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FOREWORD 

The paper  deals with the numerical techniques f o r  finding the special type of 
parameter estimates based on the minimization of L  norm of e r r o r .  More specifi- 
cally, these estimates a r e  derived by minimization of the upper bound of the e r r o r ,  
which is evaluated similarly to the upper bounds on the solution of stochastic op- 
timization problem in WP-86-72. The research repor ted in this paper  was per- 
formed in the  Adaptation and Optimization Project  of the System and Decision Sci- 
ences Program. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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NUMERICAL TECHNIQm FOR FINDING ESTTUTES 
WHICH krlINI#Im THE UPPER BOUND OF THE 

ABSOLUTE DEVIATION 

A. Gaivoronski 

1. INTRODUCTION 

We a r e  concerned he re  with the  problem of determining the  value of the 

parameter a E Rn  when the  information about i t  comes in the  form of observations 

where ~ ( z )  is a known vector function, z j  are fixed points from finite subset Z of 

Rrn , Z = { Z  l, . . . . z ' 1: and are identically distributed f o r  the same j  , random 

j variables ?:: could depend on qi:  f o r  j l  # j 2  but should be independent f o r  the 

same j l .  Some additional information is available in the form of inclusion a f A 

where A is  a compact subset of Rn.  In the simplest case when n = 1 and the values 

of the  parameter a a r e  observed directly (1.1) becomes 

In this latest case the L  norm estimate a, i s  obtained by minimization with respect  

t o  z of the sum 

where s is  the  total number of observations. The propert ies of this estimate (the 

sample median) are defined by the propert ies of the function 

namely, if F ( a )  = min, .A F ( z )  then under fair ly mild conditions a, -+ a with pro- 

bability 1 [3, 16, 231. 



If w e  knew the distribution H of observations o then the  actual value of 

parameter a can be  found from minimization of F ( x ) .  This i s  not the case, howev- 

er, and w e  can think of the  sampling procedure as means of obtaining information 

on H. Observations a r e  used to estimate the distribution function H and use this 

estimate in (1.4) to determine the estimate of a. If w e  take empirical distribution 

function of observations and substitute i t  instead of H in (1.4) w e  would obtain the 

function F ( z ,  s )  from (1.3) and estimates a,. The different Li+stimates would be 

obtained if dif ferent estimates of distribution H are used. 

In this paper the numerical techniques for  finding the  worst-case Ll-estimates 

are proposed. These estimates minimize the largest possible Lt-error which 

corresponds to  t he  w o r s t  distribution consistent in some sense with observations. 

The results re ly  on the techniques developed in [12], which are summarized in sec- 

tion 2. Section 3 i s  devoted to the algorithm f o r  finding estimates in the simplest 

case (1.2). More complicated sampling scheme (1.1) i s  considered in section 3. I t  

should be  noted that  numerical techniques f o r  finding L1-estimate w a s  considered 

in [I-31. Stochastic optimization techniques and estimation techniques with uncer- 

tain noise s t ructure relevant t o  this problem w a s  discussed in B-8, 9-15, 17, 21, 

241. 

2. BOUNDS FOR INTEGRAL FUNCTIONALS 

The resul ts from [I21 which are relevant to the  estimation problem (1.4) a r e  

reviewed in this section. 

Suppose that  w e  have observations ol, ... os with unknown distribution func- 

tion H. Our aim i s  t o  construct the  set G, of distributions which are in some sense 

consistent with the  se t  of observations. 

Let us assume that  ot belong to  some set Q C Rm with Bore1 field B; probabili- 

ty measure H is  defined on this field, thus w e  have a probability space (Q, B, H). - - -  
For each fixed s let us consider the sample probability space ((2, B, P) which is  a - - -  
Cartesian product of s spaces (Q, B, H). The space (Q, B, P) i s  the smallest space 

which contain all ( f l s ,  p, Ps). In what follows the "convergence with probability 

1" will mean the "convergence with probability 1 in the space (QS, BS, PS)". With 

the set of observations lol, . . . , o, 1 the set of distribution Gs will be associated 

in the following way. 



Let us fix the confidence level a :  0  < a < 1. W e  shall consider events with 

probability PT less than a "improbable" events and discard them. Let us consider 

arb i t rary set A C B. Among s  observations loi, . . . , w s  j there  are iA observa- 

tions which belong to  s e t  A ,  0  S iA S s. The random variable id is  distributed bi- 

nominally and its values can be used to estimate H(A) (Mainland [19]). To do this 

le t  us consider the following functions 

k 
* (s ,  k ,  2 )  = C s! z C ( l  - 2)' -< 

i =o i ! ( s  - i)! 

observe that  

The function 4 ( s  , k  , z )  is a monotonically increasing function of z  on the interval 

[O, 11, # ( s ,  k 1  0 )  = O ,  # ( s ,  k ,  1) =1, k  # O .  Therefore the solution of equation 

$ ( s ,  k ,  z )  = c  ex is t fo r  any O 5 c  51 .  Let us take 

d ( s ,  k ) : # ( s ,  k ,  d ( s ,  k ) )  = a,  k # O  (2.3) 

b ( s ,  k ) :  (ll(s, k ,  b ( s ,  k ) )  = a ,  k  # s 

The values d  ( s  , k )  and b  ( s  , k )  are the lower and upper bounds fo r  the probability 

H(A) in the following sense. 

LEMMA 1. For a n y  fixed set A C B the bound d  ( s ,  k )  defined in (5 )  possess the  

fo LLowing properties 

1. P [ d ( s , i A ) > H ( A ) j S a f o r a n y m e a s u r e H .  

2. Ip for some function c ( i ) , i = O : s ,  c ( i + l ) > c ( i )  we have 

P I c ( i d )  >H(A) j  S a f o r  a n y H  t h e n c ( i )  5 d ( s l  i )  



This lemma shows that d ( s ,  iA ) is in a certain sense the best lower bound f o r  the 

probability H(A ). The similar resul t  holds fo r  the upper bound b ( s  , id): 

LEMMA 1'. For a n y  w e d  set A C B b ( s  , k ) def ined in (3) possess t h e  fol lowing 

propert ies: 

1. p [ b ( s ,  id) < H ( A ) ]  S a 

2. If for  some plLnction c ( i ) ,  i = 0 :  s ,  c ( i  + 1) > c ( i )  we  h a v e  

P S l c ( i A )  < H(A) j  S a f o r  any H then c ( i )  2 b ( s ,  i). 

These lemmas a r e  proved in  [12]. 

DEFINITION Th.e set G, of t he  d i s t r i b u t i o n s  cons is ten t  w i t h  t he  set of observa- 

t i o n s  lo l ,  . . . , o,  j for f i xed confidence Level a i s  def ined as foLLows: 

for any measurab le  A ,  where  d ( s  , id) a n d  b ( s  , iA ) a r e  def ined in (2.3). 

Now let  us consider the problem of finding upper and lower bounds of func- 

tional f g ( o ) d H ( u )  on the se t  G,. This problem will be used in la te r  sections fo r  

defining the special c lass of L l-estimates. In this section we a r e  interested in solv- 

ing the following problem: 

minimize (or maximize) with respect to H 

subject t o  constraints 

Let us assume that  g ( o O )  = min g ( o )  and g ( u s  +I )  = max g ( a )  exist  and ar- 
0 E f l  0 E f l  

range the s e t  of observations loi, . . . , w,  j in o rde r  of increasing values of the 

function g ( a ) :  

Here and elsewhere the original o rde r  of observations is indicated by subscript 

and arrangement in increasing o rde r  of the values of g i s  indicated by super- 

scr ip t .  The f i rs t  element of new arrangement will always be the point with the 

minimal value of the objective function on the se t  fl and the last element (with 

number s + 1) will be the point with maximal value. This arrangement depends on 



the number s of the time interval, but this dependence wiU not be explicitly indi- 

cated for the simplicity of notations. 

The solution of the problem (2.5)-(2.6)  is given by the following theorem: 

THEOREM 1 Suppose that  ez is t  po in ts  o0 and oS ' l  such  that  

g (wO) = min g (w), g ( a  + I )  = maxg (w). Then 
O E ~  u e n  

1 .  The so lu t ion of the problem (2.5)-(2.6) ez i s t  and  among extremal measures 

a l w a y s  exist  d iscrete one wh i ch  i s  c o m m t r a t e d  in s + 1 points:  

where A. = rnax g ( a )  - min g ( a )  
oen  w E fl 

3. 

with probabi l i ty  1 as s -- a. 

The proof is  contained in [12] .  



3. THE CASE OF Om-DIMENSIONAL PARAMETER 

Using the resul ts of the previous section w e  shall obtain estimates of the 

parameter a f R' from observations (1.2) .  I t  i s  assumed that  apr ior i  bounds _a and 

a are known 

For the purpose of convergence analysis i t  is  i r relevant how f a r  are the  

bound _a and a from actual  value of a ,  i t  is  only necessary tha t  - 0 <_a < a < 0. 

For computational purposes i t  is  preferable of course t o  have _a and e as close to 

a as possible. W e  shall assume f o r  simplicity that _a 5 oi 5 e f o r  al l  i. The dif- 

ferent  case  can be t reated in the same manner, but requires more complicated no- 

tation. 

Let us take some confidence level a and define the admissible set of distribu- 

tions G, from (2 .4) .  I t  is  possible t o  utilize this information in  two different ways. 

One approach i s  associated with the  case when not only the value of parameter it- 

self i s  of interest but i t  i s  also important t o  guarantee the smallest possible values 

of e r r o r  functional J lx  - uldH(o) .  In this case the estimate is constructed which 

minimize the  worst in the se t  G, value of the e r r o r  functional. The second ap- 

proach is to define the  region t o  which the actual parameter belongs provided the 

distribution H can take arb i t ra ry  values from admissible set G, . W e  shall consider 

both approaches fo r  one-dimensional case start ing with the worst-case estimate. 

The worst-case approximation F(m, s )  t o  the function F(m)  based on the se t  of 

distributions G, consistent with observations i s  defined as follows: 

The values of this function can  be computed using the Theorem 1 .  

DEFINITION The worst-case L l -est imate cs of parameter  a is def ined by 

m i n i m i z a t i o n  of the  funct ion  F(z, s )  *om @.TI: 

F(a",, s )  = min F ( z ,  s) 
p rz ra '  

This estimate depends on the confidence level a. I t  follows from the pa r t  3 of the 

theorem 1 that  P ( x ,  s )  - Jlz - o l d ~ ( o )  with probability 1 f o r  fixed m. The defin- 

ition of the function F ( x ,  s )  and bondedness of the regions to  which o and x belong 

implies that the function F ( z ,  s )  i s  convex and uniformly continuous with respect 



t o  s . Therefore all limit points of the sequence Es belong t o  t he  s e t  

I 
~ * = [ z * : J I z * - w l ~ ( w ) =  min J l x - w l d ~ ( o ) ,  a x  a Z {  

g c z s h  

I 
Therefore cs -+ a if X  = [ a  { 

The function F ( x ,  s )  i s  convex function and f o r  any fixed z i t  is  possible to 

compute the values of this function and i ts subgradients. The convex programming 

techniques [18 ,  221 can be used t o  minimize this function and obtain the estimate 
U 

a , .  However, i t  is  more convenient to develop special algorithm which utilizes the 

propert ies of the function F ( z  , s ) .  

Let us start with defining sufficient condition f o r  a point x  to minimize the 

function F ( z ,  s ) .  Take arb i t ra ry  z :_a S x  S ii and define 

Let us ar range observations [ o i ,  . . . , o, { in two orderings. Members of the f i r s t  

ordering will be denoted by & ' ( x )  and of the second ordering by Z C ( x ) ,  i = 1 :  s .  

4 For each t exist  j .  k such that  ~ ' ( 2 )  = oj, y ( I )  = ok and 

In other  words both orderings a r range observations in nondecreasing order  

of the values lx  - w  1. They differ only f o r  the observations equidistant from x .  

Ordering with the members _of ( x )  places f i rs t  the observations which a r e  to the 

le f t  of z while ordering with the members o f ( x )  places f i rs t  the observations 

which are to the r ight of x .  

Let us  define 



Denote f o r  all _a S z S a' 

- 
- . + I  { ; i f  a - z > z - _ a  

(Z ) = - a otherwise 

THEOREM 2 Suppose that zs i s  the solut ion of the problem (3.2) and  

a < a  < E .  Then - 

and 

where 

p i + 1  = I  - a ( s ,  s )  (see (2.9)) 

Conversely, i f f o r  some z = zs condi t ions ('3.3) and (3.4) are  satisfied then  Es i s  

the so lu t ion of the problem (3.2). 

The proof of the theorem follows directly from the resul ts of the previous 

section and from the necessary condition fo r  minima of convex function, namely 

0 E a F(z , s ) where a denotes the subdifferential of the convex function. 

I t  i s  c lear  from the theorem that one of the solutions of the problem (3.2) will 

be among points where the sums (3.3) and (3.4) change sign. This can occur e i ther  

a' +a 
in points w i  o r  where z - of = oj - z f o r  some i ,  j o r  at_z = - 

2 
. This obser- 

vation leads to the following algorithm: 

ALGORITHM 1. 

1. Star t  with selecting a rb i t ra ry  p i n t  z such that  _a S z S E and exist i , j 

with of 5 z O, o 2 0. Arrange initial ordering. 0' (2 O) and pf(z 4 



2. Suppose that we obtained the point x k .  Then the method proceeds as follows. 

2a. Compute 4 and from (3.3), (3.4). Now there could be three possibilities: 

if 4 4 0, 2 0 then go to  step 2e 

if < 0, < 0 then go to step 2b 

if 4 > 0, > 0 then go to step 2c 

2b. Find 

- 
If some ci does not exist take ci = a - 2. Obtain x k  +I: 

go to step 2d 

2c. Find 

w j ( x k )  - w i ( x k ) l y i ( x k )  > x  , = min 
j = m i n l l l l  > i , y L ( x k ) < x k j  

I I 
- 

If some r i  does not exist, take = a --_a. Obtain x k  +I: 



go to s tep  2d 

2d. Obtain new orderings of (xk +I), _oi(xk +I)  f o r  the new point xk and new 

wf(xk +I). Go to the step 2a. 

2e. The estimate zs i s  found: zs = z k .  Terminate the  execution. 

This method finds the  estimate 4 in a finite number of steps. 

Now le t  us consider t he  problem of constructing the confidence region which 

contain al l  the solutions of the  problem 

min j I z  -uIdH(o) 
grtrii 

f o r  H E G, . 
* 

Let u s  consider the  ordering with elements of , i = 0 : s + 1 

and define two distributions each concentrated in s + 1 points 

* * * H,. = ((q,, 9$), - .  . .  (o f ,  9?)> - (us, 9:)) 

where p,f and are defined in (2.9). I t  appears that  minimum of the  functions 

* 
F*(x, s) = j l x  - oldH, (o) 

* *I 
define r ight and lef t  end points of the confidence interval [a , a ] where 

* 
a = i n  ly : j l y  - old~(w) = min j l z  - oldH(u)j 

arycU - - a s z s B  
H  EC,  

* + 
o = sup ( y : f I y - o l ~ ( o ) =  min f l z - o b ( o ) j  

g sy SC g st ca' 
H E C ,  

more specifically, the following result holds: 



THEOREM 3 Suppose that 

Thgh for a n y  x* such  that  

exist f E G, such  that 

min JIx - oldi?(o) = J lx*  - ol&(o) 
p r z r z  

and i j f i r  some HI € G, and some x* condi t ion Q.8) is sat isf ied then 

PROOF According t o  the necessary and sufficient conditions the point 
* * 

x :_a < z < E i s  the minima of the function / / x  - o h H ( u )  if and only if 

and 

/ dH(") 2 f M(o)  
* * 

a r o r r  - r <USE 

I t  w a s  assumed fo r  simplicity of notation tha t  / M ( w )  = 1 thus (3.8)  implies 
a s u s U  - 

* 
z a inf y : / cW 2 0.5 

y $ r o s y  I I 
which gives 

* 
y :  sup / d H 2 0 . 5  

Y r o s y  

* 
and therefore a* 2 % where k i s  defined in (3 .6) .  On the  o ther  hand o; is the  

* * 
minimum of the  function F* ( x  , s )  defined in (3.5). Therefore a = ok . Similarly 

* 
we obtain that a ** = o, - k .  



From convexity of the set 0, and function J l x  - o l ~ ( u )  now follows that fo r  
* * * * * 

any point x :a  5 z 5 a exists r?: f G such that (3.8) i s  satisfied. The proof is 

completed. 

The same resul ts can be  obtained in the totally similar fashion f o r  the case 

when the  set Q is  bounded, but not coincide with A = fz :_a 5 x 5 a 1. 

4. THE CASE OF VECTOR PAaAMETEB 

Let us consider a m o r e  complicated case when the estimated parameter a be- 

longs to Rn.  I t  will be assumed that  additional input parameters z are present,  

z ern and s o m e  f inite set Z = fzi, . . . , zL j  i s  selected. The information comes 

with observations 

where ~ ( z )  is a known vector-function, q1 a r e  independent identically distributed 

f o r  the same j observations errors. Using the same type of argument as in intro- 

duction observe that  various types of L l-estimates can be obtained by minimizing 

the following function 

where Pj a r e  the  weights assinged to the  points z j .  Suppose that  sj i s  the  number 

of observations performed at the point zj. Substitution of empirical distributions 

in (4.2) gives the following functional 

The minimization of this functional is  the  most common way of obtaining Ll-estimate 

as  in this case. The worst-case Ll-estimates will be obtained similar to  the 

simpler case in section 3, namely by minimizing the upper bound of the L  e error in 

(4 2): 



Here the admissible sets of distributions ~j a r e  defined similar to (2 .4)  af te r  
sj 

fixing the  confidence level a. 

DEFINITION The worst-case Ll-est imate z, of parameters a from (4.1) is de- 

f ined as foLLows 

In fact  this estimate depends on all s j ,  not only on s ,  but this will be skipped in no- 
I 

tations. The values of the function F ( s ,  x )  can be computed using resul ts of the 

Theorem 1 and the problem of i ts  minimization can be formulated as a l inear pro- 

gramming problem in case the set A is  defined by l inear constraints. This problem, 

however, can be of very large scale. Therefore the  method based on generalized 

l inear programming [4 ]  will be described here. This method requires the solution 

of the l inear programming problem of comparatively s m a l l  dimension to be per- 

formed at each iteration. In what follows i t  will be assumed tha t  the set A is defined 

by l inear constraints and i t  i s  bounded. The observations o belong t o  the  set II 

which may o r  may not coincide with A .  

ALGORITHM 2. 

1. A t  the beginning select initial point z1 E A .  For each j make ordering 

i ( k ,  j ) :  

Compute 

0 
where p k j  i s  defined according to (2.9)  

2. Suppose that  the method arr ived at point z r .  W e  have a collection of points 
- 

[z l ,  . . . , x r ]  and values F ( x l ,  s ) ,  . . . , F ( z r ,  s ) ,  f z ( x l ,  s ) ,  . . . , F z ( x r ,  s ) .  

A t  this point the algorithm proceeds as follows: 



2a. Solve l inear programming problem 

min u 
a, z 

and obtain the  point x r  as a solution of this problem and d as i ts  optimal 

value. 

2b. For each j make ordering i ( k ,  j ) :  

Compute 

2c. 1f F ( x T  +I, s )  = ur then assign Es = sr+l and stop, the estimate has been 

found. Otherwise go  to step 2a. 

Thls technique produces estimate Es in a f inite number of steps because the 

function F ( x  , s )  is piecewise linear. 
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