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FOREWORD 

This paper  supplements the results of a new statist ical approach to  the prob- 
lem of incomplete information in stochastic programming. The tools of nondifferen- 
tiable optimization used here ,  help t o  prove the consistency and asymptotic nor- 
mality of (approximate) optimal solutions without unnatural smoothness assump- 
tions. This allows the theory t o  take into account the presence of contraints. 
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INTRODUCTION 

These resul ts complement those of Dupaeoviiand Wets (1986). W e  use the s a m e  

notation and identical set-up, the reade r  is thus re fe r red  t o  tha t  ar t ic le  where h e  

shall  find definitions and the consistency results. W e  even continue the numbering 

of sections and equations, s o  w e  start with Section 4. 

4 ASYMPTOTICS. CONVERGENCE RATES 

In Section 3 of Dupaeovg and Wets (1986) we exhibited sufficient conditions 

f o r  the  convergence with probability 1 of the estimators [ x u :  Z -4 Rn, v = 1 ,  ... j t o  
* 

x , the optimal solution of the  limit problem. Here w e  go one s tep  fu r the r  and 

analyze the rate of convergence in probabilistic terms. The argumentation i s  relat-  

ed t o  tha t  of Huber (1967), adapted t o  f i t  the more general  class of problems under 

consideration; this w a s  already the  pat tern followed by Solis and Wets (1981), in 

the unconstrained case and by ~ u p a e o v g  (1983a, 1983b, 1984) f o r  stochastic pro- 

grams with recourse under special assumptions. W e  extend the results of Huber 

(1967) in a number of directions: (i) we allow fo r  constraints, (ii) the probability 

measures converging t o  P are not necessarily the empirical measures, and (iii) 

t he re  a r e  no differentiabil ity assumptions on the likelihood (cri terion) function (in 

terms of Huber's set-up, th is would correspond t o  the case when his function (k is  

not uniquely determined, see  Section 3 of Huber (1967)). 



One way to  look at the resul ts of this section is t o  view them as providing lim- 

iting conditions under which one may be able to  obtain asymptotic normality. Note 

that when there  a r e  constraints, one should usually not expect the asymptotic dis- 

tribution to  be Gaussian. This, in turn,  allows us to  obtain cer ta in  probabilistic es- 

timates fo r  the convergence "rates". To approximate the distribution of xu, t o  ob- 

tain confidence intervals f o r  example, we need an assert ion that  a suitably normal- 

ized sequence converges in distribution t o  a nondegenerate random vector. The 

normalizing coefficients need not be unique but they suggest a r a t e  of conver- 

gence. Following Lehmann (1983) we shall say that  the sequence x u  - x* goes to 0 

w i t h  the  r a t e  of convergence l/ k ,  if k, --, - as v --, and if there  is a continu- 

ous distribution function H such that 

We begin by a quick review of the main definitions and resul ts that  provides us 

with a good notion fo r  the subgradients of not necessarily differentiable functions. 

Any assumption of differentiability of f(., t ) ,  would be inappropriate and would f o r  

one reason o r  another eliminate from the domain of applicability all the examples 

mentioned in Section 2. To handle the lack of differentiability, we re ly  on the 

theory of subdifferentiability developed .to handle nonsmooth func Lions, see  Clarke 

(1983), Rockafellar (1983), Aubin and Ekeland (1984). 

The cont ingent  d e r i v a t i v e  of a lower semicontinuous function 

h : Rn --, (- =, + =] at x, a point at which h is finite, with respect  t o  the direction y 

is 

h'(x; y) : = epi -1im inf 
h(x + ty) - h(x) 

L A O  t 

using the convention - = = =. I t  is not difficult to  see  that  h' is always well de- 

fined with values in the extended reals. If x fE dom h, then h'(x; -)  = w, otherwise 

hl(x; y) = lim inf 
h(x + ty') - h(x) 

"2" t 

The (2~pper)epi  d e r i v a t i v e  of h at x, where h is finite, in d i rec t i on  y, is the 

epi-limit super ior of the collection th'(x1; .), x' E Rnj  at x ,  i.e. 

hT(x; .) : = epi-lim sup h1(x'; -)  
x' 4 X  

hT(x; y) = inf ,, +, lim sup hl(x'; y') 
IYt +Yl 



where by writing fx'  -, x ]  and fy' -, y ]  we mean that  the infimum must be taken 

with respect  t o  al l  nets - o r  equivalently he re  sequences - converging t o  x and y, 

see  Aubin and Ekeland (1984), Chapter 7,  Section 3. 

I t  is  remarkable that  if h is proper ,  and x E dom h, the function y k ht(x; a) is  

sublinear and l.sc. [Theorems 1 and 2, Rockafellar (1980)l. Moreover, if h is 

Lipschitzian around x ,  then ht(x; -) is  everywhere finite (and hence continuous); in 

part icular if h is continuously differentiable at x then ht(x; y) is the  directional 

derivative of h in direction y,  and if h is convex in a neighborhood of x ,  then 

ht(x; y) = lim 
h (x + ty)  - h(x) 

t r o  t 

i s  the  one-sided directional derivative in direction y. The sublinearity and lower 

semicontinuity of hT(x; .) makes i t  possible t o  define the  notion of a subgradient of 

h at x ,  by exploiting the  fact  tha t  t he re  is a one-to-one correspondence between 

the p roper  lower semicontinuous, sublinear functions g and the nonempty closed 

convex subsets C of Rn, given by 

g(y) = s ~ p , , ~ v - y  f o r  a l l y  E R "  , 

and 

c = f v  E ~ " l v - ~  5 g(y) f o r  all y E R"] 

see Rockafellar (1970). Assuming that  ht(x; .) is p roper ,  let  ah(x) be the nonempty 

closed convex set such that  f o r  al l  y, 

Every vector in v E ah(x) is a subgradient of h at x. If h is smooth (continuously 

differentiable) then 

Bh(x) = fVh(x), the  gradient of h a t  x j ; 

if h is convex, then 

i s  the usual definition of the  subgradients of a convex function. More general ly if h 

is locally Lipschitz at x,  then 

ah (x) = c o  f v  = lim vh(xf) lh i s  smooth at x' ] . 
X' +X  



For the proofs of these preceding assert ions and fu r ther  details, consult Rockafel- 

l a r  (1981) and Aubin and Ekeland (1984). 

Before we re tu rn  t o  the problem a t  hand, we state the resul ts about the addi- 

tivity of subgradients that  a r e  relevant t o  ou r  analysis, we begin with a general 

result that  shows that  the derivatives and subgradient functions of the random l.sc. 

function f and the expectation functionals EVf and Ef have the appropr iate 

measurability propert ies. 

THEOREM 4.1 Suppose h : Rn X Z --, R is a random lower semicont inuous func- 

t ion .  Then, so a r e  i t s  cont ingent  d e r i v a t i v e  a n d  i t s  (upper )  ep i -der iva t ive .  

Moreover, for a l l  x E Rn, t I+ 8h(x, t )  is a random closed convez set .  

PROOF Theorem of Salinetti and Wets (1981) tells us that the lirn sup and lirn inf of 

sequences of random closed sets (closed-valued measurable multifunctions) a r e  

random closed sets.  Since the epigraphs of the epi-lim sup and epi-lim inf are 

respectively the lirn inf and lirn sup of the corresponding sequence of epigraphs 

(see f o r  example, Section 2 of Dolecki, Salinetti and Wets (1983)), the assert ion 

about the derivatives follows from the i r  definitions and proper ty  (3.4) of random 

lower semicontinuous functions. Since hT(x; -, t )  is sublinear, i t  follows that i ts 

conjugate - another random l.sc. function, Rockafellar (1976) - is the indicator of 

the random closed convex set t I+ 8f (x, t ) .  

Our interest in subdifferential theory is conditioned by the fact  that  f o r  a 

very large class of functions (with values in the extended reals), we can charac- 

ter ize optimality in t e r m s  of a differential inclusion, a point x0 that minimizes the 

proper  l.sc. function on R", must necessarily satisfy 

if h is convex this is also a sufficient condition. There is a subdifferential cal- 

culus, but f o r  our  purposes the following results about the subdifferentials on sums 

of l.sc. functions is al l  we need. We say that a l.sc. function is s u b d ~ e r e n t i a l l y  

regu la r  a t  x if h'(x; .) = ht(x; -). If h is convex o r  subsmooth on a neighborhood of 

x ,  thus in part icular if h is  C1 at x, i t  is subdifferentially regular at x; h is 

subsmooth on a neighborhood V of x ,  if fo r  all y E V 

where T is a compact topological space, each pt is of class C1, and both pt(x) and 

V,pt(x) a r e  continuous with respect  t o  (t, x). If h is subsmooth on an open se t  U ,  i t  



is  a lso locally Lipschitz on U,  Clarke (1975). 

LEMMA 4.2 Rockafellar (1979) Suppose hl and h2 are l.sc. jknctions o n  R%nd 

x a point at which both hl and h2 are finite. Suppose that dom hl(x; .) is  

nonempty and h2 is  locally Lipschitz at x. Then 

Moreover equality holds i fh l  and h2 are subdifferentially regular at x. 

LEMMA 4.3 Clarke (1983) Let U be an  open subset of Rn, and suppose 

h : U X E -4 R is  measurable with respect to < and there exist a summablejknc- 

tion @ such that for alt'xO, x i  in U and t E E 

Suppose moreover that for some x E U ,  Eh(x) i s  finite. Then Eh i s  finite and 

Lipschitz o n  U ,  andfor all x i n  U ,  

Moreover, equality holds whenever h(. , t )  i s  a.s. subdiflerentially regular at x, 

in which case also Eh is subd~eren t ia l l y  regular at x. 

Theorem 4.1 shows tha t  t k  8h(x, t )  is a random (nonempty) closed set ;  i t  is  

easy t o  verify t ha t  under the assumptions of Lemma 4.3, h is a random 1-sc. func- 

tion on U X E. In fact  fo r  al l  t, ah(x, t )  i s  a compact subset of Rn, see Proposition 

2.1.2 of Clarke (1983). The integral of a random closed se t  r defined on E (with 

values in the  closed subsets of Rn) i s  

see Aumann (1965). If P is absolutely continuous, and r is integrably 

bounded (the function < k sup ~Ilx 1 1  I IlxlI E r ( t )  j is  summable), then 

f r (8 P(dt )  = f co r ( t )  P(d<) is convex, where c o  T. ( t )  is the convex hull of t .  If r 
is  uniformly bounded then f r ( t )  P(dt )  is  a compact subset of Rn. 

W e  shall  be working with the same set-up a s  in Section 3 ,  but with a somewhat 

more rest r ic ted class of random l.sc. functions. Instead of Assumption 3.4, w e  shall  

be using the following one: 



ASSUMPTION 4.4 The f u n c t i o n  f : Rn x E --, (- a, a] is  of t he  following type:  

where (k, is  t h e  ind ica to r  f unc t i on  o f t h e  closed nonempty  set S C R", i.e., 

(k,(x) = 0 .ig x E S ,  a n d  = otherwise , 

a n d  fo i s  a f i n i t e  v a l u e d f u n c t i o n  o n  Rn X E, w i t h  

CH f0(x, C) re la t i ve ly  con t i nuous  o n  Z , 

for a l l  x E S,  a n d  a n y  open  set U t ha t  con ta i ns  S, t h e  f u n c t i o n  

x --, fo(x, C) i s  local ly  L ipsch i t z  

for a l l  E E, a n d  s u c h  that to a n y  bounded open  set V there corresponds a P- 

summab le func t i on  s u c h  t h a t  for a n y  p a i r  xO, xi in V: 

The only condition of Assumption 3.4 that does not appear  explicitly in As- 

sumption 4.4, ei ther  in exactly the same form o r  in a st ronger  form, is the lower 

semicontinuity of f ( - ,  C) on Rn f o r  al l  [ in Z. But that  is  an immediate consequence 

of the fac t  tha t  fo(-, C) is  locally Lipschitz and S is closed. Thus, f is a proper  ran- 

dom lower semicontinuous function, and s o  is also fo. Moreover all the resul ts and 

the observations of Section 3 a r e  immediately applicable to  both f and fo, as well as 

t o  the corresponding expectation functionals. Of course these functions will now 

have Lipschitz propert ies tha t  w e  shall exploit in our  analysis. In the convex case 

i t  might be possible t o  work with weaker restr ict ions on the function f by relying 

on f iner results about the additivity of subgradients, see Rockafellar and Wets 

(1982). Combining the resul ts of Section 3 ,  with those about subgradients of random 

l.sc. functions, in part icular Lemma 4.3, we can show that: 

LEMMA 4.5 Under  Assumpt ions  4.4 a n d  3.5, w e  h a v e  that p-a.s. Ef a n d  

[EVf, v = 1 ,  ... j a r e  proper lower semicon t inuous  func t ions  that are  local ly  

L ipsch i t z  o n  S. Moreover we  a l w a y s  h a v e  



with equality iJfor all t ,  fo(., C) is subd~erent ial ly regular at x. Moreover, if 

X E S  

with equality V igs and for all t ,  fo(-, t )  are subdUYerentially regular at x .  

REMARK 4.6 If x E S,  aq,(x) is  the polar of the  tangent cone T,(x) t o  S a t  x. 

Clarke (1975). If S is a dif ferentiable manifold, then aQ,(x) i s  the orthogonal com- 

plement of the  tangent space at x and, of course, (k, i s  differentially regular a t  x. 

This is also the case when S is locally convex at x, or if x belongs to  the boundary 

of S and this boundary is locally a differentiable manifold. More generally, qs is  

subdifferentially regular  at x,  if the tangent cone t o  S a t  x ,  has the following 

representat ion 

T,(x) = ly13 hk & 0, yk + y . with x + hkyk E S j  

So  fa r ,  w e  have limited our  assumptions t o  certain continuity propert ies of 

the function f with respec t  to x and t. In o rder  to  der ive the asymptotic behavior 

we need t o  impose some additional conditions about the way the information collect- 

ed from the samples is included in the approximating probability measures PV, in 

part icular on how i t  af fects the subgradients of the functions Evf. Let us introduce 

the following notation: uo(x, t )  will always denote an  element of Bfo(x, t )  and v,(x) 

an element of B9,(x). In view of Theorem 4.1 and Lemma 4.5 if x E S, we always 

have that  v(x) E aEf(x) implies the existence of v,(x) E 8q,(x) and uO(x, .) measur- 

able with uo(x, t )  E af0(x, C) P-a.s. such tha t  

Moreover similar formulas hold p-a.s. if the integration is with respect  t o  Pv(.,  <) 

instead of P.  If the  functions fo(- ,  t ) ,  as w e l l  as Q,, are a s .  subdifferentially regu- 

l a r ,  then a type of converse statement also holds. W e  have that  



* * * 
implies the existence of v, E aqs(x ) and of a random function uo(x , -) from E t o  

Rn with uo(x*, -) E ~f o(x*, t )  P-a.s. such tha t  

Similarly, 

means that  t he re  exist  v,(xV) E aqs(xV), and a random function u,(xV, a )  from E t o  

Rn with uo(xV, a )  E 8fO(xV, ') PV-a.s. such that  

ASSUMPTION 4.7 Statist ical Information. The probab i l i t y  measures 

IP", Y = 1, ... j a r e  s u c h  t h a t  for some v V  E a ~ " f  (x*, () a n d  v E aEf (xu(()) 

(i) 6 [ v v ( x * ,  () + v(xV(())] converges to 0 in probab i l i t y ;  

* 
(ii) 6 [ v S ( x  " (0 )  - vs(x )] converges to 0 in probab i l i t y ;  

(iii) vv(x*, () is  asympto t i ca l l y  G a u s s i a n  w i t h  d i s t r i b u t i o n  func t ion  N(0, q) 
where  C1 is the covar iance mat r i x .  

Moreover 

* 
(iv) Efo is  tw ice  c o n t i n u o u s l y  d w e r e n t i a b l e  a t  x with n o n s i n g u l a r  Hessian 

H .  

Before we proceed with the  main resul t  of th is section, le t  us examine some of 

'the implications of these assumptions. The assumption that  Efo i s  of class c2 is of 

course r a t h e r  restr ict ive,  but without i t  i t  maybe hard  t o  obtain asymptotic nor- 

mality; a more general  c lass of limiting distributions (piecewise normal) f o r  con- 

strained problems has recent ly been identified by King and Rockafellar (1986). 

Note that  this does not requi re  tha t  fo be of class c2. 

The assumption tha t  6 [vS(xv( ( ) )  - vS(xL)] converges in probability t o  0 ,  

essentially means that  the convergence of xV  t o  x* is "smooth". Of course, i t  will be 

satisfied if x* belongs t o  t he  inter ior  of the set S of constraints, in which case 
* 

V,(X ) and p-a.s. vs(xV(()) a r e  zero  f o r  Y sufficiently large. I t  will also be trivially 

satisfied if the  binding constraints are l inear and, x* and p-a.s. xV((), belong t o  



the l inear variety spanned by these constraints. In fact ,  w e  can expect this condi- 

tion t o  be satisfied unless the vector x* is a boundary point at which the boundary 

has high curvature,  in part icular at point at which the boundry is not smooth. 

The condition about asymptotic normality of the subgradients vv(x*) is  best 

understood in the following context. Suppose condition (ii) i s  satisfied, in fact  let  
* 

us assume that  vs(x ) = vs(xV(<)) as .  And suppose also that  P V  is  the empirical dis- 

tribution. Then Ilvv(x*, ()I1 records  the e r r o r  of the  estimate of the  subgradients of 

Ef at x*; note that  0 E a ~ f ( x * ) .  

The f i r s t  condition yields an estimate f o r  the  e r r o r s  of the subgradients of 

EVf at x* and Ef at xV(<). The assumption is that  enough information i s  collected s o  

as to  guarantee a cer ta in  convergence r a t e  t o  0. This is a crucial  assumption and 

a f t e r  the statement of the  theorem will re tu rn  t o  this condition and give sufficient 

conditions that  imply i t .  

THEOREM 4 . 8  Under Assumpt ions 4.4,  3.5 a n d  4.7,  6 ( x V ( - )  - x*) is asymptot i -  

ca l l y  normal w i t h  d i s t r i bu t i on  N(0, C) where C = H-l C1(~- l )=.  

PROOF Since Efo is assumed t o  be c2, and xu(.) converges to  x*, f o r  v sufficiently 

large, 

* 
Now, since v(x ) = 0, 

+ f i [ ~ , ( X * )  - vs(xV)] 

By Assumption 4 . 7  the f i r s t  t e r m  converges t o  zero  in probability, the  second one 

converges in distribution t o  N(0, C1) and the th i rd  one converges in probability t o  
* 

zero.  Hence d v [ v ~ f ~ ( x ~ )  - VEfo(x )] converges in distribution t o  N(0, C1) 

(Slutsky's Theorem). This is then also the asymptotic distribution of 

f i ~ ( x '  - x*). The resul t  now follows by the nonsingularity of the matrix H. D 

The remainder of this section, i s  devoted t o  recording cer ta in  conditions that  

will yield condition (i) of Assumption 4.7.  In view of Markov's inequality i t  would 

suffice t o  control  the var iance of I1vv(x*) + v(x")II t o  obtain the desired conver- 

gence. More generally w e  have the  following: 



LEMMA 4.9 Suppose  that E , , ~ " ( x * .  <) = 0, t h a t  

~ , , l l b { ( x * ,  - vo(x*)l12j S e2/ v 

a n d  that 

* 
I L V ( ~  ' + v(xv(0)"  converges to  0 in probab i l i t y  ( p )  . 

v - l /  + Ilv(x ~ (<) ) l l  

Then, u n d e r  Assumptions 4 .4  a n d  3.5, for a n y  (measurable)  se lec t ions  vv(x* ,  - )  

with 

* 
s u c h  that p-a.s. v(x ) = 0, t h e  r a n d o m  vector  

m v v ( x * ,  <I + v(xV(<>>l 

converges  to 0 in p r o b a b i l i t y  as v goes t o  =. 

PROOF W e  need t o  show tha t  t o  any c > 0, t he re  corresponds v ,  such tha t  f o r  al l  

v 2 v,, 

where 6, goes t o  z e r o  as c goes t o  zero.  

Chebychev's inequality and the assumptions of the Theorem imply tha t  f o r  a l l  

a, 

And hence with a2 = 2e2/  c, w e  have 

This, in conjunction with the  last one of o u r  assumptions, i.e., 

implies tha t  the events 

Ilvv(x*) + v(x")l \  < E ( V - ~ / ~  + IIv(x")II) and IlvV(x*)ll 5 v - 1 / 2 e m  , 

have probabi l i ty ( p )  at leas t  1 - c. Thus f o r  c small, 



since IIv(x")II 5 IIvV(x*) + v(x ")I1 + Ilvy(x*)\I. This, together with (4.4), gives 

and this yields the desired expression with 6, = ~ ( 1  + (B + E)/ (1 - E)). 

I t  is easy t o  see why the condition EpJvV(x*. <)I = 0 would be satisfied when 

the P V  are providing moment estimates that  are a t  least as good as the empirical 

distributions. The same holds f o r  the second assumption in Lemma 4.9, there  is a 

reduction in the variance estimate that  is a t  least as significant as that  which 

would be attained by using the empirical distribution. Finally, the last  assumption 

of Lemma 4.9 means that  w e  can allow fo r  a cer ta in  slack in the convergence in 

probability of f i I lvV(x*)  + v(x ") 11 to  zero.  In the Appendix, w e  give a derivation of 

this condition by using assumptions that are related to  those used by Huber (1967). 

5 ASYMPTOTIC LAGRANGIANS 

The resul ts of Sections 3 and 4 can be extended t o  Lagrangians by relying on 

the theory of epi/hypo-convergence fo r  saddle functions, Attouch and Wets 

(1983a). This gives us not just asymptotic propert ies f o r  the sequence 

!xu, v = I, ... of optimal solutions but also fo r  the associated Lagrange multi- 

pliers. 

W e  now introduce an  explicit representation of the constraints in the formula- 

tion of the problem: 

minimize z = E Jf ,(x, $) 1 (5.1) 

sub jec t t o  f i ( x ) S O  , i = l , .  . .  , s ,  

where f o r  i =I ,  . . . , m, the f l  are finite-valued continuous functions, fo  is a 

finite-valued random l.sc. function, and X is  a closed subset of Rn.  When instead of 

P ,  w e  use P V  then the objective function is modified and becomes 



The (standard) associated Lagrangians are 

and 

L(x, y) = 
Efo(x) + Cf "= l~ i f i ( x )  if x E X , and yi 2 0 , f o r  i = 1 ,  . . . , s , 

m if x $? X , 
-m otherwise . 

Consistency can be studied in the  same framework as that  described at the 

beginning of Section 3. The Lagrangians LV a r e  then also dependent of {. Suppose 

that fo satisfies the  conditions of Assumption 3.4; Note that  some of these condi- 

tions are automatically satisfied since fo  is a finite-valued random l.sc. function. 

Suppose also tha t  the [PV, v = 1, ... j satisfy Assumption 3.5 with fo  replacing f (in 

the asymptotic negligibility condition), then i t  follows from Lemma 3.6 that p-a.s. 

the Lagrangians L are finite-valued random l.sc. functions on 

(Rn x (R x Rm -')) x Z; on the  complement all functions Lv are - .a. This is all w e  

need t o  guarantee the  required measurability propert ies,  in part icular w e  have 

that 

L'(x, y) = 

((x, y), {)k LV(x, y ,  {) is  B n + m @ A  -measurable . 

~ ' f o ( x )  + CKl ~ , f ~ ( x )  if x E X , and yi 2 0 , fo r  i = 1, . . . , s , 

m if x $? X , 
-m otherwise . 

DEFJNTION 5.1 m e  sequence of f i n c t i o n s  [h : R n  x Rm --, [- -, -1, v = 1,.  . . j 

ep i /hypo -conve rges  to  h : Rn x Rm --, [- m, -1 i f f o r  all (x, y) w e  h a v e  

(i) for  e v e r y  subsequence [h k = 1, .  . . j a n d  sequence ixk j ~ , ~  converg ing  to  

x, t he re  e x i s t s  a sequence lYk]c=l converg ing  to  y s u c h  that 

h(x, y) 5 lim infhY(xk, yk) , 
k-+- 

a n d  

(ii) fo r  e v e r y  subsequence {h vk, k = 1, .  .. ] a n d  sequence iyk jrZl converg ing  t o  

y, t he re  e x i s t s  a sequence [ z ~ ] < = ~  converg ing  to  x s u c h  that 



This type of convergence of bivariate functions w a s  introduced by Attouch and 

Wets (1983a) in o r d e r  t o  study the convergence of saddle points; in Attouch and 

Wets (1983b) i t  is  argued tha t  i t  actually is the weakest type of convergence that  

will guarantee the  convergence of saddle points. 

THEOREM 5.2 Consistency. From Assumptions 3.4 and 3.5, w i t h  f replaced by  f @  

i t  follows tha t  there ez is ts  Zo E F w i t h  p(Z\Zo) = 0 such  tha t  

L = epi/hypo - lim L p-a.s. 
v -- 

and hence: 

(i) for all ( E ZO, a n y  cluster pont (x̂ , 9) of a n y  sequence I(x ', y v), v = I , . .  j, 

w i t h  (xu, yV) a saddle point  of Lv(. , ., (), i s  a saddle point of L; 

(ii) i f D  is  a compact subset o fRn  x Rm that  meetsfor all v, or at  least for some 

subsequence, the  set of saddle points  of L'(-, -, 0 for some ( E Zo, then 

there ez is t  (xu, yv) saddle points  of Lv(-;, ( ) f o r  v = 1 ,  ... that have at least 

one cluster point; 

(iii) moreover, i f  the  preceding condit ion is satisf ied for all ( E Z@ and L has  

a u n i q u e  saddle point,  t hen  there ez is ts  a sequence 

of Fv- measurable f+unctions that  for al l  ( E ZO, determine saddle point of 

the  LV, and converge to the  saddle point of L. 

W e  note that  sufficient condition f o r  the existence of saddle points a r e  pro- 

vided by the condition introduced in Proposition 3.10 (with f the essential objec- 

tive function of problem (5 . I ) ) ,  in conjunction with the Mangasarian-Fromovitz con- 

s t ra in t  qualification. 

ASYMPTOTIC NORMALITY 5.3 The techniques of Section 4 can also be used to ob- 

tain asymptotic normality results. However, there  is not yet a good concept of sub- 

differentiabil ity for bivariate functions, except in the convex case (Rockafellar 

(1964)), and in the  differentiable case, of course. With aL(aLV resp.) the  set of 

subgradients of the  Lagrangians in the  convex o r  differentiable case, the  condition 

that  (x*, y*) is  a saddle point of L can be expressed a s  



and 0 E aLV(xV, yV, <) in the case of LV. For example, in the convex case when all 

the functions [f,, i = 0 , l ,  . . . , m l  are differentiable and X = Rn, this condition is 

equivalent to: 

and similarly f o r  LV. 

I t  is  easy to  see that  when Assumptions 4.4 and 3.5 hold (with f o  instead of f),  

as well as Assumption 4.7, but this time with u V  and v subgradients of LV and L 

respectively, and S = X X ( R s  X Rm-'), then by the same argument as in the proof 

of Theorem 4.8, w e  obtain: 

* 
6 ( x V ( . )  - x , yV(.) -y*) is  asymptoticaly normal . 

For an application t o  the above results t o  the case of l inearly rest r ic ted L1- 

regression (2.3) see DupaEov& (1987). 

APPENDIX 

W e  shall  show that  the assumption 

* 
"vv(x ) + v(x'" converges in probability t o  0 , 
v - ~ ' ~  + llu(x")ll 

of Lemma 4.9 follows from a ser ies  of sufficient conditions similar t o  those of 

Huber (1967) by a slight modification of the paving technique of the s a m e  paper.  

The main difference is due to  the fact  that  the probability measures PV(. ,  <) are 

not necessarily the empirical ones s o  that  the expectation EpEVf(x, <) = 

j ~ ' f ( x .  ,u(d<) need not be equal t o  Ef(x), e tc .  and that  subgradients a r e  used in- 
z 
stead of gradients. 



ASSUMPTION A . l  There i s  do > 0, a > 0 such that for all x E ~ ( x * )  = 

[x : llx - x811 < do] andfor an  arbitrary v(x) E aEf(x) 

Ilv(x) - v(x8>Il 2 allx - x*ll . 

ASSUMPTION A.2 For any measurable selection u,(x;) such that 

uo(x, t )  E afo(x, t )  P-a.s. denote 

and assume 

( i )  for all 0 < d S do, x E N(x*) there i s  M1 > 0 such that both 

and 

E,EV{G(x, t ,  d) j 5 Mld 

(ii) for all 0 < d s do, x E ~ ( x * )  there i s  M2 > 0 and iji E (I/ 2,  1 3  such that 

var,EvfG(x. t ,  d){  r M.$v-' . 

ASSUMPTION A.3 For all x E ~ ( x * ) ,  for any measurable selection 

v t (x )  E aEvfo(x) with v[(x*) E 8 ~ ' f ~ ( x * )  p-a.s. and for any vo(x) E 8Efo(x) with 

vo(x*) E aEVfO(x*) there i s  M 2  > 0 and a €(I/ 2 ,  11 such that 

LEMMA A.4 Under Assumptions A . l ,  A.2, A.3 

in p- probability as v 4 =. 

PROOF Put  ZV(x, x') = I lv~(x') - vV(x) - v(xf) + v(x) I 1  
v-1'211v(x') - v(x)ll 



Using (4.2) and (4.3), we can write 

Ilv,!Jx') - V{(X) - vo(xf)  + v0(x)II 
ZV(x, x') = 

v - l I 2  + IIv(x') - v(x)ll 

and 

I \ 

according t o  Chebychev inequality and Assumption A.3. This estimate, however, 

does not yield the assert ion of the Lemma. 

A s  in Huber (1967) we cover  ~ ( x * )  by shrinking neighborhoods whose size de- 

creases and whose number does not increase to  rapidly as v  --, -. 

1 
Let y be such that  - < y < min (a, a). Put Ndo = ~ ( x * )  and denote by 

2 

By the same argument a s  above 

The a r e a  NdO \ Ndov7 will be covered by finitely many nonoverlapping "borders" of 

the form 

where 

and fo r  each v ,  6 is fixed in such a way that  

with Mo r 2 an integer t o  be defined later.  As  a resul t ,  



log Mo - log (Mo - 1 )  
6 = 

log v 

To simplify the  notation w e  shall  put 

A s  the next step, we shall  cover  each of "borders" N(k) by nonoverlapping neigh- 

borhoods of an  equal volume with centers  x' such that  

and diameters 

2d0) = dk - dk + 1 = d,1~-"~[1 - v - ~ ]  . 

Their number will not exceed 

Using (A.3), w e  have 

1 - 5 IJ- 
2 

and ~ I J - ~  2 1 + I J - ~  2 I J - ~  . ('4.4) 

Let N be any of the neighborhoods of the covering N(k), i.e., 

N = [x : llx - x' 11 S dg)]. We have according t o  Assumption A.l 

* 
Ilvo"(x) - v{(x ) - v0(x) + v0(x8)II 

sup Z(x, X*) 3 sup 
X E N  x EN 1 ~ - 1 / 2  + a d O ~ - ( k + l ) 6  

Using Assumption A.3, Chebychev inequality and (A.4) 

Similarly, according t o  Assumption A.2 (ii) and Chebychev inequality 



where 

7 = ~ a d ~ v - ( ' " ) ~  - Ef3(xf .  1. d) ]  - E,Evfii(xl, t ,  d) ]  

M 1 
according to Assumption A.2 (i), (A.3) and (A.4). For Mo > - the lower bound in 

2 ~ a  

(A.6) is nontrivial and w e  have that 

Finally, according t o  (A.1), (A.5) and (A.7) 

p f ( :  sup ZV(x, X*) 5 2c j  5 p f ( :  sup ZV(x, x*) 5 & I  
x E N(x') x ENdlS, 

K, -1 

+ z p f ( :  sup ZV(x, x*) 5 E ]  M 
k = O  x E N  cNk) 



- 
In addition, f o r  v la rge enough, 1 - K v b  - a < 0 and K v 6  - a < 0,  K v b  - a < 0 due 

to  our  choice of 7 and (A.2). 

Summar iz ing:  f o r  an  a rb i t r a r y  E > 0,  1/ 2 < 7 < min (a, a) i t  is  possible t o  

bound the  probability 

from above by an expression which converges t o  zero  as v --, =. D 
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