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FOREWORD 

The recent  resul ts on asymptotic behavior of stat ist ical estimates and of op- 
timal solutions of stochastic optimization problems obtained by DupaEovh and Wets 
are used to prove consistency of rest r ic ted Ll-estimates under more general  as- 
sumptions. For the  special case of l inearly rest r ic ted l inear L1-regression, 
Lagrangian approach is used t o  achieve asymptotic normality. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 



ABSTRACT 

Asymptotic propert ies of L l-estimates in l inear regression have been studied 
by many authors, see e.g. Bassett and Koenker (1978), Bloomfield and Steiger 
(1983). I t  is the lack of smoothness which does not allow to use the known results 
on asymptotic behavior of M-estimates (Huber (196'7)) directly. The additional 
lack of a convexity in the nonlinear regression case increases the complexity of 
the problem even under assumption that  the t rue  parameter values belong t o  the 
inter ior of the given parameter set;  fo r  a consistency result in this case see  e.g. 
Oberhofer (1982). 

W e  shall use the technique developed in DupaEovA and Wets (1986), (1987) t o  
get asymptotic propert ies of the L l-estimates of regression coefficients which are 
assumed to  belong to  an a prior i  given closed convex set given, e.g., by constraints 
of general equality and inequality form. The method uses, La., tools of nondifferen- 
tiable calculus and epi-convergence and i t  can be applied to  other  classes of L1- 
estimates as well. 
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whose nondifferentiability precludes from d i rect  application of the related asymp- 

totic results. Nevertheless, asymptotic normality of the Ll-estimates of regression 

coefficient w a s  proved by Bassett and Koenker (1978) f o r  l inear regression with 

nonrandom regressors and by Bloomfield and Steiger (1983) f o r  l inear regression 

with random regressors under ergodicity and stat ionarity assumption. Consistency 

resul t  f o r  L l-estimates of parameters in nonlinear regression model can be found 

in Oberhofer (1982). 

In model (1.1) and, correspondingly, in the optimization problem (1.3), res- 

tr ict ions on the estimated parameter values can be taken into account to respect  

technical and modeling considerations and, eventually, to guarantee the uni- 

quenesss of the estimate (Barrodale and Roberts (1977)). Inequality constraints on 

the estimates, however, introduce an essential lack of smoothness. That i s  why one 

usually assumes (see e.g. Huber (1967), Oberhofer (1982)) that  the t rue  parameter 

vector is an interior point of the given admissible set. 

For the case of l inearly restr icted l inear regression the  simplex method can 

be used to get  the  rest r ic ted L l-estimates, i.e., to get  the optimal solution of the 

mathematical programming problem 

where S i s  a nonempty convex polyhedral set. (For a survey on solution techniques 

see e.g. Barrodale and Roberts (1977) or Arthanari and Dodge (1982).) 

The optimal solution of (1.4) l ies very  often on the boundary of S what does 

not conform with the mentioned assumption tha t  the  t r ue  parameter value is an in- 

te r io r  point of S. 

W e  shall use the technique developed in DupaEovA and Wets (1986), (1987) to 

get  consistency and asymptotic normality of restr icted L l-estimates. The special 

form of the objective function together with the use of empirical distribution help 

to simplify the  assumptions used in the  mentioned papers. Further simplification is 

possible in cases where g is l inear both in b and x ,  i.e., for  l inear regression. 



2. CONSISTENCY 

Let t be an  m + 1 dimensional random vector on ( E ,  a ,  P) with components 

to, tl, . . . , tm and f' o:  R n  x R m  'l --, R1 the function 

Assume that S c R n  is a given nonempty closed set of admissible parameter values 

and define f' : R n  X Rm --, = R1 U lwj the function 

f ' ( b ,  t ) = f o ( b ,  t )  f o r  b ES a n d t € R m + l  

=+ on fo r  b 6Z S . 

Observe that  f' (b , t )  = f' o(b,  t )  + 9, ( b )  where 9, (b ) is the indicator function of 

the set S 

9,(b)  = 0 f o r  b E S  and 9,(b)  = + oo if b g S  

Let us f i rs t  discuss the properties of' the f i nc t i ons  f' and f' o. 

a )  If the function g : R n  x Rm --, R1 in (2.1) is a cont inuous function, then evi- 

dently 

f' is  nonnegative and continuous in t 
f o  is  nonnegative and continuous in b and t. 

b) If fo r  an  a rb i t ra ry  t E E the function g in (2.1) is  LocaLLy Lipschitz in b then 

fo r  all t E E 

f' o( ' ,  t) i s  locally Lipschitz in  b and 

f' ( a ,  t) i s  lower semicontinuous. 

c )  Taking into account the special form of f o ( b ,  t) w e  can write (using again the 

notation f o r  the  m -dimensional subvector of components tl, . . . , tm) 
t )  = max t), Q2(b. t)j 

with 

Ql(b* t )  = to - g ( b ,  'i) 
Q2(b I t )  = - t o  + g (b  ?I>. 

If f o r  a n  a rb i t ra ry  t E E the function g is  continuousLy dwerent iable in b then 

fo r  al l  t E Z (see Rockafellar (1981), prop. 4 A  and 3 H )  



f' O(.,  t )  is locally Lipschitz and subdifferentially regular  and 

f' ( a ,  t) i s  lower semicontinuous on R n  . 

The subdwerent ia l  (with respec t  t o  b) 

8 J o ( b ,  t) = conv 106 iPi(b, t )  f o r  i such that f o ( b ,  t) = iPi (b , t)j 

The estimate of the parameter vector @ based on the sample of size IJ from the 

distribution P I  i.e., the optimal solution b of the mathematical program 

- - 

V 

min C f o ( b ,  t i)  on the set S 
i =1 

- v b ~ ( b s  if t o  > g ( b ~  

v 6 9 ( b ,  T )  if t o  < g ( b ,  T )  
conv 1 - vb g (b , t), v6g (b , 1 otherwise . 
i 

or ,  equivalently, 

V 

min f ' ( b , t i )  o n R n  , 
i =1 

corresponds t o  the use of the (random) empirical probability measure P" which 

converges t o  P in distribution almost surely. In our  analysis w e  have to use as- 

sumptions concerned jointly with the considered probability measures P ,  P V  and 

the functions f' or f' o. 

ASSUMPTION 2.1 To a n y  bounded set V c R n  there corresponds a summable 

&nction n such that  for a n y  pa i r  bO,  b1 E V 

COMMENT 2.2 Besides of local Lipschitz property of So( ' ,  4)  which is implied by 

the same property of g (., ?j, w e  assume the integrability of the Lipschitz constant 

n. 

ASSUMPTION 2.3 The probabil i ty measures P, PV, IJ = 1, 2,.  .. are f' -tight, i.e., 

V b  E S and E > 0 there is  a compact set K, c E such tha t  



Assumption 2.3 is fulfilled automatically for f ( b ,  .) bounded o r  Z compact. For 

t one-dimensional, i t  is  equivalent to uniform integrability of f o ( b ,  .) in PV f o r  

b E S and i t  i s  equivalent to  the convergence of expectations 

to a finite expectation 

f o r  all b E S (see Loeve (1955), Section 11.4). 

Under Assumption 2.3, similar resul ts hold t r ue  in the more-dimensional case 

as well (see DupaEovh and Wets (1986)), namely: 

The expectations 

a r e  a.s. finite and lower semicontinuous on S and 

Ef = lim E = epi -1im E . 
v+= V + Q  

In addition, the consistency property follows (see DupaEov6 and Wets (1986), 

Theorem. 3.9): 

THEOREM 2.4 Let in the def in i t ions (2.T) and (2.2), t be a n  ( m  + 1)- 

dimensionaL random vector o n  (Z, a.  P), S c R n  be a dosed nonempty set and 

the m n c t i o n  g :Rn  X Rm --+ R' be cont inuous. Let PV, v = 1, 2, ... be (random) 

empirical measures based o n  independent sampLes of s ize v from the distr ibu- 

t i on  P such tha t  Assumptions 2.P and 2.3 hold true. 

Then: 

1) Any cluster point of a n y  sequence of [b  F=l such that  b " E a r g  min E " f  , 

v = 1, 2, . . . , almost sure ly  belongs to arg  min Ef . 



2) If there is a compact set  D c Rn s u c h  that for  v = 1, 2,. 

(arg min E "f ) n D is nonempt y a.s. 

and 

181 = (arg minEf)  n D  

then there exist  a measurable selection Ib '1 r=l of [arg min E 'f I s u c h  

that 

= lim b "a.s. 
v + -  

and also 

inf Ef = lim (inf EVf ) a.s. 
v + -  

For the l inear L1-regression, i.e., fo r  the  problem (1.4) with an  already given 

(observed) matrix X of regressors,  the existence of the optimal solutions bV fol- 

l ows  via propert ies of the corresponding l inear program, see e.g. Bloomfield and 

Steiger (1983). For nonlinear L1-regression this need not be the case. To guaran- 

tee the  existence of optimal solutions of the programs 

f o r  noncompact S one can use the infcompactness property of the objective func- 

tions E if (6, #)I and EVlf (b, C) 1. To this purpose, i t  is  sufficient to assume that 

fo r  a set A E a with P(A) > 0 (resp. PV(A) > 0) the set 

is  bounded fo r  all a € R (see DupaEov6 and Wets (1986), Proposition 3.10). For the 

empirical measure P V ,  this property is evidently fulfilled i t  the function f ( a ,  C) i s  

infcompact fo r  a realization of C. 

Evidently, our  assumptions are weaker than those by Oberhofer (1982) and i t  

is  possible to proceed in a quite similar way to get  the consistency of rest r ic ted 

L l-estimates fo r  o ther  models without unnatural smoothness assumptions. 



3. ASYMPTOTIC NORMALITY 

Provided t ha t  a l l  t he  assumptions of Theorem 2.4 needed t o  ge t  the consisten- 

cy  resu l t  (2.4) are fulfilled we can study t he  rate of convergence f o r  (2.4) in  a 

probabi l ist ic sense.  To th is purpose, appropr ia te  dif ferentiabi l i ty proper t ies  of 

o u r  problems (2.5) are needed. 

ASSUMPTION 3.1 Fo r  an a r b i t r a r y  t EZ, t h e  f i n c t i o n  g (., t )  is c o n t i n u o u s t y  

dmeren t iab le .  

According t o  resu l ts  by Clark (1983) (see a lso the  discussion in Dupa6ov6 and 

Wets (1987)) we have with a fo (b ,  C) given by (2.3) 

LEMMA 3.2 Under Assumpt ions  2.2, 2.3 and 3.2 

and fo r  an a r b i t r a r y  b E S 

w i t h  e q u a l i t y  V \k, is subd.igperentially r e g u l a r  at b . 

COMMENT 3.3 a )  For  convex sets o r  f o r  smooth manifolds, the indicator function 

9 i s  subdif ferential ly regu la r ,  see Rockafel lar (1981). 

b) Formula (3.1) together  with (2.3) imply tha t  f o r  P absolutely continuous 

Ef i s  di f ferentiable. 

The p roper t ies  ( 3 .1 ,  (3.3) imply t ha t  f o r  an  a rb i t r a r y  b E S  and 

v (b ) E aE lf (b , t )  j t he re  ex is t  v ,  (b ) E a 9, (b ) and measurable u O(b, ') such tha t  

almost sure ly  

and 



Similarly according to (3.2) ,  (3 .4) ,  f o r  an  a rb i t ra ry  b  E S  and 

v  " (b )  E aEV[f '  (b , t ) ]  w e  have almost surely 

where 

and 

I v a r  v $ ( b )  = - va r  [ u 0 ( b S  
v 

due t o  subdifferential regulari ty of P o  and to the definition of P". 

Application of these resul ts t o  necessary conditions 

fo r  the optimal solutions of the  problems (2.5) ,  i.e. fo r  

and 

implies existence of vs (@) f 6  qs (@), v, (b  ") E 6  qs (b ") and random functions 

uo(@, e), u O ( b  ", + )  such that  

U O ( @ ,  t )  E af'o(@, t )  ass. 

u O ( b V ,  t )  f 6 f 0 ( b V ,  [) a.s. f o r  v = 1, 2, . . .  

and 

0 =Elu .o (@I  t>j + vs(@> = ~ ( 8 )  

0 = ~ " [ u ~ ( b " ,  t)j + v S ( b " )  = v V ( b " )  

a.s. f o r  = 1, 2 , . .  

For this choice of subgradients v "(b '), the condition 

1 
v  '(b ') -. 0 in probability as v -P = 



i s  tr iv ial ly fulfilled. 

The basic idea i s  to apply Huber's approach (see Huber (1967), Section 4) to 

t he  subgradients v  and v  of the  functions Ef and EVf t ha t  fulfill (3.5) and (3.6) 

f o r  to g e t  the asymptotic normality of bV. The assumptions of ~ u p a 6 o v A  and Wets 

(1987) reduce  to t h ree  basic conditions in our case: 

(a) 6 [V '(B) + v (b ')I -+ 0 in  probabi l i ty as v -+ a. 

(b) Efo is  twice continuously dif ferentiable at t he  point B with nonsingular Hes- 

s ian H. 

(c) 6 [ v ,  (b ') - v ,  (B)] -+ 0 in probabi l i ty as v -+ a. 

The f i r s t  two p roper t ies  resemble resu l ts  of Huber (1967) and the i r  validity 

can be proved under  various sets of suff ic ient conditions. The proper ty  (c) i s  of a 

di f ferent  nature.  I t  i s  tr iv ial ly sat isf ied if Band b V  f o r  v l a rge  enough are in ter io r  

points of S. For to indicate br ief ly  t ha t  a l l  mentioned conditions can be  fulfilled we 

shal l  concent ra te  to the  case of l inearly res t r ic ted l inear  L1-regression; t h e  non- 

l inear  case i s  substantially more complicated due to t h e  f ac t  t ha t  the  function f o  i s  

ne i ther  convex no r  dif ferentiable. 

W e  assume t ha t  t he  t r u e  parameter  vec to r  B i s  t h e  optimal solution of t h e  

mathematical program 

minimize E [f o(b, t )  j sub jec t  to Ab 5 c (3.7) 

and i t  is estimated by optimal solutions b of t he  programs 

minimize E "[f o(b, t )  j sub jec t  to Ab 5 c ; (3.8) 

A (m , n )  and c (m , 1 )  are given matr ices of constant  elements and 

f o (b ,  t )  = Ito - b Trl. The corresponding Lagrangian functions have t he  form 

and 

L (b ,  Y )  = 

j f o ( b ,  O P ( d 0  - y T @ b  - c )  for u 5 0 
X 
-a otherwise 

Under Assumptions 2.1 and 2.3 (applied to t he  considered function f instead of f ) 

LV(b,  If) = 

/lo@, t ) P v ( d t )  - y T ( ~ b  - c )  for y 50 
X 
-a otherwise (3.10) 



an assert ion about consistency of saddle points (bV, y V )  paral lel t o  that  of 

Theorem 2.4 can be proved (see Dupabovii and Wets (1987), Theorem 5.2). The ex- 

istence of saddle points in t he  case of l inearly rest r ic ted l inear L1-regression is 

guaranteed thanks to the special type of constraints and of the  function f o .  Also in 

this case, 

and 

are necessary and suzpicient conditions fo r  (8, 7 )  and (bv, y v )  to be saddle points 

of the Lagrangian functions L and L with respect to  the  set S = Rn X RT . 

The special form of the set S together with consistency of (b ', y ') help t o  el- 

iminate the constraints in (3.9) and (3.10) provided that  the s t r i c t  complementari- 

t y  conditions hold t r ue  f o r  (8, q), i.e., f o r  Vi 

Denote by I c [ I ,  . . . , m j the  set of indices f o r  which qi > O,i.e., fo r  which the 

i-th constraint i s  active f o r  the  t rue  parameter vector 8. Evidently, 

n 
yiv = 0 fo r  i fZ 1 and C aijbjv = ci fo r  i E I a.s. 

j =l 

fo r  v la rge enough. Denote AI = (ay), ~1 . In this situation, w e  a r e  in fac t  in- 
= I .  ..., n 

terested t o  study asymptotic behavior of the uncons t ra ined  saddle points 

(b ', y y )  of the reduced Lagrangian function 

fo r  v --, a. All w e  need fo r  asymptotic normality of the estimates b V  are the 

corresponding versions of conditions (a), (b) with vV(@) and v (b ') replaced by 

v (8) - ATqI and v o(b ') - A f i y  and with Ef replaced by the reduced Lagrangian 

function LI. 



THEOREM 3.4 Let the t rue  parameter vector 8 be the point of min ima of the 

f u n c t i o n f o ( b ,  t )  = I t o - b T r I o n t h e s e t ~  = ( b : A b  + c j .  

Assume further: 

( i )  For the t rue  parameter vector 8,  the random vector z and residual E in 

are independent with densit ies h and h2 such  that hz(0 )  > 0. 

( i i )  The absolute values Iti 1, i = 0 ,  1, . . . , n ,  of the components of the random 

vector t are u n ~ o r m l y  integrable with respect to  P', v = 1, 2,  .... 
(i i i) The absolute moments EI I~IP,  k = 1 ,  2 ,  3 ezis t  and E S T  is f in i te  and non- 

singular.  

( iv)  For the t r u e  parameter vector 8 and  for the corresponding saddle point 

(8, 7 )  of @.Q), the strict complementarity condit ions @.Il l )  hold true. The 

matr ix  AI is o f fu l l  row rank.  

Then: f i ( b  ' - 8)  is asymptotical ly normal N(0, C cc T ,  w i t h  C = var z, 

C = H - ~ ( I  - A ~ ( A ~ X - ' A ~ - ~  AIH-') and H = 2 h Z ( 0 ) E f f T .  

4. PROOF OF THEOREH 3.4 

The assumed existence of EllfIl and the uniform integrability of Itt 1 ,  
i = 0,  1, . . . , n ,  imply that Assumptions 2.1 and 2.3 (needed for consistency) are 

T - I .  fulfilled f o r f o ( b ,  t )  = Ito - b t 
Denote by 

with u o ( b ,  t) E a f o ( b ,  t )  a subgradient of the reduced Lagrangian function 

LI (b,  y I ) .  Following our discussion f rom Section 3, we can choose u O(b,  t )  in such 

a way that 

so that the condition 

1 -E ' ( L  (b ', t )  j -+ 0 in probability as v --+ 00 

d; 



is evidently fulfilled. 

Let us study the properties of the subgradients u o(b ,  f ) .  

LEMMA 4.1 Denote 

Then under  assumpt ion (i) of Theorem 3.4 there i s  a posit ive constant k such 

that  

and 

E lu;(b, .$)I S 2kdF11TIP . 

PROOF According to  (2.3), we have 

u o ( b ,  f )  =-  T if 4 ,  > TTb 

- 
if to < TTb 

conv IT ,  - f j  if to = TTb , 

so that 

- 
u,(b, .9 = o if o d ( b )  n l a a : 7 T b #  = tj = 9 

S2llf l l  otherwise . 

For a given d ,  b and f ,  the condition 

o d ( b )  n lb' :  zTb = to] = 9 

can be equivalently expressed as  

~ ( b ,  P ( 2 ) )  2 d 

where p(b, p ( f ) )  denotes the distance of b from the hyperplane 

p ( f )  = lb ' :  tTb '  = C O j  , 

i . e . ,  



Using (4.2), (4.3), we get 

where Md ( b )  = (C:p(b,  JJ (0) < d 1 = ( t :  l p b  - tol < d 11711 1. Substituting t T p  + e 

for to we have 

In a similar way, 

LEMMA 4.2 Existence of  Hessian Under Assumption (i) of Theorem 3.4, E f o  is  

twice continuously dwerentiable a t  the point p wi th  Hessian 

provided that the ezpectation E g T  ezists. 

PROOF The function E f o  can be written as 

- 
E f o ( b )  = / / t o  - t T b l p ( d t )  = f f l z T ( p  - b )  + e \ h l ( ~ h Z ( e ) d z d e  

X 

and its gradient (see (4.1), (3.1) and comment 3.3b) 



Accordingly, the  matr ix of t h e  2-nd o r d e r  derivat ives 

~ ( 6 )  = 2 J7hl(7)h2(7T(b - @))zTd T , 

so t ha t  

LEMMA 4.3 S24;nPicient cond i t i ons  t h a t  @ be an isoLated gLobaL min imum of 

E f O ( b ) = ~ l t o - b T T l  o n S = [ b : A b  2 c j  

and the  assoc ia ted L a g r a n g i a n  muLtipLier r] be u n i q u e  are: 

(i) A@ r c ,  T ~ ( A @  - c )  = 0, 7 r 0 

(ii) Fo r  I = [ i  : zT=laij@j = ci j, t h e  m a t r i z  

is ofjhLL row r a n k  and 

(iii) Assumpt ion ( i  ) of Theorem 3.4 comes t r u e  and E gT is n o n s i n g u l a r .  

PROOF Condition (i) i s  the f i rs t -order necessary condition, condition (ii) contains 

the  l inear  independence condition and s t r i c t  complementary conditions and condi- 

tion (iii) together with Lemma 4.2 implies t ha t  t he  second o r d e r  sufficient condition 

i s  fulfilled. The resu l t  follows e.g. from Theorem 3.2.2 of Fiacco (1983). 

If condition (ii) i s  fulf i l led, we can rewr i te  t he  f i r s t  o r d e r  conditions (i) in  the  

form 



Conditions (ii), (iii) of Lemma 4.3 together  with assumption (i) of Theorem 3.4 

imply tha t  t he  matr ix L of t he  second o r d e r  der ivat ives of t he  reduced Lagrange 

function L I ( b ,  pI) at t he  point 8, 71, 

is  nonsingular. Accordingly, we have 

LEMMA 4.4 Under a s s u m p t i o n s  (i), ( i v )  of Theorem 3.4 complemented b y  as-  

sumpt ion  ( i i i )  ofLemma 4.3, cond i t i on  (b) i s j b w l l e d  for LI(b, yI). 

Condition (a) can  be wri t ten as 

in probabi l i ty a.s. as v --, =. To g e t  the des i red convergence p roper ty  of 

we shal l  check under which circumstances t he  conditions (N-1)-(N-4) of Huber 

(1967) are fulfilled: Measurabil ity and separabi l i ty  of 1 ( b ,  pI, #), cf .  (N-1), i s  evi- 

dently fulfilled, existence and uniqueness of the t r u e  8 ,  71, cf. (N-2) and (N3 i )  fol- 

low from assumptions of Lemma 4.3 and p roper t ies  of subgradients 1 ( b ,  yI, #), cf .  

(N-3ii), (N-3iii) and (N-4), can  be obtained using Lemma 4.1 and assumption (iii) of 

Theorem 3.4. 

Denote 

LEMMA 4.5 Let a s s u m p t i o n  ( i)  of Theorem 3.4 be jb l f i l l ed  a n d  let the absolute 

moments E 1 1  TIP, E 1 1  ex is t .  Then there a r e  pos i t i ve  cons tan ts  K,  K' s u c h  that  

The ezpected v a l u e  E 1 111 (8, ' 71, 1) 11'1 i s f i n i t e .  



PROOF W e  have 

+ sup 1IA?(yI - y i  ) I 1  , 15j -y]lcd 

s o  t ha t  

E I i d ( b ,  V I ,  61 5kdEII?1(2 +a.d 5 K d  

according to Lemma 2. 

Similarly, 

+ sup l l ~ ? ( y ~  - yr ) I I 2  + l b , ~ ; q c d J l ~ I ( b  - b * ) J I 2  Ibi. - Y I J l ~  d 

and 

E y ~ ,  ,$)I 5 2kd E I l ? I $  + ~ M ' E  IIdpa + 2a2d2 5 d . K' 

The las t  condition i s  evidently fulfilled as 

E I I I U ~ ( ~ ,  U I P I  =EI I?IP . 
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