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FOREWORD

This paper supplements the results of a new statistical approach to the prob-
lem of incomplete information in stochastic programming. The tools of nondifferen-
tiable optimization used here, help to prove the consistency and asymptotic nor-
mality of (approximate) optimal solutions without unnatural smoothness assump-
tions. This allows the theory to take into account the presence of contraints.

Alexander B. Kurzhanski

Chairman
System and Decision Sciences Program
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IMathematical Statistics, Charles University, Prague
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INTRODUCTION

These results complement those of Dupacové and Wets (1986). We use the same
notation and identical set-up, the reader is thus referred to that article where he
shall find definitions and the consistency results. We even continue the numbering

of sections and equations, so we start with Section 4.

4 ASYMPTOTICS, CONVERGENCE RATES

In Section 3 of Dupadova and Wets (1986) we exhibited sufficient conditions

for the convergence with probability 1 of the estimators {xV:Z — R", v =1,...{ to

x', the optimal solution of the limit problem. Here we go one step further and
analyze the rate of convergence in probabilistic terms. The argumentation is relat-
ed to that of Huber (1967), adapted to fit the more general class of problems under
consideration; this was already the pattern followed by Solis and Wets (1981), in
the unconstrained case and by Dupadovi (1983a, 1983b, 1984) for stochastic pro-
grams with recéurse under special assumptions. We extend the results of Huber
(1967) in a number of directions: (i) we allow for constraints, (ii) the probability
measures converging to P are not necessarily the empirical measures, and (iii)
there are no differentiability assumptions on the likelihood (criterion) function (in
terms of Huber’s set-up, this would correspond to the case when his function ¥ is

not uniquely determined, see Section 3 of Huber (1967)).
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One way to look at the results of this section is to view them as providing lim-
iting conditions under which one may be able to obtain asymptotic normality. Note
that when there are constraints, one should usually not expect the asymptotic dis-
tribution to be Gaussian. This, in turn, allows us to obtain certain probabilistic es-
timates for the convergence "rates". To approximate the distribution of x¥, to ob-
tain confidence intervals for example, we need an assertion that a suitably normal-
ized sequence converges in distribution to a nondegenerate random vector. The
normalizing coefficients need not be unique but they suggest a rate of conver-
gence. Following Lehmann (1983) we shall say that the sequence xV — x" goes to O
with the rate of convergence 1/k , if k, — o as v — o and if there is a continu-

ous distribution function H such that

P{kVHx"—x*”sa} — H(a) as v — = .

We begin by a quick review of the main definitions and results that provides us
with a good notion for the subgradients of not necessarily differentiable functions.
Any assumption of differentiability of f(-, ¢), would be inappropriate and would for
one reason or another eliminate from the domain of applicability all the examples
mentioned in Section 2. To handle the lack of differentiability, we rely on the
theory of subdifferentiability developed 1o handle nonsmooth functions, see Clarke
(1983), Rockafellar (1983), Aubin and Ekeland (19B4).

The contingent derivative of a lower semicontinuous function
h:R" — (— =, + =] at x, a point at which h is finite, with respect to the direction y
is

h(x +ty) — h(x)
t

h'(x; y): =epi-liminf
ts0

using the convention e — o = ». It is not difficult to see that h’ is always well de-

fined with values in the extended reals. If x € dom h, then h’(x; ') = o, otherwise

h(x; y) = lim inf B+ ) = h(x)

Yy =y t
tio

The (upper)epi derivalive of h at x, where h is finite, in direction y, is the

epi-limit superior of the collection th’(x’; '), x’ € R"] at x, i.e.

h'(x; -): = epi-lim suph’(x’; -)
X’ —x

h'(x; y) = mfle —x1im sup h'(x’; y')
Y —y
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where by writing {x’ — x| and [y’ — y{ we mean that the infimum must be taken
with respect to all nets — or equivalently here sequences — converging to x and y,

see Aubin and Ekeland (1984), Chapter 7, Section 3.

It is remarkable that if h is proper, and x € dom h, the functiony b h'(x; ) is
sublinear and l.sc. [Theorems 1 and 2, Rockafellar (1980)]. Moreover, if h is
Lipschitzian around x, then h'(x; -) is everywhere finite (and hence continuous); in
particular if h is continuously differentiable at x then h'(x; y) is the directional
derivative of h in direction y, and if h is convex in a neighborhood of x, then

h(x + ty) — h(x)
t

h'(x; y) = lim
tio

is the one-sided directional derivative in direction y. The sublinearity and lower
semicontinuity of h'(x; -) makes it possible to define the notion of a subgradient of
h at x, by exploiting the fact that there is a one-to-one correspondence between
the proper lower semicontinuous, sublinear functions g and the nonempty closed

convex subsets C of R", given by

g(y) =sup,ecv'y forally eR",
and

C={v eRMv 'y sg(y) forallye R"Y

see Rockafellar (1970). Assuming that h'(x; ‘) is proper, let 3h(x) be the nonerﬁpty

closed convex set such that for all y,
h*(x; y) = 5up,, € bh(x) vy .

Every vector in v € 8h(x) is a subgradient of h at x. If h is smooth (continuously

differentiable) then
8h(x) = {Vh(x), the gradientofh atx] ;
if h is convex, then
dh(x) = {v'h(x +y)zh(x)+v'y forally €eRY

is the usual definition of the subgradients of a convex function. More generally if h

is locally Lipschitz at x, then

8h(x) =cofv = lim Vh(x’)Ih is smooth at x| .

X" —X
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For the proofs of these preceding assertions and further details, consult Rockafel-

lar (1981) and Aubin and Ekeland (1984).

Before we return to the problem at hand, we state the results about the addi-
tivity of subgradients that are relevant to our analysis, we begin with a general
result that shows that the derivatives and subgradient functions of the random l.sc.
function f and the expectation functionals EYf and Ef have the appropriate

measurability properties.

THEOREM 4.1 Suppose h:R" X = — R is a random lower semicontinuous Sunc-
tion. Then, so are ils contingent derivative and ifs (upper) epi-derivative.

Moreover, for allx € R", ¢ 8h(x, §) is a random closed convex set.

PROOF Theorem of Salinetti and Wets (1981) tells us that the lim sup and lim inf of
sequences of random closed sets (closed-valued measurable multifunctions) are
random closed sets. Since the epigraphs of the epi-lim sup and epi-lim inf are
respectively the lim inf and lim sup of the corresponding sequence of epigraphs
(see for example, Section 2 of Dolecki, Salinetti and Wets (1983)), the assertion
about the derivatives follows from their definitions and property (3.4) of random
lower semicontinuous functions. Since h'(x; -, £) is sublinear, it follows that its
conjugate — another random l.sc. function, Rockafellar (1976) — is the indicator of

the random closed convex set ¢ 8f(x, £).0O

Our interest in subdifferential theory is conditioned by the fact that for a
very large class of functions (with values in the extended reals), we can charac-
terize optimality in terms of a differential inclusion, a point x° that minimizes the

proper l.sc. function on R", must necessarily satisfy
0 € 8h(x%) ,

if h is convex this is also a sufficient condition. There is a subdifferential cal-
culus, but for our purposes the following results about the subdifferentials on sums
of l.sc. functions is all we need. We say that a l.sc. function is subdifferentially
regular at x if h’(x; -) = h'(x; *). If h is convex or subsmooth on a neighborhood of
x, thus in particular if h is cl at x, it is subdifferentially regular at x; h is

subsmooth on a neighborhood Vof x, ifforally € V

h(y) = max ET‘Pt,(}’)

where T is a compact topological space, each ¢, is of class ¢!, and both @ (x) and

V. % (x) are continuous with respect to (t, x). If h is subsmooth on an open set U, it
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is also locally Lipschitz on U, Clarke (1975).

LEMMA 4.2 Rockafellar (1979) Suppose hy and h, are l.sc. functions on R" and
x a point al which both h, and h, are finile. Suppose that dom hy(x; ') is

nonemply and h, is locally Lipschitz at x. Then
d(hy + hy)(x) € 8hy(x) + 8hy(x) .

Moreover equality holds ifh, and h, are subdifferentially regular at x.

LEMMA 4.3 Clarke (1983) Let U be an open subset of R", and suppose
h:U x = — R is measurable with respect to ¢ and there exist a summable func-

tion B such that for allx®, x'inUand £ € =
Ihx? & —h@El &l=s gollx® - x|

Suppose moreover that for some X € U, Eh(X) is finite. Then Eh is finite and

Lipschitz on U, and for allx in U,

8Eh(x) c E{8h(x, §)} = [ Bh(x, §)P(d¢) .

Moreover, equality holds whenever h(:, ) is a.s. subdifferentially regular at x,

in which case also Eh is subdifferentially regular at x.

Theorem 4.1 shows that ¢ 8h(x, §) is a random (nonempty) closed set; it is
easy to verify that under the assumptions of Lemma 4.3, h is a random l.sc. func-
tion on U X =. In fact for all £, 8h(x, §) is a comﬁact subset of R", see Proposition
2.1.2 of Clarke (1983). The integral of a random closed set T defined on = (with

values in the closed subsets of R") is

STOP@H: = fx = [s(OP@HIs(®) eT(®) as., sell],

see Aumann (1965). If P is absolutely continuous, and I is integrably
bounded (the function &P sup {||x|| | llxll € r()} 1is summable), then
f r¢¢)p@é) = fco r(&)P(d¢) is convex, where col'(§) is the convex hull of £. If T
is uniformly bounded then f C(§)P(d¢) is a compact subset of R".

We shall be working with the same set-up as in Section 3, but with a somewhat

more restricted class of random l.sc. functions. Instead of Assumption 3.4, we shall

be using the following one:
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ASSUMPTION 4.4 The function f:RP x 5 — (~ oo, ] is of the following type:
f(x, §) =1fo(x, €) + ¥5(x)
where ¥, is the indicalor function of the closed nonemply set S C RM, i.e.,
Y(x) =0 1if x €S, and = o otherwise ,
and f, is a finite valued function on R" X =, with
EP fo(x, &) relatively continuous on =
Jor all x € S, and any open set U that contains S, the funciion
x — fo(x, &) is locally Lipschitz

SJor all £ € =, and such that to any bounded open set V there corresponds a P-

summable function 8 such that for any pair xo, xlinv:

I£o(x®, &) —foxl, &)= (&) - 1x0 —x1l . (4.1)

The only condition of Assumption 3.4 that does not appear explicitly in As-
sumption 4.4, either in exactly the same form or in a stronger form, is the lower
semicontinuity of f(-, £) on R" for all £ in Z. But that is an immediate consequence
of the fact that fy(-, £) is locally Lipschitz and S is closed. Thus, f is a proper ran-
dom lower semicontinuous function, and so is also f,. Moreover all the results and
the observations of Section 3 are immediately applicable to both f and f,,, as well as
to the corresponding expectation functionals. Of course these functions will now
have Lipschitz properties that we shall exploit in our analysis. In the convex case
it might be possible to work with weaker restrictions on the function f by relying
on finer results about the additivity of subgradients, see Rockafellar and Wets

(1982). Combining the results of Section 3, with those about subgradients of random

l.sc. functions, in particular Lemma 4.3, we can show that:

LEMMA 4.5 Under Assumptions 4.4 and 3.5, we have that p-a.s. Ef and
[EYf, v =1,...] are proper lower semicontinuous functions that are locally

Lipschitz on S. Moreover we always have

BEfy(x) C E{afy(x, )] = fzfo(x, §P@e)

and forv =1, ...,
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BEVf o(x, &) C fzfo(x, §PYAE ¢ up—as,

with equality if for all & f,(-, £) is subdifferentially regular at x. Moreover, if

X €S
OEf(x) C OEfy(x) + 8¥g(x) ,
and forv =1, ...,
OEVf(x, ¢) C BEYfy(x, ¢) + 0¥, (x) u-a.s. ,

with equality if ¥, and for all ¢, f,(, §€) are subdifferentially regular at x.

REMARK 4.6 1If x €S, 8¥4(x) is the polar of the tangent cone Tg(x) to S at x,
Clarke (1975). If S is a differentiable manifold, then 8¥.(x) is the orthogonal com-
plement of the tangent space at x and, of course, ¥, is differentially regular at x.
This is also the case when S is locally convex at x, or if x belongs to the boundary
of S and this boundary is locally a differentiable manifold. More generally, ¥, is
subdifferentially regular at x, if the tangent cone to S at x, has the following

representation

Ts(x)={y|5)\k 0,y >y . with x + A y% €5} .

So far, we have limited our assumptions to certain continuity properties of
the function f with respect to x and £. In order to derive the asymptotic behavior
we need to impose some additional conditions about the way the information collect-
ed from the samples is included in the approximating probability measures PV, in
particular on how it affects the subgradients of the functions EVf. Let us introduce
the following notation: uy(x, ¢) will always denote an element of 8f,(x, §) and vg(x)
an element of 8¥4(x). In view of Theorem 4.1 and Lemma 4.5 if x € S, we always
have that v(x) € dEf(x) implies the existence of v (x) € 8¥,(x) and u,(x, ) measur-

able with uy(x, §) € 3fy(x, £) P-a.s. such that

v(x) = vo(x) + vg(x) = Efug(x, €)] + ve(x)

Moreover similar formulas hold u-a.s. if the integration is with respect to PY(-, ¢)
instead of P. If the functions fy(-, §), as well as ¥, are a.s. subdifferentially regu-

lar, then a type of converse statement also holds. We have that

0 € 8Ef(x")
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implies the existence of v; € B‘Ps(x*) and of a random function uo(x', ) from = to

R" with uo(x*, Y e afo(x*, §) P-a.s. such that

0 = Efupx”, §)] +vgx") . (4.2)
Similarly,

0 € 3EVf(xY) ,

means that there exist v (x") € 8¥,(x"), and a random function u,(x", -) from = to

R" with up(x¥, *) € 8fp(x", ') PY-a.s. such that
0 =vJ&xY) +vg(x") (4.3)
= EY{ug(x", €] + vg(x") .

ASSUMPTION 4.7 Statistical Information. The ©probability measures
{PY, v=1,...] are such that for some v' € BEVE(x", ¢) and v € BEf(xY(¢$))

i Vv l’(x", &) + v(x¥($))] converges to 0 in probability;
(ii) \/;['vs(x V(¢)) - vs(x*)] converges to 0 in probability;

(iii) v"(x*, ¢) is asymptotically Gaussian with distribution function N(0, Z,)

where Z, is the covariance matriz.
Moreover

(iv) Ef, is twice continuously differentiable at x© with nonsingular Hessian

H.

Before we proceed with the main result of this section, let us examine some of
the implications of these assumptions. The assumption that Ef, is of class c? is of
course rather restrictive, but without it it maybe hard to obtain asymptotic nor-
mality; a more general class of limiting distributions (piecewise normal) for con-
strained problems has recently been identified by King and Rockafellar (1986).

Note that this does not require that f, be of class c2.

The assumption that \/;[vs(x"(g‘)) - -us(x*)] converges in probability to O,
essentially means that the convergence of x¥ to x" is "smooth”. Of course, it will be
satisfied if x* belongs to the interior of the set S of constraints, in which case
vs(x*) and u-a.s. vg(x V(¢)) are zero for v sufficiently large. It will also be trivially

satisfied if the binding constraints are linear and, x' and u-a.s. xV(¢), belong to
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the linear variety spanned by these constraints. In fact, we can expect this condi-
tion to be satisfied unless the vector x" is a boundary point at which the boundary
has high curvature, in particular at point at which the boundry is not smooth.

The condition about asymptotic normality of the subgradients 'u"(x*) is best
understood in the following context. Suppose condition (ii) is satisfied, in fact let
us assume that 'us(x*) = vg(x Y($€)) a.s. And suppose also that PV is the empirical dis-
tribution. Then ||'u”(x*, ()” records the error of the estimate of the subgradients of
Ef at x*; note that 0 € BEf(x').

The first condition yields an estimate for the errors of the subgradients of

EYf at x* and Ef at xY(¢). The assumption is that enough information is collected so
as to guarantee a certain convergence rate to 0. This is a crucial assumption and
after the statement of the theorem will return to this condition and give sufficient

conditions that imply it.

THEOREM 4.8 Under Assumptions 4.4, 3.5 and 4.7, Vv(Y(:) - x*) is asymptoli-
cally normal with distribution N(O, Z) where Z = H™1 El(H_l)T.

PROOF Since Ef,, is assumed to be C%, and xY(') converges to x', for v sufficiently

large,

VEfy(x") ~ VEfo(x") =H(x" —x") + o(lxV = x*l) pu-as.
Now, since v(x") =0,

VI(VEfo(x") = VEfo(x")) = Vo[v(x¥) + v¥(x")] = VD o¥(x")

+ Vi Tvg(x") = vg(x)]

By Assumption 4.7 the first term converges to zero in probability, the second one
converges in distribution to N(0, Z;) and the third one converges in probability to
zero. Hence Yv[V Efy(x vy = VEfo(x*)] converges in distribution to N(O, Z,)
(Slutsky’'s Theorem). This is then also the asymptotic distribution of
VVH(xY - x*). The result now follows by the nonsingularity of the matrix H. O

The remainder of this section, is devoted to recording certain conditions that
will yield condition (i) of Assumption 4.7. In view of Markov’s inequality it would

suffice to control the variance of ||’u"(x‘) + v(x ")H to obtain the desired conver-

gence. More generally we have the following:
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LEMMA 4.9 Suppose that E fv¥(x", ¢)} =0, that
E, ™, & — oo™ < g2/ v
and that

™, &) + v
v~ 12 4 vl

converges to 0 in probability (u) .

Then, under Assumptions 4.4 and 3.5, for any (measurable) selections v”(x*, )

with
W, ¢) € BEM(x, ¢) pu—a.s. ,

such that u-a.s. v(x*) = 0, the random vector
VU™, &) + v(x* ()]

converges o 0 in probability as v goes Lo o,

PROOF We need to show that to any £ > 0, there corresponds v, such that for all

vauy,,
p.['v”(x') +v@l= v—1/25£] <c

where ‘5: goes to zero as £ goes to zero.

Chebychev's inequality and the assumptions of the Theorem imply that for all

plh V™, Ol > av=12 s va~ 28 Jlv¥x™, &)IF < v(8/ )? .
And hence with a? = Zﬂz/ £, we have

pllovx™ > v-128VZ / Vel < e/2 .
This, in conjunction with the last one of our assumptions, i.e.,

ullv¥@x™ + vz v V2 4+ lloxvihi<s ez (4.4)
implies that the events

Hv”(x') +vENl < e 2 +llo@Wl)  and ”v”(x')” s v Y2827

have probability (u) at least 1 — £. Thus for £ small,
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pllvEenlls v V2B +e)/1 - a)] >1 - ¢ ,
since lv(xY) |l < ||v"(x') + oY+ ||’u"(x')||. This, together with (4.4), gives

pwllv’ax® +vEVli<c v 21 + (B+e)/(1 —e)]1>1 —¢

and this yields the desired expression with §, = e(1 + (8 + &)/ (1 — £)). O

It is easy to see why the condition E#{v"(x*, ¢)] =0 would be satisfied when
the PY are providing moment estimates that are at least as good as the empirical
distributions. The same holds for the second assumption in Lemma 4.9, there is a
reduction in the variance estimate that is at least as significant as that which
would be attained by using the empirical distribution. Finally, the last assumption

of Lemma 4.9 means that we can allow for a certain slack in the convergence in

probability of VuilvY(x®) + v(x"( to zero. In the Appendix, we give a derivation of

this condition by using assumptions that are related to those used by Huber (1967).

5 ASYMPTOTIC LAGRANGIANS

The results of Sections 3 and 4 can be extended to Lagrangians by relying on
the theory of epi/hypo-convergence for saddle functions, Attouch and Wets
(1983a). This gives us not just asymptotic properties for the sequence

v

{x¥, v=1,...] of optimal solutions but also for the associated Lagrange multi-

pliers.

We now introduce an explicit representation of the constraints in the formula-

tion of the problem:

minimize z = E{fy(x, £)} (6.1)
subjectto fi(x)=0, i=1,...,s,
fix) =0, i=s+1,...,m
x€XCR"
where for i =1,...,m, the f; are finite-valued continuous functions, f, is a

finite-valued random l.sc. function, and X is a closed subset of R". When instead of

P, we use PY then the objective function is modified and becomes
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EVo(x) = [ fo(x, )PY(AE) .
The (standard) associated Lagrangians are

Efo(x) + 2 qyify(x) if x€X , and y;20, fori=1,...,s,

L(x,y)=|e if xZ X ,
—oo otherwise .

and

EYfo(x) + 2 qyify(x) if x€X , and yy 20, fori=1,...,s,

LV(x,y) = if xg X,
—o otherwise .

Consistency can be studied in the same framework as that described at the
beginning of Section 3. The Lagrangians LY are then also dependent of ¢. Suppose
that f, satisfies the conditions of Assumption 3.4; Note that some of these condi-
tions are automatically satisfied since f, is a finite-valued random l.sc. function.
Suppose also that the {PY, v =1,...] satisfy Assumption 3.5 with f, replacing f (in
the asymptotic negligibility condition), then it follows from Lemma 3.6 that u-a.s.
the Lagrangians LY are finite-valued random l.sc. functions on
(R" x (R3 XxR™73%)) x Z; on the complement all functions LY are = e. This is all we
need to guarantee the required measurability properties, in particular we have

that

(x, ¥), &) L¥(x,y,¢) is B"*™®A4 — measurable .

DEFINTION 5.1 The sequence of functions (hV:RUXRM —[—~e, =], v =1,...
epi/hypo-converges to h:R" X R™ — [— o, ] if for all (x, y) we have

(i) Jfor every subsequence [h v]‘, k =1,...] and sequence {xkh‘:’:l converging to

X, there exisis a sequence {yk]l:’___l converging to y such that
h(x, y) slli{m infhv]‘(xk, yk) .

and

(ii) for every subsequence {huk, k =1,...] and sequence {ikh:’:l converging to

y, there exists a sequence !ik g =1 converging to x such that



-13-
h(x, y) = li}r(n sup h "%(Z¥, 7¥) .

This type of convergence of bivariate functions was introduced by Attouch and
Wets (1983a) in order to study the convergence of saddle points; in Attouch and
Wets (1983b) it is argued that it actually is the weakest type of convergence that

will guarantee the convergence of saddle points.

THEOREM 5.2 Consistency. From Assumptions 3.4 and 3.5, with f replaced by f,
it follows that there exists Z, € F with u(Z\Z,) = 0 such that

= epi/hypo ~limLY u-a.s.

vV —b oo

and hence:

(i) for all ¢ € Z, any cluster pont (X, ¥) of any sequence {(x*, y"), v=1,..4,
with (xY, y¥) a saddle point of LY(-, *, ¢), is a saddle point of L;

(ii) 1ifD is a compact subset of R" x R™ that meets for all v, or at least for some
subsequence, the set of saddle points of LY(:, -, ¢) for some ¢ €2, then
there exist (x", yY) saddle points of LY(",", ¢) for v =1,... that have at least
one cluster point,

(iii) moreover, if the preceding condition is satisfied for all ¢ € Zy, and L has

a unique saddle point, then there exisis a sequence
f(xV, yV:Zyg —»R"xR™ v=1,.]

of F¥- measurable functions that for all ¢ € Z, determine saddle point of

the LY, and converge to the saddle point of L.

We note that sufficient condition for the existence of saddle points are pro-
vided by the condition introduced in Proposition 3.10 (with f the essential objec-
tive function of problem (5.1)), in conjunction with the Mangasarian-Fromovitz con-

straint qualification.

ASYMPTOTIC NORMALITY 5.3 The techniques of Section 4 can also be used to ob-
tain asymptotic normality results. However, there is not yet a good concept of sub-
differentiability for bivariate functions, except in the convex case (Rockafellar
(1964)), and in the differentiable case, of course. With 3L(8LY resp.) the set of

subgradients of the Lagrangians in the convex or differentiable case, the condition

that (x*, y*) is a saddle point of L. can be expressed as
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0edLix",yD .,

and 0 € ALY(x"Y, yY, ¢) in the case of LY. For example, in the convex case when all

the functions {f;, i =0,1, ..., m] are differentiable and X = R", this condition is

equivalent to:

0 =E{Vfy(x", O + DMy £,

0=1f(x") , i=1,...,s,
0=1£(x"), i=s+l,...,m,
1=1,. . 5,

0=y f,(x") , y 20,

and similarly for LY.
It is easy to see that when Assumptions 4.4 and 3.5 hold (with f, instead of f),

as well as Assumption 4.7, but this time with vY and v subgradients of LY and L

respectively, and S =X X (R X R™ %), then by the same argument as in the proof

of Theorem 4.8, we obtain:
VT (xV() = x", yY(") =y") is asymptoticaly normal .

For an application to the above results to the case of linearly restricted L,-

regression (2.3) see Dupa&ova (1987).

APPENDIX

We shall show that the assumption

lovx™) + vx )l
v=12 |y @yl

converges in probability to 0 ,

of Lemma 4.9 follows from a series of sufficient conditions similar to those of
Huber (1967) by a slight modification of the paving technique of the same paper.
The main difference is due to the fact that the probability measures PY(, ¢) are

not necessarily the empirical ones so that the expectation E#E"f(x, $H =

fE"f(x, &) u(d¢) need not be equal to Ef(x), etc. and that subgradients are used in-
z

stead of gradients.
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ASSUMPTION A1 There is d, >0, a >0 such that for all x€N(x*) =

{x:“x -x"ll< do) and for an arbitrary v(x) € OEf(x)

”v(x) - v(x')” >allx —x*Il .
ASSUMPTION A.2 For any measurable selection uy(x, ) such that
ug(x, &) € ofy(x, £)P-a.s. denote

u(x, £ 4) = lhao(x, £ —uply, O

ulx, £.d) = SR ofx, ) —uo(y, £

and assume

(i) forallD <d=d,, x € N(x') there is M; > 0 such that both
Efa(x, £ d)} < M,d
and

E#E"fﬁ(x, £,d)] =M, d
() forall0 <d=dgy x € N(x") there is Mp >0 and & € (1/ 2, 1] such that
var ,E¥{u(x, ¢ d)) = h_dzdu'a .
ASSUMPTION A3 For all x € N(x*), Jor any measurable selection

vg (x) € BEYf,(x) with vé’(x*) € bE"fo(x*)p,-a..s. and for any vy(x) € 8Efy(x) with

vo(x') € dEYf ,(x*) there is M, > 0 and a €(1/ 2, 1] such that

E/_L”v(;’(x) - vé’(x*) - vy(x) + vo(x')”?' = M2||x —x*lly-a

LEMMA A.4 Under Assumptions A.1, A.2, A3

sup lovx*y = v¥(x) — v(x*) + vx)ll -
x €N(x") v=172 4 lyx™) — vl

0

in u- probability as v — o,

_ lovx’) — v¥(x) — vx’) + vx)ll

PROOF Put Z¥%(x, x’
( ) u'1/2||v(x’) - v(x)”

U¥(x, d) =E"fu(x, £d)} +Efu(x, £ d))
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wY(x) = v(x) - v(;’(x*) - vy(x) + vo(x*) .

Using (4.2) and (4.3), we can write

v " ||v;’(x’) - vd(x) —vo(x’) + vo(x)”
(x, x7) = y~1/2 4 ||v(x’) - v(x)”

and

wi¢: sup ZVx, x)=&ls= p{(:

£
sup llwv)lle ==
x EN(x™ X EN(x" Vv
< Mzdo v Mzdo 1-
ve& £? £?

according to Chebychev inequality and Assumption A.3. This estimate, however,
does not yield the assertion of the Lemma.

As in Huber (1967) we cover N(x*) by shrinking neighborhoods whose size de-
creases and whose number does not increase to rapidly as v — oo,

Let ¥ be such that > < v < min (a, a). Put Ndn = N(x*) and denote by
x -
Ndov-"': fx:”x - X ”Sdov 7; .

By the same argument as above

v * Ma2do 1-a-7y 1-a-v
pmyé: sup ZV(,x )z Ee|s ——V =Cy(e)v . (A.1)
xENddl_., &

The area Nd,, \ Ndov"’ will be covered by finitely many nonoverlapping "borders” of
the form

N(k) = {x:dou'(k*'l)a <||x —x*||sdov_k61 , k=0,...,K,—-1

where

Kézy>EK,—1)

(A.2)
and for each v, & is fixed in such a way that
Y
1-v M, (A.3)

with M, = 2 an integer to be defined later. As a result,
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& log My —log (My; — 1)

log v
To simplify the notation we shall put
dy=dev ¥, k=1,...,K

v o

As the next step, we shall cover each of "borders” N(k) by nonoverlapping neigh-

borhoods of an equal volume with centers x’ such that

Ix* - xll = %(dk +dp,.p = —%—dov_ka[l + v—5] = d(k)
and diameters

Zd(k) = dk - dk +1 = dov-ka[l - V_6] .
Their number will not exceed

24, |" n
i2d k ] = [L_&] = [ZMo]" =M
(x) 1i-v

Using (A.3), we have

%— <v % and 3vf21+v 82y ¢ . (A.4)

Let N be any of the neighborhoods of the covering N(k)' ie.,

N = |x: lx —x'll < d(k)i. We have according to Assumption A.1

sup Z(x x*) < su ||v(§’(x) - vé’(x') - vp(x) + vo(x')”
XE% ' xEII)‘J p-1/2 +adov_(k+1)6

lweeenll | Uux’, dgo)
—(k+1)§ ~(k+1)é8

adyv adyv

Using Assumption A.3, Chebychev inequality and (A.4)

M iy

2y2a?q2y 2k + 1)

wiewie)ll = adgy k18] <

(A.5)

< Cl(a)v(k +1)6 -a )

Similarly, according to Assumption A.2 (ii) and Chebychev inequality
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pi¢: UV, dgpy) = sadoy " KDY

< pl¢: [EVRGx, ¢ )} —~E,EY(5(x", ¢, d))] = cadow~(+ D

—E{a(xll E. d); —E#Evfﬁ(x" {» d);;

_very BUEe £ ) Fidgg

.’72

Ua,r)Z
where

n=cadyw **V_Efux, ¢ d)] ~E EVUx, £ d)]

(A.6)
> cadoy” D8 —2Myd gy, = dov ¥ V0ea — My - v V70
M
—(k +1)6 1
=doy~**D [“’_H«:

M
according to Assumption A.2 (i), (A.3) and (A.4). For M, > _1::1 the lower bound in
(A.B) is nontrivial and we have that

Mdov ko1 —v70- 2
i UM, dggy) = cadyy kD4 <

M
a2y 2K+ 8| q !

2M,

— (A.7)
Va

v—a’+(k +1)8
E ———

= C,(& CpT @ (k+1)8 .
o, 2(£)
ta — ——

0

Mo

Finally, according to (A.1), (A.5) and (A.7)

wié: sup ZVYx, x7) =2 s ufé: sup Z¥x, x) = &)
XEN(X') XENdKu
K, -1 .
+ Y uié: sup Z¥(x,x )= e]M
k=0 X EN CN(k)

- - | 4
= Co(e:)v1 a-Kb  n 3 oupe:dlwvx) 2 cagyr &+
k=0

K,-1
+M ) ufé:UY(x, d(k>)zeadov’(k+1)6§
k=0

K,—1

K, -1 _
SCo(E)Ul_a_Kya'f'M E Ci(€>V(k+1>6—a +M E Cz(t)v(k+1>6—a
k=0

k=0
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1-a-K,é = Kol
=Ry + M(C1(e)v™ % + Co(e)v™ %) ¥ yk+1)é

k=0

=Co(a)v

1-a-Kb l\&Ci(e)vK”"_ﬁl + MCz(e)vK”&_m

= Cg(&)v

In addition, for v large enough, 1 —K § ~a<0and K,6 —a <0, K,0 —a <0 due

to our choice of 7 and (A.2).

Summarizing: for an arbitrary € >0, 1/2 <y < min(a, a) it is possible to

bound the probability

pié: sup Z (%, x*) =l
¥ €EN(x")

from above by an expression which converges to zeroas v — «. 00
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