1 .OR. DLTVCF .EQ. ZERO .OR. DLTVCF .GE. ONE .OR. RHOCF .LE. ONE)

5. DMLLS+DMVLS .GE. DMRLS .DR. DMRLS .GE. ONE

6. ICONVX .EQ. 0 .AND. GAMSPR .EQ. ZERO .AND. (DLTDCF .LE. ZERO .OR.
DLTDCF .GE. ONE)

where ONE=l . OD+O , ZERO=O . OD+O .
Violation of one of the above conditions will result in termination with INFORM=911

through 916, respectively.

5.6 Practicalities

Use a copy of the standard input file (see appendix D) to create your own file. The parameters
you will have to think about are EPSFSB, EPSTOP, ICONVX, IPENAL, ITERMX, MAXFEV,
MGRDMX , RHO and UQP.

We now list typical parameter values for some methods.

1. The exact penalty method

(a) without exploiting the penalty function structure IEXTCO=O,
MGRDMX=N+G+NLINEQ, IPENAL=Oor 2,RHO=10. RHOCF=2, DLTVCF=0.5

(b) exploiting the penalty function structure (only for NLINEQ=O)
IEXTCO=l. MGRDMX=N+7, IPENAL=O or 2,RHO=10. RHOCF=2. DLTVCF=0.5

2. The constraint linearization method (only for I C O N V X = ~) IEXTCO=1,
MGRDMX=N+7+NLINEQ. IPENAL=1, RHO=10, RHOCF=2, DLTVCF=0.5

For nonconvex problems, the version with subgradient locality measures has
ICONVX=O. GAMSPR=lor 10, DMA=O.

whereas the version with subgradient deletion rules may use
ICONVX=O, GAMSPR=O, DMA-0.1, DLTDCF=O.l

6 Output

The following information is output to the print file number NOUT during the solution of
each problem referred t o in the input file.

A listing of the parameters that were set in the input file.
A listing of the scaling parameters.
A listing of the box and general linear constraints.
An estimate of the amount of working storage needed, compared to how much is avail-
able.
Some diagnostics about wrong parameter values.
The initial solution and function values.
The iteration log.
Some information about penalty increases.
The exit condition and some statistics about the solution obtained.
The final solution and function values.

Further brief output may be directed to the summary file (the screen) as discussed in
section 6.5.

6.1 Initial output

The output of subroutine INPRMT which reads the problem data was described in section 5.3.
If the printout parameter MSGFRQ is positive, N O A l prints the following information:

a) The minimum number of stored subgradients required for the subgradient selection
strategy; if this number is greater than the input parameter MGRDMX, N O A l prints the
minimum number of subgradients required by the aggregation strategy.

b) The declared dimensions of workspace arrays IWORK and WORK, compared to those
needed.

Next, some output may be directed to the print file if the user's subroutine uses the unit
number NOUT during its first call with IFLAG=O (see section 4.2).

6.2 Iteration log

The amount of intermediate printout to the file number NOUT is controlled by the value of
the printout parameter MSGFRq in the following way:

MSGFRQ=O No printout.

MSGFRQL 1 The initial 5 lines (see section 6.1) and the final 10 lines (see section 6.4).

MSGFRQL 2 The initial and final solutions.

MSGFRQ? 3 The final nonlinear problem function values.

MSGFRQL 4 The final values of the linear constraint functions.

MSGFRQE [lo, 191 One line with function values every tenth iteration, and a heading every
100th iteration.

MSGFR~E [20,29] One line with function values on each iteration, and a heading every tenth
iteration.

MSGFRQE [30,39] As for MSGFRQE [20,29] together with a one line message for each increase
of the exact penalty parameter RHO and the QP penalty parameter CQP.

MSGFRQ? 40 A heading and function values on each iteration, and messages about pe-
nalty increases.

MSGFRQ? 60 Debug printout.

Additionally, when MSGFRqL 20, one may trace the changes in the solution, all the problem
function values and the linear constraint function values. They are printed according to the
scheme

rnod(MS~FR9 , lo) 2 2 - the solution,

mod(MSGF~q,10)> 3 - the problem functions,

m o d (~ ~ ~ F R q , 1 0) 2 4 - the linear constraint functions

after each change, i.e. they are not printed after a null step. For example, MSGFRQz42 will
print each solution.

The printed labels refer to the following items.

I TER The current iteration number k.
OBJECTIVE The objective value.
NFEV The number of function evaluations.
DNORM The norm of the search direction dk .
KQP The number of subgradients active at direction finding.

VLIN The predicted descent (optimality estimate) vk .
NRS The number of locality resets.
ADIST The locality radius of subgradient information ak .
EXACT PENALTY The exact penalty function value.
CONSTR The total constraint function value.
RHO The penalty coefficient e .

FCOVAL The value of max{F,(z) : j = 1 , . . . , mr ; (Fj(z)l : j = mr + l , . . . , m r +
mE).

F INVAL The value of max{ Fj(z) : j = mr + m~ + 1 , . . . , m ~ + m~ + m a) , where
ma =MFI (see (44)).

FLIVAL The maximum linear constraint function value.

CqP The qP penalty parameter.
FCPRED The predicted constraint function value Fk (zk + dk).
DELTAV The unconstrained minimization tolerance bk for penalty increases.
VTILqP The primal predicted descent Ck (which should agree with VLIN).

6.3 Exit conditions

On exit N O A l sets IWORK(1) to the value of INFORME [I, 9191, or to INFORM=IFLAG if the user's
subroutine requested termination with IFLAGCO (see section 4.2). If MSGFRq>O, a message is
printed to summarize the final result. Here we describe each message preceded with its
INFORM value and suggest possible courses of action.

1 . O P T I M A L S O L U T I O N F O U N D
If the problem is convex, the predicted descent (VLIN=V~) and the constraint violation are
small, then the solution found is probably optimal. It could be improved if VLIN is not too
small; roughly speaking, if for an unconstrained problem J v k J / (l + If (zk)l) lo-' then one
would expect the 1-th digit of f (zk) to change if the run were continued.

2 . T O O M A N Y I T E R A T I O N S
The ITERMX limit was exceeded before the required solution could be found. If the iteration
log shows that progress was being made, restart the run from the current solution.

3 . T O O M A N Y F U N C T I O N E V A L U A T I O N S
The MAXFEV limit was exceeded - proceed as for INFORM=2.

4 . P R O B L E M S U B R O U T I N E S E E M S T O B E G I V I N G I N C O R R E C T
S U B G R A D I E N T S
The line search discovered significant discrepancies between the directional derivatives of
the problem functions and their finite difference quotients. The functions could be non-
semismooth or, most probably, there are mistakes in the subgradient calculation. Check the
function and subgradient computation very carefully.

5. C A N N O T F I N D A D E S C E N T D I R E C T I O N
The rounding errors prevented the qP subroutine from finding a descent direction. For well-
scaled problems this occurs only near the solution. Check if the qP weight UqP is not too
small, and the penalty parameter RHO and CQP are not too large (if they are, consider scaling
the problem).

6. T H E L I N E A R C O N S T R A I N T S A R E T O O T I G H T (O R B A D L Y S C A -
L E D)
The QP subroutine was unable to find a direction feasible for the linear constraints. Consider
increasing the feasibility tolerance EPSFSB and scaling the problem.

7 . T H E C O N S T R A I N T S A R E T O O T I G H T (O R B A D L Y S C A L E D)
The Slater constraint qualification is violated or the problem is ill-scaled. Relax the con-
straints and/or increase the feasibility tolerance EPSFSB.

8. T H E C O N S T R A I N T S A R E T O O T I G H T O R B A D L Y S C A L E D
A too large penalty coefficient was generated. The constraints may be irregular (e.g. incon-
sistent) or ill-scaled. To check consistency, one may minimize the constraint violation (use
NEEDIS=l and a list IS t o treat the constraints as objectives; see section 4.3), and then use
a feasible starting point for another run.

9 . T H E B O X C O N S T R A I N T S A R E I N C O N S I S T E N T
The box data are wrong (zf > z y for some i) .

1 0 . T H E S T A R T I N G P O I N T I S I N F E A S I B L E F O R T H E B O X A N D T H E
L I N E A R C O N S T R A I N T S
Check the data, and consider increasing the feasibility tolerance EPSFSB.

1 1 . T O O M A N Y L I N E S E A R C H I T E R A T I O N S
The linesearch failed after 30 trial stepsizes. See under INFORM=4. One may decrease the line
search parameter DMLLS.

1 2 . N U M E R I C A L E R R O R S - C A N N O T D R O P O L D L I N E A R I Z A T I O N S
This message should never appear. If it does, increase GAMSPR.

9 0 0 . N O T E N O U G H W O R K S P A C E T O S T A R T S O L V I N G T H E P R O B -
L E M
The declared dimensions of workspace arrays IWORK and WORK are too small.

901-919. I N V A L I D I N P U T P A R A M E T E R S
A message will indicate wrong parameters (referring, e.g., to groups of parameters from the
input records).

6.4 Solution output

At the end of a run, the solution is stored in the array X , whereas some additional information
is stored a t certain locations in the workspace arrays as follows:

IWORK(l)=INFORM The exit condition (see section 6.3).
IWORK (50) =ITER The number of iterations.
IWORK(51) =NFEV The number of function evaluations.
IWORK(52) =NOGREV The number of objective subgradient evaluations.
IWORK(53) =NCGREV The number of constraint subgradient evaluations.
IWORK(55) =KF The pointer to the function values stored in WORK

WORK(KF+I-1)= j y (z) for I = 1,. . ., MTOT
(note the scaling!).

IWORK(56) =MTOT The total number of problem functions.
IWORK(57)=KA The pointer to the linear constraint function values stored in WORK

WORK(KA+I-1)= (AI ,X) - BI for I = 1,. ..,NLINEq.
IWORK(Q8)=LIWORl The minimum dimension of IWORK required.
IWORK(Q9) =LWORKl The minimum dimension of WORK required.

WORK(50)=EPFVAL
WORK(5l)=FOBVAL
WORK (52) =FOCVAL

WORK (54) =FLIVAL
WORK(55)=VLIN
WORK(56)=DNORM
WORK(57)=ADIST
WORK (58) =RHO
WORK (SQ) =CQP

The exact penalty function value.
The objective value.
Theva lueofmax{F j (z) : j= 1 , . . . , mr; (Fj(z) l : j = m I + l , . . . , mr+

mE).
Theva lueofmax{F j (z) : j = m r + m ~ + l , . . . , m I + m E + m d) , w h e r e
md =MFI (see (44)).
The value of max { (AI, X) - BI : I = 1, . . . , NLINEQ).
The optimality estimate ok.
The norm of the search direction.
The locality radius ak.
The penalty coefficient.
The QP penalty parameter.

Some of the items listed above are undefined on exit with INFORM2 900. They can be
printed by selecting a suitable value of MSGFRQ (see section 6.2). The final printout includes
10 lines, followed by the solution, nonlinear and linear function values (see appendix E).

6.5 Summary output

If the summary output level MSGSUM is positive and the unit number NSUM=O, certain brief
information will be output to the screen. (If NSUM is neither 0 nor NOUT, then a suitable file
should be opened in the main program.)

The values of MSGSUM between 0 and 29 have the same meaning as those of MSGLVL (see
section 6.2), except that the solution and function values are not printed.

7 System information

7.1 Distribution diskette

The object code, some source code and data for NOAl are distributed on a floppy disk con-
taining 28 files.

The following is a list of the files and a summary of their contents.

File name
AGGREG.OBJ
ALGEBR.OBJ

ALPVAL.OBJ
AUGMNT.OBJ
BOXPRJ.OBJ
BUNDLE.OBJ
EVALPF.OBJ
GETDAT.OBJ
GETTIM.OBJ
INPRMT. OBJ
LNOA1. BAT
MAINOA.FOR
MAINOA.OBJ
NOA1. LNK

Description
Subroutine AGGREG
Subroutines COPYVC , ICOPVC , IZERVC . SUBST, TLOWER, VCNORM,
VCPROD, VZNORM, ZEROVC
Subroutine ALPVAL
Subroutines AUGMNT , SORTAL . SORTA1. SORTA2
Subroutines BOXPRJ , PREPQP , UPDALP
Subroutines BUNDLE. INSGRD , JFREE
Subroutines EVALFI , EVALF1, EVALPF , EVALPl
Subroutine GETDAT
Subroutine GETTIM
Subroutine INPRMT
Batch file for linking NOAl
Source file for the main program
Main program MAINOA
A response file for the linker

NOA1. OBJ
NOA1A.OBJ
NOAOUT.OBJ
0UTLOG.OBJ
qPDF4.0B J
qUADR . FOR
qUADR. OB J
qUADR3. DAT
STBNDL.OBJ
STORCP.OBJ
TIMEPF.OBJ
UPDRHO. OBJ
USERS. FOR
USERS. OBJ

Subroutine NOAl
Subroutine NOAlA
Subroutine NOAOUT
Subroutines OUTLOG and OUTGRG
Subroutines qPDF4, qPDF4A and SOLRTR
Source code for subroutine qUADR
Subroutine QUADR
Data for QUADR
Subroutine STBNDL
Subroutine STORCP
Subroutine TIMEPF
Subroutines UPDGRD and UPDRHO
Source code for subroutine USERS
Subroutine USERS

Note that the names of your subroutines must differ from those used by NOA1, and that
NOAl uses the following COMMON blocks

EXAMPL
Nl AUGM
NlDILl
N 1 EPV
NlKBLI
NlLSIO
NlLSRT
qPDF4A

MCHTOL
NlBNDL
N'lDIL2
NlEVAL
N 1 KFVA
NlLSRI
N'lNOAI
qPDF4B

NEWX
NlCMOB
NlELOG
NlKALA
NlKGRE
NlLSRO
NlNOAR
qPLoGA

NINOUT
NlCRHO
NlEPFC
Nl KB
NlKlAU
NlLSRP
N1 WRIT
qPLoGB

It does not use the blank COMMON.

7.2 Problem-dependent subroutines

Some of the routines may require modification to suit a particular problem or a non-standard
application. We discuss each of them in turn.

The main program
You can decrease the size of the executable program by decreasing the dimensions of the
arrays IU, IWORK, RU and WORK declared in the main program MAINOA (see section 4.4 and
appendix A). On the other hand, none of these arrays may exceed the limit of 64 kB of
storage (the object files cannot handle larger arrays).

If you wish to create your own version of subroutine INPRMT for reading the problem
parameters, follow the guidelines of sections 5.2 and 5.3.

Subroutine USERS
For each problem, you may insert a calling sequence to your subroutine in subroutine USERS.
Then a t run-time the problems will be distinguished by the value of the parameter IEXAMP
(see appendix B).

Of course, you must append the names of your object files to the list of linked files
contained in file NOA1. LNK.

7.3 A testing example

The files qUADR. FOR and qUADR3. DAT (see appendices C and D) contain the source code and
data for a simple minimax problem which may be used for testing NOA1. In what follows we
suggest how to organize the hard disk directories for NOA1. An experienced user will organize
them differently.

Installation procedure

1. Create directories F77L and N O A l in the root directory.
2. Copy the contents of the distribution diskette to the N O A l directory.
3. Copy the Lahey F77L compiler and the linker (IBM linker, version 2.30 or higher) to

the F77L directory.
4. Make sure the F77L directory is included in the path for DOS.
5. Connect to the N O A l directory.
6. Create an executable file N O A l .EXE by executing the batch file LNOA1 .BAT. This file

contains one line
. . . \F77L\link Q NOA1. LNK
It refers to the automatic response file NOA1. LNK (see the DOS manual for information
about the stack and segment extensions).

7. Copy the file qUADR3. DAT to the file FORT1.
8. Run N O A l by executing the command N O A l (or N O A l .EXE). Check the output against

that shown in appendix E.
9. You may now manipulate the data in the FORT1 file to run different versions of the

QUADR problem (constrained, nonconvex, etc.) and to check the influence of certain
parameters (EPSTOP , EPSFSB, etc.).

8 References

Clarke, F . H. (1983). Optimization and Nonsmooth Analysis. Wiley Interscience, New
York.

Kiwiel, K. C. (1985a). Methods of Descent for Nondifferentiable Optimization. Springer-
Verlag, Berlin.

Kiwiel, K. C. (1985b). A Linearization Algorithm for Nonsmooth Minimization. Mathe-
matics of Operations Research 10, 185-194.

Kiwiel, K. C. (1985~). An Algorithm for Linearly Constrained Convex Nondifferentiable
Minimization Problems. Journal of Mathematical Analysis and Applications 105,
452-465.

Kiwiel, K. C. (1985d). An Exact Penalty Function Algorithm for Nonsmooth Convex Con-
strained Minimization Problems. IMA Journal of Numerical Analysis 5, 111-119.

Kiwiel, K. C. (1986a). An Aggregate Subgradient Method for Nonsmooth and Nonconvex
Minimization. Journal of Computational and Applied Mathematics 14, 391-400.

Kiwiel, K. C. (1986b). A Method for Solving Certain Quadratic Programming Problems
Arising in Nonsmooth Optimization. IMA Journal of Numerical Analysis 6, 137-152.

Kiwiel, K. C. (1986~) . A Method of Linearizations for Linearly Constrained Nonconvex
Nonsmooth Minimization. Mathematical Programming 34, 175-187.

Kiwiel, K. C. (1987). A Constraint Linearization Method for Nondifferentiable Convex
Minimization. Numerische Mathematik 51, 395-414.

Kiwiel, K. C. and Stachurski, A. (1988). Issues of Effectiveness Arising in the Design of a
System of Nondifferentiable Optimization Algorithms. Working Paper, International
Institute for Applied Systems Analysis, Laxenburg, Austria (to appear).

Lemarechal, C. (1978). Nonsmooth Optimization and Descent Methods. Report RR-78-4,
International Institute for Applied Systems Analysis, Laxenburg, Austria.

Mifflin, R. (1982). A Modification and an Extension of Lemarechal's Algorithm for Nons-
mooth Minimization. Mathematical Programming Study 17, 77-90.

A The main program MAINOA

PROGRAM MAINOA
C
C This is the default main program for NOA1.
C
C Written by Krzysztof C. Kiwiel, Systems Research Institute,
C Polish Academy of Sciences, Newelska 6, 01-447 Warsaw.
C Date last modified: October 7, 1988.
C
C*****Parameters of program MAINOA:
C
C EPSMCH is the relative floating-point machine precision.
C IDATIM(*) is used by subroutine TIMEPF for storing the
C current date, time and elapsed time.
C IEXAMP is the problem number read by the default subroutine
C USERS. It enables you to solve several problems
C without changing the main program.
C IFLAG indicates the exit condition of the subroutine
C INPRMT .
C Iu(*) is the user's integer array (not accessed by NOA1).
C IWORK(*) is an integer work array used by NOA1.
C JOB indicates the job to be performed by TIMEPF.
C LIU is the length of the user's integer array IU.
C LIWORK is the length of the integer work array IWORK.
C LRU is the length of the user's array RU.
C LWORK is the length of the WORK array.
C MODE is the mode of entrance to NOA1.
C MSGSUM indicates the amount of summary output desired.
C N is the number of variables.
C NIN is the unit number for input to subroutine INPRMT.
C NIND is the unit number for input to subroutine INQUAD
C and the user's problem subroutines.
C NOUT is the unit number for output from the main program
C and the subroutines INPRMT, USERS, NOAl and TIMEPF.
C NOUTD is the unit number for output from the subroutine
C INPRMT and the user's problem subroutines.
C NSUM is the summary output unit number for output to the
C summary file from the main program and the
C subroutines NOAl and TIMEPF.
C NX is the length of the X array.
C RU(*) is the user's array (not accessed by NOA1).
C RTM AX is a large number (smaller than the square root of
C the greatest positive number in the machine
C arithmetic).
C RTMIN is a small number (greater than the square root of
C the smallest positive number in the machine
C arithmetic .

C WORK(*) is the work array used by NOA1.
C
C

INTEGER IEXAMP, IFLAG , JOB , LIU ,
* LIWORK, LRU , LWORK , MODE .
* MSGSUM, N , NIN , NIND ,
* NOUT , NOUTD , NX , NSUM
DOUBLE PRECISION EPSMCH, RTMAX , RTMIN
INTEGER IDATIM(9)

C The following array lengths should suffice for problems
C with up to 50 variables.

PARAMETER (LIU=100, LIWORK=2500, LRU=2500.
* LWORK=8160, NX=50)

INTEGER IU(L1U) , IWORK(LIW0RK)
DOUBLE PRECISION RU(LRU) , WORK(LW0RK) , X (NX)

C
C*****COMMON blocks:

COMMON /EXAMPL/ IEXAMP
COMMON /MCHTOL/ EPSMCH, RTMIN, RTMAX
COMMON /NINOUT/ NIND , NOUTD

C
C*****Subprograms called: INPRMT, NOA1, TIMEPF.
C
C USERS is the default user's problem subroutine.

EXTERNAL USERS
C
C*****Body of program MAINOA:
C Open the primary input and output files.

NIN =1
NOUT =2
OPEN (UNIT=NIN , FILE= 'FORT1 ' , STATUS= 'OLD')
OPEN (UNIT=NOUT, FILE='FORTZ1, STATUS='UNKNOWN')
NIND =NIN
NOUTD=NOUT

C Set the machine tolerances.
EPSMCH=2.2D-16
RTMAX =l.OD+60
RTMIN =2.OD-20

C MODE is the mode of the current entrance to NOA1.
C The possible values of MODE are
C 1 - Start solving a new problem;
C 2 - Continue solving the current problem with new values
C of the algoritm's termination perameters;
C 3 - Continue solving the current problem with new values
C of all the algoritm's perameters;
C 9999 - Terminate the session.

100 READ(NIN.*) MODE
C Print the current date and time, reinitializing the elapsed

C time counter at the start of a new problem.
JOB=O
IF (MODE.GT.l) JOB=l
CALL TIMEPF(JOB, NOUT, IDATIM)

C Test for termination.
IF(MODE.EQ.9999) STOP

C Read the algoritm's parameters into arrays IWORK AND WORK.
CALL INPRMT (MODE. IWORK , LIWORK ,WORK, LWORK . NIN . NOUT, N , IFLAG)

C Test for an error condition.
IF(IFLAG.NE.0) STOP

C Print the date and time on the summary file NSUM, if any.
MSGSUM=IWORK(29)
NSUM =IWORK(30)
IF (MSGSUM.GT.0 .AND. NSUM.GE.0)

* CALL TIMEPF(1 , NSUM, IDATIM)
C Solve the problem.

CALL NOAl(USERS.IU,LIU,RU,LRU,N,X.
* IWORK,LIWORK,WORK,LWORK)

C Print the current date and time.
CALL TIMEPF(1 , NOUT, IDATIM)
IF (MSGSUM.GT.0 .AND. NSUM.GE.0)

* CALL TIMEPF (1, NSUM, IDATIM)
GO TO 100

C*****Last card of program MAINOA**********************************
END

B Subroutine USERS

C THIS IS THE DEFAULT SUBROUTINE USERS.
SUBROUTINE USERS(X.N.I,F,GRAD,IFLAG,IU,LIU,RU,LRU)
IMPLICIT REAL*B(A-H ,0-Z)
DIMENSION X(N) . GRAD(N) , IU(LIU) ,RU(LRU)

C IEXAMP=PROBLEM NUMBER.
C NEEDX =1 IF THE INITIAL X IS READ BY SUBROUTINE USERS.
C =O IF THE INITIAL X IS READ BY THE PROBLEM SUBROUTINE
C OF EXAMPLE NUMBER IEXAMP.
C NIND =UNIT NUMBER FOR INPUT.
C NOUTD =UNIT NUMBER FOR OUTPUT.

COMMON /EXAMPL/ IEXAMP
COMMON /NINOUT/ NIND,NOUTD
IF (IFLAG. NE.0) GO TO 100

READ(NIND,*) IEXAMP,NEEDX
IF(IEXAMP.Eq. 1) WRITE(NOUTD.1)

1 FORMAT(20H ***PROBLEM qUADR***)
C IF(IEXAMP.Eq.2) WRITE(NOUTD,2)
C 2 FORMAT(2lH ***PROBLEM MAXLEM***)

IF(NEEDX.Eq.1) READ(NIND,*) X
100 CONTINUE

C CALL PROBLEM NUMBER IEXAMP.
IF(IEXAMP.Eq.1) CALL qUADR(X.N,I.F.GRAD,IFLAG,IU.LIU,RU,LRU)

C IF(IEXAMP.Eq.2) CALL MAXLEM(X,N,I,F,GRAD,IFLAG,IU,LIU,RU,LRU)
999 RETURN

END

C Subroutine QUADR

SUBROUTINE qUADR(X,N,I,F,GRAD,IFLAG,IU,LIU,C,LRU)
IMPLICIT REAL*8(A-H.0-Z)
DIMENSION X(2) ,GRAD(2) ,C(7,10)
DATA TWO

* /2DO/
C INITIALIZE THE PROBLEM ON THE FIRST OPTIMIZER CALL.

IF(IFLAG.E~.O) CALL IN~UAD(X,N,IU.LIU,C,LRU.IFLAG)
C EXIT IF THIS IS THE FIRST OR THE LAST CALL.

IF(IFLAG.NE.l.AND.IFLAG.NE.2) GO TO 999
IF(IFLAG.Eq.2) GO TO 1

C COMPUTE THE I-TH FUNCTION VALUE.
F=C(l. I)*(X(l)-C(2,1))**2+C(3,I)*(X(2)-C(4.1))**2

* +c(s,I)*x(l)+c(6,I)*X(2~+C(7,I)

GO TO 999
C COMPUTE THE I-TH FUNCTION'S GRADIENT:

1 CONTINUE
GRAD(l)=TWO*C(l .I)*(X(l)-C(2,I))+C(5,I)
GRAD(2)=TWO*C(3, I) * (X(2) -C(4. I))+C(6, I)

999 RETURN
END

.
SUBROUTINE INqUAD(X,N,IU,LIU,C,LRU,IFLAG)
IMPLICIT REAL*8(A-H.0-Z)

c UP TO 10 ~UADRATICS (EACH GIVEN BY 7 PARAMETRS) CAN BE READ
C INTO ARRAY C.

DIMENSION X(2),C(7,10)
COMMON /NINOUT/ NIND.NOUTD

C NqUADR=NUMBER OF qUADRATIC FUNCTIONS OF THE PROBLEM.
READ (NIND . *) NqUADR

C OUTPUT THE DATA FOR FUTURE CHECKS.
WRITE(NOUTD.1001) NqUADR,NqUADR

1001 FORMAT(8H NqUADR=,I2,
* 31H QUADRATICS GIVEN BY MATRIX C(,I3,4H,7):)

C FORCE TERMINATION IF THE DATA SPACE IS TOO SMALL.
IFLAG=- 1
IF(LRU.LT.7*NqUADR) GO TO 999

IFLAG=O
C INPUT THE PROBLEM DATA.

DO 10 I=l,NqUADR
10 READ(NIND,*) (C(J.11, J=1,7)

WRITE(NOUTD,1002) ((C(J,I),J=1,7),1=l,NqUADR)
1002 FORMAT(1H ,1P7E10.3)
999 RETURN

END

D Data for QUADR

1
30 200 2 0
1E-10 1E-8
2 5 3

0 0 0

1EO 1 . 0
0 0 1
0 0 0
1
.1 0 . .5
.1 .5 . 888

0 1
0
100 2 . 2 E - 1 4 2 . 2 E -
1 0 0

00 2 2 0
2 . 1 . 1
1 1
- 1 - 1
3

1 1 1 1 4 3
1 1 1 1 0 3
1 1 1 1 1 0
8999

qUADR3 DATA

MODE
ITERMX, MAXFEV, MSGFRq
EPSTOP , EPSFSB
N , MGRDMX, MOB , M I
ME , MFI , NLINEq. IBOX
RHO . SHIFTX
NEEDIS, NEEDSC. ICONVX, IEXTCO
IPENAL, LAUGMX, ISHOR , LENB

u q p
DMA , GAMSPR, TBARCF. TBARMX
DMLLS , DMRLS . DMRqP . DMVLS
MODLSR, LSRCHV
EPSACT
ITqPST, EPSqPS, EPSqPC, IDELqP
IMPLDI, BETDIL, LBTDIL, DMBTDL
MSGFLS, MSGFQP, MSGSUM, NSUM
RHOCF , DLTVCF, DLTDCF
IEXAMP , NEEDX
X
qUADR

C(* , 1)
C(* - 2)
C(* , 3)
MODE

E Results for QUADR

DATE..1988-10-06 TIME..20:50:06 ELAPSED TIME.. 0:00:00

NOAl STARTING PARAMETERS:
MODE= 1

ITERMX= 30 MAXFEV= 200
EPSTOP= 1.00E-10 EPSFSB= 1.00E-08

N = 2 MGRDMX= 5
ME= 0 MFI= 0

RHO= 1.00E+00 SHIFTX= 1.00E+00
NEED IS= 0 NEEDSC= 0
IPENAL= 0 LAUGMX= 0

UQP= 1.00E+00
DMA= 1.00E-01 GAMSPR= 0.00E+00

DMLLS= 1.00E-01 DMRLS= 5.00E-01
MODLSR= 0 LSRCHV= 1
EPSACT= 0.00E+00
ITQPST= 100 EPSqPS= 2.20E-16
IMPLDI= 1 BETDIL= 0.00E+00
MSGFLS= 0 MSGFqP= 2
RHOCF= 2.00E+00 DLTVCF= 1.00E-01

NOAl - - - VERSION 1.0 OCT 1988
REqUIRED MINIMUM NUMBER OF STORED SUBGRADIENTS= 5 FOR SELECTION
WORKSPACE PROVIDED IS IWORK(2500), WORK(8160).
TO SOLVE PROBLEM WE NEED IWORK(289), WORK(321).
PROBLEM QUADR
NQUADR= 3 QUADRATICS GIVEN BY MATRIX C(3,7):

1.000E+00 1.000E+00 1.000E+00 1.000E+00 4.000E+00 3.000E+00-2.000E+00
1.000E+00 1.000E+00 1.000E+00 1.000E+00 0.000E+00 3.000E+00-2.000E+00
1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 0.000E+00-2.000E+00

INITIAL X= -1.00000E+00 -1.00000E+00
INITIAL EPFVAL= 5.000000000E+00 FOBVAL= 5.000000000E+00

FCOVAL= 0.000000000E+00 FINVAL= 0.000000000E+00
FLIVAL= 0.000000000E+00

I TER OBJECTIVE NFEV DNORM KQP VLIN
1 5.000000000E+00 1 5.00E+00 1 -2.50E+01
2 1.000000000E+00 2 3.00E+00 1 -9.00E+00
3 1.000000000E+00 3 1.07E+00 2 -3.20E+00
4 1.000000000E+00 4 4.97E-01 2 -1.42E+00
5 1.000000000E+00 5 5.26E-01 3 -1.35E+00
6 1.793428520E-01 6 1.18E-01 3 -2.72E-01
7 7.651168715E-02 7 4.99E-02 3 -1.07E-01
8 7.651168715E-02 8 3.83E-02 3 -8.04E-02
9 3.537131622E-03 9 1.93E-03 3 -4.28E-03

I TER OBJECTIVE NFEV DNORM KQP VLIN
10 5.881631781E-04 10 4.38E-04 3 -8.81E-04

EXIT NOA1: OPTIMAL SOLUTION FOUND

NO. OF ITERATIONS . . . 15 EXACT PENALTY VALUE 2.40236650017600E-13
FUNCTION EVALUATIONS 15 OBJECTIVE VALUE 2.40236650017600E-13
CALLS FOR EPF GRAD.. 15 EXTERNAL CONSTRAINT 0.00000000000000E+00
CALLS FOR CON GRAD.. 0 INTERNAL CONSTRAINT 0.00000000000000E+00
PENALTY COEFFICIENT. 1.000E+00 LINEAR CONSTRAINT.. 0.00000000000000E+00
QP PENALTY COEF 1.000E+00 PREDICTED DESCENT.. -2.411E-13
LOCALITY RADIUS 9.656E-08 NORM OF DIRECTION.. 1.088E-13
FINAL X

1.03031E-13 3.42252E-14
FINAL NONLINEAR FUNCTION VALUES
2.40237E-13 -1.71887E-13 -1.71532E-13

USER'S SUBROUTINE CALLED WITH IFLAG= 3

DATE..1988-10-06 TIME..20:50:09 ELAPSED TIME.. 0:00:03

F Summarized results for QUADR

DATE..1988-10-06 TIME..20:50:06 ELAPSED TIME.. 0:00:00

NOAl - - - VERSION 1.0 OCT 1988
INITIAL EPFVAL= 5.000000000E+00 FOBVAL= 5.000000000E+00

FCOVAL= 0.000000000E+00 FINVAL= 0.000000000E+00
FLIVAL= 0.000000000E+00

ITER OBJECTIVE NFEV DNORM KqP VLIN

1 5.000000000E+00 1 5.00E+00 1 -2.50E+01

2 1.000000000E+00 2 3.00E+00 1 -9.00E+00
3 1.000000000E+00 3 1.07E+00 2 -3.20E+00

4 1.000000000E+00 4 4.97E-01 2 -1.42E+00
5 1.000000000E+00 5 5.26E-01 3 -1.35E+00

6 1.793428520E-01 6 1.18E-01 3 -2.72E-01
7 7.651168715E-02 7 4.99E-02 3 -1.07E-01
8 7.651168715E-02 8 3.83E-02 3 -8.04E-02

9 3.537131622E-03 9 1.93E-03 3 -4.28E-03
I TER OBJECTIVE NFEV DNORM KqP VLIN

10 5.881631781E-04 10 4.38E-04 3 -8.81E-04
1 1 5.881631781E-04 1 1 3.31E-04 3 -5.89E-04
12 1.428306300E-06 12 6.81E-07 3 -1.51E-06

13 9.117102838E-08 13 6.01E-08 3 -1.28E-07
14 7.282480522E-08 14 3.64E-08 3 -7.28E-08
15 2.402366500E-13 15 1.09E-13 3 -2.41E-13

EXIT NOA1: OPTIMAL SOLUTION FOUND

NO. OF ITERATIONS . . . 15 EXACT PENALTY VALUE 2.40236650017600E-13
FUNCTION EVALUATIONS 15 OBJECTIVE VALUE 2.40236650017600E-13

CALLS FOR EPF GRAD.. 15 EXTERNAL CONSTRAINT 0.00000000000000E+00
CALLS FOR CON GRAD.. 0 INTERNAL CONSTRAINT 0.00000000000000E+00

PENALTY COEFFICIENT. 1.000E+00 LINEAR CONSTRAINT.. 0.00000000000000E+00

qP PENALTY COEF 1.000E+00 PREDICTED DESCENT.. -2.411E-13

LOCALITY RADIUS 9.656E-08 NORM OF DIRECTION.. 1.088E-13

FINAL X
1.03031E-13 3.42252E-14

FINAL NONLINEAR FUNCTION VALUES

2.40237E-13 -1.71887E-13 -1.71532E-13

USER'S SUBROUTINE CALLED WITH IFLAG= 3

DATE..lQ88-10-06 TIME..20:50:09 ELAPSED TIME.. 0:00:03

