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FOREWORD 

This paper is concerned with the anti-monotonicity of differential mappings 
connected with general equilibrium problems. These results can be used fo r  the in- 
vestigation of different game theory problems, f o r  example Nash equilibria f o r  
noncooperative n-person games. Such an approach gives possibility t o  construct 
recur ren t  algorithms for finding the equilibria point. 

This research w a s  conducted within the framework of the Adaptation and Op- 
timization Project  in the System and Decision Sciences Program. 

Alexander B. Kunhanski 
Chairman 

System and Decision Sciences Program 



AUTHOR 

Senior research scientist Stanislav Urias'ev from the Institute of Cybernetics 
Academy of Sciences of the Ukr. SSR (252207 Kiev, USSR) worked on stochastic 
optimization and game theory and wrote this paper during his two  week visit a t  IIA- 
SA. 



CONTENTS 

1 Introduction 

2 Weakly Convex Functions 

3 On the Anti-Monotonicity of the Dierential 
Maps for the Weakly Convex Functions 

4 The Monotonicity of Dierential Map for  
Quasi Convex-Concave Functions 

References 



ABSTRACT 

Le tX  be a s u b s e t o f  a Hilbert space H a n d  ck:X X X  -+R, (k(z, z )  = O  f o r a l l  
z EX.  Let G(z) = ay ck(x, v)ly == denote generalized dierential with respect to 
the second argument at the point (z ,  z).  W e  shall  be concerned with the propert ies 
of the function ck sucient to ensure the anti-monotonicity of the map G(x). I t  will be 
shown that  f o r  the anti-monotonicity of the map G(x) i t  i s  sucient to assume 
convexity-concavity of the function ck. In the case of the weakly convex-concave 
function ck the  map G(x) i s  anti-monotone under some conditions on the remainder 
terms. In the case of the quasi convex-concave function ck, the condition similar to 
the anti-monotonicity condition hold. 

Some propert ies of the  weakly convex functions used in a r t i c le  will be proved. 

- vii - 



ON THE ANTI-MONOTONICITY OF DFFEFWMTIAL 
MF'PINGS CONNECTED WITH GENERAL 

EQUILIBRIUM PROBLEM 

SP. Urias'ev 

The mathematical problems discussed in this ar t ic le  were stimulated by the in- 

vestigations of simulation model f o r  international oil t rade (SMIOT) developed at 

the  International Institute f o r  Applied Systems Analysis [ I ] .  

Briey the  main idea of this model is the following. There i s  a market of a single 

homogeneous product, which consists of some sellers (exporters) and a single 

buyer (importer). Let i = 1, . . . , n be the  exporters,  f i  (2) be the  marginal cost 

of which any expor te r  i produces the  amount z of t he  product f o r  marketing and 

r ( z )  be  the pr ice at which the importer would agree t o  buy the amount z of the 

product. If z ;  denotes the  amount of the product sold by expor te r  i ,  then the  

revenue qi ( z )  of t he  expor te r  i ,  can be expressed as follows: 

Let s be a number of a time point, zf be the amount of the product sold by ex- 

po r te r  i at time s .  The dynamics of the  model is given by the relation 

xt +l = max 0, zt - p, t aqi ( z S )  I , S = 0 ,  1 ,  ... 
a zi 

where ps , s = 0 ,  1 , .  . . are the positive sca la r  values. 

In more general  form 

where nX(-) denotes the  operation of projection on feasible set 



is a dierential map of preference. 

The aim of t he  study is to formulate assumptions on the functions r ( 2 ) .  f i  (z) ,  

i = 1,  . . . , n such tha t  the process (1) has a stable cycle, converges to a Nash 

equilibrium point o r  converges to some point. The resul ts of this art ic le allow us to 

formulate conditions on the functions r (z) ,  f i  (z) ,  i = 1, . . . , n insuring the con- 

vergence of process (1) to a Nash equilibrium point. These questions were dis- 

cussed in papers [3] - 151 and in more general situations in 161, P I ,  etc. 

We study some conditions on the payo functions sucient f o r  the anti- 

monotonicity of mapping g ( z )  o r  others dierential mappings. Hence we can formu- 

late the conditions under which many iterative algorithms f o r  search equilibrium 

points are applicable (see, f o r  example, [8] - 1141). 

STATEMENT OF THE PROBLEM Let X be a subset of a Hilbert space H and 

<., .> denote the inner  product. W e  say the multivalued mapping G is  anti-monotone 

o n X i f  < g ( z ) - g ( y ) ,  y - z >  Z O f o r a l l z ,  y EX,  g ( z )  EG(z) ,  g ( y )  € G ( y ) .  

Let Y:X XX - R be a quasi o r  weakly 1151 convex-concave function, 

Y (2 ,  z )  = 0 f o r  al l  z E X. Let G (2)  = 8Y Y (z .  y )&  ., denote generalized 

dierential of the function Y with respect  t o  the second argument at the point 

(282) .  

W e  shall be concerned with the propert ies of the function Y sucient t o  ensure 

the anti-monotonicity of the map G(z). I t  will be shown that  fo r  the anti- 

monotonicity of the map G(z),  i t  is  sucient t o  assume convexity-concavity of the 

function Y. In the case of the  weakly convex-concave function * the map G(z ) i s  

anti-monotone under some conditions on the remainder terms. Some propert ies of 

the weakly convex functions used in ar t ic le  will be proved. Investigation of such 

questions can be motivated by the problem of nding the points z* E X  dened by 

variational inequality 

where g ( z * ) €  ~ ( z * ) .  



If the multivalued map G (z  ) is  anti-monotone as st r ic t ly  anti-monotone we can 

use resul ts stated in [8] - [14], etc. f o r  solving the problem (2). 

In the case of t he  quasi convex-concave function 9 (2 ,  y ) and 9 (z , z ) = 0 f o r  

z E X the weaker condition then the anti-monotonicity holds: 

<gr(z),z* - z > r O  f o r a l l z  ~ X , g ( z )  E G ( ~ )  , 

where G(z) i s  a dierential of quasi concave function 9 ( z ,  z )  with respec t  to 

second argument. 

Let us consider some problems which can be  reduced to the variational ine- 

quality (2). 

EXAMPLE 1 Nash equ i l ib r ia  for  noncooperat ive n -person  games. Let X 

be a convex closed bounded subset of the production H I X  XHn of a Hilbert 

spaces Hi,  i = 1, . . . , n.  A point zi E Hi is  a strategy of i -th player i = 1, . . . , n 

and cpi(z) = cpi (zl, . . . , z,) is  his payo function. The element (z1, . . . , zi 

* * * 
yi , zi + l , .  . , zi ) is  denoted by (yi / z ). The point z = (zl , . . . , zn ) E X i s  re- 

fe r red  to as the Nash equilibrium of n-person game if f o r  i = 1, . . . , n 

Let us introduce the function 9 (z , y ) : 

I t  i s  not dicult to see tha t  '3) (z  , z )  = 0, z E X .  W e  suppose that  the  functions vi (z ), 

i = 1, . . . , n are continuous on X. The point z* E X is  dened as the normalized 

equilibrium point if 

LEMMA 1 (See f o r  example [16]). The normalized equilibrium point i s  the 

equilibrium point, the reverse  is t rue  if X = X l x  - . X X , ,  & C Hi. 

The condition (2)  is  a necessary optimality condition f o r  the problem (3), f o r  

this reason the problem of nding Nash equilibrium is reduced to the problem ( Z ) ,  



EXAMPLE 2 An equilibrium point is dened in [17] as fol lows. Let X be a con- 

vex closed subset of an  Euclidean space R n ,  the functions 

be concave with respect to y E X  for  each z E X  and continuous with respect to  

z ,  y on X X X .  Let us denote 

The problem consists in nding the point z *  such that 

* * 
z*Ex(z* ) ;  max (Q,(z* ,  y ) :  y c ~ ( z * ) j  = Q,(z . I  . 

If the condition X ( z )  = X  is t rue for  all z f XI then the problem is reduced to  

problem (3), where Q ( z ,  y )  = Q o ( z ,  y )  - Q,(z ,  z ) .  It is easy to see 9(z, z )  = O  

for all z f X. The necessary condition (2) can be used in this case too. 

EXAMPLE 3 Let us consider one more problem which can be reduced to (3). 

We assume the X is a subset of a Hilbert space H (or m o r e  general space), and 

9 : X  X X -4 R is  a function satisfying sup Q ( y ,  y )  S 0. The problem consists in 
Y EX 

nding the point z * E X such that 

sup Q(z* .  y )  s o  . 
Y EX 

We suppose 9 ( z  , y ) = 4 ( z ,  y ) - Q ( z ,  z ) .  If the point z * E x satises (3), then i t  

satises (4) too. For this reason the necessary condition (2) can be used in this case 

as wel l .  

Theorems concerning the existence of problem (4) solutions were formulated 

in [18]. In the same book there a r e  references on the original papers related to 

this problem. 

2. WEAKLY CONVM FUNCTIONS 

In this section basic properties of weakly convex functions [15] a r e  investi- 

gated. The family of weakly convex functions includes smooth and convex functions 

and is  closed with respect to the summation and pointwise maximum. We give new 

denition of this family useful for applications. It will be shown that this denition 

and the denition given by E. Nurminski [I51 a r e  equivalent. 



DEFINITION 1 Let X be a convez subset of a Hilbert space H. A cont inuous 

funct ion f :X 4 R is called weakly  convex o n  X i f  for all z E X, y E X, 

0 S a S 1 the following inequa l i ty  holds. 

where the remainder r : X x X 4 R sat ises 

for all 2 EX. 

The set Bf ( z )  i s  cal led a dierent ia l  of a weakly convex function f ( z )  at a 

p o i n t z  ~ X o n X i f  f o r a l l g ( z )  E B f ( z )  

f o r  all z ,  y E X  

W e  say t ha t  a function f ( z )  i s  weakly concave on X, if - f ( z )  i s  weakly con- 

vex on X. A dierent ia l  of t h e  weakly concave function f ( z )  i s  dened as a dierent ia l  

of t h e  weakly convex function - f ( z )  taken with sign minus. 

THEOREM 1 Let X be an open convez subset of a filbert space H and the 

f i n c t i o n  f ( z )  is weakly convez o n  X. Then thR set B f ( z ) ,  z E X is  non-empty, 

convez, closed bounded a n d  

where f l ( z ,  p ) is a derivat ive of the fimtwn f ( z )  at a point z along a direc- 

t i on  p .  

PROOF W e  start with t he  following lemma. 

LEMMA 2 For a n y  z E X, p E H a derivat ive 

z + Ap)  - f ( z )  / ' ( z .  p )  = 1imJ" 
A 4 0  A 

ex is ts  and i s  nite. 

PROOF F i rs t  of all we prove a n  existence of t h e  nite or innite der ivat ive 

f l ( z ,  p )  f o r  any z E X, p E H .  For  0 S A2 < A, inequality (5)  implies 



consequently 

The last inequality implies the existence of the derivative fl(z, p ) because 

(Z +.'P* z, -P 0 f o r  A r 0 . 

The derivative fl(z, p) can not take the value + -. Let us prove that the derfva- 

Live f'(z, p) bounded below. For E > 0 ,  A > 0 the inequality (5) implies 

After the equivalent transformation 

If E and A are suciently small. then from (6) obtain 

- + P s  + > 6 = const . 
A + &  

consequently 

LEMMA 3 The der iva t i ve  fl(z, p) is a convez positive-homogeneous *no 

twn cont inuous at the po in t  0 w i t h  respect t o  p. 

PROOF Let us prove a positive-homogeneity of t he  function fl(z, p). Accord- 

ing to the denition of a derivative f o r  a > 0 

fl(z, u p )  = lim f(z +Asp) -f(z) 
A 4 0  h 

For A,, A, r 0, A,  + X2 = 1 the inequality (5) implies 



Passing to limit A r 0 

Prove that the  function f ' (z  , p ) is continuous with respect t o  p at the  point 0 

for any z E X .  To check this i t  is sucient to  prove boundedness of the function 

f ' ( 2 ,  p )  in a neighborhood of the point 0 (see for  example [19]). 

Passing to  limit A2 r 0 in (9) obtain 

The condition (6) implies that there  exists a neighborhood U(0) of the point 0 

r ( z  + Alp, z )  
such that 1 I < 6 = const for al l  p E U(0). Since f ( z )  is continuous, 

A1 

then w e  can suppose that the function f (z + Alp ) is bounded on U(0) with respect 

to p . Therefore the boundedness above of f ' (2 ,  p ) with respect to p in the neigh- 

borhood U(0) follows from the last inequality. 

LEMMA 4 A dierential Bpf ' (2 ,  0 )  of the convez &nction f ' (2 ,  p ) wtth 

respect to argument p at the point 0 coincides with 8 f  (2). 

PROOF Dierential Bpf ' (2 ,  0 )  is dened as followed 

The inequality (5) implies 

z + a ( y  - 2 ) )  - j ( z )  
f ( 2 4 )  - f ( z )  2 1( + (1 - a)r (z ,  y), a > 0 . 

a 

Passing to limit a & 0 

Let z belong to  $ f f ( z ,  0 ) ,  then from the last inequality we have 

consequently Bpf ' (2 ,  0 )  c d f  (z  ). 



Let us  prove the reverse  conclusion. If z E 8 f  ( z ) ,  then 

Hence 

J ( z  + X P )  - f  (2 )  r ( z  + Xp,  z )  
A 

Z < z , p >  + 
X 

and f ' ( z ,  p )  2 <z, p >, consequently 8 1  ( z )  c 8 p f ' ( z ,  o ). According t o  Minkovski 

duality, since f l ( z ,  p )  i s  a convex positive homogeneous function with respect  to p 

and continuous at the point 0 then the set Bpf l (z ,  0 )  is non-empty bounded convex 

closed and 

Consequently the set a f  ( z )  i s  non-empty bounded convex close and relation (8) is 

t rue. The theorem has been proved. 

W e  shall give equivalent denition of the weakly convex functions. 

DEFINITION 2 Let X be a convez subset of a Hilbat space H .  We s a y  thut a 

f inc t ion  continuous on X is weakly convez o n  X I  i f f o r  a n y  z E X the set G (z ) 

consisting of the vectors g ,  such thut 

is empty, and remainder t a m  <(z , y ) in each compact subset K c X is uniform- 

l y  small relatively to llz - y 11, i.e. for a n y  & > 0 there ezists 6 > 0 that  

f i r l lz  - y I I < & z , u  fK. 

E. Nurminski 1151 has introduced this denition in case X = H = Rn where Rn 

i s  an Euclidean n-dimenional space. 

THEOREM 2 Let X be a convez open subset of a Hilbert space H ,  then the 

deni twns 1 and 2 are equivalent in the fillowing sense: 

a )  i f  a Nnc t i on  i s  weakly convez in the sense of the den i twn  2, then i t  i s  

weakly convez in the sense of the denit ion 2 and <(z , y ) = r (z  , y ); 

b) i f  a N n d i o n  i s  weakly convez in the sense of the denit ion 2, then i t  i s  

weakly convez in the sense of the denit ion 1 and 



PROOF It is  not dicult to see that  (6) implies the uniform convergence on a 

compact subset K. Hence the statement a )  of the theorem follows from the denition 

of a weakly convex function and theorem 1. 

Let us prove the statement b). In the view of ( lo ) ,  w e  have 

for  a l ,  a2  2 0 ,  a 1  + a 2  = 1. 

From last t w o  inequalities w e  obtain 

A s  < ( z , y ) / l l z - y l ( - * O  fo r  z + z , y  - + z ,  then n'r ( ( ( 2 ,  Z + 
aI  + a E = l  
cri.%+" 

a2(v  - z ) ) / a $ l y  - z ( (  + < ( y . y  + a l ( z  - y ) ) / a l l l y  -211) -+O  f o r  z - 2 ,  

y  --+ 2 .  

The theorem has been proved. 

W e  shall note some cases, where the remainder terms in the denitions 1, 2 

coincide. 

COROLLARY 1 Let X be a  convex open subset o f a  Hilbert space H .  u a  weakly 

convez function p (z ) satises 

fo r  all z ,  y  E X ,  then 



Conversely the second inequality implies the rst one f o r  any g E 8f ( z  ). 

This corol lary is  w e l l  known, if p > 0, in this case the function f ( z )  is  strong- 

ly convex. 

Let us consider the case when function f ( z )  is twice continuously dierentiable 

at each z E X, where X is an open subset of a Hilbert space H, i.e. f o r  all z ,  y EX 

Vf ( z )  i s  a gradient at a point z ; A(z )  :X + H i s  a l inear operator  generating the 

symmetric bil inear function 

The function is  called twice continuously dierentiable on X c H, if i t  is 

dierentiable at each point z E X and 

COROLLARY 2 V a funct ion f ( z )  is twice con t inuous ly  d ierent iable o n  an 

open subset X of a Hilbert space H,  i .e. the condi t ions @I), &?) a re  t rue,  then 

where 

Conversely, the i nequa l i t y  (23) impl ies  @I). 

PROOF The converse statement follows from the a )  of the theorem 2. Let us 

prove the  d i rect  statment using the b) of the theorem 2. In this case w e  can denote 

consequently 



Thus, the inequality (13) is  t rue. 

3. ON THE ANTI-HONOTONICITY OF THE DIFFERENTIAL MAPS FOE THE 

WEAKLY CONVEX FUNCTIONS 

Let * : X X X -., R be a function dened on a product X X X, where X i s  a convex 

open subset of a Hilbert space H. The function 9 ( z ,  y )  is  weakly convex on X with 

respect  t o  the rst argument, i.e. 

f o r a l l z ,  y ,  z EX; al + a 2 = l ;  a l ,  a z 2 0 a n d  

r , (z ,  24) 
- 0  if llz - y((-.,O f o r a l l  z EX . 

llz - u I1 
W e  suppose that t he  function *(z, y )  is  weakly concave with respect t o  the second 

argument on X, i.e. 

~ ( z S  u )  
- 0  if 112 - y(1- 0 f o r  all z E X  . 

llz - u I I  

We say the function *(z, y )  is  weakly convex-concave, if i t  sat ises (14), (15). 

Let 

Q(z, x )  i O  f o r a l l  z E X  . (16) 

Denote G ( z  ) = By *(z , y ) 1 ==, i.e. G ( z  ) i s  a dierential of the function *(z, z ) 

with respect  to the second argument at a point ( z ,  z ) .  



We shall formulate the sucient conditions of the anti-monotonicity of the mul- 

tivalued map G(z),  i.e. for all g(z )  E G(z),  g ( y )  E G ( y )  

<g(z) -g (y ) ,  y - z > r O  fo ra l l  z ,  y E X  . 

THEOREM 3 Let X be an open convez subset of a Hilbert space H, a mnction 

9: X x X --, R be weakly convez-concave, the remainder r, ( z  , y ) be continuous 

with respect to z ,  the function 9 satis& condition (323). Then jbr all z ,  y E X;  

g(z )  E G(z), g ( y )  E G(y)  

PROOF We can assume y = 0. I t  also can be assumed that g (0)  = 0 as an anti- 

monotonicity of the map G(z) does not depend upon a linear t e r m  of the function 

9(z y )  with respect to the second argument. It is necessary to prove that 

In the view of (14) we get 

aQ(z,  a z )  + (1 - a)9(0, a z )  2 9(az ,  a z )  + a(1 - a)ra,(z, 0 )  . 

Taking into account the properties of the weakly concave functions f r o m  the last 

inequality obtain 

a[9(z,  a z )  - 9(z ,  z ) ]  r (1 - a)[9(0, 0 )  - 9(0, a z ) ]  + a(1 - a)ra,(z, 0 )  

Since &(a z , 0)/ a -+ 0 if a 4 0,  then the last inequality implies 

9(z ,  0 )  - 9(z ,  z )  = lim [9(z,  a z )  - 9(z ,  z ) ]  r 
a40 

Consequently, taking into account the weakly concavity of the function 9(z ,  y )  

with respect to the second argument, we obtain 

Theorem has been proved. 



REMARK W e  c a n  see f r om t h e  p roo f  o f  t h e  t h e o r e m  t h a t  cond i t i on  (14) c a n  be 

r e p l a c e d  b y  

*(z,  y )  - * ( z , z ) S  < g ( z ) ,  y - z >  +@,(y,  z )  f o r a l l  z ,  y EX 

COROLLARY 1 Let al l  condit ions of the  theorem 9 be full led and 

r g ( z ,  y )  -&(us  Z )  2 O f o r a l l z .  y EX, t h e n t h e m a p G ( z )  i sant i -monotoneon 

X. 

COROLLARY 2 Let X be a n  open subset of a fi lbert space H ,  a func t ion  

@ ( z ,  - y )  be cont inuous a n d  convex-concave o n  X X X, the  f?unction @(z,  z )  be 

concave o n  X, then the  mult ivalued map G ( z )  = By @(z , y ) l y  =, is ant imonot ine 

o n  X. 

PROOF I t  i s  easy to get t h i s  s ta temen t  i f  assume 

COROLLARY 3 Let all condi t ions o f t h e  theorem 9 beful l led and 

jbr a l lz ,  y EX, where 

0 ' 1 ~  - Y ' " )  - 0  i f 2 - 2 ,  y - 2  

llz - Y 112 

un.igormly with respect to  z EX, then 

jbr a l l z ,  y EX a n d j b r  a l l g ( z )  E G ( z ) ,  g ( y )  E G ( y ) .  

PROOF Le t  z ,  y EX; z # y .  In t h e  v iew o f  (17), (18) we get 

< g ( z ) - g ( y ) , v - z > =  l im 
n +- 

(2 



Corollary has been proved. 

Let us suppose that function O(z,  y )  i s  twice dierentiable on each argument. 

Denote by A (z , y ) = 9= (z  , y ) the second derivative with respect  t o  the rst argu- 

ment (see (ll)), and i the same way B (z , y ) = 9yy (z  , y ) with respect  t o  the second 

argument and g ( z )  = Vy 9 ( z ,  y ) l y  =, . 

THEOREM 4 Let X be a n  open convez subset of a Hilbert space H ,  function 

9: X X X -+ R be twice dierentiable with respect to each argument, and 

J J A ( z , ~ ) - A ( z , z ) J I - + o ,  if z - 2 ,  y 4 2  uniformlyfor z E X  ; 

JIB(z ,  y ) - B ( z , z ) l ( - - 0 ,  if z 4 2 ,  y -+z uniformly'for z EX ; 

the operator  Q ( z  , z )  = A (z  , z )  - B ( z  , z )  satisfy 

f o r a l l z  E X ,  h E Hand  Y do m t d e p e n c i o n z ,  h. Then 

1 
< g ( z )  - g ( y ) ,  y - z >  r -vl lz - y f o r  all z ,  y EX . 

2 (20 

PROOF The statement of the theorem follows from the corol lary 2 of the 

theorem 2, and the corol lary 3 of the theorem 3. According to  the corol lary 2 d 

the theorem2 

In the view of (19) 

Thus, the conditions of the corol lary 3 of the theorem 3 are satised. 



Let us consider the example which i l lustrates the last theorem. 

EXAMPLE 4 Model for i n te rna t i ona l  o i l  t r a d e  [Z]. There i s  a market of a 

single homogeneous product, which consists of some sellers (exporters) and a sin- 

gle buyer (importer). Let i = 1, . . . , n be the  exporters,  f i ( z )  be the marginal 

cost of which any expor te r  i produces the  amount z of the product f o r  marketing 

and r ( z )  be the  pr ice at which the importer would agree  to buy the amount z of 

the product. If zi denotes the  amount of the product sold by expor ter  i ,  then the  

revenue p i ( z )  of the  expor te r  i , can be expressed as follows: 

N o t e t h a t t o t h e s e n s e o f  t h e p r o b l e m z t r 0 , f i ( z ) 2 0 ,  r ( z ) r O , i  = 1 ,  . . . ,  n .  

W e  assume also that  expor te r  i ,  i = 1, . . . , n i s  able to sell  no more then & 

amount of the  product. If w e  suppase that  each seller i s  going to choose the  amount 

zi in o rde r  to maximize his revenue in any market's situation characterized by a 

vector z = (zl, . . . , z,), then the  problem wi l l  be as follows: t o  nd an  

* * * 
equilibrium's situation z = (z l  , . . . , zn ) such that  

The admissible set X = [z E R n  :O s zt s p i ,  i = 1, . . . , n 1 i s  convex and 

compact, The function +(z , y ) (see example 1 )  denes as 

W e  assume that  the  functions f z ) i = 1 . . . , n are continuously 

dierentiable and the  function r ( z )  i s  twice continuously dierentiable on some open 

subset [ z  E R : z = C r = l z t ,  z E U c R~ 1, where U i s  open subset such that  

X c U c R n .  Denote 



It is not dicult to nd 

Let us investigate under what conditions the matrix Q(z ,  z )  satises (19). Let 

e = (1, . . . , 1)  be the ndimensional vector, and 

Assume that 

r Z ( z ) 4 O  r z z ( z ) 2 0  for z E X  . 

We can write the following inequality 



Hence, [-2dnx:=lpfr,(z) + 2p(z) 1 .+ v > O  implies (19). The lastinequality 

is correct  if 

f o r  al l  z E XI 1 6 i 6 n .  Consequently (21), (22) imply (20) and the map g  (z) = 
(V, ,pl, . . . , V,, p, ) is anti-monotone. 

It should be noted that  in the view of the (21), (22) the function *(z, y )  is 

strongly concave with respect to  y because the matrix B (z, y ) is negatively dened 

and the Nash point equilibrium exists [20]. 

4 THE YONOTONICITY OF DIFFERENTIAL MAP FOR QUASI 

CONVEX-CONCAVE F'UNCTIONS 

Let X  be a closed convex subset of a Hilbert space H, U be an open subset of 

H  and X  c U. A function * :X X X  --, R is quasiconvex with respect t o  the rst argu- 

ment, i.e. 

for all al, a2 2 0; al + a2 = 1 and for  all z , y , z E X  and quasiconcave with 

respect to  the second argument, i.e. 

fo ra l l  al, ,a2 2 0 ;  al + a 2  = l a n d f o r a l l z ,  z ,  y E X .  

For the fur ther  development we assume that the function ck(z, y )  satises re- 

gularity condition with respect to the second argument, i.e. fo r  any z € X  and any 

y such that y # a rg  max, ,X 9(z, z ) 

int fu  E U :  +(z, u )  = ck(z, y ) {  = 0 , 

where int A denotes the inter ior of a set A and *(z, z )  = 0 for all  z E X. The fam- 

ilies of weakly convex and quasiconvex functions intersect but are not embedded 

into each other. 

A cone Df(z) = fg € H : < g ,  y - z > 6 0  for all y €CL(z)l is called a 

dierential of a quasiconvex function f (z ) at a point z on a set  U C H, where M(z ) 

= f y : f (y ) 6 f (z ), y E U 1. A dierential of the quasiconcave function p(z ) is 



dened as a dierential of the quasiconvex function - q ( z )  taken with sign minus. 

We say a function Q ( z ,  y )  i s  quasi convex-concave if i t  is quasiconvex with 

respect  t o  the rst argument and is  quasiconcave with respect  t o  the second one. 

Denote G ( z )  = Dy Q (z  , y ) ly =, where Dy is a dierential of a function Q ( z ,  y ) 

with respect  to y in the sense described above. 

Let a point z * E X be a solution of the equation 

max * ( z S ,  y )  = o . 
Y E X  

W e  will prove tha t  (25) implies 

f o r  all z E X and f o r  all g ( z )  E G ( z ) .  Consequently f o r  nding a point z * resul ts of 

the paper  [14] can be used, f o r  example. 

THEOREM 5 Let U be an open subset o f a  Hilbert space H,  X be a closed con- 

v e z  subset of H a n d  X c U, a f i n c t i o n  * : X X X 4 R be con t i nuous  o n  X X X and  

q u a s i  conuez-concave o n  X X X, at least one of the inequa l i t ies  @), @4) be 

str ict  @oral # O ,  al # I ) .  Y ( z , z )  =Ofbral lz ~ X . f l a ~ o i n t z * ~ ~ s a t i r a s  (23) 

t h e n  the  var ia t iona l  i nequa l i t y  (26) holds for all z EX a n d  for al l  

~ ( 2 )  f G ( z ) .  

PROOF W e  can assume z* = 0 .  Consequently i t  is necessary t o  prove that 

Assume at rst tha t  the inequality (23) i s  s t r ic t ,  then 

max [Q (z ,  az), Q(0, az ) ]  > Q ( a z ,  am) = 0 ,  0 < a < 1 

The equality (25) implies 

Q(0, am) r Q(0,O) = 0 f o r  0 r a s 1 ,  z f X . 

W e  get  Q ( z ,  am) > 0 f o r  0 < a < 1 taking into account (27). Passing to limit 

when a .( 0 obtain Q ( z ,  0 )  2 0 and Q ( z ,  0 )  - Q ( z ,  z )  2 0. In accordance to the 

denition of the dierential of a quasiconcave function w e  obtain statement of the 

theorem from the last inequality. 



Let us consider the  case with the s t r i c t  inequality (24). In this case 

Q ( O , ~ U C ) < Q ( O , O ) = O  f o r  O < a < l , z   EX,^ # O  . 

The inequality (23) implies 

m a x [ Q ( z , a z ) , Q ( O , c l u : ) ] 2 Q ( a ~ , a z ) = O  f o r  0 4 a 4 l .  

Taking into account the last two inequalities w e  get  Q ( z ,  az) 2 0 f o r  0 < a < 1. 

Further  consideration coincides with the previous case. The theorem is  proved. 

Let us consider the case when a function Q(z , y ) is  dierentiable with respect  

to the  argument y . Denote 

COROLLARY Let all conditions of the theorem 5 be satised and the fiLnction 

*(z, y )  i s  dierentiable w i th  respect to the second argument. Then the equality 

(25) implies. 

PROOF The theorem statement follows from the inclusion q ( z )  € G ( z ) ,  where 

G(z ) i s  a dierential of quasiconcave function Q(z , z ) with respect to the second 

argument. 

Let us consider an example il lustrating this corollary. 

EXAMPLE Wald's production model [ Z ] .  Let n products are produced and r 

resources used in an economy, a . . . , a, be the amounts of these resources. The 

values ai j ( i  = 1, . . . , n ;  j = 1, . . . , r )  denote the  input of j - th resource neces- 

sary to produce the unit of i - th  product. The pr ices of the products depend on the 

amounts of the  produced products. Let f i  ( z )  = f i  (zl ,  . . . , zn) (i = 1, . . . , n )  be 

the pr ice of a unit of i- the product if the products are produced in the amounts 

z . . . , zi ,... z,; X be a feasible set 

n 
X = z (  aijzi 4 a,, j = I , .  . . , r ; z i  2 0,  i = I , .  . . , n I i = l  t 

Under some conditions on the  functions f i  ( z ) ,  (i = 1, . . . , n )  the existence of a 

* * 
non-negative production vector z * = (z l ,  . . . , 2,) and non-negative resource 

pr ice vector such that 



r * * * f: a i j z ; ~ a j ( j  =I. .  . .  , r ) ;  x ayUj  Z Y i ( z l n . .  ..z,,) 
i =l j =l 

w a s  proved in [Z], [I?]. For al l  non-negative and continuous on the s e t  z Z 0 func- 
* 

tions the  existence of a non-negative production vector z E X being the solution 

of the following l inear programming problem 

n 
max C li ( z  * )zi = C f t  (2 *)z; 
E € X i  =l i =l 

w a s  proved in [Zl]. The existence of vectors z * ,  U* satisfying (29) follows from 

the last equality and the duality theorem of the l inear programming. 

Denote 

Since the function 9(Z, y )  i s  l inear with respect  t o  y then i t  i s  concave in y.  

If t he  point z * i s  a solution of the problem (30), then z * is also the solution of the 

problem (25). Hence in o rde r  to satisfy inequality (28) it is  sucient that  the func- 

tion 9 ( z ,  y )  be str ict ly quasiconvex with respect  t o  z on X, i.e. 

max [*(z, y ), Wz , y ) l  > 9(a l z  + 4 2 2  I Y 

fo r  all a l ,  a 2  0, # 1 ,  Ql  + a2 = 1 and f o r  a l l z ,  z ,  y EX,  z # 2. 
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