
Theory, Software and Testing
Examples for Decision Support
Systems

Lewandowski, A. and Wierzbicki, A.P.

IIASA Working Paper

WP-87-026

March 1987

Lewandowski, A. and Wierzbicki, A.P. (1987) Theory, Software and Testing Examples for Decision Support Systems. IIASA

Working Paper. WP-87-026 Copyright © 1987 by the author(s). http://pure.iiasa.ac.at/3025/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

NOT FOR QUOTATION
WITHOUT THE PERMISSION
OF THE AUTHORS

THEORY, SOFTWARE AND TESTING EXAMPLES
FOR DECISION SUPPORT SYSTEMS

A . Lewandowski
A . Wierzbicki

March 1987
WP-87-26

Working Papers are interim reports on work of the International Institute for
Applied Systems Analysis and have received only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute
or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

NOT FOR QUOTATION
WITHOUT THE PERMISSION
OF THE AUTHORS

THEORY, SOFT WARE AND TESTING EXAMPLES
FOR DECISION SUPPORT SYSTEMS

A . Lewandowski
A . Wierzbicki

March 1987
WP-87-26

Working Papers are interim reports on work of the International Institute for
Applied Systems Analysis and have received only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute
or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

Foreword
Research in methodology of Decision Support Systems is one of the activities within

the System and Decision Sciences Program which was initiated seven years ago and is still
in the center of interests of SDS. During these years several methodological approaches
and software tools have been developed; among others the DIDAS (Dynamic Interactive
Decision Analysis and Support) and SCDAS (Selection Committed Decision Analysis and
Support). Both methodologies gained a certain level of popularity and have been success-
fully applied in other IIASA programs and projects as well as in many scientific institu-
tions.

Since development and testing the software and methodologies on real life examples
requires certain - rather high - resources, it was decided to establish a rather extensive
international collaboration with other scientific institutions in various NMO countries.
This volume presents the result of the second phase of such a cooperation between the
SDS Program and the four scientific institutions in Poland. The research performed dur-
ing this stage related mostly to converting the decision support software developed during
the previous phase, from the mainframe to the microcomputer, ensuring simultaneously
high level of rebustness, efficiency and user friendliness. Several new theoretical develop
ments, like new non-simplex algorithm for linear programming, new algorithms for
mixed-integer programming and job shop scheduling are also described in the volume.
Finally, it presents also new theoretical developments relating to supporting the processes
of negotiations as well as the methodological issues on application the Decision Support
Systems in industry management.

Alexander B. Kurzhanski
Chairman

System and Decision Sciences Program

CONTENTS

Introduction
A ndrzej Lewandowski, Andrzej P. Wierzbicki

Decision Support Systems of DIDAS FamiIy
(Dynamic Interactive Decision AnaIysis & Support)
Andrzej Lewandowski, Tomasz Kreglewski, Tadeusz Rogowski,
A ndrzej P. Wierzbicki
INTRODUCTION
1. CONCEPTS OF DECISION SUPPORT AND FRAMEWORKS FOR

RATIONAL DECISIONS
1.1. Concepts of decision support systems.
1.2. Frameworks for rational decisions.
2. QUASISATISFICING AND ACHIEVEMENT FUNCTIONS
3. PHASES OF DECISION SUPPORT IN SYSTEMS OF

DIDAS FAMILY
4. REVIEW OF VARIOUS IMPLEMENTATIONS OF SYSTEMS OF

DIDAS FAMILY
5. APPLICATIONS OF SYSTEMS OF DIDAS FAMILY
REFERENCES

Modern Techniques for Linear Dynamic and Stochastic Programs
Andrzej Ruszczynski
1 .INTRODUCTION
2. DYNAMIC STRUCTURE AND STOCHASTICITY AS SOURCES

OF LARGE LINEAR MODELS
3. SPECIALIZED VERSIONS OF THE SIMPLEX METHOD
4. FEASIBLE DIRECTION METHODS
5. THE REGULARIZED DECOMPOSITION METHOD
CONCLUSIONS
REFERENCES

TheoreticaI Guide for NOA2: a FORTRAN Package
of Nondifferentiable Optimization Algorithms
Krzysztof C. Kiwiel, Andrzej Stachurski
1 . INTRODUCTION
2. AN OVERVIEW OF ALGORITHMS OF NOA2
2.1. Unconstrained convex minimization
2.2. Linearly constrained convex minimization
2.3. Exact penalty methods for convex constrained problems
2.4. The constraint linearization method
2.5. Feasible point methods for convex problems
2.6. Methods for nonconvex problems
REFERENCES

Implicit Utility Function and Pairwise Comparisons
Janusz Majchrzak
1. INTRODUCTION
2. MOTIVATIONS

3. BASIC IDEAS
4. SOME DETAILS
5. CONCLUDING REMARKS
REFERENCES

Safety Principle in Multiobjective
Decision Support in the Decision Space
Defined by Availability of Resources
Henryk Gorecki, A . M . Skulirnowski
INTRODUCTION
PROBLEM FORMULATlON
THE SEARCH FOR A NON-DOMINATED SOLUTION ON A CURVE
THE SAFETY PRINCIPLE
AN APPLICATION TO A DESIGN PROBLEM
FINAL REMARKS
REFERENCES

Methodological Guide to HYBRID 3.01.:
a Mathematical Programming Package
for Multicriteria Dynamic Linear Problems
Marek Makowski and Janus t Sosnowski
1. INTRODUCTION
1.1. Executive summary
1.2. Short program description
1.2.1. Preparation of a problem formulation
1.2.2. Problem verification
1.2.3. Problem analysis
1.2.4. Remarks relevant to dynamic problems
1.2.5. General description of the package and data structure
1.2.6. Outline of the solution technique
1.3. Remarks about current implementation
2. STATEMENT OF OPTIMIZATION PROBLEMS
2.1. Formulation of LP problem
2.2. Classical formulation of Dynamic LP problem (CDLP)
2.3. Formulation of Dynamic Problem (DLP)
2.4. Multicriteria optimization
2.4.1. General remarks
2.4.2. Types and declaration of criteria
2.4.3. Transformation of multicriteria problem to an auxiliary LP
3. THEORETICAL FOUNDATIONS AND METHODOLOGICAL PROBLEMS
3.1. General remarks
3.2. The multiplier method
3.3. The conjugate gradient method for the minimization

of the augmented Lagrangian penalty function
4. SOLUTION TECHNIQUE
4.1. Algorithm for minimization of augmented Lagrangian of DLP
4.2. Adaptation of the multiplier method
4.3. Solution technique for dynamic problems
4.4. Algorithm for minimization of augmented Lagrangian of DLP
4.5. Regularization
4.6. Scaling
5. TESTING EXAMPLES
5.1. Econometric growth model
5.2. Flood control problem

3. BASIC IDEAS
4. SOME DETAILS
5. CONCLUDING REMARKS
REFERENCES

Safety Principle in Multiobjective
Decision Support in the Decision Space
Defined by Availability of Resources
Henryk Gorecki, A.M. Skulimowski
INTRODUCTION
PROBLEM FORMULATION
THE SEARCH FOR A NON-DOMINATED SOLUTION ON A CURVE
THE SAFETY PRINCIPLE
AN APPLICATION TO A DESIGN PROBLEM
FINAL REMARKS
REFERENCES

Methodological Guide to HYBRID 3.01.:
a Mathematical Programming Package
for Multicriteria Dynamic Linear Problems
Marek Makowski and Janusz Sosnowski
1. INTRODUCTION
1.1. Executive summary
1.2. Short program description
1.2.1. Preparation of a problem formulation
1.2.2. Problem verification
1.2.3. Problem analysis
1.2.4. Remarks relevant to dynamic problems
1.2.5. General description of the package and data structure
1.2.6. Outline of the solution technique
1.3. Remarks about current implementation
2. STATEMENT OF OPTIMIZATION PROBLEMS
2.1. Formulation of LP problem
2.2. Classical formulation of Dynamic LP problem (CDLP)
2.3. Formulation of Dynamic Problem (DLP)
2.4. Multicriteria optimization
2.4.1. General remarks
2.4.2. Types and declaration of criteria
2.4.3. Transformation of mu1 ticriteria problem to an auxiliary LP
3. THEORETICAL FOUNDATIONS AND METHODOLOGICAL PROBLEMS
3.1. General remarks
3.2. The multiplier method
3.3. The conjugate gradient method for the minimization

of the augmented Lagrangian penalty function
4. SOLUTION TECHNIQUE
4.1. Algorithm for minimization of augmented Lagrangian of DLP
4.2. Adaptation of the multiplier method
4.3. Solution technique for dynamic problems
4.4. Algorithm for minimization of augmented Lagrangian of DLP
4.5. Regularization
4.6. Scaling
5. TESTING EXAMPLES
5.1. Econometric growth model
5.2. Flood control problem

5.3. Full dense LP problem
5.4. Discussion of test results
6. CONCLUSIONS
7. REFERENCES

Decision Support Systems of DIDAS Family
(Dynamic Interactive Decision Analysis & Support)
Andrzej Lewandowski, Tomasz Kreglewski, Tadeusz Rogowski,
A ndrzej P. Wierzbicki
INTRODUCTORY DOCUMENTATION
EXECUTIVE SUMMARY
SHORT PROGRAM DESCRIPTION
THEORETICAL MANUAL
REFERENCES
APPENDIX

A Solver for the Transshipment Problem with Facility Location
Wlodzimierz Ogryczak, Krzysztof Studzinski, Krystian Zorychta
1. INTRODUCTION 125
2. AN EXAMPLE 126
3. THE GENERALIZED NETWORK MODEL 127
4. INTERACTIVE PROCEDURE FOR HANDLING MULTIPLE OBJECTIVES 129
5. GENERAL CONCEPT OF THE TRANSLOC SOLVER 132
6 . THE BRANCH AND BOUND SCHEME 134
6.1. A basic concept 134
6.2. The branch and bound algorithm 135
7. THE SIMPLEX SON ALGORITHM 136
7.1. Graph representation 136
7.2. Basis structure 137
7.3. Tree representation 137
7.4. Representation of MBT 138
7.5. Finding the representation of the entering vector 138
7.6. Finding the dual vector 139
7.7. Exchange rules 140
8. IMPLICIT REPRESENTATION OF VUB & SUB CONSTRAINTS 141
8.1. A basic concept 141
8.2. Pricing 143
8.3. Pivoting 143
REFERENCES 144

A Methodological Guide to the Decision Support System
DISCRET for Discrete Alternatives Problems
Janusz Majchrzak
1. INTRODUCTION
1.1. Scope of the report
1.2. Purpose of the DISCRET package
1.3. Fields of the package applications
2. BACKGROUND
2.1. The discrete multicriteria optimization problem
2.2 Overview of existing approaches
2.3. The method of dominated approximations
2.4. Selection of the representation of the nondominated set
2.5. Outline of the approach and introduction to DISCRET
3. STRUCTURE AND FEATURES OF THE PACKAGE

3.1. General description
3.2. Problem specification phase
3.3. The bounds setting phase
3.4. The DMOP solving phase
3.5. The phase of selecting final solution
4. TEST EXAMPLES
4.1. The Dyer's "Engine Selection Problem"
4.2. The location-allocation problem
4.3. How to get started
5. CONCLUSIONS
REFERENCES

Nonlinear Model Generator
J . Paczynski, T . Kreglewski
INTRODUCTORY DOCUMENTATION
EXECUTIVE SUMMARY
SHORT PROGRAM DESCRIPTION
THEORETICAL MANUAL
SYNTAX OF FORMULAE
SYMBOLIC DIFFERENTIATlON OF FORMULAE.
INTERNAL REPRESENTATION OF FORMULAE
ARITHMETIC AND DIFFERENTIATION OPERATIONS
COMPRESSION OF STRUCTURES
EVALUATION OF FORMULAE
REFERENCES

IAC-DIDAS-N
A Dynamic Interactive Decision Analysis and Support System
for Multicriteria Analysis of Nonlinear Models
on Professional Microcomputers
T . Kreglewski, J.Paczynski, A .P . Wierzbicki
INTRODUCTORY DOCUMENTATION
EXECUTIVE SUMMARY
SHORT PROGRAM DESCRIPTION
THEORETICAL MANUAL
REFERENCES

An Experimental System Supporting
Multiobjective Bargaining Problem:
a Methodological Guide
Piotr Bronisz, Lech Krus, Bozena Lopuch
1. INTRODUCTION
2. PROBLEM FORMULATION AND DEFINITIONS
3. FIRST PHASE. MULTIOBJECTIVE DECISION PROBLEM
4. SECOND PHASE. COOPERATION
5. A SIMPLIFIED MODEL OF A JOINT DEVELOPMENT PROGRAM
6. SHORT PROGRAM DESCRIPTION
REFERENCES

A Permutative Scheduling Problem
with Limited Resources
and Interoperation Constraints
Tomasz RyS, Wieslaw Ziembla
INTRODUCTION

PROBLEM DEFINITION
THE SOLVING ALGORITHM
GENERAL ENUMERATION SCHEME
CALCULATION OF LOWER BOUNDS
EXAMPLE
GENERAL DESCRIPTION OF THE PROBLEM
IMPLEMENTATION
CONCLUDING REMARKS
REFERENCES

Multiobjective Evaluation of Industrial Structures
MIDA application to the Case of Chemical Industry
Maciej Zebrowski
INTRODUCTION
FORMAL FRAMEWORK FOR THE ANALYSIS
THE MODEL
TOWARDS DECISION SUPPORT SYSTEM TOOL
EXAMPLE OF MULTIOBJECTIVE EVALUATION OF IDS
FEEDSTOCKS AND FUELS PDA - AN EXAMPLE OF

SUBSTITUTION MODEL ANALYSIS
EXPERIMENTS WITH THE MODEL
CONCLUSIONS
REFERENCES
APPENDIX

Spatial PDA Modelling
for Industrial Development
with Respect to Transportation Costs
Maciej Skocz, Wieslaw Ziembla
THE PROBLEM OVERVIEW
MATHEMATICAL MODELS
SOLVING ALGORITHM
COMMENTS AND CONCLUSIONS
REFERENCES

Ranking and Selection
of Chemical Technologies
Application of SCDAS Concept
Grzegorz Dobrowolski and Maciej Zebrowski
INTRODUCTION 232
THE PROBLEM AREA 232
RANKING AND SELECTION OF TECHNOLOGY. THE CASE OF METHANOL 234
CONCLUSIONS AND PROPOSAL FOR THE FUTURE DEVELOPMENT 238
REFERENCES 239
APPENDIX 240

Introduction

Andrzej Lewandowski, Andrtej P. Wiertbicki

This collection of papers presents methodological reports for the contracted study
agreement 'Theory, Software and Testing Ezamples for Decision Support Systems, Stage
II' between the International Institute for Applied Systems Analysis (IIASA), Systems
and Decision Science Program, and the Polish Academy of Sciences, represented by four
research institutes in Poland: the Institute of Automatic Control, Warsaw University of
Technology (Part A and coordination on Polish side), the Institute of Systems Research,
Polish Academy of Sciences (Part B), the Institute of Control and Systems Engineering,
Academy of Mining and Metallurgy in Cracow (Part C) and the Institute of Informatics,
Warsaw University (Part D). These methodological reports are augmented with more
detailed manuals and software documentation in the form of separate working papers.

The papers present the results of research performed in 1986 according to the con-
tracted study agreement, with slight modifications agreed upon in the course of research
with Systems and Decision Sciences Program which coordinated the cooperation on IIASA
side. Because of the need to summarize the long development of DIDAS family systems in
response to many requests from various institutions collaborating with IIASA, it was
agreed to prepare a comprehensive report 'Decision Support Systems of DIDAS family'
instead of reporting on further theoretical research in part A of the agreement; this
theoretical research has been carried on, but will be reported in Stage I11 of the study.
Some other minor corrections and specifications of the contracted study agreement has
been agreed upon in the course of cooperation; on the whole, however, the papers
presented here correspond to the scope of the study as specified in the contracted study
agreement .

Therefore, the papers in this collection have diverse character, corresponding to vari-
ous aspects of the theory, software and testing examples for decision support systems. All
papers contained in this volume were presented at the international Task Force Meeting
'Theory, Software and Testing Ezamples for Decision Support Systems', organized upon
IIASA request by the Institute of Automatic Control, Warsaw University of Technology,
and the Institute of Systems Research, Polish Academy of Sciences, on December 8-9,
1986 in Warsaw. Since some of the papers are meant to be parts of self-standing software
documentation, hence they might repeat, in their theoretical manuals, various explana-
tions given in other papers of more theoretical character.

The papers in this volume are not ordered according to contracted study agreement,
nor to the order of presenting them at the Warsaw Task Force Meeting; we have chosen
instead an ordering corresponding to the subjects of theory, software and applications.

1) A special character has the first paper 'Decision Support Systems of DIDAS fam-
ily', written by Andrzej Lewandowski, Tomasz Kreglewski, Tadeusz Rogowski and
Andrzej Wierzbicki, which presents a comprehensive history, methodology, theory, imple-
mentation issues and various applications of systems related to the name Dynamic
Interactive Decision Analysis and Support, based upon quasisatisficing rationality

framework and reference point optimization principles.

Next four papers have mostly theoretical character:

2) The paper 'Modern Techniques for Linear Dynamic and Stochastic Programs', by
Andrzej Ruszczynski, presents a review of modern optimization techniques for structured
linear programming problems, including non-simplex algorithm and, specifically, a new
regularized decomposition method for stochastic optimization problems.

3) The paper 'Theoretical Guide NOA2: a FORTRAN Package of Nondifferentiable
Optimization Algorithms', by Krzysztof Kiwiel and Andrzej Stachurski presents theoreti-
cal background for a package of FORTRAN subroutines of nondifferentiable optimization
of locally Lipschitz continuous functions.

4) The paper 'Implicit Utility Function and Pairwise Comparisons', by Janusz
Majchrzak presents an approach to estimating the utility function of decision maker for
decision support systems that process discrete alternatives.

5) The paper 'Safety Principle in Multiobjective Decision Support in the Decision
Space Defined by the Availability of Resources' by Henryk Gorecki and A.Skulimowski
presents new theoretical results on decision analysis with uncertainty about constraints in
the criteria space and aspirations of the decision maker.

Further seven papers report on software development and are intended as parts of
software documentation.

6) The paper 'Methodological Guide to HYBRID 8.01: a Mathematical Programming
Package for Multicriteria Dynamic Linear Problems', by Marek Makowski and Janusz
Sosnowski presents detailed methodological description of two versions of HYBRID sys-
tems of DIDAS family one for mainframe computers and one for IBM-PC compatibles.

7) The paper 'IAC-DIDAS-L, a Dynamic Interactive Decision Analysis and Support
System for Multicriteria Analysis of Linear and Dynamic Linear Models on Professional
Microcomputers' written by Tadeusz Rogowski, Jerzy Sobczyk and Andrzej Wierzbicki,
presents introductory documentation and theoretical manual for two new, professional
microcomputer based, versions of systems of DIDAS family (one version in FORTRAN
and one in PASCAL).

8) The paper, 'A Solver for the Transshipment Problem with Facility Location', by
Wlodzimierz Ogryczak, Krzysztof Studzinski, and Krystian Zorychta, reports on the work
in the Institute of Informatics, University of Warsaw. The paper describes a solver based
on branch and bound technique with novel a implementation of simplex algorithm for spe-
cially ordered network problems.

9) The paper 'A Methodological Guide to the Decision Support System DISCRET for
Discrete Alternatives Problems ', by Janusz Majchrzak presents methodological description
of the DISCRET decision support system.

10) The paper 'Nonlinear Model Generator' by Jerzy Paczynski and Tomasz Kre-
glewski presents introductory documentation and theoretical manual for a nonlinear
model generator for decision support systems in an easy to use spreadsheet format and
with a symbolic differentiation package.

11) The paper for Multicriteria Analysis of Nonlinear Models on Professional Micro-
computers', by Tomasz Kreglewski, Jerzy Paczynski and Andrzej Wierzbicki, presents
introductory documentation and theoretical manual for new version of nonlinear DIDAS
system, including spreadsheet format model definition and symbolic model differentiation.

12) The paper 'Experimental System Supporting Multiobjective Bargaining Problem -
a Methodological Guide', by Piotr Bronisz, Lech Krus and Bozena Lopuch presents a pilot

version of a interactive decision support system in multicriteria bargaining problem.

Finally, further four papers are related to applications or testing examples:

13) The paper 'A Permutative Scheduling Problem with Limited Resources' by
Tomasz Rys and Wieslaw Ziembla presents a specific testing example for decision support
systems with discrete scheduling alternatives.

14) The paper 'Multiobjective Evaluation of Industrial Structures - MIDA application
to the Case of Chemical Industry', by Maciej Zebrowski presents a methodological applica-
tion of decision support systems.

15) The paper 'Spatial P D A Modelling for Industrial Development with Respect to
Transportat ion Cost' by Maciej Skocz and Wieslaw Ziembla presents a multiobjective
decision problem related to the programming of the development of a spatially distributed
industrial system.

16) The paper 'Technologies Ranking and Selection in Chemical Industry - an Appli-
cation of SCDAS' , by Grzegorz Dobrowolski and Maciej Zebrowski presents a specific
application of the Selection Committee Decision Analysis and Support (SCDAS) System.

These reports present the results of a collaborative study in the stage 11 of the con-
tracted study agreement that corresponds to the effort of circa 10 man-years, although
over 20 researchers have been involved on part-time basis in this study and the results
obtained through cooperation with independently funded projects in Poland are also par-
tially included here.

Decision Support S stems of DIDAS Family
(Dynamic Interactive Je'ecision Analysis & Support)

Andrrej Lewandowski, Tomasr Kreglewski, Tadeusr Rogowski,
Andrrej P. Wierrbicki

Institute of Automatic Control, Warsaw University of Technology

ABSTRACT

This paper presents a review of methodological principles, mathematical
theory, variants of implementation and various applications of decision
support systems of DIDAS family, developed by the authors and many
other cooperating researchers during the years 1980-1986 in cooperation
with the Systems and Decision Sciences Program of the International Insti-
tute for Applied Systems Analysis. The purpose of such systems is to sup-
port generation and evaluation of alternative decisions in interaction with
a decision maker that might change his preferences due to learning, while
examining a substantive model of a decision situation prepared by experts
and analysts. The systems of DIDAS family are based on the principle of
reference point optimization and the quasisatisficing framework of rational
choice.

Introduction

The results reported in this paper are an outcome of a long cooperation between the
System and Decision Sciences Program of the International Institute for Applied Systems
Analysis (IIASA) and the Institute of Automatic Control, Warsaw University of Tech-
nology as well as many other institutions in Poland and in other countries. This coopera-
tion concentrated on applications of mathematical optimization techniques in mul t iokc-
tive decision analysis and on the development of decision support systems. ~ l t h o u ~ h
many articles in scientific journals and papers at international conferences described
specific results obtained during this cooperation (in fact, four international workshops and
several working meetings were organized during these cooperation), one of the main
results - the family of Dynamic Interactive Decision Analysis and Support systems - has
not been until now comprehensively described. Such a description is the purpose of this
paper.

1.Concepts of decision support and frameworks for rational decisions.

1.1 Concepts of decision support systems.

The concept of a decision support system, though quite widely used and developed in
contemporary research, is by no means well defined. Without attempting to give a restric-
tive definition (since such definition in an early stage of development might limit it too
strongly), we can review main functions and various types of decision support.

The main function of such systems is to support decisions made by humans, in con-
trast to decision automation systems that replace humans in repetitive decisions because

these are either too tedious or require very fast reaction time or very high precision. In
this sense, every information processing system has some functions of decision support.
However, modern decision support systems concentrate on and stress the functions of
helping human decision makers in achieving better decisions, following the high tech -
high touch trend in the development of modern societies [I]. We can list several types of
systems that serve such purposes:

- simple managerial support systems, such as modern data bases, electronic
spreadsheet systems, etc;

- ezpert and knowledge base systems whose main functions relate to the help in recog-
nizing a pattern of decision situation; more advanced systems of this type might
involve considerable use of artificial intelligence techniques;

- alternative evaluation and generation systems whose main functions concentrate on
the processes of choice among various decision alternatives either specified a priori or
generated with help of the system, including issues of planning, of collective decision
processes and issues of negotiations between many decision makers; more advanced
systems of this type might involve a considerable use of mathematical programming
techniques, such as optimization, game theory, decision theory, dynamic systems
theory etc.

Some authors [2] restrict the definition of decision support systems only to the third
group while requiring that a decision support system should contain a model of decision
support. Although the systems described in this paper belong precisely to this category,
we would like to draw the attention of the reader that it is a narrow sense of interpreting
decision support systems. With this reservation, we will concentrate on decision support
systems in the narrow sense. These can be further subdivided along various attributes
into many classes:
- systems that support operational planning of repetitive type versus systems that s u p

port strategic planning, confronting essentially novel decision situations;
- systems that concentrate on the choice between a number of discrete alternatives

versus systems that admit a continuum of alternatives and help to generate interest-
ing or favorable alternatives among this continuum;

- systems that are essentially designed to be used by a single decision maker ("the
user") versus systems that are designed to help many decision makers simultane-
ously;

- specialized systems designed to help in a very specific decision situation versus
adaptable system shells that can be adapted to specific cases in a broader class of
decision situations;

- systems that use versus such that do not use explicitly mathematical programming
techniques, such as optimization, in the generation or review of alternatives;

- systems that assume (explicitly or implicitly) a specific framework of rationality of
decisions followed by the user versus systems that try to accommodate a broader
class of perceptions of rationality [3].

This last distinction was an important issue in the development of decision support
systems described in this paper.

1.2 Frameworks for rational decisions.

When trying to support a human decision maker by a computerized decision support
system, we must try to understand first how human decisions are made and how to help
in making rational decisions. However, the rationality concept followed by the designer of
the system might not be followed by the user; good decision support systems must be thus
flexible, should not impose too stringent definitions of rationality and must allow for
many possible perceptions of rationality by the user.

The first distinction we should make is between the calculative or analytical rational-
i ty and the deliberative or holistic rationality, the "hard" approach and the "soft"
approach. The most consistent argument for the "soft" or holistic approach was given by
Dreyfus 141. He argues - and supports this argument by experimental evidence - that a

. .

decision maker is a learning individual whose way of making decisions depends on the
level of expertise attained through learning. A novice needs calculative rationality; an
experienced decision maker uses calculative rationality in the background, while concen-
trating his attention on novel aspects of a decision situation. An expert does not need cal-
culative rationality: in a known decision situation, he arrives at best decisions immedi-
ately, by absorbing and intuitively processing all pertinent information (presumably in a
parallel processing scheme, but in a way that is unknown until now). A master expert,
while subconsciously making best decisions, continuously searches for "new angles" - for
new aspects or perspectives, motivated by the disturbing feeling that not every thing is
understood, the feeling that culminates and ends in the "aha" or heureka effect of perceiv-
ing a new perspective. Thus, the holistic approach can be understood as the rationality of
the culture of ezperts.

However, even a master expert needs calculative decision support, either in order to
simulate and learn about novel decision situations, or to fill in details of the decision in a
repetitive situation; novice decision makers might need calculative decision support in
order to learn and become experts. These needs must be taken into account when con-
structing decision support systems that incorporate many elements of calculative rational-
ity.

There are several frameworks for calculative or analytical rationality; most of these,
after deeper analysis, turn out to be culturally dependent (31. The utility mazimization
framework has been long considered as expressing an universal rationality, as the basis of
decision analysis; every other framework would be termed "not quite rational". The
abstractive aspects of this framework are the most developed - see, e.g., (51, [6] - and a
monograph of several volumes would be needed to summarize them. Without attempting
to do so, three points should be stressed here. Firstly, utility maximization framework is
not universal, is culturally dependent; it can be shown to express the rationality of a small
entrepreneur facing an infinite market (31. Secondly, its descriptive powers are rather lim-
ited; it is a good descriptive tool for representing mass economic behavior and a very poor
tool for representing individual behavior. Thirdly, it is difficult to account for various lev-
els of expertise and to support learning within this framework.

Many types of decision support systems attempt to approximate the utility function
of the user and then to suggest a decision alternative that maximizes this utility function.
Most users find such decision support systems not convenient: it takes many experiments
and questions to the decision maker to approximate his utility and, when the user finally
learns some new information from the support system, his utility might change and the
entire process must be repeated. Moreover, many users resent too detailed questions
about their utility or just refuse to think in terms of utility maximization. However, a
good decision support system should also support users that think in terms of utility

maximization. For this purpose, the following principle of interactive reference point mu-
imization and learning can be applied.

Suppose the user is an expert that can intuitively, holistically maximize his unstated
utility function; assume, however, that he has not full information about the available
decision alternatives, their constraints and consequences, only some approximate mental
model of them. By maximizing holistically his utility on this mental model, he can specify
desirable consequences of the decision; we shall call these desirable consequences a refer-
ence point in the outcome or objective space. The function of a good decision support sys-
tem should be then not to outguess the user about his utility function, but to take the
reference point as a guideline and to use more detailed information about the decision
alternatives, their constraints and consequences in order to provide the user with p rop -
sals of alternatives that came close t o or are even better than the reference point.

This more detailed information must be included in the decision support system in
the form of a substantive model of the decision situation, prepared beforehand by a group
of analysts (in a sense, such a model constitutes a knowledge base for the system). Upon
analysing the proposals generated in the system, the utility function -of the user might
remain constant or change due to learning, but he certainly will know more about avail-
able decision alternatives and their consequences. Thus, he is able to specify a new refer-
ence point and to continue interaction with the system. Once he has learned enough about
available a1 ternatives and their consequences, the interactive process stops a t the max-
imum of his unstated utility function. If the user is not a master expert and might have
difficulties with holistic optimization, the system should support him first in learning
about decision alternatives, then in the optimization of his utility; but the latter is a
secondary function of the system and can be performed also without explicit models of
utility function while using the concept of reference points.

The concept of reference point optimization has been proposed by Wierzbicki [7], [8],
[9]; following this concept, the principle of interactive reference point optimization and
learning was first applied by Kallio, Lewandowski and Orchard-Hays [lo] and then lead to
the development of an entire family of decision support systems called DIDAS. However,
before describing these systems in more detail, we must discuss shortly other frameworks
of calculative rationality.

A concept similar or practically equivalent to the reference point is that of aspiration
levels proposed over twenty years ago in the satisficing rationality framework by Simon
[l l] , [12] and by many others that followed the behavioral criticism of the normative deci-
sion theory based on utility maximization. This framework started with the empirical
observation that people do form adaptive aspiration levels by learning and use these
aspirations to guide their decisions; very often, they cease to optimize upon reaching out-
comes consistent with aspirations and thus make satisficing decisions. However, when
building a rationale for such observed behavior, this framework postulated that people
cannot maximize because of three reasons: the cost of computing optimal solutions in
complex situations; the uncertainty of decision outcomes that makes most complex optim-
izations too difficult; and the complexity of decision situations in large industrial and
administrative organizations that induces the decision makers to follow some well esta-
blished decision rules that can be behaviorally observed and often coincide with satisficing
decision making. This discussion whether and in what circumstances people could optirn-
ize substantiated the term bounded rationality (which implies misleadingly that this is
somewhat less than full rationality) applied to the satisficing behavior and drown atten-
tion away from the essential points of learning and forming aspiration levels.

Meanwhile, two of the reasons for not optimizing quoted above have lost their
relevance. The development of computers and computational methods of optimization,
including stochastic optimization techniques, has considerably decreased the cost and
increased the possibilities of calculative optimization; moreover, the empirical research on
holistic rationality indicates that expert decision makers can easily determine best solu-
tions in very complex situations even if they do not use calculative optimization. The
third reason, supported by empirical observations, remains valid: the satisficing rational-
i ty is typical for the culture of big industrial and administrative organizations (see also
[13]). However, it can today be differently interpreted: the appropriate question seems to
be not whether people could, but whether they should mazimize.

Any intelligent man, after some quarrels with his wife, learns that maximization is
not always the best norm of behavior; children learn best from conflicts among themselves
that cooperative behavior is socially desirable and that they must restrict natural tenden-
cies to maximization in certain situations. In any non-trivial game with the number of
participants less than infinity, a cooperative outcome is typically much better for all par-
ticipants than an outcome resulting from individual maximization. This situation is called
a social trap and motivated much research that recently gave results of paradigm-shifting
importance [14], [15] : we can speak about a perspective of evolutionary rationality, where
people develop - through social evolution - rules of cooperative behavior that involve fore-
going short-term maximization of gains.

When trying to incorporate the lessons from the perspective of evolutionary rational-
ity into decision support systems, another question must be raised: in which situations
should we stop maximizing upon reaching aspiration levels? We should stop maximizing
for good additional reasons, such as avoiding social traps or conflict escalation, but if
these reasons are not incorporated into the substantive model of the decision situation,
the question about foregoing maximization should be answered by the decision maker, not
by the decision support system. This constitutes a drawback of many decision support
systems based on goal programming techniques [16], [17] that impose on the user the
unmodified satisficing rationality and stop optimization upon reaching given aspirations,
called goals in this case.

When trying to modify goal programming techniques and strictly satisficing
rationality to account for above considerations, the principle of ideal organization [18] can
be applied in construction of decision support systems. This principle states that a good
decision support system should be similar to an ideal organization consisting of a boss
(the user of the system) and the staff (the system), where the boss specifies goals (aspira-
tions, reference points) and the staff tries to work out detailed plans how to reach these
goals. If the goals are not attainable, the staff should inform the boss about this fact, but
also should propose a detailed plan how to approach these goals as close as it is possible.
If this goals are just attainable and cannot be improved, the staff should propose a plan
how to reach them, without trying to outguess the boss about his utility function and pro-
posing plans that lead to different goals than stated by the boss.

If, however, the goals could be improved, the staff should inform the boss about this
fact and propose a plan that leads to some uniform improvement of all goals specified by
the boss; if the boss wishes that some goals should not be further improved, he can always
instruct the staff accordingly by stating that, for some selected objectives, the goals
correspond not to maximized (or minimized) but stabilized variables, that is, the staff
should try to keep close to the goals for stabilized objectives without trying to exceed
them. By specifying all objectives as stabilized, the boss imposes strictly satisficing
behavior on the staff; but the responsibility for doing so remains with him, not with the

staff.

The above principle of ideal organization can be easily combined with the principle
of interactive reference point maximization and learning; jointly, they can be interpreted
as a broader framework for rationality, called quasisatisficing framework [3], [19], that
incorporates lessons from the holistic and the evolutionary rationality perspectives and
can support decision makers adherence either to utility maximization or satisficing. In
fact, the quasisatisficing framework can also support decision makers following other per-
spectives of rationality, such as the program- and goal-oriented planning and management
framework. This framework, proposed by Glushkov [20] and Pospelov and Irikov [21],
represents the culture of planning, but has been independently suggested later also by
representatives of other cultures [22]. In this framework, rational action or program are
obtained by specifying first primary objectives, called goals, and examining later how to
shift constraints on secondary objectives, called means, in order to attain the goals. In dis-
tinction to the utility maximization or satisficing frameworks, the stress here is laid on
the hierarchical arrangement of objectives; but the quasisatisficing framework can also
handle hierarchical objectives.

2. Quasisatisficing and achievement functions.

The main concepts of the quasisatisficing framework, beside the principle of interac-
tive reference point optimization and learning and the principle of ideal organization, are
the use of reference points (aspiration levels, goals) as parameters by which the user
specifies his requirements to the decision support system (controls the generation and
selection of alternatives in the system) as well as the maximization of an order-consistent
achievement function as the main mechanism by which the decision support system
responds to the user requirements. Achievement functions have been used also in goal pro-
gramming [17], however, without the requirement of order-consistency [19]. When follow-
ing the principle of interactive reference point optimization and learning, an order-
consistent achievement function can be interpreted as an ad hoc approximation of the
utility function of the user [23]; if the user can holistically maximize his utility and
interactively change reference points, there is no need for any more precise approximation
of his utility function. When following the principle of ideal organization, an order-
consistent achievement function can be interpreted as a proxy for utility or achievement
function of the ideal staff (the decision support system) guided by aspirations specified by
the boss (the user); this function is maximized in order to obtain best response to the
requirements of the boss.

Based upon above principles and starting with the system described in [lo], many
decision support systems have been developed with the participation or cooperation of the
authors of this paper [24], [25], [26], [27], [28], [29], [30], either in IIASA, or in several Pol-
ish institutions cooperating with IIASA. The name DIDAS (Dynamic Interactive Decision
Analysis and Support) has been first used by Grauer, Lewandowski and Wierzbicki in
(311. Other systems based upon such principles are now being developed for implementa-
tions on professional microcomputers; all these systems we broadly call here "systems of
DIDAS family". However, also other researchers adopted or developed parallely some
principles of quasisatisficing framework, represented in the works of Nakayama and
Sawaragi [32], Sakawa [33], Gorecki et al. [34], Steuer et al. [35], Strubegger [36], Messner
(371, Korhonen et al. [38] and others; decision support systems of such type belong to a
broader family using quasisatisficing principles of rationality.

Since the maximization of an order-consistent achievement function is a specific
feature of systems of DIDAS family, we review here shortly the theory of such functions.

We consider first the basic case where the vector of decisions z€Rn, the vector of
objectives or outcomes of decisions q€RP, and the substantive model of decision situation
has the form of a set of admissible decisions XocRn - assumed to be compact - together
with an outcome mapping, that is, a vector-valued objective function f : Xo -+ RP -
assumed to be continuous, hence the set of attainable outcomes Qo = f(Xo) be also com-
pact; further modification~ of this basic case will be considered later. If the decision maker
wants to maximize all outcomes, then the partial ordering of the outcome space is implied
by the positive cone D=RI; - which means that the inequality q1>q"eq'-g"~D is under-
stood in the sense of simple inequalities for each component of vectors q', q".

However, the cone D=R$ has nonempty interior; a more general case is when the
decision maker would like to maximize only first p' outcomes, minimize next outcomes
from p l+ l until p", while the last outcomes from p"+1 until p are to be kept close to
some given aspiration levels, that is, maximized below these levels and minimized above
these levels; such objectives or outcomes are called (softly) stabilized. In this case, we
redefine the positive cone t o the form

This cone D does not have an interior if p"<p. Since the cone D is closed and the set Qo
is compact, there exist D-efficient (D-optimal) elements of Qo , see [18]. These are such
elements 4€Q0 that ~ ~ n (t + D) = o where D=D\{O); if pl=p andD=RI;, then D-
efficient elements are called also Pareto-optimal (in other words - such that no outcome
can be improved without deteriorating some other outcome). The corresponding decisions
?EXo such that 4=j(z) are called D-efficient or Pareto-optimal as well. Although the
decision maker is usually interested both in efficient decisions and outcomes, for theoreti-
cal considerations it is sufficient to analyse only the set of all D-efficient outcomes

Several other concepts of efficiency are also important. The weakly D-efficient ele-
ments belong to the set

In other words, these are such elements that cannot be improved in all outcomes
jointly . Although important for theoretical considerations, weakly D-efficient elements
are not useful in practical decision support, since there might be too many of them: if
p"<p and the interior of D is empty, then all elements of Qo are weakly D-efficient.
Another concept is that of properly D-efficient elements; these are such D-efficient ele-
ments that have bounded trade-off coefficients that indicate how much one of the objec-
tives must be deteriorated in order to improve another one by a unit (for various almost
equivalent definitions of such elements see [39]). In applications, it is more useful to
further restrict the concept of proper efficiency and consider only such outcomes that have
trade-off coefficients bounded by some a priori number. This corresponds to the concept of
properly D-efficient elements with (a priori) bound c or D, -efficient elements that belong
to the set

where c>O is a given number [18]. D, -efficient elements have trade-off coefficients
bounded approximately by c and 1/c . For computational and practical purposes, an

efficient outcome with trade-off coefficients very close to zero or to infinity cannot be dis-
tinguished from weakly efficient outcomes; hence, we shall concentrate in the sequel on
properly efficient elements with bound E .

When trying to characterize mathematically various types of efficiency with help of
achievement functions, two basic concepts are needed: this of monotonicity, essential for
sufficient conditions of efficiency, and that of separation of sets, essential for necessary
conditions of efficiency. The role of monotonicity in vector optimization is explained by
the following basic theorem (191:

Theorem 1. Let a function ~ : Q ~ + R ' be strongly monotone, that is, let ql>q"
(equivalent to q '~q"+ f i) imply r(ql)>r(q"). Then each maximal point of this function is
efficient. Let this function be strictly monotone, that is, let ql>>q" (equivalent to
ql€q"+intD) imply r(ql)>r(q"). Then each maximal point of this function is weakly
efficient. Let this function be €-strongly monotone, that is, let q '~q"+f i , imply
r(ql)>r(q"). Then each maximal point of this function is properly efficient with bound c.

The second concept, that of separation of sets, is often used when deriving necessary
conditions of scalar or vector optimality. We say that a function ~ : R P + R ' strongly
separates two disjoint sets Q1 and Q2 in RP, if there is such PER' that r (q)<P for all
qEQl and r (q)>P for all qEQ2. Since the definition of efficiency (2) requires that the sets
Qo and q+fi are disjoint (similarly for the definitions (3) or (4)), they could be separated
by a function. If Qo is convex, these sets can be separated by a linear function. If Qo is
not convex, the sets Qo and g'+fi could be still separated a t an efficient point @, but we
need for this a nonlinear function with level sets { ~ E R P : r(q)>P) which would closely
approximate the cone g'+fi. There might be many such functions; their desirable proper-
ties are summarized in the definitions of order-consistent achievement functions [19] of
two types: order-representing functions (which, however, characterize weak efficiency and
will not be considered here) and order- approzimating functions. The latter type is defined
as follows:

Let A denote a subset of RP, containing Q~ but not otherwise restricted, and let
~ E A denote reference points or aspiration levels that might be attainable or not (we
assume that the decision maker cannot a priori be certain whether q€QO or qfQo).
Order-approximating achievement functions are such continuous functions s: Qox A -+ R'
that s(q,q) is strongly monotone (see Theorem 1) as a function of q€QO for any QEA and,
moreover, possesses the following property of order approximation:

with some small ~ 2 Q 0 ; together with the continuity requirement, the requirement (5)
implies that s(q,q)=O for all q=q.

If pl=p and D=R$, then a simple example of an order-approximating function is:

with A=RP, some positive weighting coefficients ai (typically, we take ai=l/si, where s,
are some scaling units for objectives, either defined by the user or determined automati-
cally in the system, see further comments) and some ap+'>O that is sufficiently small as
compared to c and large as compared to F (typically, we take ' ~ ~ + ~ = c / p) . This function is
not only strongly monotone, but also 6strongly monotone. For the more complicated
form (1) of the positive cone D, function (6) modifies to:

where the functions zi(qi,qi) are defined by:

with

z,!(q,- q,)/s,!, %;=(qi-qi)/s; (9)

The coefficients s,, s,!, s; are scaling units for all objectives, either defined by the user (in
which case s,!=s,!', the user does not need to define two scaling coefficients for a stabilized
objective outcome) or determined automatically in the system; again, we use here
a p + l = E l ~ .

Since the definition of an order-approximating achievement function requires that
only its zero-level set should closely approximate the positive cone, many other forms of
such functions are possible. For example, in some DIDAS systems the following function
has been used:

where the functions z;(q,,q,) are defined as in (8), (9) and the coefficient p 2 l indicates to
what extent the minimal overachievement is substituted by the sum of overachievements
in the level sets for positive values of this function.

At any point rj that is properly efficient with bound E, an order-approximating func-
tion with p=rj strictly separates the sets and Qo. This and related properties of
order-approximating functions result in the following characterization of D, -efficiency
[19] :

Theorem 2. Let s(q, q) be an order-approximating function with E> €20. Then, for
any ~ E A , each point that maximizes s(q,p) over q~ Qo is efficient; if rj is properly efficient
with bound E (D,-optimal), then the maximum of s(q,q) with T=rj over q€QO is attained
at rj and is equal zero. Let, in addition, s(q,q) be Fstrongly monotone with respect to q;
then each point that maximizes s(q,q) over q€Qo is properly efficient with bound E.

The essential difference between order-consistent achievement functions and other
types of achievement functions, used in goal programming and based on norms, is that the
aspiration or reference point needs not to be unattainable in order to achieve efficiency;
this is because order-consistent achievement functions remain monotone, even if the refer-
ence point crosses the efficient boundary of Qo . Somewhat simplifying, we can say that
an order-consistent achievement function switches automatically from norm minimization
to maximization when the aspiration point q crosses the efficient boundary and becomes
attainable. On the other hand, the characterization by Theorem 2 is obtained without any
convexity assumptions, because the order-approximating property of achievement func-
tions results in a constructive though nonlinear separation of sets Qo and rj+D even in
nonconvex cases. In fact, the set Q0 needs not to be even connected and the order-
consistent achievement functions can be as well used to characterize solutions of

multiobjective discrete or mixed programming. Theorem 2 is valid even if the decision
outcomes are elements of infinite-dimensional complete normed (Banach) spaces, as in
many cases of multiobjective dynamic trajectory optimization - see [18].

Order-approximating achievement functions have several interpretations. From the
point of view of utility maximization, achievement function can be interpreted as an ad
hoc approximation of the utility function of the user, based on the information that he
conveyed to the decision support system: the partial preordering of the objective space
(which objectives are to be maximized, which minimized and which stabilized) and the
aspiration levels t for all objectives; if more information is already available, this ad hoc
approximation can be improved - see further comments. The coefficient E can be then
interpreted as the weight that the user attaches to correcting the underachievement in the
worst outcome by average overachievements in other outcomes. However, such an ad hoc
approximation is not a classical utility function, since it is context-dependent: it explicitly
depends on the aspiration levels t that summarize the experience of the user and change
due to his learning during interaction, thus changing the approximation of the utility
function. On the other hand, the achievement function (6) can have cardinal form: if
a i= l /s i , then function (6) is independent on affine transformations of outcome space; the
same applies to function (7).

When following the principle of an ideal organization, an order-approximating
achievement function can be interpreted as the utility function of the staff that is aware
of aspirations set by the boss; the maximum of the achievement function is then positive,
if the staff can propose a solution that exceeds the aspiration levels, it is negative, if the
staff cannot propose a solution that satisfies aspiration levels and only comes as closely as
possible to them, and it is zero (Theorem 2) if the staff finds an efficient solution that pro-
duces outcomes strictly corresponding to the aspiration levels.

From the point of view of strictly satisficing rationality, one should take function (7)
and set pl=p"=O, that is, let all outcomes be softly stabilized; this is actually done in goal
programming approaches. From the point of view of program- and goal oriented planning,
one should either assume that the primary objectives are constrained to be equal to their
corresponding aspiration levels, thereby modifying the set of admissible decisions Xo
(such objectives or outcomes are called guided or strictly stabilized), or assign much
greater weights to primary objectives than to secondary objectives. We see that the
quasisatisficing approach can be used by decision makers following either of these three
frameworks of rationality.

Further mathematical properties of order-approximating achievement functions have
been also investigated; for example, it can be shown that order-approximating functions
give the strongest characterization of efficient solutions for cases where the set Qo is of an
arbitrary, a priori unknown shape, which is a reasonable assumption in most applied cases
1181. Another important property of an order-approximating function of the form (6) or
(7) is that its maximal point t j depends Lipschitz-continuously on the aspiration point p
in all cases when the maximum of this function is unique; thus, the user of the decision
support system can continuously influence his selection of efficient outcomes by suitably
modifying the aspiration or reference point.

Computationally, the maximization of an order-approximating achievement function
is either simple - if Qo is a convex polyhedral set, then the problem of maximizing (6),
(7) or (10) can be rewritten as a linear programming problem - or more complicated for
nonlinear or nonconvex problems. In such cases, we must either represent (6), (7) or (10)
by additional constraints, or apply nondifferentiable optimization techniques, since the
definition of order-approximating achievement functions imply their nondifferentiability

at q=q. Often, it is advisable to use smooth order-approximating functions that give
weaker necessary conditions of efficiency than in Theorem 2, but are better suited for
computational applications - see further comments.

3. Phases of decision eupport in systems of DID AS family.

A typical procedure of working with a system of DIDAS family consists of several
phases:

A. The definition and edition of a substantive model of analysed process and decision
situation by analyst(s);

B. The definition of the multiobjective decision problem using the substantive model,
by the final user (the decision maker) together with analyst(s);

C. The initial analysis of the multiobjective decision problem, resulting in determining
bounds on efficient outcomes and, possibly, a neutral efficient solution and outcome,
by the user helped by the system;

D. The main phase of interactive, learning review of efficient solutions and outcomes for
the multiobjective decision problem, by the user helped by the system;

E. An additional phase of sensitivity analysis (typically, helpful to the user) and/or
convergence to the most preferred solution (typically, helpful only to users that
adhere to utility maximization framework).

These phases have been implemented differently in various systems of DIDAS fam-
ily; however, we describe them here comprehensively.

Phase A: Model definition and edition.

There are four basic classes of substantive models that have been used in various
systems of DIDAS family: multiobjective linear programming models, multiobjective
dynamic linear programming models, multiobjective nonlinear programming models and
multiobjective dynamic nonlinear programming models. First DIDAS systems have not
used any specific standards for these models; however, our accumulated experience has
shown that such standards are useful and that they differ from typical theoretical formu-
lations of such models (although they can be reformulated back to the typical theoretical
form, but such reformulation should not bother the user).

A substantive model of multiobjective linear programming type consists of the
specification of vectors of n decision variables z € R n and of m outcome variables y € R m
together with linear model equations defining the relations between the decision variables
and the outcome variables and with model bounds defining the lower and upper bounds
for all decision and outcome variables:

where A is a m x n matrix of coefficients. Between outcome variables, some might be
chosen as guided outcomes, corresponding to equality constraints; denote these variables
by ~ C E R ~ ' C R ~ and the constraining value for them by bC to write the additional con-
straints in the form:

where A is the corresponding submatrix of A . Some other outcome variables can be
chosen as optimized objectives or objective outcomes; actually, this is done in the phase B
together with the specification whether they should be maximized, minimized or softly
stabilized, but we present them here for the completeness of the model description. Some

of the objective variables might be originally not represented as outcomes of the model,
but we can always add them by modifying this model; in any case, the corresponding
objective equations in linear models have the form:

where C is another submatrix of A. Thus, the set of attainable objective outcomes is
Qo=CXo and the set of admissible decisions Xo is defined by:

By introducing proxy variables and constraints, the problem of maximizing func-
tions (7) or (10) over outcomes (13) and admissible decisions (14) can be equivalently
rewritten to a parametric linear programming problem, with the leading parameter q;
thus, in phases C, D, E, a linear programming algorithm called solver is applied. In initial
versions of DIDAS systems for linear programming models, the typical MPS format for
such models has been used when editing them in the computer; recent versions of DIDAS
systems include also a user-friendly format of a spreadsheet.

A useful standard of defining a substantive model of multiobjective linear dynamic
programming type is as follows. The model is defined on T+ l discrete time periods
t, O<t< T. The decision variable z, called in this case control trajectory, is an entire
sequence of decisions:

z = {z[O] ,... z[t] ,... x [T - I]) E R ~ ~ , z[t]€Rn (154

and a special type of outcome variables, called state variables w [t] ~ R ~ ' is also considered.
The entire sequence of state variables or state trajectory:

is actually one time period longer than z; the initial state w[O] must be specified as given
data. The fundamental equations of a substantive dynamic model have the form of state
equations:

The model outcome equations have then the form:

and define the sequence of outcome variables or outcome trajectory:

Y={Y[O],...Y [~ I , . . . Y [T - : ~ .] , Y [T I ~ ~ R mM*(T+l)
(154

The decision, state and outcome variables can all have their corresponding lower and
upper bounds (each understood as an appropriate sequence of bounds):

z ~ o < z ~ z u p , wlO<w<w"p, y lO<y<yup (1 6 ~)

The matrices A[t], B[t], C[t[], D[t] of appropriate dimensions can be dependent or
independent on time t ; in the latter case, the model is called time-invariant. This distinc-
tion is important in multiobjective analysis of such models only in the sense of model edi-
tion: time-invariant models can be defined easier by automatic, repetitive edition of model
equations and bounds for subsequent time periods.

Between the outcomes, some might be chosen to be equality constrained or guided
along a given trajectory:

The optimized (maximized, minimized or stabilized) objective outcomes of such
model can be actually selected in phase B among both state variables and outcome vari-
ables (or even decision variables) of this model; in any case, they form an entire objective
trajectory:

9={9[o],...9[t],...9[T-l],~[T])~R P * (~ + ') , q[t]€RP (18)

If we assume that the first components qi(t] for lL i<p l are to be maximized, next
for p l+l<i<p" are to be minimized, last for pl1+l<i<p are to be stabilized (actually, the
user in the phase B does not need to follow this order - he simply defines what to do with
subsequent objectives), then the achievement function s(q,q) - for example, originally
given by (10) - in such a case takes the form:

where the functions z[t]=z(q[t] , d t]) are defined by:

where

~ ([t] = (q ~ [t] - g [t]) / ~ f [t] , ~ l) [t]= (~ i I t] -q i [t I) /~ ! [t I ,

The user does not need to define time-varying scaling units si[t] nor two different
scaling units s,![t],sj'[t] for a stabilized objective: the time-dependence of scaling units and
separate definitions of s([t],s('[t] are needed only in the case of automatic scaling in
further phases.

A useful standard for a substantive model of multiobjective nonlinear programming
type consists of the specification of vectors of n decision variables z€Rn and of m out-
come variables ycRm together with nonlinear model equations defining the relations
between the decision variables and the outcome variables and with model bounds defining
the lower and upper bounds for all decision and outcome variables:

y=g(z); z'O<z<zup; y'0< y l yup (22)

where g:Rn+Rm is a (differentiable) function. In fact, the user or the analyst does not
have to define the function g explicitly; he can also define it recursively, that is, determine
some further components of this vector-valued function as functions of formerly defined
components. Between outcome variables, some might be chosen as guided outcomes
corresponding to equality constraints; denote these variables by ~ C E R " ' C R ~ and the
constraining value for them by b to write the additional constraints in the form:

yC=gC(z)=bC; yc~ 'O<bc< - - yc~"p P3)

where gC is a function composed of corresponding components of g. In phase B, some

other outcome variables can be also chosen as optimized objectives or objective outcomes.
The corresponding objective equations have the form:

where j is also composed of corresponding components of g . Thus, the set of attainable
objective outcomes is Qo= j(Xo) where the set of admissible decisions Xo is defined by:

Ln further phases of working with nonlinear models, an order-approximating achieve-
ment function must be maximized; for this purpose, a specially developed nonlinear
optimization algorithm called solver is used. Since this maximization is performed repeti-
tively, at least once for each interaction with the user that changes the parameter q, there
are special requirements for the solver that distinguish this algorithm from typical non-
linear optimization algorithms: it should be robust, adaptable and efficient, that is, it
should compute reasonably fast an optimal solution for optimization problems of a broad
class (for various differentiable functions g(x) and f(x)) without requiring from the user
that he adjusts special parameters of the algorithm in order to obtain a solution. The
experience in applying nonlinear optimization algorithms in decision support systems 1261,
1301 has led to the choice of an algorithm based on penalty shifting technique and pro-
jected conjugate gradient method. Since a penalty shifting technique anyway approxi-
mates nonlinear constraints by penalty terms, an appropriate form of an achievement
function that differentiably approximates function (7) has been also developed and is
actually used. This smooth order-approzimating achievement function has the form:

where w,, wit, will are functions of q;, q; :

and the dependence on q, results from a special definition of the scaling units that are
determined by:

where r; are additional weighting coefficients that might be defined by the user (however,

the system does not need them and works also well if they are set by their default values
r,=l) . In the initial analysis phase, the values q,,maz and Q , , ~ , , , are set to the upper and
lower bounds specified by the user for the corresponding outcome variables; later, they are
modified, see further comments. The parameter a 1 2 is responsible for the approximation
of the function (7) by the function (26): if a+w and e+0, then these functions converge
to each other (if r i=l and while taking into account the specific definition of scaling
coefficients in (26-28)). However, the use of too large parameters results in badly condi-
tioned problems when maximizing function (26), hence a=4- - - 8 are suggested to be used.

The function (26) must be maximized with q=f(z) over z€Xo , while Xo is
determined by simple bounds zlo<z<zUp as well as by inequality constraints
ylo l g (z) s y u p and equality constraints gC(z)=b . In the shifted penalty technique, the
following function is minimized instead:

where c', <", 6 are penalty coefficients and u', u", v are penalty shifts. This function is
minimized over z such that z l o < z < z u ~ while applying conjugate gradient directions,
projected on these simple bounds if one of the bounds becomes active. When a minimum
of this penalty function with given penalty coefficients and given penalty shifts (the latter
are initially equal zero) is found, the violations of all outcome constraints are computed,
the penalty shifts and coefficients are modified according t o the shifted-increased penalty
technique 1401 and the penalty function is minimized again until the violations of outcome
constraints are admissibly small. The results are then equivalent to the outcomes
obtained by maximizing the achievement function (26) under all constraints. This tech-
nique is according to our experience one of the most robust nonlinear optimization
methods.

We omit here the description of the useful standard for defining substantive models of
dynamic nonlinear programming type that can be obtained by combining the previous
cases.

Phase B. The definition of the multiobjective decision analysis problem.
For a given substantive model, the user can define various problems of multiobjec-

tive analysis by suitably choosing maximized, minimized, stabilized and guided outcomes.
In this phase, he can also define which outcomes and decisions should be displayed to him
additionally during interaction with the system (such additional variables are called float-
ing outcomes). Since the substantive model is typically prepared by an analyst(s) in the
phase A and further phases starting with the phase B must be performed by the final user,
an essential aspect of all systems of DIDAS family is the user-friendliness of phase B and
further phases; this issue has been variously resolved in consequent variants of DIDAS
systems. In all these variants, however, the formulation of the achievement function and
its optimization is prepared automatically by the system once phase B is completed.

Before the initial analysis phase, the user should also define some reasonable lower

and upper bounds for each optimized (maximized, minimized or stabilized) variable,
which results in an automatic definition of reasonable scaling units s, for these variables.
In further phases of analysis, these scaling units si can be further adjusted; this, however,
requires an approximation of bounds on efficient solutions.

Phase C. Initial analysis of the multiobjec tive problem.

Once the multiobjective problem is defined, bounds on efficient solutions can be
approximated either automatically or on request of the user.

The 'upper' bound for efficient solutions could be theoretically obtained through
maximizing each objective separately (or minimizing, in case of minimized objectives; in
the case of stabilized objectives, the user should know their entire attainable range, hence
they should be both maximized and minimized). Jointly, the results of such optimization
form a point that approximates from 'above' the set of efficient outcomes Q, but this
point almost never (except in degenerate cases) is in itself an attainable outcome; there-
fore, it is called the utopia point.

However, this way of computing the 'upper' bound for efficient outcomes is not
always practical; many systems of DIDAS family use a different way of estimating the
utopia point. This way consists in subsequent maximizations of the achievement function
s(q,q) with suitably selected reference points ?j. If an objective should be maximized and
its maximal value must be estimated, then the corresponding component of the reference
point should be very high, while the components of this point for all other maximized
objectives should be very low (for minimized objectives, they should be very high; stabil-
ized objectives must be considered as floating in this case, that is, should not enter the
achievement function). If an objective should be minimized and its minimal value must be
estimated, the corresponding component of the reference point should be very low, while
other components of this point are treated as in the previous case. If an objective should
be stabilized and both its maximal and minimal values must be estimated, then the
achievement function should be maximized twice, first time as if for a maximized objec-
tive and the second time as if for a minimized one. Thus, the entire number of optimiza-
tion runs in utopia point computations is pM+2(p-p"). This is especially important in
dynamic cases, see further comments. It can be shown that this procedure gives a very
good approximation of the utopia point gut' in static cases, whereas the precise meaning
of very high reference component should be interpreted as the upper bound for the objec-
tive minus, say, 0.1% of the distance between the lower and the upper bound, while the
meaning of very low is the lower bound plus 0.1% of the distance between the upper and
the lower bound.

During all these computations, the 'lower' bound for efficient outcomes can be also
estimated, just by recording the lowest efficient outcomes that occur in subsequent optim-
izations for maximized objectives and the highest ones for minimized objectives (there is
no need to record them for stabilized objectives, where the entire attainable range is any-
way estimated). However, such a procedure results in the accurate, tight 'lower' bound for
efficient outcomes - called nadir point inad - only if p"=2; for larger numbers of maxim-
ized and minimized objectives, this procedure can give misleading results, while an accu-
rate computation of the nadir point becomes a very cumbersome computational task.

Therefore, some systems of DIDAS family offer an option of improving the estima-
tion of the nadir point in such cases. This option consists in additional p" maximization
runs for achievement function s(q,q) with reference points that are very low, if the
objective in question should be maximized, very high for other maximized objectives and
very low for other minimized objectives, while stabilized objectives should be considered

as floating; if the objective in question should be minimized, the corresponding reference
component should be very high, while other reference components should be treated as in
the previous case. By recording the lowest efficient outcomes that occur in subsequent
optimizations for maximized objectives (and are lower than the previous estimation of
nadir component) and the highest ones for minimized objectives (higher that the previous
estimation of nadir component), a better estimation inad of the nadir point is obtained.

For dynamic models, the number of objectives becomes formally very high which
would imply a very large number of optimization runs - (p1'+2(p-pM))*(T+l) - when
estimating the utopia point; however, the user is confronted anyway with p objective tra-
jectories which he can evaluate by 'Gestalt'. Therefore, it is important to obtain approxi-
mate bounds on entire trajectories. This can be obtained by pU+2(p-p") optimization
runs organized as in the static case, with correspondingly 'very high' and 'very low' refer-
ence or aspiration trajectories.

Once the approximate bounds iUiO and inad are computed and known t o the user,
they can be utilized in various ways. One way consists in computing a neutral efficient
solution, with outcomes situated approximately 'in the middle' of the efficient set. For
this purpose, the reference point q is situated a t the utopia point iufo (only for maximized
or minimized outcomes; for stabilized outcomes, the user-supplied reference component q,
must be included here) and the scaling units are determined by:

for maximized or minimized outcomes, and:

for stabilized outcomes, while the components of the utopia and the nadir points are
interpreted respectively as the maximal and the minimal value of such an objective; the
corrections by O.Ol*(iyfo-ilad) ensures that the scaling coefficients remain positive, if
the user selects the reference components for stabilized outcomes in the range
iyfO<~<irad (if he does not, the system automatically projects the reference component
on this range; the user-supplied weighting coefficients are automatically set to their
default values r,=l when computing a neutral efficient outcome). By maximizing the
achievement function s(q,q) with such data, the neutral efficient solution is obtained and
can be utilized by the user as a starting point for further interactive analysis of efficient
solutions.

Once the utopia and nadir point are estimated and, optionally, a neutral solution
computed and communicated to the user, he has enough information about the ranges of
outcomes in the problem t o start the main interactive analysis phase.

Phase D. I n te rac t i ve review of efficient solut ions and outcomes.

In this phase, the user controls - by changing reference or aspiration points - the
efficient solutions and outcomes computed for him in the system. It is assumed that the
user is interested only in efficient solutions and outcomes; if he wants t o analyse outcomes
that are not efficient for the given definition of the problem, he must change this
definition - for example, by putting more objectives in the stabilized or guided category -
which, however, necessitates a repetition of phases B, C.

In the interactive analysis phase, an important consideration is that the user should

be able t o easily influence the selection of the efficient outcomes i by changing the refer-
ence point q in the maximized achievement function s(q,q). It can be shown [19] that best
suited for the purpose is the choice of scaling units determined by the difference between
the slightly displaced utopia point and the current reference point:

for maximized or minimized outcomes. For stabilized outcomes, the scaling units are
determined somewhat differently than in (30b):

It is assumed now that the user selects the reference components in the range

if ad< P;< for maximized and stabilized outcomes or iyto< q,< ifad for minimized out-
comes (if he does not, the system automatically projects the reference component on these
ranges). The weighting coefficients ri might be used to further influence the selection of
efficient outcomes, but the automatic definition of scaling units is sufficient for this pur-
pose even if r i=l by default; thus, the user needs not be bothered by their definition. The
interpretation of the above way of setting scaling units is that the user attaches implicitly
more importance t o reaching a reference component Ti if he places it close to the known
utopia component; in such a case, the corresponding scaling unit becomes smaller and the
corresponding objective component is weighted stronger in the achievement function
s(q,q). Thus, this way of scaling relative to utopia-reference difference is taking into
account the implicit information given by the user in the relative position of the reference
point. This way of scaling, used also in [32], (351, is implemented only in recent versions of
systems of DIDAS family, especially in versions for nonlinear models.

When the relative scaling is applied, the user can easily obtain - by suitably moving
reference points - efficient outcomes that are either situated close to the neutral solution,
in the middle of efficient outcome set go , or in some remote parts of the set go , say,
close to various extreme solutions. Typically, several experiments of computing such
efficient outcomes give enough information for the user to select an actual decision - either
some efficient decision suggested by the system, or even a different one, since even the
best substantive model cannot encompass all aspects of a decision situation. However,
there might be some cases in which the user would like t o receive further support - either
in analysing the sensitivity of a selected efficient outcome, or in converging to some best
preferred solution and outcome.

Phase E. Sens i t iv i ty ana lys is and forced convergence.

For analysing the sensitivity of an efficient solution t o changes in the proportions of
outcomes, a multidimensional scan of efficient solutions is implemented in some systems of
DIDAS family. This operation consists in selecting an efficient outcome, accepting it as a
base qdm for reference points, and performing p" additional optimization runs with the
reference points determined by:

where /I is a coefficient determined by the user, -1<!?<1; if the relative scaling is used
and the reference components determined by (32) are outside the range (yad , iyad, they
are projected automatically on this range. The reference components for stabilized out-
comes are not perturbed in this operation (if the user wishes to perturb them, he might
include them, say, in the maximized category). The efficient outcomes resulting from the
maximization of the achievement function s(q,q) with such perturbed reference points are
typically also perturbed mostly along their subsequent components, although other their
components might also change.

For analysing the sensitivity of an efficient solution when moving along a direction
in the outcome space - and also as a help in converging t o a most preferred solution - a
d i rec t i ona l s c a n of efficient outcomes can be implemented in systems of DIDAS family.
This operation consists again in selecting an efficient outcome, accepting i t as a base gas
for reference points, selecting another reference point q, and performing a user-specified
number K of additional optimizations with reference points determined by:

The efficient solutions ((k) obtained through maximizing the achievement function
s(q,q(k)) with such reference points constitute a cut through the efficient set go when

moving approximately in the direction q - e m . If the user selects one of these efficient
solutions, accepts as a new eas and performs next directional scans along some new direc-
tions of improvement, he can converge eventually to his most preferred solution - see 1381.
Even if he does not wish the help in such convergence, directional scans can give him
valuable information.

Another possible way of helping in convergence to the most preferred solution is
choosing reference points as in (33) but using a harmonically decreasing sequence of
coefficients (such as l / j , where j is the iteration number) instead of user-selected
coefficients k/K. This results in convergence even if the user makes stochastic errors in
determining next directions of improvement of reference points, or even if he is not sure
about his preferences and learns about them during this analysis, see (411. Such a conver-
gence - called here forced convergence - is rather slow and, after initial experiments, has
not been yet implemented in systems of DIDAS family.

4. Review of va r ious implementations of sys tems of DIDAS fami ly .

There exist a number of various implementations of systems of DIDAS family. An
early, prototype linear version was developed by Kalio, Lewandowski and Orchard-Hays
[lo]. This version utilized professional LP package SESAME available only on the IBM-
370 mainframe computers, therefore it was not transferable. The user interface was rather
poor and the usage of the system was limited to its authors and their collaborators.

The second, also linear, version of DIDAS family systems was developed by Lewan-
dowski (421. It was designed as pre- and postprocessor programs to a commercial LP pack-
age with standard MPSX input and output. Due to such design, it was easily transferable
and many practical problems were solved using it on various computers. The main draw-
back of this system was that the interface between pre- and postprocessor and a the LP
solver was based on reading and writing disk files, which was very time consuming for
larger problems . An interaction with the user was very simple but inconvenient because
of long time responses of the system transferring large amount of data.

The design goal of the next version of DIDAS was to eliminate, if possible, disk
transfers and changes of data structures inside the system. It was done by Kreglewski and

Lewandowski [26] as a interactive multicriteria extension of MINOS linear programming
system [44]; the reference point concepts were implemented accessing MINOS internal
data structures. The user interface was redesigned and many new options added. How-
ever, the portability problems arose again: MINOS is not easily transferable.

The reference point approach was explored also by many others collaborating
authors. A DIDAS/N system developed by Grauer and Kaden [43] was the first published
nonlinear version of such a system. It was based on MINOS/Augmented [45] nonlinear
programming system, an extended version of linear MINOS. Unfortunately, this solver is
not robust and efficient enough for realistic nonlinear programming problems. Moreover,
the user interface in the DIDAS/N system was rather complicated, hence applications of
this system were rather limited. Later, Kaden and Kreglewski [30] developed another ver-
sion of nonlinear DIDAS system. Earlier versions of DIDAS were also adapted for special
purposes by Strubegger and Messner [36], [37].

Lewandowski and Kreglewski [46] developed another, general purpose nonlinear ver-
sion of DIDAS system. It was based on a solver from Modular System for Nonlinear Pro-
gramming [47] and written completely in FORTRAN, hence easily transferable to arbi-
trary computer. The user interface was reasonably simple, but preparation of data for the
system was not quite straightforward.

The experiences of these developments led in 1985 to two new linear versions:
DIDAS-MM and DIDAS-MZ. DIDAS-MM was a further development of the version with
MINOS solver, with extended interactive features, special editor for dynamic linear
models and graphic features. DIDAS-MZ is based on a linear programming solver from
IMSL library which is widely accessible; therefore, DIDAS-MZ is much easier transferable.

In 1986, a new generation of DIDAS family systems was initiated, designed for work
on IBM-PC-XT and compatible computers. These are: IAC-DIDAS-L1 and -L2 as well as
IAC-DIDAS-N, described in other papers of this volume.

5. Applications of systems of DIDAS family.
The first implementation [lo] of systems of DIDAS family was devoted to the appli-

cation in forecasting and planning of the development of Finish forestry and forest indus-
try sectors, based on a substantive model of linear dynamic type. Later, another version
of DIDAS systems was applied [25] to planning of energy supply strategies, which led to
other applications in the analysis of future energy- economy relations in Austria (361 and
of future gas trade in Europe [37].

Parallely, applications to forecasting and planning agricultural production in Poland
[29], to regional investment allocation in Hungary [49], to chemical industry planning (341
have been initiated. A special version of linear dynamic DIDAS was adapted to flood con-
trol problems [28]. A nonlinear version of DIDAS was first applied to issues of
macroeconomic planning 1481; later applications of other nonlinear versions include prob-
lems of environmental protection of ground water quality [30].

Further applications of DIDAS family systems are reported in other papers in this
volume.

References

[I.] Naisbitt, J., Megatrends: Ten New Directions Transforming our Lives. Warner
Books, New York, 1982.

Van Hee, K., Operations research and artificial intelligence approaches to decision
support systems. International Seminar: New Advances in Decision Support Sys-
tems, International Institute for Applied Systems Analysis, Laxenburg, Austria,
1986.

Wierzbicki, A.P., Negotiation and mediation in conflicts, 11: Plural rationality and
interactive decision processes. In M. Grauer, M. Thompson, A.P. Wierzbicki, edi-
tors: Plural Rationality and Interactive Decision Processes, Proceedings, Sopron
1984, Springer Verlag, Berlin.

Dreyfus, S.E., Beyond rationality. In M. Grauer, M. Thompson, A.P. Wierzbicki,
editors: Plural Rationality and Interactive Decision Processes, Proceedings, Sopron
1984, Springer Verlag, Berlin.

Fishburn, P.C., Decision and Value Theory. Wiley, New York, 1964.

Keeney, R.L. and H. Raiffa, Decisions with Multiple Objectives: Preferences and
Value Trade-offs. Wiley, New York 1976.

Wierzbicki, A.P., Penalty methods in solving optimization problems with vector
performance criteria. VI Congress of IFAC, Boston 1975.

Wierzbicki, A.P., Basic properties of scalarizing functionals for multiobjective
optimization. Mathematische Operations- forschung und Statistik, Ser. Optimization
8, Nr 1, 1977.

Wierzbicki, A.P., The use of reference objectives in multi- objective optimization. In
G. Fandel and T . Gal, eds., Multiple Criteria Decision Making, Theory and Applica-
tions, Springer Verlag, Heidelberg 1980.

Kallio, M., A. Lewandowski and W. Orchard-Hays, An implementation of the refer-
ence point approach for multi- objective optimization. WP-80-35, International
Institute for Applied Systems Analysis, Laxenburg, Austria, 1980.

Simon, H.A., Models of Man. Macmillan, New York, 1957
Simon, H.A., Administrative Behavior. MacMillan, New York, 1958.

Galbraith, J.K., The New Industrial State, Houghton-Mifflin, Boston, 1967

Rapoport, A., Uses of experimental games. In M. Grauer, M.Thompson and A.P.
Wierzbicki, editors: Plural Rationality and Interactive Decision Analysis, Springer
Verlag, Berlin, 1985.

Axelrod, R., The Evolution of Cooperation. Basic Books, New York, 1985.

Charnes and Cooper, Goal programming and multiple objective optimization, J
Oper. Res. Soc. 1, pp 39-54, 1975.
Ignizio, J .P. , Goal programming - a tool for multiobjective analysis. Journal for
Operational Research, 29, pp 1109-1119, 1978.

Wierzbicki, A.P., A mathematical basis for satisficing decision making. Mathemati-
cal Modelling 3, pp 391-405, 1982.
Wierzbicki, A.P., On the completeness and constructiveness of parametric character-
izations to vector optimization problems. OR-Spektrum 8, pp 73-87, 1986.

Glushkov, V.M., Basic principles of automation in organizational management sys-
tems (in Russian), Upravlayushcheye Sistemy i Mashiny, 1, 1972.

Pospelov, G.S. and V.A.Irikov, Program- and Goal-Oriented Planning and Manage-
ment (in Russian), Sovietskoye Radio, Moscow, 1976.

Umpleby, S.A., A group process approach to organizational change. In H. Wedde,
ed., Adequate Modelling of Systems, Springer-Verlag, Berlin, 1983.

Lewandowski, A., S. Johnson and A.P. Wierzbicki, A Selection Committee Decision
Support System: Implementation, Tutorial Example and Users Manual. Interna-
tional Institute for Applied Systems Analysis, Laxenburg, Austria, 1986; presented
also a t the MCDM Conference in Kyoto, Japan, August 1986.

Lewandowski, A., and M. Grauer The reference point approach - methods of
efficient implementation. WP-82-26, International Institute for Applied Systems
Analysis, Laxenburg, Austria, 1982.
Grauer, M., A.Lewandowski and L. Schrattenholzer, Use of the reference level
approach for the generation of efficient energy supply strategies. WP-82-19, Interna-
tional Institute for Applied Systems Analysis, Laxenburg, Austria, 1982.
Kreglewski, T . and A.Lewandowski: MM-MINOS - an integrated interactive deci-
sion support system. CP-83-63, International Institute for Applied Systems Analysis,
Laxenburg, Austria, 1983.
Lewandowski, A., T. Rogowski and T . Kreglewski, A trajectory- oriented extension
of DIDAS and its applications. In M. Grauer, M. Thompson, A.P. Wierzbicki, edi-
tors: Plural Rationality and Interactive Decision Processes, Proceedings, Sopron
1984, Springer Verlag, Berlin.
Lewandowski, A., T . Rogowski and T. Kreglewski, Application of DIDAS methodol-
ogy to flood control problems - numerical experiments. In M. Grauer, M. Thompson,
A.P. Wierzbicki, editors: Plural Rationality and Interactive Decision Processes,
Proceedings, Sopron 1984, Springer Verlag, Berlin.
Makowski, M., and J . Sosnowski, A decision support system for planning and con-
trolling agricultural production with a decentralized management structure. In M.
Grauer, M. Thompson, A.P. Wierzbicki, editors: Plural Rationality and Interactive
Decision Processes, Proceedings, Sopron 1984, Springer Verlag, Berlin.
Kaden, S., and T . Kreglewski, Decision support system MINE - problem solver for
nonlinear multi-criteria analysis. CP-86-5, International Institute for Applied Sys-
tems Analysis, Laxenburg, Austria, 1986.

Grauer, M., A. Lewandowski and A.P. Wierzbicki, DIDAS - theory, implementation
and experience. In M . Grauer and A.P. Wierzbicki, editors: Interactive Decision
Analysis, Springer Verlag, Berlin, 1983.

Nakayama, H., and Y. Sawaragi, Satisficing trade-off method for multiobjective pro-
gramming. In M. Grauer and A.P. Wierzbicki, editors: Interactive Decision Analysis,
Springer Verlag, Berlin, 1983.
Sakawa, M., Interactive fuzzy decision making for multi- objective nonlinear pro-
gramming problems. In M. Grauer and A.P. Wierzbicki, editors: Interactive Decision
Analysis, Springer Verlag, Berlin, 1983.

Gorecki, H., J . Kopytowski, T. Rys and M. Zebrowski, A multiobjective procedure
for project formulation - design of a chemical installation. In M. Grauer and A.P.
Wierzbicki, editors: Interactive Decision Analysis, Springer Verlag, Berlin, 1983.
Steuer, R. and E.V. Choo, An interactive weighted Chebyshev procedure for multi-
ple objective programming. Mathematical programming 26, pp 326-344, 1983.

Strubegger, M., An approach for integrated energy-economy decision analysis: the
case of Austria. In G. Fandel, M. Grauer, A. Kurzanski and A.P. Wierzbicki, eds.,
Large-Scale Modelling and Interactive Decision Analysis, Proceedings Eisenach,
Springer Verlag, Berlin, 1985.
Messner, S., Natural gase trade in Europe and interactive decision analysis, In G.
Fandel, M. Grauer, A. Kurzanski and A.P. Wierzbicki, eds., Large-Scale Modelling
and Interactive Decision Analysis, Proceedings Eisenach, Springer Verlag, Berlin,
1985.

Korhonen, P . and J . Laakso, Solving a generalized goal programming approaches
using a visual interactive approach. European Journal of Operational Research 26,
pp 355-363, 1986.

Sawaragi, Y., H. Nakayama and T. Tanino, Theory of Multiobjective Optimization,
Academic Press, New York, 1985.

Wierzbicki, A.P., Models and Sensitivity of Control Systems, Elsevier, Amsterdam,
1984.

Michalevich, M.V., Stochastic approaches t o interactive multicriteria optimization
problems, WP-86-10, International Institute for Applied Systems Analysis, Laxen-
burg, Austria, 1986.

Lewandowski, A., A Program Package for Linear Multiple Criteria Reference Point
Optimization - Short User Manual, WP-82-80, International Institute for Applied
Systems Analysis, Laxenburg, Austria, 1982.
Grauer,M. and S. Kaden, A Nonlinear Dynamic Interactive Decision Analysis and
Support System (DIDASIN) Users Guide, WP-84-23, International Institute for
Applied Systems Analysis, Laxenburg, Austria, 1984.

Murtagh, B.A. and M.A. Saunders MINOS User's Guide, Technical Report SOL-77-
9, Systems Optimization Laboratory, Stanford University, 1977.

Murtagh, B.A. and M.A. Saunders MINOSIAugmented, Technical Report, S01-80-
14, Systems Optimization Laboratory, Stanford University, 1980.

Lewandowski, A. and T . Kreglewski, A nonlinear version of DIDAS system, Colla-
borative volume: Theory, Software and Test Examples for .Decision Support Sys-
tems, International Institute for Applied Systems Analysis, Laxenburg, Austria,
1985.

Kreglewski, T., T . Rogowski, A. Ruszczynski, J . Szymanowski, Optimization
methods in FORTRAN, PWN, Warsaw, 1984 (in Polish).
Grauer, M. and E.Zalai, A Reference Point Approach to Nonlinear Macroeconomic
Planning, WP-82-134, International Institute for Applied Systems Analysis, Laxen-
burg, Austria, 1982.

Majchrzak, J . , The implementation of the multicriteria reference point optimization
approach to the Hungarian regional investment allocation model, WP-81-154, Inter-
national Institute for Applied Systems Analysis, Laxenburg, Austria, 1982.

A . Ruszczynski Modern techniques . .

Modern Techniques for Linear Dynamic and Stochastic Programs

A ndrzej Ruszczynski

Institute of Automatic Control, Warsaw University of Technology

1.Introduction

In the last three decades the theory and computational methods of linear program-
ming developed into a powerful tool for analysing linear models of economic planning and
control. Modern linear programming packages (see, e.g., [17],[19]) are capable of solving
problems with thousands of variables and constraints. Still, linear programming as the
area of research is far from being closed. On the one hand, the practice poses new large
and complex problems which result from the tendency to describe more and more complex
objects of decision making by mathematical models. On the other hand, the trends in
modern computer and information technology create a demand for user-friendly decision
support systems with an intimate interaction between the decision maker and the com-
puter. The computer is often just a personal computer and this implies very specific
requirements from the optimization software involved in such systems: it should be capa-
ble of solving large models, fast, use computer resources in an economic way, and it
should allow for easy changes in the model.

A detailed discussion of all these issues goes far beyond the scope of this paper. We
shall focus our attention here on two main sources of large scale linear models arising in
decision making: dynamic structure and stochasticity. We shall discuss the ways in which
general linear programming techniques can be specialized for these models to meet some
of the computational goals pointed out above. Next, we shall present two nonstandard
techniques which appear to be particularly useful for the problems in question.

2. Dynamic structure and stochasticity as sources of large linear models

It is well known that every linear optimization problem can be equivalently
expressed in the following form

T minimize c z

subject to

Az=b ,

where z is the vector of activities (including slack/surplus variables), c is a vector of cost
coefficients associated with these activities, A is a technology matrix, and b is a vector of
resources or demands, which impose conditions on the admissible activities z. In real-life
large scale models, the dimension of z (the number of columns of A) and the dimension of
b (the number of rows of A) may go into thousands. On the other hand, it is typical that
each resource or demand condition (a row of A z = 6) involves only few activities and
each activity appears in only a relatively small number of conditions. As a result, the con-
straint matrix A in (2.1) is usually sparse: most of its entries are zeros. Its density (the
proportion of the number of nonzeros to the size) may be less than 1% and it is clear that

A . Ruszczynski - 28 - Modern techniques ...

this feature should be exploited by the methods for solving (2.1). In fact, all modern linear
programming codes make use of this feature and contain very sophisticated techniques for
storing and factorizing sparse matrices, solving equations with them, and updating the
factorization when the data change (see [5] ,1231).

However, there exist important classes of problems in which sparsity alone is not the
only feature of the constraint matrix. One of these classes are linear dynamic-structured
problems, in other words - linear control problems. In the simplest formulation of such a
problem our variables (activities) are related to time stages t=0,1,2,..,T. At each stage
t , we deal with two groups of variables: state variables s, and control variables ut. The
variables from the neighboring periods are related through the state equation

where G and K are some matrices of appropriate dimensions and bt are some known vec-
tors. Let the initial state so be fixed and let us write our linear objective function as

Assuming that the only additional constraints on the state and control variables are sim-
ple lower and upper bounds

we can easily write our problem in form (2.1) with

and

We see that the number of rows and columns of A increase proportionally to to the
number of periods T , and even for relatively small dimensions of the activities related to
a single period the whole problem may have a remarkable size. On the other hand, the
matrix (2.7) is not only sparse, but has a very regular staircase structure with multiple
occurrence of the same (usually also sparse) matrices G , K and I. We have to take
advantage of it if we aim at solving dynamic problems of realistic dimensions.

Let us now pass on to the second class of problems which are of special interest for
us. Let us assume that some of the entries of the technology matrix A and the right-hand
side b in the linear model (2.1) are uncertain and that this uncertainty is crucial for the
decision making. One of possible modelling approaches to such a situation (see, e.g., 1121)
is to assume that A and b are random and may attain one of finite many realizations
with some known probabilities:

(Al,bl) withprobability pl>O, (2-8)

(A2,b2) with probability p2>0,

A . Ruszczynski Modern techniques ...

(A L , b L) with probability pL>O,
L

where C p I = l Under these circumstances, however, it is in general no longer possible
I= 1

that the decision z satisfies the constraints Alz=bl for all realizations 1=1,2,. . ,L. There-
fore, we have to extend our model by introducing some corrective activities yl associated
with the realizations 1=1,2,..,L, which compensate the discrepancy 61-A lz If we
describe our capabilities of correction by a matrix W and assign to yl the cost vector q
and the bounds ymn and ymaz, the correction problem will take the form

T minimize q y

subject to

Wyl=b l -A lz , yM"~yjymaz

Our aim is now to find such a, decision z that makes the correction always possible and
T mrinimizes the sum of the direct cost c z and the expected future correction cost

L
T C plq yl. The whole problem can be again written as a large scale linear model:

I = 1
T T T T minimize c z + p l q y l+p2q y2+- - -+pLq y~

subject to

A l z + W l y l = b l
/ I 2 2 + W 2 ~ 2 = b 2

y ~ n ~ Y l < y - , l = 1 , 2 , . . , L

The constraint matrix of (2.10),

has the size proportional to the number L of realizations taken into account, which leads
to very large problems already for underlying deterministic models of medium size. Still,
similarly to the dynamic case, A is not only sparse but has a very regular (so-called dual
angular) structure, with multiple occurrence of the correction matrix W and some simi-
larities of the realizations A 1,A2, . . ,AL. It is intuitively clear that we have to take advan-
tage of that in the method for solving such problems.

3. Specialized versions of the simplex method
When dealing with special classes of problems for which general efficient techniques

already exist, it is a natural direction of research to investigate the possibility of exploit-
ing the features of these special problems within the general approach. So, we shall discuss
here some most promising specializations of the acknowledged method of linear program-
ming, the primal simplez method, for the two classes in question: dynamic and stochastic
problems.

A . Ruszczynski - 30 - Modern techniques

In the primal simplex method the constraint matrix A in (2.1) is split into a square
nonsingular basis mat r iz B and a matrix N containing all the remaining columns of A ,
not included into B . This implies division of the activities z into basic variables z g and
nonbasic variables zN . At each iteration of the method the nonbasic variables are fixed on
their lower or upper bounds, and the values of the basic variables are given by

We always choose basis matrices B so that

&<z < P i n ,
Z~ - B- B (3.2)

where zg"" and zBm are subvectors of zmin and zmm implied by the division of z into
z g and zN . Such an z is called a basic feasible solution, and at each iteration we try to
find a better basic feasible solution by performing the following steps.

Step 1 . Find the price vector p by solving
T

r T ~ = c B , (3.3)

where cg is the subvector of c associated with zg .
Step 2. Price out the nonbasic columns a, of A (i.e. columns of N) by calculating

T z . = c . - ~ a .
3 3 3 (3.4)

"-8 until a column a, is found for which z, <0 and z,=zm'", or z,>O and z,=z .

Step 3. Find the direction of changes of basic variables dB by solving

Step 4 . Determine from zgM",zBm,zB and dBthe basic variable zg, which first
achieves its bound when z, changes.

Step 5. Replace the r-th column of B with a,,za, with z, and calculate values of the
new basic variables from (3.1).

This general strategy can be deeply specialized to account for the features of prob-
lems under consideration. These improvements can be divided into three groups:

a) representation of the problem data, i.e. the way in which the matrix A is stored and
its columns a, recovered for the purpose of Step 2;

b) techniques for solving equations (3.1), (3.3) and (3.5), which includes special
methods for factorizing the basis matrix B and updating this factorization;

c) pricing strategies, i.e. methods for selecting nonbasic columns a, at Step 2 to be
priced out for testing whether they could be included into B at the current iteration.

Let us discuss these issues in more detail.

Problem data structures

The repeated occurrence of the matrices G , K and I in the constraint matrix (2.7)
of the dynamic model suggests a generalization of the concept of supersparsity employed
in large linear programming systems [I]. It is sufficient to store the matrices G and K as
files of packed columns (G and K may be sparse themselves). Any time a specific column
a, of A is needed, we can easily calculate from its number j an fro the dimensions of

activities related to a single period which column of - K or of [&rnd on which posi-

tion will appear in a, . Thus the problem data can be compressed in this case to the size

A . Ruszczynski - 31 - Modern techniques ..

of one period and easily stored in the operating memory of the computer, even for very
large problems. In a nonstationary problem, where some of the entries of K and G depend
on t , we can still store in this way all the stationary data, and keep an additional file of
time-dependent entries. The recovery of a column of A would then be slightly more com-
plicated, with a correction to account for the nonstationary entries, but still relatively
easy to accomplish. Storage savings would be still significant, because we have grounds to
expect that only some entries of A change in time.

The same argument applies to the constraint matrix (2.11) of the stochastic prob-
lem. It is sufficient to store the realizations A1,A2,..,AL and W to reconstruct columns of
A , if necessary. But we can go here a little deeper, noting that in practical problems it is
unlikely that all the entries of the technology matrix are random. If only some of them are
stochastic, many entries of A1,A2,..,AL will have identical values and our problem data
structure will still suffer from a considerable redundancy. Thus, we can further compress
the structure, as it was done in [16]: we represent each A as

where A' contains as nonzeros only the deterministic entries of Al , and A l contains as
only nonzeros the 1-th realization of the random entries. Therefore it is sufficient to store
the nonzeros of A' together with its sparsity pattern, the sparsity pattern of the random
entries (which is common for all Al), and the nonzeros of A l , /=1,2,..,L. This structure
will only slightly exceed the storage requirements of the underlying deterministic model.

Representation of the basis inverse

It is clear that for constraint matrices of the form (2.7) or (2.1 1) the basis matrices
B inherit their structure. Although general techniques for factorizing sparse matrices (see,
e.g., 15],[23],[28]) are in principle able to cope with such bases, there is still room to
exploit their structure within the factorization and updating algorithms.

Let us a t first discuss this matter on the simple control problem with the constraint
matrix (2.7). Assuming that all the state vectors sl,s2,. . ,s~ are basic, we obtain the fol-
lowing form of the basis matrix

BO is lower triangular and the equations involving Bo or B$ can be simply solved by
substitution. To solve Bod=a, we partition d into (dl,d2,..,dT) and a into
(ao7al,..,aT-1) according to the periods, and solve the state equations

with do=O. Notin that in (3.4) we have at=O for t<r we can start simulation in (3.7) !+ from r. To solve T Bo=c we need only to back-substitute in the adjoint equations

with T ~ + ~ = O . Again, noting that c g in (3.3) changes only on one position from iteration
to iteration, we can start the simulation in (3.8) from the position a t which the change
occurred.

In general, the basis matrix is not so simple as (3.6) and some controls are basic,
while some state variables are nonbasic. The basis matrix is still staircase, but the blocks

A . Ruszczynski - 32 - Modern techniques ..

on the diagonal (which in (3.6) are all I) are not necessarily square and invertible:

where J1,J2?. . ,JT are some submatrices of I; K1,K2 , . . ,KT are submatrices of K and
G1,G27 . .7GT-1 are submatrices of G . A factorization of B is necessary to represent it in
a form suitable for solving equations with B and B~ and for corrections when a column
of B is exchanged.

We can of course specialize the elimination procedures of [5] or 1131, because we
exactly know where to look for nonzeros in particular rows and columns of B . This idea of
blockwise elimination has been analysed in (141, (22) and [32]. There is, however, a more
promising global approach which aims a t exploiting features similar to those that led
from (3.6) to the equations (3.7) and (3.8). ame el;, we would like to transform somehow
B to a staircase matrix

having the diagonal blocks Bff square and nonsingular. Solving equations with B would
be almost as simple as with Bo and would require only inversion of Bf f7 t=1727. .7 T.

In (201 the pass from B to B is achieved by representing

-
with F chosen in such a way that B inherits as many columns of B as possible. In partic-
ular, all the state columns of B will appear in B, so that the diagonal blocks Bff will have
large parts common with the identity and will be easy to invert. Moreover, F has also a
very special structure

with D square, invertible, and of relatively low size. Solving the equations with B or B T

resolves now itself to the factorization of Bff (which is easy) and factorization of D (see
[20]). Updating the factors is rather involved, unfortunately.

Another approach has been suggested in [I]. Since Bo is particularly easy to invert,
we aim a t using Bo as B . We do not construct factors as in (3.11) but rather add new
rows and columns to Bo and work with a larger matrix

r 1

Here U contains columns which are in B but not in Bo, and V contains units in
columns which are in Bo but not in B , to explicitly nullify the variables corresponding to
these columns. The solution to

A . Ruszczynski

can be now computed by

Modern techniques . . .

Thus we need only to solve equations with Bo , which is particularly simple, and to
factorize the matrix V B ~ ' U, which is of much smaller size than B. Similar formulae can
be derived for the backward transformation (3.3). Updating the factors is much more sim-
ple than for (3.11),(3.12), because the general form (3.13) does not change when rows of
V and columns of U are added or deleted.

where Wl , 1=1,2,..,L are square nonsingular submatrices of W. The inversion of Bo
resolves now itself to the inversion of W W2, . . . , Wl, which can be done independent1 y.
We can also exploit here some similarities between the W's (common columns) to further
simplify their inversion (see the bunching procedure discussed for other purposes in 1321).

Let us now pass t o the stochastic problem (2.10). Supposing that the basis contains
only the correction activities, its form is particularly simple

In general, however, the basis matrix will be of the form

-
with the blocks Wl 1=1,2, . . ,L , not necessarily square and nonsingular. Again, we would
like to transform B into a form more suitable for inversion. At the first sight, since B is
lower block triangular, both approaches discussed for the dynamic problem are applicable
here. We can aim at obtaining factors as in (3.11) with a w of dual angular structure
having invertible diagonal blocks. We can also apply a method based on the Sherman-
Morrison formulae (3.15)-(3.16) and work with a matrix of the form (3.13).

(3.17) Bo =

The relation with the dynamic model, however, follows from rather superficial alge-
braic similarity of the problem matrices (lower block triangular structure). In fact, in the
dynamic model we deal with a phenomenon that evolves in time, whereas the stochastic
model describes a phenomenon spread in space. Thus, while we had grounds to assume
that many state variables will be basic in the dynamic model (which implied the choice of
Bo), we cannot claim the same with respect to the correction activities in the stochastic
model and specify in advance some of them to be included into' W. Therefore, the
approach of [I] must be slightly modified here. Instead of working with B , we would
prefer to operate on a larger matrix

r

W l
w2

. . .
WL

A . Ruszczynski - 34 - Modern techniques .. .

in which some of the rows of the matrix V, which are used to ull'fy the nonbasic correc-

tion activities, are added to W to make the diagonal blocks 11 square and invertible.

Under these circumstances, however, the block diagonal part of is no longer constant,
contrary to the matrix Bo in the form (3.13) for dynamic problems. The representation
(3.19) and the resulting updating schemes were analysed in the dual (transposed) form in
1121, and (271. The resulting formulae, however, are so involved and distant from the
essence of the underlying problem, that it is not clear whether this particular direction
can bring a significant progress.

The approach (3.11) might be more prospective here, but we should be aware of the
fact that it is natural to expect that many first stage activities z will be basic, because
corrections are usually more expensive. Hence, the blocks W, in (3.18) will be far from
square and adding to them columns to achieve the block diagonal B will inevitably
increase the size of D in (3.12).

Summing up this part of our discussion, we can conclude that implementations of
the simplex method for large dynamic and stochastic problems lead to very detailed linear
algebraic techniques that try to exploit the structure of basis matrices t o develop
improved inversion methods. Although there is still a lot to be done in this direction, one
can hardly expect a qualitative progress here.

Pricing strategies

Let us now pass to the problem of selecting nonbasic columns to be priced out a t a
given iteration for testing whether they could be brought into the basis. Since the selec-
tion of a variable to enter the basis largely determines the variable to leave, pricing stra-
tegies have a considerable influence on iteration paths of the simplex method and this
influence grows with the size of the problem. There are two acknowledged techniques for
general large scale linear programs (cf., e.g., [la]) :

a) partial pricing, where a t each iteration a certain subset of nonbasic columns are
priced out to select the one to enter;

b) multiple pricing, where a list of prospective candidates is stored, and they are priced
out again a t the next iteration.

These general ideas can be further specialized for the two classes of problems in
question. The lower block triangular structure of A in (2.7) and (2.11) suggests a natural
division of the set of columns into subsets treated together by partial pricing strategies.
These subsets correspond to periods in (2.7) and to the first stage decision z and the reali-
zations in (2.11). This idea was thoroughly investigated experimentally in 171 and the

A . Ruszczynski - 35 - Modern techniques ...

conclusions can be summarized as follows:
- rank the blocks (periods, realizations) equally and use them in a cyclic fashion;
- within each block (if it is still large enough) rank the columns equally and also use

them in a cyclic fashion.

Again, pure linear algebraic concepts seem to be insufficient to fully specialize the
pricing strategies. We should somehow exploit our knowledge of the essence of the under-
lying model to gain further improvements.

Noting that the dynamic model describes a phenomenon that evolves in time, we
have grounds to expect that similar sets of activities will appear in the basis in the neigh-
boring periods. This suggests a simple modification of the partial pricing strategy
described above: if a prospective column has been found in period k, price out the
corresponding columns from the next periods and bring them to the basis, as long as pos-
sible. The initial experiments reported in [9] indicate that this simple modification may
improve the performance significantly (by 20-30% on problems of size 1000 by 2000.on
IBM PCIXT).

In the stochastic case the situation is generally analogous, and only slightly more
complicated. If a correction variable is basic for the realization (Al,bl) , we have grounds
to expect that the corresponding variables will be basic for some neighboring realizations
(Aj,bj) However, contrary to the dynamic model, the notion of 'neighboring realizations'
is not so clear and is difficult to implement. Nevertheless, this possibility should at least
be investigated experimentally.

4. Feasible direction methods
The main disadvantage of the simplex method when applied to dynamic or stochas-

tic models is that it changes only one nonbasic activity a t a time. We have already
observed that periods in the dynamic model and realizations in the stochastic model exhi-
bit close similarities. This results in very long iteration paths of the simplex method with
some subsequences of iterations used to realize similar changes for many periods or reali-
zations. It would be much more convenient to perform these changes simultaneously.

The feasible direct ion methods (see [8],(20]) may help us to implement this idea (the
simplex method is a feasible direction method, too, but with particularly simple direc-
tions). The main difference between these methods and the simplex method is that we
change many nonbasic variables a t a time and allow z~ to have values between their
bounds a t intermediate steps. We still preserve the division of z into zg and zN and still
keep the conditions (3.1) and (3.2). However, steps 2, 3 and 4 of the simplex method are
modified as follows.

Step 2a. Price out nonbasic columns a, of A by calculating

and select a subset S of columns al such that z,<O for q=zJm'", r>O for q=zJm" ,
zj#0 for z;"ln<zj<zm", (a subset of prospective candidates).

3
Step 9a . Determine a direction dN of change of the nonbasic variables z~ such that

d , ~ , <O for ~ E S ,

(in the simplex method dN has only one nonzero component). Determine the direc-
tion of change of the basic variables by solving

A . Ruszczynski Modern techniques . . .

where A, is a submatrix of N formed from the columns selected in Step 2a, and d,
is the nonzero subvector of dN.

Step 4a. Determine from z ~ ' n , z ~ a x , zg , dB and zr ' " , z r a x , z, and d, the variable
which as first achieves its bound, when z, moves in the direction d, .

At first we note that when one of the variables which change their values (a basic
from zg or a nonbasic from z,) will hit its bound, some nonbasic variables will be out of
their bounds. So, we should either accept the fact that nonbasics can have arbitrary
values in the course of calculation, or construct a basic solution from the current one
without increasing the objective value. The second idea has been analysed in [20], where a
detailed auxiliary algorithm has been described to pass to such a basic solution. This,
however, involves many additional steps which may considerably diminish the advantages
of changing many nonbasics in a major step. The radical solution of (81 seems to be more
promising: we allow nonbasics to have values between their bounds. Under this assump
tion the division of z into basics and nonbasics is no longer determined uniquely by the
algorithm. If the previous basics are still between their bounds, we can maintain the divi-
sion to save on updating. When one of the basics hits its bound we can choose among z,
the variable to replace it. In general, as discussed in [8], we should aim at constructing
such a basis that allows for an efficient next iteration. This may e.g. be accomplished by
selecting a nonbasic which is possibly far away from its bounds. However, there is a need
for a more theoretically grounded approach, which could perhaps be based on the analysis
of the dual problem.

Since the algebra of the feasible direction method is close to that of the simplex
method, we can of course use here all the tricks developed for compact inversion of basis
matrices discussed in the previous section.

Leaving aside these technical points, let us now focus our attention on the specializa-
tion of the strategy of the feasible direction method to problems having dynamic or sto-
chastic structure. The crucial question here is the choice of the direction of change of non-
basic variables. Although in theory the only limitations are the conditions (4.2), (4.3), in
practice we have to use more restrictive conditions to limit the number of columns of N to
be priced out. Again, as it was in the case of the primal simplex method, we can take
advantage of the structure of the constraint matrix and of the similarities of the blocks.
Thus, we can try to select to z, at a given iteration similar activities from different
periods/realizations and then make one major step of the method. The only difference is
that previously we performed sequences of similar steps bringing to the basis correspond-
ing activities from different blocks, while here we at first select a group of related candi-
dates and then change them simultaneously.

An important feature of the feasible direction approach is the freedom for specifying
the starting point. Indeed, once we abandoned the the requirement that all nonbasic vari-
ables are on their bounds, we are free to start the calculation from a solution which need
not be basic. This may help solving practical problems, where reasonable nonbasic solu-
tions can be specified by the user.

Summing up, the feasible direction approach appears to be a promising idea for large
scale problems having a dynamic or stochastic structure. It retains the algebraic advan-
tages of the simplex method and provides more freedom for exploiting the structure to
shorten iteration paths. The potential of this approach is far from being exploited.

A . Ruszczynski - 37 - Modern techniques ..

5. The regularized decomposition method

The idea of applying decomposition methods to linear programs of dynamic or sto-
chastic structure has been known since 25 years (31, but it is still attractive and provides a
framework for new ideas. We shall focus our attention here on the stochastic problem
(2.10), whose structure directly suggests the application of decomposition, and we shall
discuss the application of the new regularized decomposit ion method suggested in 1241. As
for dynamic problems, the approaches suggested in the literature so far are entirely
different and still of rather theoretical importance (see, e.g., [5], (61, (101, [l l]) .

By formulating the dual to (2.10) we obtain a problem of primal angular structure,
to which the Dantzig- Wolfe decomposition method can be applied 141. Since applying the
Dantzig-Wolfe method to the dual is equivalent to applying the Benders decomposit ion to
the primal 1161, we shall discuss our basic ideas in primal terms.

It can be readily seen that if z is fixed in (2.10) the minimization with respect to
yl ,y2,. . ,y~ can be carried out separately by solving for 1=1,2,..,L the second-stage sub-
problems

T minimize q y

subject to

ymin< < max
- Y - Y .

Let us denote the optimal value of (5.1) by j l(z), and take the convention that
j l (z)=+oo, if (5.1) is unsolvable. Then our problem (2.10) can be equivalently formu-
lated as follows:

T
L

minimize F (2)- c z+ C pl jl(z)
I= 1

subject to

where

We introduce the condition (5.4) to the problem formulation, because we are going .

to use separate approximations for jI and for their domains XI .
Much is known about the functions jl and the sets XI (see, e.g., [9]). In particular,

each XI is a convex closed polyhedron and each jl is convex and piecewise linear on XI .
Although the pieces of jl and the facets of jl are not given explicitly, for each z we can
determine a piece of jI active a t 5 , or a linear constraint defining XI, which is violated a t
2'.

Indeed, let (5.1) be solvable a t z=2' and let n denote the vector of simplex multi-
pliers associated with the solution. Then it follows from the duality relations in linear
programming that for every z

A . Ruszczynski - 38 - Modern techniques ...

and the equality holds for z=2. If (5.1) is not solvable for z=Z, then phase I of the sim-
plex method or the dual simplex method will stop at a certain iteration, a t which it will
not be possible to move a basic variable ygr towards its feasibility interval (y ~ n 7 y ~ a x] .
If T is the r-th row of the basis inverse (if the dual method is used and yBr> ygrax), then

Similar formulae hold for the case of y B r < Y g n and for the phase I of the primal
simplex method.

We shall call the linear inequalities following from (5.6) objective cuts, and the ine-
qualities following from (5.7) feasibility cuts. Each objective cut can be written as

with gl=-Aln, crl=nTbl. Each feasibility cut can be expressed in a similar fashion:

T with s = - A l T and an appropriately defined cl. Functions fl and sets XI are polyhedral
and there can be only finite many (although usually quite a few) such cuts.

Next, if we have objective cuts (5.8) for all 1=1,2,..,L we can construct an aggregate
cut

where is computed from (crl,gl) by means of averaging

We can now describe the version of the Benders decomposition method for stochastic
programs, known as L-shaped algorithm (301.

Let (~ j , ~ j) , j E J , be the set of aggregate cuts (5.10) known so far, and let
zjigi), j E J , be the set of feasibility cuts generated previously. At each iteration of the
method we perform the following operations.

Step 1. Solve the master problem:

minimize F(z) = c Tz+ u

subject to

&+($) T z < ~ , j E J)

z < z-2. - -

Let z" be the solution to (5.13)-(5.16).

Step 2. Solve for 1=1,2,..,L the subproblems (5.1) at z=Z. If any of them is infeasible,
generate the corresponding feasibility cut (5.9), append it to (5.15) and go to Step 1.

L

If all subproblems are feasible, check whether Cpl f l (Z)=u. If this condition is
1=1

A . Rusrczynski - 39 - Modern techniques ...

satisfied, then stop; otherwise generate objective cuts (5.8), the aggregate cut (5.10),
append it to (5.14) and go to Step 1.

It is not difficult to observe that this method exactly corresponds to the Dantzig-
Wolfe method applied to the dual of (2.10): the cuts passed to the master (5.13)-(5.15)
are the proposals passed to the master in the Dantzig-Wolfe method.

The attractiveness of this approach follows from the fact that the solution procedure
closely reflects the structure of the original problem. It also allows for some parallelism in
subproblem solution. It has, however, inherent drawbacks common for all purely linear
cutting plane methods (cf., e.g., [29]), and for the Dantzig-Wolfe method (which is in fact
their dual counterpart):
- the number of cuts (5.14), (5.15) increases in the course of calculation;
- the master problem is unstable: new cuts may imply rapid changes of d;

- convergence is slow

These drawbacks led to the idea of the regularized decomposition method 1241, which
combines the Benders decomposition with modern stable techniques of nonsmooth optimi-
zation [15]. The main idea of the method is to change the master program, which gen-
erates successive points zk a t which the subproblems are solved. We aim a t constructing
such a master which would be able to use the information gained in the past not only in
the form of cuts, but also in the form of the best point z found so far.

The method uses objective and feasibility cuts (5.8) and (5.9) as before. It does not,
however, average them to form aggregate cuts (5.10), but rather maintains separate sets
of cuts for each component fl :

Next, the master problem, although quite similar to (5.13)- 5 16 , is augmented with
a quadratic penalty term for the distance of d to the best point & .fo?nd so far:

"k 1 k T L
minimize F (Z)=,~~Z--Z Il+c z+ C p1Vj

subject to

The existence of this quadratic term stabilizes the master problem, i.e. makes it less
sensitive to the changes in the set of cuts (5.18)-(5.19). It also allows for skipping out-
dated cuts and keeping the total size of the master limited.

The logic of the regularized decomposition method can be summarized as follows.

Step 1. Solve the regularized master (5.17)-(5.20), getting a trial point d and objective
estimates VI, I=1,2 ,.., L.

Step 2. Solve for I=1,2,..,L the subproblems (5.1) a t z=Z.
a) If (5.1) is infeasible, then append the feasibility cut (5.9) to (5.19).

A . Ruszczynski - 40 - Modern techniques ...

b) If (5.1) is feasible, but f i (z)>u l , then append the objective cut (5.8) to the set of
cuts Jl in (5.18).

k Step 3. Change the regularizing point z according to the following rules.

a) If there were infeasible subproblems (5.1), set zk+'=zk.
L

b) If F (i) = c T 5 + C plu1, then set zk+'=i.
I = 1

L
c) If F (~) ~ ~ ~ (z ~) + (l - - y) (c ~ i + C plul) and exactly n+ L constraints were active

I= 1
in (5.17)-(5.20), then also set zk+'=i; otherwise set zk+l=zk

Step 4 . Delete from the cuts (5.18)-(5.19) some of those which were not active a t the last
solution i to the master, and go to Step 1.

It is easy to observe that the number of active cuts (i.e. linearly independent con-
straints with positive Lagrange multipliers) never exceeds n + L , where n is the dimension
of z and L is the number of blocks (realizations). Since at Step 2 a t most L new cuts may
enter (either a feasibility cut or an objective cut for each I) , the total number of cuts need
not exceed n+2L . In fact, i t is usually much smaller, if many bounds (5.20) are active.

It has been proved in (241 (for the general case of minimization of a sum of
polyhedral functions) that the rules for changing the regularizing point zk at Step 3
guarantee that the sequence zk is convergent in finite many iterations to the solution of
our problem. This result obviously applies also to the particular problem we are
interested in.

It is easy to observe that the use of the quadratic term in (5.17) implies that the
regularizing point zk has a reat influence on the solution of the master problem. In par- \ titular, the starting point z influences considerably the whole iteration path, which is
obviously not true for the linear decomposition method. This may significantly reduce the
effort required for solving practical problems, where a good starting point is available.

These important theoretical features have been obtained a t the expense of replacing
a purely linear master problem (5.13)-(5.16) by the quadratic problem (5.17)-(5.20). T o
make the regularized decomposition method really competitive, we need an efficient com-
putational technique for solving the regularized master.

Such a technique can be based on the active set strategy. It consists in selecting a
subset of the constraints (5.18)-(5.20) to be satisfied as equalities, solving the resulting
equality constrained subproblem, changing the active set, solving the new subproblem,
etc. The active set is increased, when a cut not included in it is violated, and it is
decreased, when a cut in the active set has a negative Lagrange multiplier in the subprob-
lem.

The equality constraints defined by an active set can be compactly written in the
form

a + ~ ~ z - E ~ U = O , (5.21)

where a is composed of the constant terms ajl$corresponding to the active cuts, G has
I columns gJ.igJ , and E is a zero-one matrix whose j- th column is the unit vector e if the

j- th cut is an objective cut for fl , and is a zero column otherwise. Active bounds (5.20)
can also be put into (5.21) with particularly simple columns of G (unit vectors). Thus
each equality constrained subproblem has the form: minimize (5.17) subject to (5.21).
Denoting by X the vector of Lagrange multipliers corresponding to the active cuts (5.21),
we can formulate the following necessary and suficient conditions of optimality:

A . Ruszczynski Modern techniques ...

where p=(pI,p2,..,pL) is the vector of probabilities. The primal solution is defined by

The number of active cuts does not exceed n+L and so does the size of the system
(5.22)-(5.23). However, the specific structure of E (unit or zero columns and full row
rank) makes it possible to further reduce the dimension by representing

After eliminating analytically u and X B from (5.22)-(5.23) we obtain the equivalent
system

where

T hN=UN-N U g ,

The system (5.25) has dimension not exceeding the dimension of z, independently of
the number of blocks L, and can be solved by stable numerical techniques for least-
squares problems (see 121, [24]). In the implementation [25] additional advantages have
been drawn from the activity of simple bounds, which further reduces the dimension of
(5.25).

Summing up, not only the regularized master (5.17)-(5.20) has a smaller number of
cuts than (5.13)-(5.16), but the effort for solving it is comparable with the effort for solv-
ing linear problems of the same size. These observations have been confirmed by the ini-
tial experiments with the regularized decomposition method for large scale stochastic pro-
grams, which we shall report in an extended form elsewhere 1261. They indicate that the
method solves medium-size problems (200 by 500) 2...3 times faster than purely linear
techniques, is capable of solving very large problems (problems of size 2500 by 5000 in ca.
1 min. on IBM 3033) and the growth of costs is sublinear when the number of realizations
L increases.

Conclusions

We discussed some modern computational approaches to large scale linear programs
arising from dynamic and stochastic models. In our opinion, two directions deserve more
attention as promising tools for decision support systems:
- feasible direction methods with special compact inverse techniques borrowed from

implementations of the simplex method and with specialized direction-finding pro-
cedures;

A . Ruszczynski - 42 - Modern techniques ...

- the regularized decomposit ion method with decentralized or parallel subproblem solu-
tion.

The common feature of these methods is the freedom in specifying the starting point
and its strong influence on the cost of calculations, which is crucial for decision support
systems, where we usually solve repeatedly similar models. The methods are also more
flexible than simplex-based approaches and provide a potential for an interactive control
of calculations and for some parallelism. On the other hand, they both can use computer
resources a t least so economically as the simplex methods and are capable of solving large
models.

References

[I] J . Bisschop and A. Meeraus, "Matrix augmentation and structure preservation in
linearly constrained control problems", Mathematical Programming 18(1980) 7-15.

(21 J.W. Daniel et al., "~eorthogonalization and stable algorithms for updating the
Gram-Schmidt QR factorization", Mathematics of Computation 30(1976) 772-795.

(31 G. Dantzig, Linear Programming and Extensions, Princeton 1963.

[4] G. Dantzig and A. Madansky, "On the solution of two-stage linear programs under
uncertainty", in Proceedings of the 4th Berkeley Symposium on Mathematical
Statistics and Probability, vol 1, University of California Press, Berkeley 1961, pp.
165-176.

[5] J.J.H. Forrest and J.A. Tomlin, "Updated triangular factors of the basis to maintain
sparsity in the product form simplex method", Mathematical Programming 2(1972)
263-278.

[6] R. Fourer, "Solving staircase linear programs by the simplex method, 1: inversion",
Mathematical Programming 23(1982) 274-313.

(71 R. Fourer, "Solving staircase linear programs by the simplex method, 2: pricing",
Mathematical Programming 25(1983) 251-292.

181 R. Gabasov and F.M. Kirillova, Linear Programming Methods, Isdatelstvo BGU,
Minsk 1977. (in Russian)

[9] J . Gondzio and A. Ruszczynski, "A package for solving dynamic linear programs",
Institute of Automatic Control, Warsaw University of Technology, 1986.

[lo] J . Ho and E. Loute, "A set of staircase linear programming test problems",
Mathematical Programming 20(1981) 245-250.

[l l] J . Ho and A. Manne, "Nested decomposition for dynamic models", Mathematical
Programming 6(1974) 121-140.

[12] P , Kall, "Computational methods for solving twestage stochastic linear program-
ming problems", ZAMT 30(1979) 261-271.

[13] P . Kall, K. Frauendorfer and A. Ruszczynski, "Approximation techniques in stochas-
tic programming", in: Y. Ermoliev and R. Wets (eds), Numerical Methods in Sto-
chastic Programming, Springer-Verlag, Berlin 1986 (to appear).

[14] M. Kallio and E. Porteus, "Triangular factorization and generalized upper bounding
techniques", Operations Research 25(1977) 89-99.

[15] K. C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Springer-
Verlag, 1985.

[16] L. S. Lasdon, Optimization Theory for Large Systems, Macmillan, New York 1970.

A . Rustc tynsk i - 43 - Modern techniques ...

R. Marsten, "The design of the XMP linear programming library", ACM Transac-
tions of Mathematical Software 7(1981) 481-497.

B. Murtagh, Advanced Linear Programming, McGraw-Hill, 1981.

B. Murtagh and M. Saunders, "MINOS 5.0. User's guide", System Optimization
Laboratory, Stanford University, 1984.

K. G. Murty and Y. Fathi, "A feasible direction method for linear programming",
Operations Research Letters 3(1984) 121-127.

A. Perold and G. Dantzig, "A basis factorization method for block triangular linear
programs", in I. Duff and G. Stewart (eds), Sparse Matrix Proceedings, SlAM, Phi-
ladelphia, 1979, pp. 283-313.

A. Propoi and V. Krivonozhko, "The simplex method for dynamic linear programs",
RR-78-14, IIASA, 1978.

J . Reid, "A sparsity-exploiting variant of the Bartels-Golub decomposition for linear
programming bases", Mathematical Programming 24(1982) 55-69.

A. Ruszczynski, "A regularized decomposition method for minimizing a sum of
polyhedral functions", Mathematical Programming 35(1986) 309-333.

A. Ruszczynski, "QDECOM: The regularized decomposition method. User's
manual", lnstitute of Operations Research, University Zurich, 1985.

A. Ruszczynski, "Regularized decomposition of stochastic programs: algorithmic
techniques and numerical results", in preparation.

B. Strazicky, "Some results concerning an algorithm for the discrete recourse prob-
lem", in: M. Dempster (ed.) , Stochastic Programming, Academic Press, London
1980, pp. 263-274.

E. Toczylowski, "A hierarchical representation of the inverse of sparse matrices",
SIAM J . Alg. Disc. Math. 5(1984) 43-56.

J . M. Topkis, "A cutting plane algorithm with linear and geometric rates of conver-
gence", JOTA 36(1982) 1-22.

R. Van Slyke and R. J.-B. Wets, "Gshaped linear programs with applications to
optimal control and stochastic programming", SIAM J . on Applied Mathematics
17(1969) 638-663.

R.J.-B. Wets, "Stochastic programming: solution techniques and approximation
schemes", in: A.Bachem et al. (eds), Mathematical Programming: The State of the
Art, Springer-Verlag, Berlin 1983, pp. 507-603.

R. J.-B. Wets, "Large scale linear programming techniques in stochastic program-
ming", in: Y. Ermoliev and R. Wets (eds), Numerical Methods in Stochastic Pro-
gramming, Springer-Verlag, Berlin 1986 (to appear).

K . Kiwiel, A . Stachurski Theoretical guide to N O A 2

Theoretical Guide for NOA2: a FORTRAN Package
of Nondifferentiable Optimization Algorithms

Krzysztof C. Kiwiel, A ndrzej Stachurski

Systems Research Institute, Polish Academy of Sciences.

ABSTRACT

This paper forms a theoretical guide for NOA2, a package of FORTRAN
subroutines designed to locate the minimum value of a locally Lipschitz
continuous function subject to locally Lipschitzian inequality and equality
constraints, general linear constraints and simple upper and lower bounds.
The user must provide a FORTRAN subroutine for evaluating the (possi-
bly nondifferentiable and nonconvex) problem functions and their single
subgradients. The package implements several descent methods, and is
intended for solving small-scale nondifferentiable minimization problems
on a professional microcomputer.

1. Introduction

NOA2 is a collection of FORTRAN subroutines designed to solve small-scale
nondifferentiable optimization problems expressed in the following standard form

minimize f(x):=max{ f , (x) : j = l , ..., mo }, (l a)

subject to F , (x) 5 0 for j = l , ..., ml, (lb)

F,(x) = 0 for j = m I + l , ..., m l + m ~ ,

Ax 5 b ,
L U x , < x , 5 xi for z=l, ..., n,

where the vector x = (x l , ..., x,) has n components, f and F , are locally Lipschitz con-
tinuous functions, and where the mA by n matrix A, t i e mA - vector b and the n-vectors

L x and x u are constant; A is treated as a dense matrix.

The nonlinear functions f , and need not be continuously differentiable (have con-
tinuous gradients, i.e. vectors of partial derivatives). In particular, they may be convex.
The user has to provide a FORTRAN subroutine for evaluating the problem functions
and their single subgradients (called generalized gradients by Clarke (1983)) a t each x
satisfying the linear constraints (ld,e). For instance, if 5 is smooth then its subgradient
gFj(z) equals the gradient VF, (x) , whereas for the max function

which is a pointwise maximum of smooth functions F . (. , -) on a compact set Z, gF,(z)
3 I

may be calculated as the gradient V,F , (x ; z (z)) (with respect to x) , where ~ (z) is an
arbitrary solution to the maximization problem in (2). (Surveys of subgradient calculus,
which generalizes rules like V (F 1 + F 2) (x) = V F l (z) + V F 2 (z) , may be found in Clarke
(1983) and Kiwiel (1985a) .)

K. Kiwiel, A. Stachurski - 46 - Theoretical guide to NOA 2

NOA2 implements the descent methods of Kiwiel (1985a-d,1986a, 1986c,1987),
which stem from the works of Lemarechal (1978) and Mifflin (1982).

A condensed form of problem (1) is to

minimize f (z) over all z i n R

satisfying F I (z) < 0,

FE(z)=O,

Az 5 6,
z L < z i z U ,

where f is the objective function,

F I (z) = maz {F , (z) : j= l , ..., m)

is the inequality constraint function,

F E (z) = max { maz[F,(z) , -F, (z)] : j=mI+l, ..., mI+mE)

is the equality constraint function, the mA inequalities (3d) are called the general linear
constraints , whereas the boz constraints (3e) specify upper and lower simple bounds on
all variables.

The standard form (1) is more convenient to the user than (3), since the user does
not have to program additional operations for evaluating the functions FI and FE and
their subgradients. On the other hand, the condensed form facilitates the description of
algorithms.

The linear constraints are treated specially by the solution algorithms of NOA2,
which are feasible with respect to the linear constraints, i.e. they generate successive
approximations to a solution of (1) in the set

SL = { z : A z 5 b and zL 5 z < z U) .

The user must supply an initial estimate 5 of the solution that satisfies the box con-
straints (z L < i <_ z U) ; the orthogonal projection of i onto SL is taken as the
algorithm's starting point.

Two general techniques are used to handle the nonlinear constraints. In the first one,
which minimizes an exact penalty function for (1) over SL, the initial point need not lie in

SF = { z : F I (z) < 0 and FE(z) = 0)

and the successive points converge to a solution from outside of SF . The second one uses
a feasible point method for the nonlinear inequality constraints, which starts from a point
in

and keeps the successive iterates in SI. The choice between the two techniques is made by
the user, who may thus influence the success of the calculations. For a given level of final
accuracy, the exact penalty technique usually requires less work than the feasible point
technique. On the other hand, the feasible point technique may be more reliable and is
more widely applicable, since it does not in fact require the evaluation off and FE outside
of SLr)SI .

K . Kiwiel, A . Stachurski - 47 - Theoret ical guide to N O A 2

NOA2 is designed to find solutions that are locally optimal. If the nonlinear objec-
tive and inequality constraint functions are convex within the set SL, and the nonlinear
equality constraints are absent, any optimal solution obtained will be a global minimum.
Otherwise there may exist several local minima, and some of these may not be global. In
such cases the chances of finding a global minimum are usually increased by restricting
the search to a sufficiently small set SL and choosing a starting point that is "sufficiently
close" to a solution, but there is no general procedure for determining what "close" means,
or for verifying that a given local minimum is indeed global.

NOA2 stands for Nondiflerentiable Opt imizat ion Algorithms , version 2.0.

In the following sections we introduce some of the terminology required, and give an
overview of the algorithms used in NOA2.

2. An overview of algorithms of NOA2

The algorithms in NOA2 are based on the following general concept of descent
methods for nondifferentiable minimization. Starting from a given approximation to a
solution of (I) , an iterative method of descent generates a sequence of points, which
should converge to a solution. The property of descent means that successive points have
lower objective (or exact penalty) function values. To generate a descent direction from
the current iterate, the method replaces the problem functions with their piecewise linear
(polyhedral) approximations. Each linear piece of such an approximation is a lineariza-
tion of the given function, obtained by evaluating the function and its subgradient a t a
trial point of an earlier iteration. (This construction generalizes to the nondifferentiable
case the classical concept of using gradients to linearize smooth functions.) The
polyhedral approximations and quadratic regularization are used to derive a local approx-
imation to the original optimization problem, whose solution (found by quadratic pro-
gramming) yields the search direction. Next, a line search along this direction produces
the next approximation to a solution and the next trial point, detecting the possible gra-
dient discontinuities. The successive approximations are formed to ensure convergence to
a solution without storing too many linearizations. To this end, subgradient selection and
aggregation techniques are employed.

2.1. Unconstrained convex minimization

The unconstrained problem of minimizing a convex function f defined on R n is a
particular case of problem (1) . In NOA2 this problem may be solved by the method with
subgradient selection (Kiwiel, 1985a).

Let gf(y) denote the subgradient of f at y calculated a subroutine supplied by the
user. In the convex case

where < - , . > denotes the usual inner product. Thus a t each y we can construct the
l inearizat ion of f

which is a lower approximation to f .
Given a user-provided initial point zl , the algorithm generates a sequence of points

zk, k=2,3, ..., that is intended to converge to a minimum point of f . At the k-th iteration
the algorithm uses the following polyhedral approzimation to f

K . Kiwiel, A . Stachurski - 48 - Theoretical guide to N O A 2

derived from the linearizations of f a t certain trial points yJ of earlier iterations j, where
the index set J ; C { ~ , ..., k) typically has n+2 elements. Note that $ may be-a tight
approximation 'to f in the neighborhood of trial points y J , for j in J!, since

f (y ') = P (y ') .
k ^k The best direction of descent for f a t z is, of course, the solution d to the problem

minimize f (zk+d) a 1 1 d in Rn,

k ^k since z +d minimizes f . The algorithm finds an approximate descent direction dk to

^k k minimize f (z +d)+ldI2/2 -all d, (7)

k k where the regularizing penalty term JdI2/2 tends to keep z +d in the region where jk
may be a good approximation to f (1 . 1 denotes the Euclidean norm); without this correc-
tion term, problem (7) needs not have a bounded solution.

The nonpositive quantity
k - ^k k u - f (z i d k) - f (z k)

k . is an optimali ty measure of z , slnce

k 1 / 2 k f (zk) < f (2) + (u 1 (z - z 1 - uk for all z.

The algorithm terminates if

ukl < f S (1 + l f (zk) l) , I -

where c s is a positive final accuracy tolerance provided by the user. Thus for €,= lo- I

and 1 2 4 , we may hope to achieve the relative accuracy of about (1-1) leading digits in the
objective value (considering also zeros after the decimal point as significant), i.e. typically
a t termination

1 f (z *) (z k is about 10-('-')maz {I f (zL) I , l) , (11)

where z* is a minimum point of f . Of course, such estimates may be false for ill-
conditioned problems. In practice uk usually converges to a negative number, small rela-
tive to maz { f (z k) , l) .

The stopping criterion (10) usually works with E , set to or but it is not
always reliable. For instance, if f is polyhedral and bounded from below then termination

k should occur a t some iteration with uk=O (and optimal z). In practice, computer round-
k ing errors prevent the vanishing of u . The search direction finding subproblem (7) is

solved in NOA2 by the subroutine QPDF4 for quadratic programming (Kiwiel, 1986b),
which calculates the quantity

^k k ek = 1 (2 + d k) - f (z k) (12)

and gives uk a nonpositive value according to some dual estimate; in theory ek should
equal vk. The smallness of 1ek- uk1 relative to lukl indicates good accuracy of QPDF4. The
accuracy usually deteriorates in the neighborhood of a minimum point of f (when too
small accuracy tolerance E , prevents termination), or earlier for ill-conditioned problems.
The case of ek 2 0 , i.e. inability to find a descent direction, enforces abnormal

K . Kiwiel, A . Stachurski - 49 - Theoretical guide to NOA2

termination.

If the algorithm does not terminate, then the negative value of vk (see (8)) predicts
k the descent f (zk+dk) - f (zk) for the step from zk to zk+dk. Usual1 u over-estimates

k r . . the descent because f(-)>p(.) and P need not agree with f at z +d if its linearizations
k do not reflect all discontinuities in the gradient of f around z (too few of them to make

^k k up f , or they were calculated a t y3 far from z). Thus two cases are possible when a line
search is made to explore f along the segment joining zk and zk+dk. Either jk is a good
model of f and it is possible to make a serious step by finding a stepsize t;>0 such that
the next iterate

k k zk+' = Zk+tL d

has a lower objective value than zk, or a null step zk+'=zk (t:=0) combined with cal-
culating the linearization f (. ; t ~ ~ + ') a t a new trial point

k k yk+' = zk + tR d

with tA5(0,1l may be used to get the next improved model fk+ ' of f . Since 0<t t< t ; ,
and tR are called left and right stepsizes respectively, although they may coincide if

k More specifically, a serious step with tL>O is made if

where mL, m, and r a r e positive parameters less than 1, whereas

is the linearization error of f (- ;y) a t z. These conditions ensure a significant objective
k decrease (i .e tL and m L t i v k cannot be too small). On the other hand, a null step with

k tL=O and t i ~ [t , l] must ensure that the new linearization satisfies

k k + l ^k k f (zk+d ;y)-f(zk) > mR[f (z +dk)-f(zk)] = mRuk

for some fixed mR€(O, l) , so that its incorporation will make fk+ ' a better approxima-
^k tion to f along the direction dk from zktl = z k than f was, thus enhancing generation

of a better next direction dk+l.
For technical reasons, the line search parameters must be positive and satisfy

m L + m v < m ~ < l and F< l . - By changing the standard values
mL=O.l, mR=0.5, mv=O.O1 and F=0.01, the user may strongly influence the
algorithm's efficiency on a given problem. Note that the total amount of work in solving a
problem depends on the number of function and subgradient evaluations as well as on the
number of iterations. The algorithm may require only one objective evaluation per itera-
tion. This is justified if the cost of one objective evaluation dominates the effort of auxili-
ary operations (mainly a t quadratic ~ r o ~ r a m r n i n ~) per iteration. In the reverse case, one
may wish to decrease the number of iterations a t the cost of increasing the number of
objective evaluations.

More specifically, the line search checks if trial stepsizes t € [r , l] , starting with t = l ,
satisfy the sufficient descent criterion

f (zk+tdk) 5 f (zk)+mLtuk

K. Kiwiel, A . Stachurski - 50 - Theoretical guide to NOA2

k and thus are candidates for tL. Hence if the threshold stepsize r i s set to 1, only t = l need
be tested, and a serious step with t k = l will occur if

^k (see (8) and (13a)), i . e f must be very close to f at zk+dk if mL approaches 1. In prac-
tice mL>0.5 may result in many null steps (the algorithm concentrates on improving its
models $ of f between infrequent serious steps), whereas mL<O.l may produce

k (damped) oscillations of { z) around the solution (little descent is made a t each serious
step). For a smaller threshold i?< 1, more stepsizes t are tested (typically two for r=0.1,
three for r=0.01), and there are fewer null steps. In practice decreasing r f rom 1 to 0.01
will usually decrease the number of iterations a t the cost of more function evaluations.

It is worth adding that for a polyhedral f one may frequently use the values
mL=0.9, mR=0.95, mv=O.O1 and r=l, which parameter values, however, are usually
inefficient for more general functions.

To sum up, it is reasonable to set m~ and F i n the ranges [0.1,0.9] and [0.01,1]
respectively, and use mv=O.OO1 and m R = (l + mL)/2.

The user may trade-off storage and work per iteration for speed of convergence by
choosing the maximum number M of past subgradients (linearizations) involved in the

^k 9 approximations f (whereas more linearizations increase the model accuracy). To ensure
convergence, the algorithm selects the linearizations active a t the solution to subproblem
(7) for keeping (their indices enter J f i l together with k + l) , whereas inactive past
linearizations may be dropped (i.e. overwritten in the memory by new ones, if necessary).

^k More linearizations enhance faster convergence by producing more accurate f , but the
costs of solving subproblem (7) may become prohibitive. Using Mg greater than its
minimal possible value n+3, Mg=2n say, frequently increases the overall efficiency.

An additional iricrease of modelling accuracy may be possible when f is the point-
wise maximum

of several convex functions f, with subgradients g!,. The user may choose a positive -.
activity tolerance c and the maximum number 1, of additional linearizations of fi at z k

-R that will augment f . Then subproblem (7) employs

k k k where L contains a t most I , indices of the €,-active functions fi(z)> f (z)-c,. How-
ever, these additional linearizations may overwrite some past ones (if Mg is too small),

k and this may or may not increase the accuracy of $ at points remote from z .

If space limitations prevent the algorithm from storing sufficiently many (Mg> n+3)
past subgradients, the algorithm may be run with Mg> 3 by employing subgradient
aggregation instead of selection. This will usually - sometimes even drastically - decrease
the speed of convergence.

The algorithm described so far is rather sensitive to the objective scaling, especially
to the multiplication of f by a positive constant, mainly due to the presence of the arbi-
trary quadratic term in subproblem (7). For greater flexibility, the user may choose a
positive weight u in the following version of (7)

^k k minimize f (z +d) + u ldI2/2 -all d. (16)

K . Kiwiel, A . Stachusski - 51 - Theoret ical guide to N O A 2

The standard value u = 1 suffices for well-scaled problems. If j varies rapidly, increasing u
k will decrease Id 1 , thus localizing the search for a better point to the nei hborhood of zk.

1 5
f For instance, if the initial derivative v1 of f a t z1 in the direction d is "large" (e.g.

v < - 10), one may try a larger u , u=100 say, in the next algorithm's run on the same,
or related problem. On the other hand, too "large" u will produce many serious, but short

k steps with very small Izktl-z 1, and convergence will be slow. We may add that for
piecewise linear objectives smaller values of u are less dangerous than too large. Moreover,
large errors may arise in the solution of (16) by the subroutine QPDF4 if u is small
(u<1oP4); then it is better to multiply j by a small number and set u=1.

In the general case of u>O, the optimality estimate (9) becomes

k 112 k
j(zk) 5 j(z) + ulv I Iz-z I - vk for all z. (17)

This suggests that the accuracy tolerance E, should be decreased when a larger u is used;
otherwise, "false" convergence will occur.

2.2. Linearly constrained convex minimization

The box constrained problem with a convex j

minimize j(z) ,

subject z: 5 zi 5 zy for i= 1, ..., n,

can be solved in NOA2 by a modification of the method described in the preceding section
(Kiwiel, 1985c,1986c,1987).

The presence of finite upper and lower bounds ensures the existence of a solution and
prevents divergence of the algorithm, which must occur when there is no solution (then

k (z I tends, in theory, to infinity; in practice - until an arithmetic overflow terminates the
calculation). It is always advisable to place bounds of the form - 1 0 0 0 ~ ~ , ~ 1 0 0 0 , which
should not be active when the solution lies inside the box.

L U The objective j and its subgradient g j will be evaluated only inside the box [z ,Z I.
This ma be used to eliminate regions where j is undefined. For example, if
j(z)=z:Y2 + ezp(z2), it is essential to place bounds of the form z l> ~ ~ 5 2 0 .

If the user specifies an infeasible initial point zl, i t is projected on the box (by
L U k replacing 21 with max{z, ,min(zi ,z,))) . Successive z remain in the box.

k At the k-th iteration, an approximate feasible descent direction d is found to
-k k minimize j (z +d) + u(dI2/2, (1 9 4

L U subject z, 5 zf+d, 5 z, , for i=l, ..., n.

This subproblem is a natural extension of (16). Consequently, the preceding remarks on
the choice of parameters remain in force.

We may add that the introduction of box constraints only slightly increases the
work a t the search direction finding.

For the problem with general linear constraints

minimize j(z), subject A z 5 b, (20)

K . Kiwiel, A . Stachurski - 52 - Theoretical guide to N O A 2

the search direction finding subproblem becomes

^k k minimize f (z +d) + uldI2/2,

subject A (xk+d) 5 b. (21b)

Due to rounding errors, the calculated direction dk need not be "strictly" feasible. To
measure the infeasibility of a direction d we use the constraint violation function

v2(d) =max{ h(xk+d) ,0)
zk

defined in terms of

h (x) = max { A,x-b': i=l, ..., m ~) , (22)

where A, denotes the i-th row of A. Subproblem (21) is equivalent to the unconstrained
problem

^k k minimize f (x +d) + uldI2/2 + cv2(d) -all d (23)

when the penalty parameter c is sufficiently large. Hence we may test increasing values
of c until the solution of (23) is feasible, and hence solves (21). Starting from c=p, where
p>O may be provided by the user, each successive c is multiplied by 10 until the solution
dk of (23) passes the feasibility test

h(xk+dk) < ep, (24)

where c~ is a positive absolute feasibility tolerance. If this test is failed by even "very
large" c , the calculation terminates. This occurs if c> l / cM, where E M is the relative
machine accuracy (the smallest positive c for which l + c > l in the computer's arithmetic).

No computational difficulties should arise if the linear constraints are well-scaled and
the feasibility tolerance cF is large enough. In particular, it may be necessary to ensure
that the coefficients of A are of order 1 and eF>cM2. For instance, if the coefficients of A

6 result from measurements corrupted by errors of magnitude 10- , one should set
c ~ = I o - ~ .

If the initial point specified by the user is not feasible to within the tolerance EF, the
algorithm tries to project it onto the feasible set (by using a version of (23)). If the projec-

k tion is successful, each successive z satisfies the linear constraints to within c ~ . More-
over, f(y) and g,(y) are calculated only a t eF - feasible points with h(y) <eF.

A combination of the preceding techniques is used for the problem

minimize f (x) -all z

satisfying Ax 5 b, xL 5 x < xu .

In this case, all trial points satisfy the simple bounds exactly, and the general linear con-
straints to within e ~ .

K . Kiwiel, A . Stachurski - 53 - Theoretical guide to NOA2

2.3. Exact penalty methods for convex constrained problems

The convex minimization problem

minimize I (z) -all z (2 5 4

satis/ying F , (z) <_ 0 for j = l ,...,my,

F , (z) = 0 for j =mI+ l , ..., mI+mE,

where the functions I and F , j = l , ..., ml, are convex and the functions
I

F,, j = m I + l , ..., mI+mE, are affine (linear), may be solved in NOA2 by the uncon-
strained minimization of the ezact penalty function

e (z ; p) = I (z) + P F + (z) , (26)

where p>O is a fized penalty coefficient, and the constraint violation is measured by

F + (z) = max{F(z) ,O) ,

F (z) = max{F, (z) : j = l , ..., my, IF,(z)I: j=mI+l ,..., mI+mE} .

Each solution z p to the problem

minimize e (z ;p) -all z in Rn (27)

solves (25) if it is feasible (F (zp)<O) . This holds if p is sufficiently large, (25) has a solu-
tion and its constraints satisfy the generalized Slater constraint qualification, i.e. for some

F,(zS) <0, j= 1 ,..., my, Fj(zs)=O, j=mI+l ,..., mI+mE.

The methods with a fixed penalty coefficient require the user to specify a sufficiently
large p . For well-scaled problems one may usually choose p in the interval I10,100]. If p is
too small, (27) need not be equivalent to (25)) and the algorithm may diverge when the
penalty function has no finite minimum. On the other hand, too large p hinders the
minimization of the penalty function, which becomes ill-conditioned. (If p is large, the
algorithm must hug the boundary of the feasible set.)

The first method in NOA2 solves (26) by one of the algorithms for unconstrained
minimization. At the k-th iteration, a polyhedral approximation ~ ~ (e ; ~) to e (. ; p) is con-
structed from the past linearizations of e (. ; ~) (see (5) and (6)). (These linearizations are
calculated as in (5) from subgradients of the functions of (25)) which are evaluated by the
user's subroutine.) The k-th search direction dk is chosen to

-k k minimize e (z +d;p) + u ldI2/2 -all d (28)

(see (16)). Termination occurs if

IukI 5 ss (l+le(zk;p) l)

and

F (z k) 5 (F ,

where E S and E F are positive final accuracy and feasibility tolerances, provided by the
k k k k user, whereas uk is a dual estimate of the predicted descent e (z +d ;p) -e (z ; p) , which

K . Kiwiel , A . Stachurski - 54 - Theoret ical guide to NOA2

satisfies the optimality estimate

where X* is a solution to (25). This method does not exploit the specific structure of
e (. ; p) .

The second method exploits the additive structure of e (. ; p) by constructing separate
^ k polyhedral approximations f k and F to the objective f and constraint function F . Thus

the method may use a more accurate polyhedral approximation to e (. ; p)

t k (z ;p) = j"(z) + p rnax {Fk (z) ,o) (31)

in the search direction finding subproblem (28), which usually enhances faster conver-
gence.

Both methods may be allowed to choose the penalty coefficient automatically during
the calculations (Kiwiel, 1985d). Then a t the k-th iteration we set p = p k in (28) and (31).
The initial p 1 may be specified by the user. The penalty coefficient is increased only if z k

!
k k is an a proximate solution to (27) (i.e. z minimizes e (. ; p) to within some positive toler-

ance 6), but it is significantly infeasible (i.e. F (z k) is "large"). The specific rule for
k updating p is

- p and bk+'=bk; if -uk 2 $ or F (z k) j - u k set pi+'- (3 2 4

otherwise set pk+'=pk and bk+'= c,@, (32b)

where c p > l and cv€(O, l) are parameters that increase the penalty and decrease the accu-
k racy tolerance of unconstrained minimization 6 ; 6'=(u1(. Usually one may use

pl=lO, c =2 or c = l o , and c,=0.1. Larger values of c and c, enable a faster P P 1 growth of the penalty coefficient a t earlier iterations, if the initial p was too small. On
the other hand, very large values of penalty coefficients slow down convergence.

When employing the exact penalty methods, the user should place sensible upper
and lower bounds on all variables. If the box defined by such bounds is not too large, the
penalty coefficient will quickly reach a suitable value and then will stay constant. More-
over, box constraints ensure the existence of a solution and prevent the algorithm from
diverging.

We may add that the automatic choice of the penalty coefficient may produce a very
large value of pk . The methods terminate at the k-th iteration if p k + ' > l / f M , where E M
is the relative machine precision. Such abnormal termination may indicate that the con-
straints are not regular (e.g. are inconsistent), or that they are ill-scaled.

In the current version of NOA2 additional general linear constraints A z j b can be
handled only by the first method that does not exploit the structure of the penalty func-
tion.

2.4. The constraint linearization method

The convex constrained problem

minimize f (z) , subject F (z) 5 0 (33)

with a convex f and a convex F satisfying the Slater condition (F(zS)<O for some zS)
may be solved in NOA2 by the constraint linearization method (Kiwiel, 1987), which is
frequently more efficient than the algorithms of the preceding section.

K . Kiwiel, A. Stachurski - 55 - Theoretical guide to NOA2

At the k-th iteration the algorithm uses polyhedral approximations jk and pk to f
and F in the search direction finding subproblem

^k k minimize f (z + d) + u(dI2/2 (344

^ k k subject F (z + d) < 0, (34b)

k where u>O is the weight of the regularizing quadratic term. Its solution d is an approxi-
mate descent direction for the exact penalty function (26), provided that the penalty

k 4 parameter p=p is reater than the Lagrange multiplier p of the constraint (34b). Hence
the algorithm sets p8=pk--' if p"<pk--'; otherwise

k -k
P = max { P , c p p k - I } , (35)

k where cp>l is a user-specified parameter (usually cp=2), and p O = ~ . With 2 (. ; p k) given
by (31), the predicted descent

k - k k k k u = e (z +d ; p) - e(zk;pk)

satisfies the o timality estimate (30), which justifies the termination test (29). The line k' k k search from z along d uses the rules of Section 2.1, applied to e (- ; p) .
Subproblem (34) is solved by finding dk to

^k k *k k minimize f (z + d) + u(dI2/2 + c maz {F (z +d),0}, (36)

where the penalty coefficient c is chosen as in Section 2. (cf. (23)). Abnormal termination
with c > ~ / E ~ may indicate violation of the Slater constraint qualification, ill-scaling of
the constraints, or that the infeasibility tolerance e~ is too tight. These factors also may

k enforce termination due to p > 1 1 ~ ~ .

Additional linear constraints

A z L b , z L < z < z U

are handled by the techniques of Section 2.2. In this case the Slater constraint
L U qualification reads: F(zS)<O, Az < b and z < 5 z for some 2s. Once again, we

stress that the presence of box constraints may be crucial to the algorithm's convergence.

2.5. FeasibIe point m e t h o d s fo r convex p rob lems

The convex constrained problem (33) may be solved in NOA2 by the feasible point
*k method (Kiwiel, 1985a), which uses polyhedral approximations P and F of f and F in

the search direction finding subproblem

- k k minimize H (z + d) + uIdl2/2 -all d , (37)

where u>O is a scaling parameter, whereas

~ ~ (2) = maz { f k (z) - f (zkj ,Fk(z)}

is the k-th polyhedral approximation to the improvement function

H (z ; z ~) =maz { f (z) - f (zk) ,F(z) } for all z.

^ k k Thus, if F(zk)<O, we wish to find a feasible (F (z +dk)<O) direction of descent
(r ~ ~ ~ t d ~ j < f (z k)), whereas for F(zk)>O, dk should be a descent direction for F at z k

(F (2 +d)<o), since then we would like to decrease the constraint violation.

K . Kiwiel, A . Stachurski - 56 - Theoretical guide to N O A 2

k The algorithm runs in two phases. At phase I successive points x are infeasible, and
the line search rules of Section 2.1 are applied to F. Finding a feasible xk starts phase 11,
in which the line search rules are augmented to ensure feasibility of successive iterates. Of
course, phase I will be omitted if the initial point x1 is feasible.

The algorithm requires the Slater constraint qualification (F(xS)<O for some xS);
k otherwise, it may terminate a t a point x that is an approximate minimizer of F.

The algorithm is, in general, more reliable than the exact penalty methods of Sec-
tions 2.3 and 2.4, because it does not need to choose penalty coefficients. Unfortunately,
its convergence may be slower, since it cannot approach the boundary of the feasible set
at a fast rate.

Additional linear constraints are handled as in Section 2.2.

2.6. M e t h o d s fo r nonconvex p rob lems

Minimization problems with nonconvex objectives and constraints are solved in
NOA2 by natural extensions (Kiwiel, 1985a, 1985b, 1986a, 1986c) of the methods for con-
vex minimization described in the preceding sections. Except for the constraint lineariza-
tion method of Section 2.4, each method has two extensions, which differ in the treatment
of nonconvexity. The methods use either subgradient locality measures, or subgradient
deletion rules for localizing the past subgradient information. Advantages and drawbacks
of the two approaches depend on specific properties of a given problem.

For simplicity, let us consider the unconstrained problem of minimizing a locally
Lipschitz continuous function f , for which we can calculate the linearization

by evaluating f and its subgradient g a t each y. At the k-th iteration, several such
l j .

linearizations computed a t trial points y ,] E J ~ , are used in the following polyhedral
approximation to f around the current iterate x k

k
p (x) = f (~ ~) + r n a x { - r r ~ (x ~ , ~ ~) + < ~ ~ (~ ~) , x - x >: j~ J;}, (38)

where the subgradient locality measures

a ,(xk,yj) = max { If(xk) - f (x k , ~ j) l , 7Jzk-~jI2}

with a parameter 7 >O indicate how much the subgradient gj(yl) differs from being a
subgradient of f a t xi;0bserve that in the convex case with 7,=0 the approximation (38)
reduces to the previously used form (6) (cf. (4)). More generally, for ~ , > 0 the subgra-

-k dients with relatively large locality measures cannot be active in f in the neighborhood
-k of xk. Thus even in the nonconvex case f may be a good local approximation to f ; pro-

^k vided that it is based on sufficiently local subgradients. This justifies the use of f in the
search direction finding subproblems of the preceding sections (cf. (7), (16), (19), (21),

(28), (37)).
Ideally, the value of the locality parameter 7, should reflect the degree of noncon-

vexity of f . Of course, for convex f the best value is 7,=0. Larger values of 7, decrease
the influence of nonlocal subgradient information on the search direction findin This, for

k 4 instance, prevents the algorithm from concluding that x is optimal because f indicates
that f has no descent direction a t xk. On the other hand, a large value of 7, may cause
that after a serious step all the past subgradients will be considered as nonlocal a t the
search direction finding. Then the algorithm will be forced to accumulate local

K . Kiwiel, A . Stachurski - 57 - Theoretical guide to N O A 2

subgradients by performing many null steps with expensive line searches.

In the strategy described so far the influence of a subgradient on jk decreases
"smoothly" when this subgradient becomes less local. More drastic is the subgradient

^k deletion strategy , which simply drops the nonlocal past subgradients from f . In this case,
we set ~ , = 0 in (39) and define the locality radius

k of the ball around x from which the past subgradients were collected. As before, the
^k k approximation f is used to generate a search direction d . A locality reset of the approxi-

mation occurs if
k ldkl 5 ma a , (41)

k where ma is a positive parameter. This involves dropping from Jf an index j with the
k ' largest value of lz -yJ1, i.e. the most nonlocal subgradient is dropped so as to decrease

the locality radius ak. If the next d k satisfies (41), another reset is made, etc. Thus resets
decrease the locality radius until it is comparable with the length of the search direction

Idkl.
k Dropping the j- th subgradient corresponds to replacing cr (x , y J) in (38) by a large

number. Moreover, the frequency of resets is proportional to t I! e value of m, in the test -
(41). Therefore, our preceding remarks on the choice of 7 , are relevant to the selection of

ma.

In practice one may use ys=l and ma=O.l, increasing them to rS=10 and ma=0.5
for strong nonconvexities

Both strategies use line searches similar to that of Section 2.1. Additionally, the
subgradient resetting strategy requires that a null step (x k+ '=xk) should produce a trial

k k k point yk+' close to x in the sense that 1 y k + l - x I is of order a . Since 1 y k f l - xk (= t i l d k l ,
k the right stepsize t R should be sufficiently small. This can be ensured either by testing

progressively smaller initial trial stepsizes, or by introducing the direct requirement

where c d ~ [0 . 1 , 0 . 5] is a parameter, e.g. Cd=m,

References:
Clarke, F.H.(1983). Optimizat ion and Nonsmooth Analysis. Wiley Interscience, New

York.

Kiwiel, K.C.(1985a). Methods of Descent for Nondiflerentiable Opt imizat ion. Springer-
Verlag, Berlin.

Kiwiel, K.C.(1985b). A l inearizat ion algorithm for nonsmooth minimizat ion. Mathemat-
ics of Operations Research 10, 185-194.

Kiwiel, K.C.(1985c). A n algorithm for linearly constrained convez nondiflerentiable
minimizat ion problems. Journal of Mathematical Analysis and Applications 105,
452-465.

Kiwiel, K.C.(1985d). A n ezact penalty function algorithm for nonsmooth convez con-
strained minimizat ion problems. IMA Journal of Numerical Analysis 5, 111-119.

K . Kiwiel, A . Stachurski - 58 - Theoretical guide to N O A 2

Kiwiel, K.C.(1986a). A n aggregate subgradient method for nonsmooth and nonconvez
min imizat ion . Journal of Computational and Applied Mathematics 14, 391-400.

Kiwiel, K.C.(1986b). A method for solving certain quadratic programming problems aris-
ing i n nonsmooth optimization. IMA Journal of Numerical Analysis 6, 137-152.

Kiwiel, K.C.(1986c). A method of l inearizat ions for l inearly constrained nonconvez
nonsmooth min imizat ion . Mathematical Programming 34, 175-187.

Kiwiel, K.C.(1987). A constraint l inearizat ion method for nondiflerentiable convez
min imizat ion . Numerische Mathematik (to appear).

Lemarechal, C.(1978). Nonsmooth optimization and descent methods. Report RR-78-4,
International Institute for Applied Systems Analysis, Laxenburg, Austria.

Mifflin, R.(1982). A modif icat ion and an eztension of Lemarechal 's algorithm for
nonsmooth min imizat ion . Mathematical Programming Study 17, 77-90.

J. Majchrzak Implicit Util i ty Function

Implicit Utility Function and Pairwise Comparisons

Janusz Majchrzak

Systems Research Institute, Polish Academy of Sciences.

1. INTRODUCTION
A new approach for multicriteria decision making is briefly presented here exploiting

the pairwise comparisons of alternatives and assuming the existence of an implicit utility
function of the decision maker. We plan to extend DISCRET along this direction in the
future.

The basic problem in the area of the interactive decision support systems is the
extraction and utilization of the preferences of decision maker (DM). A rather large
number of approaches have been developed during last decade. This chapter reports some
basic ideas of a new approach, which seems to be promising because of its conceptual and
methodological simplicity. The presented approach is based on the pairwise comparisons
of alternatives and linear approximations of the DM's utility function. Since the approach
is a t an early stage of development and its several aspects still have to be investigated,
just some basic ideas and motivations will be presented.

The basic feature of the approach is that th DM is not forced to compare pairs of
alternatives which are presented to him but he chooses himself a subset of alternatives to
be evaluated. An underlying quasiconvex DM utility function is assumed.

2. MOTIVATIONS
Let us consider the following multicriteria decision making problem. A decision

maker (a person or an institution) wants to buy a new car and has some difficulties in
choosing from the variety of models available on the market. He is not an expert in cars
and he knows just a few models: his old car and those possessed by his friends and rela-
tives. So, all he is able to say about his preferences is a number of statements concerning
cars he knows, like for example:

VW Golf is preferred to Ope1 Kadett,

Fiat Uno is preferred to Peugeot 205, etc.

He refuses to compare cars he doesn't know or to supply any other kind of information
about them. The reference point approach might be adopted in this case, but what if the
DM would not be satisfied with the result?

The task can be formulated as follows. A relatively small number of pairwise com-
parisons of alternatives is available. What can be said about the DM's preferences on the
basis of this small amount of information and what can be said about the quality of that
information ? Note that a statement: "a cheap good car is preferred to an expensive bad
car" is a rather low quality information since, once price and performance have been esta-
blished as criteria, this is an obvious statement. The DM should be informed about the
quality of the alternatives evaluation he had made. Also his inconsistencies should be
discovered.

J . Majchrzak - 60 - Implicit Util ity Function

3. BASIC IDEAS
Let F be the space of m criteria, A = R T be the domination cone and let Q C F

be the set of feasible alternatives. We will assume that there exist an underlying implicit
quasiconvex utility function U: -+ R behind the DM'S preferences. The DM need not
recognize it existence; however, we will assume that whenever he decides that alternative
b~ Q is preferred to alternative a € Q , it is equivalent to U(b) > U(a) .

The DM'S utility function U is in general a nonlinear function of criteria. Identifying
such function usually requires large amount of data and a significant computational effort.
Therefore, keeping nonlinearity of U in mind, we shall restrict ourselves to a set of linear
approximations of U only.

Suppose that k pairs of alternatives were compared by the DM:

b, is preferred to a,, ai,b, E Q , i = 1 ,..., k
This set of data may be considered as a set W of k vectors in the criteria space F, point-
ing from a less preferred alternative a, to a more preferred alternative b,.

Let us also consider the set V of normalized vectors w, E W :

Each of the vectors U, represents a direction of improvement in the space of criteria
of the function U(f) . Hence, the cone C spanned by vectors U, E I/ is the cone of
improvement for U(f) and can be defined as:

i =k
C = { C a , u , : a, E R+ , u; E V)

i = l

The cone C* is the corresponding polar cone and can be defined as:

Both cones C and C* can be expressed by their generators. The set of cone generators is
the minimal subset of vectors belonging to that cone that still span the cone. The genera-
tors of cones C and C* will be denoted by c and c*, respectively.

C = { C a , c , a j € R + , C , E C)
3 3

1

C* = { C a jc f , a j € R + , cf E C *)
1

where C and C* are corresponding generator sets.

Let us return to the pairwise comparisons. Since we shall consider linear approxima-
tions of the utility function, for the sake of presentation simplicity, assume that U is
linear. If the DM has decided that alternative b E Q is preferred to alternative a E 9,
then U(b) > U(a) . It is clear that <u,u> > 0, where u = [a,b], and u is a vector nor-
mal to hyperplanes U(f) = const. Hence, the vector u is contained in cone C*.

From the above analysis it follows that an accurate determination of the vector u
normal to the hyperplanes of U will be possible only in the case when the cone C* is
spanned by a single vector (namely u) . In this case the DM'S utility function (or rather
actually its linear approximation only) has been obtained and we can easily calculate the

J . Majchrzak - 61 - Implicit Ut i l i ty Funct ion

DM's most preferred solution by minimizing U over the set Q.
In general, because of obvious reasons, the cone C will be smaller than a halfspace

and its polar cone C* will have a nonempty (relative) interior. In such a case, each of the
vectors contained in C* may appear t o be the vector u . Fortunately, we can restrict our-
selves to the generators C* of the cone C* only. Considering each C; to be the vector u
(minimizing linear function based on CJ) one can obtain a set of g . E Q being the linear

3
approximation minimizers of DM's utility function. These elements g . define a subset

3
S C Q of nondominated elements of Q in which the DM's most preferred alternative
(minimizer of i U) is contained.

As it can be seen now, our approach does not pretend to determine the DM's most
preferred solution exactly. It will rather tend to find a domain in which it is contained.
The more information about DM's preferences is contained in alternatives pairwise com-
parisons supplied, the smaller this domain will be. Besides, also a good candidate for the
most preferred solution may be presented to the DM. It can be obtained a kind of average
vector for the cone C*: a sum of c;, a sum of v,, a gravity center of V . etc. The author's '.'
favorite method for the candidate selection is the calculation of the minimal (Euclidean)
norm element from the convex hull spanned by the cone C* generators c;. This technique
based on the method of P. Wolfe [I] appeared to be very useful in our approach, serving
also for some other purposes. Let us denote the minimal norm element from the convex
hull spanned by the set V of vectors v as

The minimizer of the linear function based on vector z will be chosen as the candidate for
the DM's most preferred solution.

4. SOME DETAILS
In this chapter, we shall discuss the basic cases that can occur for different sets of

pairwise comparisons of alternatives supplied by the DM.

Case 1. Cone C is a halfspace of F and llzll = 0.

As it has been already mentioned, in this case the linear approximation of the DM's util-
ity funct i0n. i~ defined by the vector u normal t o the halfspace spanned by C . The DM's
most preferred solution may be found by the optimization of the linear function based on
u .

Case 2. Cone C is not a halfspace of F and llzll = 0.

Since the DM's utility function is assumed t o be quasiconvex, the set V of pairwise com-
parisons supplied by the DM is inconsistent. Conflicting elements should be selected from
the set V and presented t o the DM. They are those elements which spann a convex hull
containing zero and hence cause llzll = 0. Their selection is automatic during the calcula-
tion of the element z.

Case 3. Cone C is contained in a halfspace of F, it contains the domination cone A and

llzll 2 0.
This is the basic case. After the set of linear functions based on vectors C * optimization, a
subset of nondominated elements of set Q will be obtained. This subset is defined by the
set of linear approximation optimizers of the utility function. A candidate for the DM's
most preferred solution will be found by optimizing over the set Q the linear function
based on vector z . Notice that if the number of supplied pairwise comparisons is small
(too small to spann a non-degenerate cone C) , then generators of the domination cone A

J . Majchrzak - 62 - Implicit Utility Function

can be added to the set V.
Case 4. Cone C is contained in the domination cone A and 11~1120. This is the case of a
low quality of information contained in pairwise comparisons of alternatives supplied by
the DM (and corresponds to statements like: "a good cheap car is preferred to an expen-
sive bad car"). The DM should be informed about this fact and perhaps he will be able to
give some more restrictive statements. If he refuses for some reasons, we cannot proceed
along the Case 3 line. However, instead of of considering the supplied information as
being of a discriminative type we can treat it as an instructive type information. Each of
the vectors uE V can be treated now as an approximation of the DM'S improvement
direction or his utility gradient approximation. Hence, we can proceed just like in Case 3,
taking the cone C instead of C* into consideration. Of course the DM should be aware of
the new interpretation of the information he has supplied.

Cases 3 and 4 can be distinguished a priori by checking whether C>A or CCA,
respectively.

5. CONCLUDING REMARKS
If the DM is able to supply a large amount of results on alternatives evaluations,

then a technique similar to one presented in [2] should be used in order to eliminate dom-
inated alternatives from further considerations. If it is not the case, the DISCRET pack-
age methodology should be applied. Actually, the presented approach is planned to be
included into the DISCRET framework.

Several aspects of the presented approach are still to be further investigated. The
main one is how to select a small sample of such alternatives that their evaluation by the
DM may result in significant improvement of an approximation of DM'S preferences.

REFERENCES

[I] P.Wolfe,"Finding the Nearest Point in a Polytope",
Mathematical Programming, Vol.11, pp 128-149, 1975.

[2] M.Koksalan, M.H.Karwan, S.Zionts, "An Improved Method for Solving Multiple
Criteria Problems Involving Discrete Alternatives", IEEE Transactions on Systems,
Man and Cybernetics, Vol. SMC-14, No.1, pp.24-34, 1984.

[3] J.Majchrzak,"Methodological Guide to the Decision Support System DISCRET for
Discrete Alternatives Problems", in this volume.

Safety Principle in Multiobjective
Decision Sup ort in the Decislon Space

Defined by x vailability of Resources

Henryk Gorecki , A.M. Skulimowski

Institute of Automatic Control
Academy of Mining and Metallurgy, Krakow.

ABSTRACT

We consider the situation where a decision-maker in a multicriteria optim-
ization problem must follow additional constraints in the criteria space
defined by availability of resources. The set defined by such constraints -
called demanded set - is assumed to be uncertain as a result of a priori
experts estimations. The analysis of numerous real-life situations showed
that a method of looking for a non-dominated solution on the so-called
skeleton allows to find a solution maximally safe with respect to the ran-
dom perturbations of the demanded set. We formulate a maximal safety
principle as a requirement that the expected value of distance from the
solution chosen to the boundary of the demanded set were maximal. Then
we prove that the search executed on the skeleton curve satisfies this prin-
ciple for a class of demanded sets defined by aspiration levels.

1. INTRODUCTION
The choice of a compromise solution fulfilling additional conditions with regard t o

its location in the criteria space is essential in numerous real-life multiple criteria optimi-
zation problems. For instance, the choice of a technological process from many variants
proposed by experts, taking into account the total cost of investment and the minimal
necessary time to start the production, is often based on the analysis of upper and lower
bounds for values of the above criteria, (Gorecki, 1981). Such bounds are usually not
strict; they are called aspiration levels and are assumed to be imposed independently by
experts or the decision-maker after the formulation of the problem, therefore serving as an
additional information for selecting the compromise solution.

The nature of aspiration levels is often uncertain and the arising set of demanded
values of criteria may be represented as random or fuzzy set. When selecting a comprom-
ise solution, the decision-maker is obliged to take into account the possibility of unex-
pected change of aspiration levels using an uncertainty handling technique. For the case
where the demanded set is defined by two aspiration levels such a method has been pro-
posed by Gorecki (1981). In his approach the search for a non-dominated solution has
been executed on a line which joins the aspiration levels, and lies inside of so-called skele-
ton of the demanded set. An outline of the skeleton method may be found in Gorecki
(1981) and Wiecek (1984). The numerical implementation of this method has then been
developed by Gorecki et al. (1982, 1985). Here, we will present some of its theoretical
foundations.

Throughout this paper we will assume that the set defined by the lower and upper
aspiration levels, called demanded set, and the attainable set of the criteria values have a

H . Gorecki, A . Skulimowski - 64 - Safety principle . . .

non-empty intersection. Then we will analyse the problem of selecting a non-dominated
compromise solution from this intersection which is - in some sense - most reliable to the
changes of the demanded set. Namely, we look for a problem solution on a specific class of
lines called the ordinal skeleton curves of the demanded set. The solution thus obtained
will possess the property that the expected value of the distance from the boundary of the
demanded set is maximal, or equivalently, that the probability of remaining within the
demanded set - which boundary changes according to some random rules - is maximal.

In this paper we will concentrate our attention on the particular case of the criteria
space constraints, namely on the sets defined by aspiration levels of the form

where: ql and 92 are the aspiration levels for criteria, denoting the minimal admissible,
and the most desired values of the criteria, respectively, and O is the positive cone of the

N partial order in the criteria space. Usually O = R+ , and
N

Q = n [q l i ; q 2 i l
i= 1

(2)

where q l = (q l l , . . . , q lN) and q2=(q21, . . . ,q2N) , q l i<qa i for l i i < N and the product of
intervals is understood in the Cartesian sense.

2. PROBLEM FORMULATION
Let us consider multicriteria minimization problem /MMP/

(F : u-+ R N , -+ rn in (O) (3)

where F = (F 1 , F 2 , ..., F N) is the vector objective function, U is a subset of the decision
space, and O is a closed, convex and pointed cone defining the partial order Se in the cri-
teria space R ~ . We assume that the set U and the function F are convex, therefore the
attainable set F (U) is also convex.

The solution u to the problem will be called non-dominated
iff

The set of non-dominated decision will be called the Pareto set and denoted by
P (U , F , O) while the corresponding set of non-dominated valuations

will be called the compromise set . We will also use the notation P (V , O) : = P (V , i dE ,O)
whenever V C E.

Moreover, we assume that in the criteria space two points are distinguished,
q l : = (q l l , . . . ,q lN) and q2:=(q21,q22, . . . ,q2N) such that q 2 i e q l . The points 91 and 92 will
be called the upper, and the lower aspiration levels for the problem (3), respectively.

The aspiration levels are set up by experts independently from the base problem for-
mulation and define so-called demanded set Q for the values of the criteria (cf. formula
(1)). We will assume that ql is attainable and that

H . Gorecki, A . Skul imowski - 65 - Safety principle ...

On the contrary, 92 is assumed to be unattainable strictly dominating point for the
attainable set F (U), i.e.

and

(cf. Skulimowski (1986a)).

Another additional assumption which will be used a t this stage of problem solution
is that there exist reasonable estimates of the scale coefficients for each scalar criteria
F1, ..., FN. This will enable us to measure the distance of the criteria inside the demanded
set basing on locally comparable units of the coordinates of the criterion function. A
method of deriving locally comparable units has been proposed by Gorecki (1981) who
used the differences between the coordinates of the barycenter of Q and ql as the relative
units of criteria.

Since this kind of information imposes certain knowledge of the trade-offs between
criteria which in our model are uncertain, in the real-life applications we will repeat the
execution of the algorithm described in the following section interactively, with the
slightly varying values of the scale coefficients.

The demanded set Q plays the role of additional constraints imposed on the solution
to the MMP. At this stage we will assume that every non-dominated solution found inside
Q is admissible for the decision maker. However, the estimates of ql and 92 are usually
uncertain and the satisfactory solution to the problem is the one which lies inside of the
actual demanded set Q,, perturbed by a random factor r] . T o maximize the probability of
tiopt€ Q,, we will define a special class of algorithms of the line-search for a non-dominated
solution to MMP inside of Q.

3. THE SEARCH FOR A NON-DOMINATED SOLUTION ON A CURVE
The idea of the algorithm of finding a compromise non-dominated solution presented

below consists in replacing the original MMP (3) by a search for a non-dominated solu-
tion belonging to a curve g which lies inside the demanded set Q. If Q is defined by (I) , g
begins a t an attainable reference point ql and ends at an unattainable dominating one, 92
i.e. g(0)=ql and g(l)=q2. The solution thus found belongs to the intersection of
FP(U,O) and g*:= g ([O ; l]) , and is non-dominated provided that the set FP(U,O)
divides the demanded set into two parts. The latter condition is fulfilled e.g. when F (U)
is convex and (6) is satisfied.

The algorithm of the search.
The choice of the curve g is based on the analysis of the specific properties of ele-

ments of g*. Consequently we will consider the curves which satisfy the maximal safety
principle, i.e. those for which the probability that the compromise solution chosen will
remain within the randomly perturbed demanded set is maximal.

This may be achieved by selecting the curve maximizing the mean value of distance
from the boundary of the demanded set. Considering moreover the fact that some criteria
may turn out to be redundant leads us to choosing the so-called ordinal skeleton curve
(Gorecki (1981), Wiecek (1984)) as the curve the search should be expected on.

The general algorithm of the search on a curve g may be sketched as follows:

H . Gorecki, A . Skulirnowski - 66 - Sajety principle ...

Step 0 : selection of g , the choice of the algorithm A of detection of a non-dominated
point p on g*,

Step 1 :

f;=A (fi- l)r i- l),

Step 2 : check whether f, is attainable; set r;:=l if f, is attainable,

otherwise r;:=O,

Step 9 :

e , := II fi-fi-1 I1
i j ri<ri-, and e , < e o

then

p:=
fi+ fi- 1

2

stop

else i:=i+l, go to 1.

The result of an execution of the algorithm is a non-dominated solution p. The Pareto-
optimality of p is an immediate consequence of the assumption that ql and q2 are
separated by the non-dominated surface F P (U , O) . The uniqueness is assured if g is a
linearly ordered subset of Q which will be assumed further on. The maximal safety of p
will be discussed in the following section.

In selecting a curve g so that safety principle is satisfied, a crucial role is played by
the norm in the criteria space since it determines the value of the distance of the solution
chosen from the exterior (or, equivalently, boundary) of Q. On the other hand, choice of
distance influences the properties of the probability distribution of finding a non-
dominated point along a curve. The justification of the choice of the norms Il or 1, in the
criteria space is contained in the following subsection.

The algorithm is assumed t o possess the following properties

a) A (f , r)€g t whenever f ~ g *

b) I 1 - f I < I f f - 1 for 1 > 1

c) the assumed number of iterations of A depends only on the value of 1 I ql-q2 (1 , not
on the shape of g*.

T o check whether a point F, belonging to g* is attainable one should examine the
existence of solutions to the equation

In convex cases this may be done as proposed by Wiecek (1984).

The value of eo must be sufficiently small t o assure the accuracy of the method. The
recommended value which proved t o be adequate in numerical experiments is

H. Gorecki, A. Skulimowski - 67 - Safety principle . . .

where p , (Q) is the diameter of the projection of Q on the i-th axis in the criteria space.

The choice of a distance in the criteria space

We will start this section from the following definition:

Definition 1 : A curve g : (~ , l] + E is linearly ordered iff

where is the partial order in E. The set of all linearly ordered curves linking the
points x and y will be denoted by L (x, y).

Further on we will require that the following property of the line-search for a non-
dominated solution, imposed by the choice of the class searching algorithms, is satisfied.

Assumption 1 . Let x and y be two elements of the demanded set Q such that xLey.
Then the probability of finding a non-dominated point on a linearly ordered curve con-
necting z and y is constant and does not depend on the choice of this curve.

On the other hand we may require that the search on a curve gives better results
when the curve is longer which can be formalized as

Assumption 2. The probability of detecting a non-dominated point on a curve linking two
points is proportional to the length of this curve.

Consequently, the Assumptions 1 and 2 imply that all linearly ordered curves linking
two fixed points in the criteria space should have the same length. The above require-
ments imply the limitations in the choice of the distance and the derived differential form
(element of distance) which defines the length of the curve.

It is easy to see that the following statement is true.

Proposition 1 : The Assumptions 1 and 2 are fulfilled by the length of the curve gen-
erated by the l l or I, norm, i.e. by

where g= (gl ,...,gN) is the curve considered, and z(l l) is the element of length associated
to the L1 norm. The length of g for I, norm is defined similarly to (10).

Proof of the Proposition 1 is given in Gorecki and Skulimowski (1986b), i.e. we
prove that

jor each z , ~ E Q , a,b€L(z ,y) : h l (a)=h l (b) (11)

Observe that only certain distances in R~ satisfy the above requirement (l l) , e.g. i t
is not fulfilled by the Euclidean distance.

The Assumptions 1 and 2, and the subsequent distance in the criteria space are in
compliance with the assumption about the class of algorithms applied for looking for a
non-dominated point on a curve, namely we will assume that these algorithms satisfy:

Assumption 3. The a priori imposed maximal number of steps of an algorithm of detect-
ing a non-dominated point on a curve g connecting the elements z and y of the criteria
space does not depend on the choice of g but on the differences between coordinates of x
and y. In particular, i t may be defined as

H . Gorecki, A . Skul imowski - 68 - Safety principle

where E n t (r) , r € R , is the smallest integer exceeding r , and s;, l< i<N, are desired
steps of quantification of criteria.

4. THE SAFETY PRINCIPLE
We will start this section with some basic definitions and properties. Let us recall

that the demanded set Q is a closed and connected subset of the criteria space such that

FP(U,O)nQ f 4 (12)

Remark 1 : When (12) is not satisfied but Q contains some dominating points for the
attainable set then Q may be regarded as a target set and a distance scalarization tech-
nique may be applied (Skulimowski, 1985a).

Further on we will restrict our consideration to the case where the demanded set
appears as a result of upper and lower estimates for the values of the criteria.

Defini t ion 2 . The interval demanded set for the problem (3) is given by the formula

where:

N Interval demanded set in the case 0:= R+ may be represented as
N

where qj ,q; are lower and upper estimates of the i-th criterion demanded values respec-
tively.

Defini t ion 9 . The subset SI of the interval demanded set QI defined by the formula

S I : = { z ~ Q I : 3Gi ,G j , if j -facets of QI , such that (13)

where aQI - the boundary of QI - will be called the skeleton of QI .

Now, let C (Q) be the subset of Q consisting of points maximally distant from the
boundary of Q , i.e.

C (Q) : = { z € Q : v y ~ Q , d (~ , a Q ~ d (z , a Q)]) (14)

and let ql and q2 be two distinct elements of a Q such that q 2 i e q P If Q is convex then
for each element q of the boundary of Q there exist a unique half-line ~ (q) starting in q
and such that the function d(e ,aQ) grows fastest on u(q) in a neighborhood of each point
belonging to u(q) . It is easy to see that u(q) links q and C (Q) and it is linearly ordered.
Thus we may formulate the following

Defini t ion 4 . The ordinal skeleton of Q is the set

It is evident that if Q = QI then SocSI .

Observe that the narrower are the experts' estimations concerning a criterion Fi the
smaller scope of decision is left to the decision-maker. Consequently, in some extreme
cases certain criteria can be regarded rather as the constraint functions. Moreover, when

H . Gorecki, A . Skulimowski - 70 - Safety principle . . .

Remark 2: The property (15) of the curve S can serve as a definition of the ordinal skele-
ton curve in the case when the demanded set is different from QI. The proved property
(15) of the skeleton curve is closely related to another definition of the safety of the solu-
tion admitted.

Definit ion 6. A non-dominated y solution to the problem (3) will be called mazimal ly safe
with respect to the change of bounds of Q iff for each XEFP(U,O)

where 71 is a probability distribution in the space of closed and convex subsets of the cri-
teria space.

Now let us observe that Proposition 3 implies the following result concerning the
safety of the solution to MMP chosen on the skeleton curve S .

Theorem 1. Let X be an arbitrary subset of Qr. The probability distribution 71 defining
the changes of aQ is assumed uniform. Then the maximally safe element of X with
respect to the changes of Q belongs to S whenever SnXf 0.

Corol lary 2 : A maximal safe non-dominated point belongs to S or is closest to S in

F(V n Q .

5. AN APPLICATION TO A DESIGN PROBLEM
Let us consider the problem of designing a construction lift taking into account the

set of parameters which decide about the commercial success of the product. These cri-
teria include the time of evaluation of the project F1, the lifting capacity F2, the maximal
range of the arm F3. We assume that may exist other criteria such as reliability
coefficient Fq or the production price per unit F5 which should be simply optimized,
without paying attention to the constraints in the criteria space and are not included in
the model of preferences here presented. The total cost of design and investment may be
regarded as a constraint, together with the employment, materials and technology limita-
tions. We assume that all constraints form a set U of admissible design strategies. The
annual net income anticipated I may serve as an aggregated utility function which, how-
ever, depends on the above listed criteria in an unknown way. We can only assume that I
is monotonically depending on the measure of fulfillment of the market's expectations
which are expressed by the set Q.

According to the preference model presented in the preceding subsections U is
defined by upper and lower limitations for the values of criteria. These parameters can
have the following practical interpretation:

Flr - the minimal time necessary t o distribute an announcement about the new product
to the potential customers, also - if all or a prevailing part of lifts is to be sold t o one
company - the minimal supply time required by this company;

Flu - estimated upper limit of period warranting a sufficient market's demand, or the
maximal supply time required by the commissioning company, or the estimated time
a similar lift will be designed and offered by other producers;

F2, - minimal lifting capacity admissible for lifts of this type;

FZu - maximal reasonable lifting capacity estimated basing on the knowledge of potential
scope of applications of lifts;

H. Gorecki, A . Skulimowski - 71 - Safety principle ..

F31,F3u - similarly as above - the minimal admissible, and maximal reasonable values of
the range of arm.

Each criterion should be optimized inside of the bounds Fil,Fiu, l< :L3, whereas
F1 should be minimized, the other criteria - maximized. T o treat the functions F, in an
uniform way we will instead maximize the function (-F1).

The demanded set Q can be expressed in the form

The bounds of Q are uncertain as the values of Fil and F,,, 1Lt<3 are only esti-
mates of the real user's needs. By Theorem 1 the strategy chosen on the skeleton set S
ensures that the probability of remaining within a perturbed set Q,, maximal, t;l being a
random perturbation coefficient of Q . Roughly speaking, the better the solution chosen
fits into the set Q,,, the higher is the income I, on the other hand I should be monotonic
with respect to the criteria Fl,F2, ..., FN. Thus we can conclude that I should be mono-
tonically proportional to the utility function defined by the formula

~ (u) = d (F (u) , ~ Q) I ~ (F (~)) + I ~ (P (u)) (17)

where d(.,aQ) is the distance to the boundary of Q , F=(F1,F2,F3) , E=(F4,F5) and Il
and I2 are certain order representing functions defined so that the maximum of G were
non-dominated and situated within Q X R 2 (cf. also formula in the final subsection). Let
us note that the values of Il and I2 are entirely independent if the values of F and are
not depending on each other.

Hence it follows that the maximal safety with respect to F of a compromise solution
chosen is not conflicting with the goal of optimizing F in Q X R2. According to the results
of the preceding subsection such a compromise value of F should be found on the skeleton
curve S.

Since we do not impose any decision choice rule for the remaining criteria Fq and F5
we might consider two subcases:

1. F and P are independent - then we get a family of solutions of form

where Fc is the compromise value of F found on the skeleton curve S.

2. the values of P are uniquely determined by F - then we get a unique solution

(FC,E(FC)).

6. FINAL REMARKS
The algorithm of solving the MMP basing on the search on the skeleton curve has

been implemented in FORTRAN and applied to solve real-life problems. The reader is
referred to Gorecki et al. (1982, 1985) for a detailed study of decision making in the
development analysis in the chemical industry.

The applications presented there show the adequacy of the decisions made via the
skeleton method. Some properties of the MMP solution choice algorithm based on apply-
ing the skeleton curve have also been discussed by Wiecek (1984). The main idea of this
algorithm is the same as in the general algorithm with the curve g replaced by the skele-
ton curve S. This algorithm can be repeated interactively, with the modified scale

H . Gorecki, A . Skulimowski - 72 - Safety principle . .

coefficients and the lower, and upper experts' estimations, 92 and ql, respectively.

The method turned out to be useful as well in case where the existence of the inter-
section of S and the set of non-dominated points could not been taken for granted basing
on the assumptions concerning the objective F and the feasible set U. In particular, a
heuristic version of the method could be applied to select a compromise solution in the
case of non-convex attainable set F (U) provided the decision-maker is modifying the
upper and lower estimates ql and q2 in accordance with the initial information about the
location of F P (U , O) he is assumed to posses. The theoretical analysis of such a class of
methods, applying the search on the skeleton curve as a single step of the procedure, with
the demanded set systematically modified during and interactive decision-making process
challenges the perspectives of the further development of the method.

Another possibility of investigating the theoretical fundamentals of the method con-
sists in interpreting the search for a non-dominated solution on S as maximizing certain
utility function p which admits its local maxima on S. In this approach p can be taken
as the membership function of certain fuzzy set which describes the uncertainty of the
demanded set Q. This function can have the form

It follows immediately from the above formula that p~ has the desired property men-
tioned above, i.e.

and, moreover, p Q is order representing (Wierzbicki, 1980)

These properties could provide for a combination of fuzzy set theory and the skele-
ton method.

REFERENCES
Gorecki H., (1981). Problem of choice of an optimal solution in a multicriteria space.

Proceedings of the 8th IFAC Wor ld Congress . Kyoto 1981; Pergamon Press, Lon-
don, Vol. 10, pp 106-110.

Gorecki, H., A.M. Skulimowski (1986a). A joint consideration of multiple reference
points in multicriteria decision-making. Found. Cont r . Engrg. 11; No. 2.

Gorecki, H., A.M. Skulimowski (1986b). Group Decision-Making Maximally Safe with
Respect to the Change of Aspiration Levels. (to appear).

Gorecki, H., G. Dobrowolski, J. Kopytowski, M. Zebrowski (1982). The Quest for a
Concordance between Technologies and Resources as a Multiobjective Decision P r e
cess. In: M. Grauer, A. Lewandowski, and A.P. Wierzbicki Eds. Multiobjective and
Stochastic Opt imizat ion, I IASA Collaborative Proc . Ser. CP-82-S12, Laxenburg,
Austria, pp 463-476.

Gorecki, H., G. Dobrowolski, T . Rys, M. Wiecek, M. Zebrowski (1985). Decision Sup-
port System Based on the Skeleton Method - the HG Package. Interactive Decision
Making, Proc . Sopron 1984 , pp 269-280.

H . Gorecki, A . Skulimowski - 73 - Safety principle .. .

Skulimowski, A.M. (1985a). Solving vector optimization problems via multilevel analysis
of foreseen consequences.
Found. of Control Engrg., 10; No. 1 .

Skulimowski, A.M. (1985b). Generalized distance scalarization in Banach spaces, Rev.
Belge de Stat., Inf. Rech. Operationelle, 25, No.1 , pp 3-14.

Skulimowski, A.M. (1986). A sufficient condition for 0-optimality of distance scalarizing
procedures. To appear in: Proc. of the Int. Conference on Vector Optimization
(J.Jahn, W.Krabs (Eds.)), Darmstadt, 5-8 August 1986.

Wierzbicki, A.P. (1980). On the Use of Reference Objectives in Multicriteria Optimiza-
tion. In: W . Fandel, T . Gal (Eds.) Multiple Criteria Decision Making - Theory and
Application.

Wiecek, M. (1984). The Skeleton Method in Multicriteria Problems. Found. Contr.
Engrg., 9, No.4, pp 193-200.

M. Makowski, J. Sosnowski HYBRID 3.01

Methodological Guide to HYBRID 3.01.:
a Mathematical Programming Package

for Multicriteria Dynamic Linear Problems

Marek Makowski and Janusz Sosnowski

Systems Research Institute of the Polish Academy of Sciences

1. INTRODUCTION
The purpose of this report is to provide sufficient understanding of mathematical,

methodological and theoretical foundations of the HYBRID package. Section 1 contains
executive summary, short program description and general remarks on solution tech-
niques and package implementation. Section 2 contains mathematical formulation of
various types of problems that can be solved by HYBRID. Section 3 presents methodolog-
ical problems related to solution techniques. Section 4 presents foundations of the chosen
solution technique and documents the computational algorithm. Section 5 contains short
discussion of testing examples.

1.1. Executive summary
HYBRID is a mathematical programming package which includes all the functions

necessary for the solution of linear programming problems. The current version of
HYBRID is referred to further on as HYBRID 3.01. HYBRID 3.01. may be used for both
static and dynamic LP problems (in fact also for problems with structure more general
then the classical formulation of dynamic linear problems). HYBRID 3.01. may be used
for both single- and multi-criteria problems. Since HYBRID is designed for real-life prob-
lems, it offers many options useful for diagnostic and verification of a problem being
solved.

HYBRID is a member of a decision analysis and support system DIDAS family
which is designed to support usage of multicriteria optimization tools. HYBRID can be
used by an analyst or by a team composed of a decision maker and an analyst or - on last
stage of application - by a decision maker alone. In any case we will speak further on
about a user of a HYBRID package.

HYBRID can serve as a tool which helps to choose a decision in a complex situation
in which many options may and should be examined. Such problems occur in many situa-
tions, such as problems of economic planning and analysis, many technological or
engineering design problems, problems of environmental control. To illustrate possible
range of applications, let us list problems for which the proposed approach either has been
or may be applied: planning of agriculture production policy in a decentralized economy
(both for governmental agency and for production units) [2], flood control in a watershed
[25], planning formation and utilization of water resources in an agricultural region,
scheduling irrigation, planning and design of purification plant system for water or air
pollution.

To avoid a possible misleading conclusion that the usage of HYBRID may replace a
real decision maker, we should stress that HYBRID is designed to help a decision maker
to concentrate on real decision making while HYBRID takes care on cumbersome

M . Makowski, J . Sosnowski - 75 - HYBRID 9.01

computations and provides information that serves for analysis of consequences of
different options or alternatives. A user is expected to define various alternatives or
scenarios, changing his preferences and priorities when learning about consequences of
possible decisions. This problem is shortly discussed in Section 5 and illustrated in the
tutorial example.

HYBRID could be used for that purpose as a "stand alone" package, however - after
a possible modification of a problem in an interactive way - one can also output the
MPS-format file from HYBRID to be used in other packages. The later approach can be
used also for a transformation of a multicriteria problem to an equivalent single-criteria
LP. Diagnostic functions are not performed by many other linear programming packages,
e.g., by MINOS - it is interesting to note that the authors of MINOS actually advise the
user to debug and verify the problem with another package before using MINOS.

HYBRID can be used for solving any linear programming problem but it is specially
useful for dynamic problems; this covers a wide area of applications of operation
researches. Many optimization problems in economic planning over time, production
scheduling, inventory, transportation, control dynamic systems can be formulated as
linear dynamic problems (171. Such problems are also called multistage or staircase linear
programming problems [18] ,[19]. A dynamic problem can be formulated as an equivalent
large static LP and any commercial LP code may be used for solving i t , if the problem
corresponds to single objective optimization. For multicriteria problems, a preprocessor
may be used for transformation of that problem to an equivalent LP one. The system
DIDAS, described in other papers in this volume, is a package that is composed of prepro-
cessor and postprocessor for handling transformation of multicriteria problem and pro-
cessing results respectively [20]. Those pre- and postprocesors are linked with an LP pack-
age. HYBRID 3.01. has generally similar structure . The main difference is that - instead
of an LP package - another algorithm is applied, which exploits the dynamics of a prob-
lem. Similarly as some other systems of DIDAS family, HYBRID has the advantage of
handling a problem as a dynamic one which results in an easy way of formulation of cri-
teria and of interpretation of results, since one may refer to one variable trajectory con-
trary to a "static" formulation of dynamic problems which involves separate variables for
each time period.

HYBRID has been designed more for real-world problems that require scenario
analysis than for academic (e.g., randomly generated) problems. Thus HYBRID is
oriented towards an interactive mode of operation in which a sequence of problems is to
be solved under varying conditions (e.g., different objective functions, reference points,
values of constraints or bounds). Criteria for multiobjective problems may be easily
defined and updated with the help of the package.

The HYBRID 3.01 is available in two versions: one for mainframes and one for PC.
Each version require a FORTRAN compiler that accepts full standard of FORTRAN-77.
Implementation on a particular computer requires only changes in a routine that reads
system date and time.

The package has been tested on VAX 111780 (for f77 compiler under Berkeley UNIX
4.2) and on a P C compatible with P C IBM/XT. The minimal configuration of PC con-
sists of 512kB RAM. Intel coprocessor 8087 is strongly recommended (in fact required by
some FORTRAN compilers).

M. Makowski, J . Sosnowski - 76 - HYBRID 9.01

1.2. S H O R T P R O G R A M D E S C R I P T I O N

1.2.1. P r e p a r a t i o n of a p r o b l e m formula t ion

A problem to be solved should be defined as a mathematical programming model.

Firstly, a set of variables that sufficiently describe the problem - for the sake of the
desired analysis - should be selected. It is desired - however not necessary - to define the
problem in such a way as to possibly exploit the problem structure (further on referred to
as a dynamic problem). Secondly, a set of constraints which defines a set of admissible
(i.e. acceptable or recognized as feasible by a decision maker) solutions should be defined.
Finally a set of criteria which could serve for a selection of a solution should be defined.

The formal definition of criteria can be performed in HYBRID in an easy way. How-
ever, it should be stressed that any definition of a complex problem usually requires
cooperation of a specialist - who knowns the nature and background of the problem to be
solved - with a system analyst who can advise on a suitable way of formal definition. It
should be clearly pointed out that a proper definition can substantially improve the use of
any computational technique. For small problems used for illustration of the method, it is
fairly easy to define a problem. But for real life problems, this stage requires a close
cooperation between a decision maker and a team of analysts as well as a substantial
amount of time and resources.

For real life problems, the following steps are recommended:

1. Mathematical formulation of the problem being solved should be defined.

2. A data base for the problem should be created. This may be done on P C with a help
of a suitable commercial product (such as Framework, dBase, Symphony, Lotus 1-2-
3). Original da ta should be placed in this data base. A user need not worry about
possible range of quantities (which usually has an impact on computational prob-
lems) because HYBRID provides automatic scaling of the problem.

3. Verification of the data base and of the model formal definition should be performed.

4. The corresponding MPS standard file should be created. This may be done by a spe-
cialized problem generator (easily written by a system analyst), or an universal gen-
erator such as GEMINI (developed a t IIASA) or GAMMA (part of FMPS package
on UNIVAC) or by any appropriate utility program of data base software. We
strongly discourage the user from creating the MPS file with help of a standard text
editor.

1.2.2. Problem ver i f icat ion

This stage serves for the verification of model definition which is crucial for real
application of any mathematical programming approach.

First stage consists of preprocessing the MPS file by HYBRID, which offers many
options helpful for that task. HYBRID points to possible sources of inconsistency in model
definition. Since this information is self-explaining, details are not discussed here. It is
also advisable to examine the model printout by rows and by columns, which helps to ver-
ify model specification and may help in tracing possible errors in MPS file generation.

Second stage consist of solving optimization problems for selected criteria which
helps in the analysis of consistency of solutions. For larger problems a design and applica-
tion of a problem oriented report writer is recommended. HYBRID optionally generates a
"user f i le " for that purpose which contains all information necessary for the analysis of a
solution.

M . Makowski, J . Sosnowski - 77 - HYBRID 9.01

After an analysis of a solution, a user may change any of the following parameters:
values of coefficients, values of constraints and also any parameters discussed in next sec-
tion. This may be done with help of the interactive procedure which instead of MPS file
uses "communication region" that contains problem formulation processed by HYBRID.
Therefore, a user needs no longer to care about original MPS file which has the backup
function only.

1.2.3. Problem analysis

Problem analysis consist of consecutive stages:

analysis of obtained solution

modification of the problem

solution of modified problem.

Analysis of a solut ion consists of following steps (some of which are optional):

The user should examine of values of selected criteria. Since the solution obtained in
HYBRID is Pareto optimal, the user should not expect improvement in any criteria
without worsening some other criteria. But values of each criterion can be mutually
compared. It is also possible to compute the best solutions for each criterion
separately. A point (in criteria space) composed of best solutions is called the "utopia"
point (since usually it is not attainable). HYBRID provides also a point composed of
worst values for each criterion. This point is called "nadir" point. Such information
help to define a reference point (desired values of criteria) because it is reasonable to
expect values of each criterion to lie between utopia and nadir point.

2. The user may also a t this stage make modifications to the original problem without
involving the MPS file.

3. For dynamic problems, HYBRID allows also for examination (in also a problem
oriented report writer.

Modif icat ion of the problem may be done in two ways:

1. At this stage, the user can modify the formulation of the original problem. But main
activity in this stage is expected after the model is well defined and verified and no
longer requires changes in parameters that define the set of admissible (acceptable)
solutions. It should be stressed, that each change of this set usually results in change
of the set of Pareto-optimal solutions and both utopia and nadir points should be
computed again.

2. If the values of all constraints and coefficients that define the admissible set of solu-
tions are accepted, the user should start with computations of utopia point. This can
be easily done in an interactive way. After utopia and corresponding nadir points
are obtained (which requires n solutions of the problem, where n is the number of
criteria defined) the user can also interactively change any number of the following
parameters that define the selection of an efficient solution t o the multicriteria prob-
lem:
- Reference point (i.e. desired values for each criterion) might be changed. This

point may be attainable or non-attainable (cf sec.2.4.).

M . Makowski, J . Sosnowski - 78 - HYBRID 9.01

- Weights attached to each criterion can be modified.
- Reference trajectories in dynamic case can be changed as reference points.
- Regularization parameters in selection function can be adjusted.

3. Additionally, the user can temporarily remove a criterion (or a number of criteria)
from analysis. This option results in the computation of a Pareto optimal point in
respect to remaining "active" criteria but values of criteria that are not active are
also available for review.

Solution o j a problem. The problem defined by a user (after possible modification) is
transformed by HYBRID to an equivalent LP problem which is solved without interac-
tion of a user (an experienced user may however have an access to the information that
characterizes the optimization run).

1.2.4. Remarks relevant to dynamic problems.

HYBRID allows for solving both static and dynamic LP problems. Static problems
can be interpreted as problems for which a specific structure is not recognized nor
exploited. But many real life problems have specific structure which - if exploited - can
result not only in much faster execution of optimization runs but also remarkably help in
problem definition and interpretation of results.

Numerous problems have dynamic nature and it is natural to take advantage of its
proper definition. HYBRID offers many options for dynamic problems, such as:

1. In many situations, the user may deal with generic names of variables. A generic
name consists of 6 first characters of a name while 2 last characters corresponds to
the period of time. Therefore, the user may for example refer to the entire trajectory
(by generic name) or to value of a variable for a specific time period (by full name).
Such approach corresponds to a widely used practice of generating trajectories for
dynamic problems.

2. The user may select any of 4 types of criteria that correspond to practical applica-
tions. Those can be defined for each time period (together with additional "global"
conditions), but this requires rather large effort. Therefore, for dynamic problems,
criteria are specified just by the type of criterion and the generic name of the
corresponding variable. Types of criteria are discussed in details later.

A problem can be declared as a dynamic one by the definition of periods of time. For
a dynamic problem, additional rules must be observed. These rules correspond to the
way in which the MPS file has to be sorted and to the way in which names for rows
and columns are selected. These rules follow a widely accepted standard of genera-
tion of dynamic problems. The formulation of a dynamic problem, which is accepted
by HYBRID is actually an extension of the classical formulation of dynamic problem
(cf Section 2.2.). In this formulation a model may contain also a group of constraints
that do not follow the standard of state equations.

1.2.5. General description of the package and data structure

The package is constructed in modules to provide a reasonably high level of flexibil-
ity and efficiency. This is crucial for a rational use of computer resources and for planned
extensions of the package and possible modification of the algorithm (see Section 5).

The package consists of three subpackages:

M . Makowski, J . Sosnowski - 79 - HYBRID 9.01

Preprocessor that serves to process data, enables a modification of the problem, per-
forms diagnostics and may supply information useful for verification of a problem.
The preprocessor also transforms a multicriteria problem to a parametric single cri-
teria optimization problem, helps in the interactive change of parameters, etc.

Optimization package called solver of a relevant optimization problem (either static
or dynamic)

Postprocessor that can provide results in the standard MPS format and can also gen-
erate the "user file" which contains all information needed for the analysis of a solu-
tion; the later option makes it easier to link HYBRID to a specialized report-writer
or a graphic package.

All three subpackages are linked by communication region, that contains all data
packed in an efficient way. From the user point of view, HYBRID 3.01 is still one package
that may be easily used for different purposes chosen via specification file.

The chosen method of allocating storage in the memory takes maximal advantage of
the available computer memory and of the features of typical real-world problems. In
general, the matrix of constraints is large and sparse, while the number of all essential,
non-zero coefficients that take different numerical values is much smaller than the number
of all non-zero coefficients. A super-sparse-matrix technique is therefore applied to store
the data that define the problem to be solved. This involves the construction of a table of
these essential coefficients. In addition, all indices and logical variables are packed so that
one four-byte word is being used for four indices (2 logical and 2 integer). All data is
packed in blank common to minimize the storage area used.

Special commands of HYBRID support model verification and problem modification.
This is necessary to facilitate scenario analysis and to reduce the problems caused by
inappropriate scaling (cf sec. 3.8.).

The data format for the input of MPS file and the output of LP results follows stan-
dards adopted by most commercial mathematical programming systems (cf e.g. [24]).

1.2.6. Outline of the solution technique
HYBRID uses a particular implementation of the Lagrange multiplier method for

solving linear programming problems. General linear constraints are included within an
augmented Lagrangian function. The LP problem is solved by minimizing a sequence of
quadratic functions subject to simple constraints (lower and upper bounds). This minimi-
zation is achieved by the use of a method which combines the conjugate gradient method
and an active constraints strategy.

In recent years many methods oriented for solving dynamic linear problems (DLP)
have been developed. Most of those methods consists of adaptation of the simplex method
for problems with a special structure of constraints. In HYBRID, a different approach is
applied. A DLP, which should be defined together with a state equation, is solved
through the use of adjoint equations and by reduction of gradients to control subspaces
(more exactly, to a subspace of independent variables). The method exploits the sparse-
ness of the matrix structure. The simple constraints (lower and upper bounds for
non-slack variables) for control variables are not violated during optimization and the
resulting sequence of multipliers is feasible for the dual problem. The global constraints
(i.e constraints other then those defined as simple constraints) may be violated, however,
and therefore the algorithm can be started from any point that satisfies the simple con-
straints.

M. Makowski, J. Sosnowski - 80 - HYBRID 9.01

The solution technique can be also used to solve single-criteria quadratic problems
with virtually no changes in the algorithm. However, a routine to input and handle the
relevant data and a corresponding standard for data input have yet to be designed and
implemented. The solution method for multi-criteria quadratic problems requires
modification of the algorithm. However the necessary modifications will be based on
HYBRID 3.01 (cf sec.7 for details).

In order to provide general information about capabilities of HYBRID, the main
options are listed below. HYBRID offers the following features:

Input of da ta and the formulation of an LP problem follow the MPS standard.
Additional rules (that concern only sequencing of some rows and columns) should be
observed in order to take advantage of the structure of a dynamic problem. An
experienced user may speed up computations by setting certain options and/or
parameters (cf the HYBRID User Manual).

Solution is available in the standard MPS format and optionally in a user file which
contains all da ta that might be useful for postoptimal analysis and reports.

A main storage area, called the communication region, contains all the information
corresponding to a run. The communication region is stored on disk in certain situa-
tions to allow continuation of computations from failed (or interrupted) runs or to
run a modified problem while using previously obtained information without the
necessity of reading and processing the MPS input file.

The multicriteria problem is formulated and solved as a sequence of parametric
optimization problems modified in interactive way upon analysis of previous results.

For static or dynamic problem, the solution technique can be chosen.

The problem can be modified a t any stage of its solution (i.e., by changing the
matrix of coefficients, introducing or altering right-hand sides, ranges or bounds).

A special problem scaling is implemented (as described by the authors in [4] and
briefly discussed in Section 3.8).

A comprehensive diagnostics is implemented, including the checking of parallel rows,
the detection of columns and rows which are empty or contain only one entry, the
splitting of columns, the recognition of inconsistencies in right-hand sides, ranges
and bounds, and various other features. that are useful in debugging the problem for-
mulation.

The package supports a display of a matrix by rows (printing the nonzero elements
and names of the corresponding columns, right-hand sides and ranges), as well as a
display of a matrix by columns (analogous to displaying by rows).

A check of the feasibility of a problem prior to its optimization is optionally per-
formed.

The optimization problem solver uses a regularization of the problem (see Section
3.7).

More detailed information for an infeasible or unbounded problem is optionally pro-
vided by the package.

1.3. Remarks on implementation

HYBRID 3.01 is an extended version of HYBRID 2.1 documented in 1271. Therefore
there are only small changes in the methodological guide in comparison to the methodol-
ogy presented in 1271, because the solution techniques are basically the same. However,
there are some important methodological innovations:

M . Makowski, J . Sosnowski - 81 - HYBRID 9.01

A modification of the problem formulation and of the solution technique as well as
resulting changes in the algorithm allow for solving dynamic problems with delays in
both control and state variables.

Instead of state equations for a dynamic problem, the user may specify state inequal-
ities.

The optimization algorithm has been improved by an automatic evaluation of some
parameters, a different technical implementation of scaling, some changes in control
flow, which results in its faster execution.

The code has been modified in a way that allows for implementation on a personal
computer (compatible with IBM PCIXT). A new approach to data handling pro-
vides for easier use of the package.

Diagnostics have been improved and several observed bugs have been removed.

M. Makowski, J . Sosnowski - 82 - HYBRID 9.01

2. S T A T E M E N T O F O P T I M I Z A T I O N P R O B L E M S

2.1. Formulation of an LP p r o b l e m

We will consider a linear programming problem (P) in the following standard form
(see, e.g., [9]):

min c z (2.1)

where z , c , l , u E R n , b,r E Rm and A is an m x n matrix.

The constraints are divided into two groups: general constraints (2.2) and simple
constraints (2.3). In the input data file (MPS file) the vectors b is called RHS and the vec-
tor r - RANGES. The vector 1 and u are called LOWER and UPPER BOUNDS, respec-
tively. Obviously, some of bounds and/or ranges may have an infinite value. Therefore
HYBRID may be used for solving any LP problem formulated in the way accepted by
most of commercial packages.

2.2. Classical fo rmu la t ion of a D y n a m i c LP p r o b l e m (C D L P)

Before discussing a formulation of a dynamic problem that can be solved by
HYBRID 3.01., let us first consider a classical formulation of a dynamic linear program-
ming problem (CDLP) (cf 1171) in the following form:

Find a control trajectory

and a state trajectory

2 = (z l 7 . . . , z T)

satisfying the state equations with initial condition so

and constraints

< F z + D , U , < ~ ~ - ~ t = 1 , ..., T 4 - 1 - r t - l - t - 1 t-1

et<ut< f t t = 1 , ..., T

F , z , l d ,

which minimize the performance index

where:
- t=1, ... T denote periods of time

M . Makowski, J . Sosnowski - 83 - HYBRID 9.01

- state variables zt, control variables ut, both for each period, are elements of Eucli-
dian spaces of appropriate dimensions;

- matrices At,Bt,Dt,Ft are assumed to be given,
- RHS vectors ct and dt, as well as range vector rt and bounds for control variables

et and jt are given,
- initial condition z0 is given.

The above given formulation has been chosen for the purpose of simplification of
presentation only. Actually, the following modifications are accepted:

1. Instead of inequality (2.5), equality constraints can be used;

2. Since no constraints of bounds type (2.6) are allowed for state variables z, such con-
straints may be specified in columns section of MPS file, thus formally are handled
as inequality constraints of type (2.5);

3. Performance index (goal function) can either be specified as single objective or will
be replaced by a dummy goal function that is defined by the transformation of a
multicriteria problem to a parametric LP problem;

The structure of an CDLP problem (formulated above as in [17]) may be illustrated
by the following diagram (example for T = 3, ~ ~ , u ~ , u ~ , z ~ , z ~ , z ~ ~ are vectors, slack
variables are not shown)

u1 u2 u3 "0 "1 "2 "3 rhs var .
4 0 0 A, - I 0 0 1 state eq.

0 B2 0 0 4 - I 0 C 2 state eq.
0 0 B3 0 0 A2 - I c 3 state eq.

Dl o o FO o o o do constr.

o D2 o o F1 o o dl constr.

o o D3 o o F2 o d2 constr.
0 0 0 0 0 0 F3 d 3 final s ta te

b 1 b2 b3 0 al a2 a3
- goal

where I is identity matrix and 0 is a matrix composed of zero elements

2.3. F o r m u l a t i o n of a D y n a m i c P r o b l e m (D L P)

The formulation of CDLP has been chosen for the purpose of simplification of
presentation only. Actually HYBRID 3.01 is capable to solve problems of more general
class, which will be referred to as Dynamic Linear Programming problems (DLP).
Namely, the matrices B = diag(B,), D = diag (D i) , F = diag (F,) need no longer be
block diagonal matrices. Also matrices below identity matrices need no longer have any
specific structure. Therefore the CDLP is a specific example of DLP. One of main gen-
eralizations - from a practical point of view - is that a problem with delays for control
variables (which is not CDLP-class problem) may be solved by HYBRID. In fact,
HYBRID accepts also problems with delays for both state and control variables, provided

M . Makowski, J . Sosnowski - 84 - HYBRID 9.01

tha t state variables for periods "before" initial s tate do not enter s tate equations. A
choice of criteria for CDLP-class problem is also limited in comparison with tha t for DLP
(cf sec.4.3).

All variables are divided into two groups: decision variables u and state variables zt,
the latter are specified for each period of time

Find a trajectory zt and decision variables u such tha t both:

s tate equations
t-1

with given initial condition zo
and constraints

T
d - r < C F t z t + D u s d

t=O

e l u l f

are satisfied and the following function is minimized:
T

The following two symbols can be used in the specification file for definition of DLP:

NT - number of periods (stands for T in the above formulation)

NSTV - number of s tate variables in each period (the dimension of vectors zt)
The user can define s tate inequalities instead of s tate equations (2.9). The slack

variables for such inequalities are generated by HYBRID. For the sake of the presenta-
tion simplicity only the s tate equation will be considered further on.

The structure of an DLP problem may be illustrated by the following diagram:
(corresponding t o an example analogous t o the above example for CDLP)

U "0 x 1 "2 "3 rhs var.

1 A, - H I 0 0 1 state eq.
B2 A 10 4 1 -H2 0 c2 state eq.
B3 A 20 A,, A 22 -H3 c3 state eq.
D FO F 1 F 2 F 3 d constr.
b 0 al a2 a3 - goal

where Ht is diagonal matrix and 0 is a matrix composed of zero elements

M . Makowski, J . Sosnowski - 85 - HYBRID 9.01

2.4. Multicriteria optimization

2.4.1. General remarks

The specification of a single-objective function, which adequately reflects preferences
of a model user is perhaps the major unresolved difficulty in solving many practical prob-
lems as a relevant optimization problem. This issue is even more difficult in the case of
collective decision making. Multiobjective optimization approaches make this problem
less difficult, particularly if they allow for an interactive redefinition of the problem.

The method adopted in HYBRID 3.01 is the reference point approach introduced by
Wierzbicki [21]. Since the method has been described in a series of papers and reports and
has been applied to DIDAS (cf [1],[20]), we give only general outline of the approach
applied. This approach may be summarized in form of following stages:

1. The user of the model (referred to further as the decision maker - DM) specifies a
number of criteria (objectives). For static LP problem a criterion is a linear combi-
nation of variables. For DLP problems one may also use other types of criteria (cf
sec. 2.4.2). The definition of criteria in HYBRID can be performed in an easy way
described in the User Guide to HYBRID.

2. The DM specifies an aspiration level q = {ql,,qNc), where qi are desired values
for each criterion. Aspiration level is called also a reference point.

3. The problem is transformed into an auxiliary parametric LP (or DLP) problem. Its
solution gives a Pareto-optimal point. If specified aspiration level q is not attain-
able, then the Pareto-optimal point is the nearest (in the sense of a Chebyshev
weighted norm) to the aspiration level. If the aspiration level is attainable, then the
Pareto-optimal point is uniformly better then ij. Properties of the Pareto-optimal
point depend on the localization of the reference point (aspiration level) and on
weights associated with criteria.

4. The DM explores various Pareto-optimal points by changing either the aspiration
level q orland weights attached to criteria orland other parameters related to the
definition of the multicriteria problem.

5 . The procedure described in points 3 and 4 is repeated until satisfactory solution is
found.

To give more formal presentation, let us introduce following notation:

NC is the number of criteria

gi is the i-th criterion

g, is the aspiration level for i-th criterion

W, is a weight associated with i-th criterion (whereas the user specifies its absolute
value which is internally changed to negative depending on the type of criteria -
cf sec. 2.4.3).

em is a given non-negative parameter.

A Pareto-optimal solution can be found by the minimization of the achievement
scalarizing function in the form

NC
max (w ~ * (Q ~ -)) + * w * , 4 min

i=l,...,NC i= 1

This form of achievement function is a slight modification of a form suggested by
A.Lewandowski [20] and by A.Wierzbicki [23]. Note that for em=O only weakly Pareto-

M . Makowski, J . Sosnowski - 86 - HYBRID 9.01

optimal points can be guaranteed as minimal points of this function. Therefore, the use of
very small c m will result i n practice (except of situations in which reference point has
some specific properties) in almost weakly Pareto-optimal solution. On the other hand,
too big values of c m could drastically change properties associated with the first part of
the scalarizing function.

2.4.2. Types of criteria

A user may define any number of criteria. To facilitate the definition 6 types of cri-
teria are available and a user is requested to declare chosen types of criteria before their
actual definition. Two types of criteria are simple linear combination of variables and
those criteria may be used for both static and dynamic problems. Four other types of cri-
teria correspond to various possible performance indices often used for dynamic problems.
Since the latter criteria implicitly relate to the dynamic nature of the problem, they may
be used only for dynamic problems.

For the sake of simplicity, only the variables of the type X , (which otherwise is used
in this paper to distinguish a state variable in DLP) are used in the following formulae,
but in fact one can use in the definition of criteria both control and/or state variables.
The only exception is the type DER of criteria, which may be defined by state variables
only. Note that z; = {z i t) , t=1 , ... T .

An k-th criterion qk is defined in one of following ways, for static and dynamic LP:

Type MIN
T n

qk = C C aitzit + min
t = l i = l

where n is number of (state and control) variables, T is number of periods; T = l is
assumed for static LP.

Type MAX
T n

qk = C C aitzit + max
t = l i = l

and exclusively for dynamic LP:

Type SUP

qk = max (zit - zit) + min
t = l , . . T

where xi is a selected state or control variable, Ti - its reference trajectory

Type INF

qk = min (zit - zit) + rnax
t= l , . . T

Type FOL

M . Makowski, J . Sosnowski - 87 - HYBRID 3.01

qk = max (abs(zit - z,,)) + min
t= l , . . T

Type DER

qk = max (abs(zit - zit- +min
t= l , . . T

which applies only to state variables.

2.4.3. Transformation of multicriteria problem to an auxiliary LP
The transformation is done by HYBRID 3.01, therefore its description here has only

informative purpose. This description may be useful in case of using the MPS file (option-
ally created after modifications and transformation of a problem) as input for another LP
package.

Following notation is used throughout this subsection:

u - name of the auxiliary variable u

w, - weight coefficient for i-th criterion

cn, - name of i-th criterion

cht - string (2-characters) which identifies t-th period of time

qi - reference point (aspiration level) for i-th criterion

qi - linear combination of variables that defines a criterion of the type MAX or MIN
' ' - delimiters of a string

T - number of time periods

z . = { z .), t = 1 , ..., T is a variable that defines a criterion of a type SUP,INF,FOL or
3 l t

DER.

Transformation will be discussed for each type of criteria:

Type : MIN
additional row (with name which is concatenation of following three strings:
'< ' ,en, , ' 0 - ' is generated in form:

Type : MAX

is transformed in the way similar to type MIN, with additional (internal, for compu-
tations only) change of the signs of W , to negative.

Type : SUP

additional T rows (with names which are concatenations of strings
'< ', cni, '. ' cht, where t = 1 , ..., T) are generated in forms:

Type : INF

M. Makowski, J . Sosnowski - 88 - HYBRID 9.01

is transformed in the way similar to type SUP, with additional (internal, for compu-
tations only) change of the signs of w, to negative.

Type : FOL
additional T columns (with names which are concatenations of strings

I I '+ I , cn,, . , cht, where t=1, ..., T) are generated ; in the following formulae this
name is replaced by C:

additional T columns (with names which are concatenations of strings
6- I , cni, 6 . I , cht, where t=1, ..., T) are generated ; in the following formulae this

name is replaced by c,;

additional T rows (with names which are concatenation of strings
6- I - , cn, . ', cht, where t=1, ..., T) are generated in form :

additional rows (with names which are concatenations of strings
6 I '< I , cn,, . , cht, where t = 1 ,... , T) are generated in the form:

Type : DER

additional 2x T columns are generated in the same way as described for a criterion
of the type FOL;

additional T rows (with names with are concatenations of strings
I- ' -

I I , cn,, . , cht, where t =1, ... , T) are generated in form :

where At-l, Bt, cjt are parameters of the state equations (cf sec.3.3.3), I is the
identity matrix and B{ and (At-l-I) l denote the j-th row of matrices Bt and
(At- - I) respectively;

additional T rows (with names which are concatenations of strings
I I '< I , cn,, . , cht) are generated in form :

Auxiliary goal function, which is to be minimized, is generated in the following form:

where summation is done over corresponding sets of respective criteria, i.e. indices i,
j, k correspond t o criteria of type: MIN or MAX, SUP or INF and FOL or DER,
respectively; E, is given parameter.

The name of auxiliary variable v is '..dummy .', whereas the name of auxiliary goal
function is '.dummy ..'.

Value of E, may be changed by the command MEPS in a routine for modification of
multicriteria parameters.

M . Makowski , J . Sosnowsk i - 89 - HYBRID 3.01

3. THEORETICAL FOUNDATIONS AND METHODOLOGICAL PROB-
LEMS

3.1. General remarks
The most popular methods for solving linear programming problems are based on

the simplex algorithm. However, a number of other iterative non-simplex approaches
have recently been developed 15-71. HYBRID belongs to this group of non-simplex
methods. The solution technique is based on the minimization of an augmented Lagran-
gian ~ e n a l t y function using a modification of the conjugate gradient method. The
Lagrange multipliers are updated using a modified version of the multiplier method [8]
(see Sections 3.2 and 3.4).

This method is useful not only for linear programming problems but also for other
purposes, as described in Section 1.2. In addition, the method may be used t o solve prob-
lems with non-unique solutions (as a result of regularization - see Section 3.7).

The following notation will be used:

a, denotes the i-th row of matrix A

x . denotes the j-th component of vector x
3

llxll denotes the Euclidian norm of vector x

(u) + denotes the vector composed of the non-negative elements of vector u (where nega-
tive elements are replaced by zeros)

T A denotes transposition of matrix A

3.2. The multiplier method
We shall first explain how the multiplier method may be applied directly to LP

problems.

Consider the problem (PO) , which is equivalent to the problem (P):

min cx

where d E RP, B is a p x n matrix, and m < p <_ 2 (m + n) . T o apply the multiplier
method t o this problem we proceed as follows:

0 Select initial multipliers y (e.g., O = 0) and p E R ,p > 0 . Then for k = 0,1, ...,
" + ' ySlf l where determine successive values of x ,

and

where

k
L b , s) = + (l l (yk + p (~ x - d)) + l I ~ - llyk l I2) l (2p)

until a stopping criterion is satisfied.

The method has the following basic properties:

M . Makowski, J . Sosnowski - 9 0 - HYBRID 9.01

1. A piecewise quadratic differentiable convex function is minimized a t each iteration.

2 . The algorithm terminates in a finite number of iterations for any positive p.

3. There exists a constant jT such that for any p > jT the algorithm terminates in the
second iteration.

Note that it is assumed above that the function L (- , ~ ~) is minimized exactly and that the
value of the penalty parameter p is fixed. Less accurate minimization may be performed
provided that certain conditions are fulfilled (see, e.g., [7,8]). For numerical reasons, a

k non-decreasing sequence of penalty parameters { p) is generally used instead of a fixed p.

3.3. The conjugate gradient method for the minimization of an augmented
Lagrangian penalty function

The augmented Lagrangian function for a given vector of multipliers y will be called
the augmented Lagrangian penalty function (221. For minimization of that function the
conjugate gradient method has been modified t o t a k e advantage of the formulation of the
problem. The method may be understood as an modification of the techniques developed
by Polyak [l o] , O'Leary [l l] and Hestenes [12] for minimization of a quadratic function on
an interval using the conjugate gradient method.

The problem (P) may be reformulated as follows:

min cx

where z E R m are slack variables.

Formulation (PS) has a number of advantages over the initial formulation (PO):

1 . The dimension of matrix A in (PS) is usually much smaller than that of matrix B in

(PO).
2. The problem is one of minimization of a quadratic function in (PS), and of minimi-

zation of a piecewise quadratic in (PO).

3. Some computations only have to be performed for subsets of variables. Note that
slack variables are introduced only for ease of interpretation and do not have to be
computed.

In (PS) the augmented Lagrangian is defined by

We shall first discuss the problem of minimizing L (Z , Z , ~) for given y,p> 0, subject
to lower and upper bounds for z and z. Let us consider the following augmented Lagran-
gian penalty function

F (x , z) = (c / p) z + (I l y lp + ‘42 - b + 112 - I I Y / P 112)/2. (3.4)

The gradient of F is defined by

M . Makowski, J . Sosnowski HYBRID 9.01

where

From the Kuhn-Tucker optimality condition, the following relations hold for the
minimum point (x i ,%*) :

and

For any given point such that 1 5 z <_ u it is possible t o determine slack variables
0 5 z 5 r in such a way that the optimal it^ conditions with respect to z are obeyed.
Variables z are defined by

if g. I < - 0 (a F / a z , > 0)

if g, >_ r , (a F / a z , < 0) (3.5)

g, if r, > g, > 0 (a F / a z , = 0) .

We shall use the following notation and definitions. The vector of variables x with
indices that belong t o a set J will be denoted by zJ, and analogous notation will be used
for variables g. We shall let q denote minus the gradient of the Lagrangian penalty func-
tion reduced to z-space (q = - (a F / a z)) . The following sets of indices are defined for a
given point z :

The set of indices I of violated constraints, i.e.,

I = { i : g, 2 r,) U { i : g, 5 0) .

Tis the complement of I , i.e.,

T = {1,2 ,...., m)\I .

The set of indices I can be also interpreted as a set of active simple constraints for z. The
set of indices J of variables that should be equal to either the upper or the lower bound,
l.e.,

J = { j : z, = 1, and q - < 0) u { j : zj = uj and q, 2 0) .
3 -

is the complement of J , i.e.,

.i = {1,2 ,....., n)\ J .

M . Makowski, J . Sosnowski - 9 2 - HYBRID 9.01

For the sake of illustration the matrix A may be schematically split up in the fol-
lowing three ways (see the Figure below): first according t o active rows, second according
to basic columns and third with il lustrate the par t of the matrix A for which augmented

I Lagrangian penalty function is computed. The contents of the matrix A.i (for which the

augmented Lagrangian penalty function is computed) changes along with computations.

In essence, the augmented Lagrangian penalty function is minimized using the conju-
gate gradient method with the following modifications:

1. During the minimization process z and z satisfy simple constraints and z enters the
augmented Lagrangian in the form defined by (3.5).

2. The conjugate gradient routine is run until no new constraint becomes active, i.e.,
neither set I nor set J increases in size. If this occurs, the computed step length is
shortened to reach the next constraint, the corresponding set (I or J) is enlarged
and the conjugate gradient routine is re-entered with the direction set equal t o
minus the gradient.

3. Sets J and I are defined before entering the procedure discussed in point 2 and may
be only enlarged before the minimum is found. When the minimum with respect t o
the variables with indices in sets J and I has been found, sets J and I are redefined.

4. Minimization is performed subject only t o those components of variables z whose
indices belong t o set J, i.e., variables tha t are not currently equal t o a bound value.

5. Minimization is performed subject only t o those components of variables z whose
indices do not belong t o set I , i.e., slack variables tha t correspond t o non-active sim-
ple constraints for z . Note tha t , formally, this requires only the use of different for-
mulae for z . In actual fact i t is sufficient to know only the set I, which defines the
minimized quadratic function.

M . Makowski, J . Sosnowski - 93 - HYBRID 9.01

4. SOLUTION TECHNIQUE

4.1. Algorithm for minimization of augmented Lagrangian

We may now present the algorithm for minimization of the augmented Lagrangian
penalty function in a more formal way. The algorithm consists of the following steps:

1. For given y and p>O choose a point z such t ha t 1 5 z 5 u

2. Compute g = - y / p - A z + b
3. Determine sets I and

I = { i : g , > r , } u { i : g , < 01 ,

T = {l,...,rn}\I

4. Redefine gas follows:

r, if g i - r , > O
g , : = otherwise

5. Compute the minus gradient:

I T I 9 = -++(A) g

6. Determine sets J and J

J = { j . 2 . = I , and q < ~ } ~ { j : z = u, and q > 0)
3 3 - 3 3 -

1 = (1, ..., n}\J

7. If g . = 0 for all j E J then z is a minimum point of the augmented Lagrangian
3

penalty function - -
8. Set p J = sJ
9. Compute

s = A - p d
J

h = llsJ 112
d = 11s' ! I 2
a (1) = h l d

Note t ha t cr(1) is the conjugate gradient step length in direction p J

10. Find the s tep length t ha t would violate the nearest non-active constraint, i.e., for
a€ F,

4 2) = min {g , /s , } , K = { a : i€T,s,>0}
I'E K

a (3) = min i~ K { (g , - r ,) /s , } , K = { i : ~ET,s,<o)

M . Makowski, J . Sosnowski - 94 - HYBRID 9.01

11. Find the step length that would enable a variable to reach a bound, i.e.,

a (4) = rnin (1 , - z ,) / p , K= { j : j € J , p j<O)
jE K J

a (5) = rnin (u - z) / p j , K= { j : j € J , p,>O)
jEK

12. Determine step length a = rnin (a (;)) . If a = m t n (a (2) , a (3)) add the row
i=1, 5

index for which this condition hoids to set I and remove that index from set 7. If

a = m i n (a (4) , a (5)) add the column index for which this condition holds to set J
and remove that index from set 7.

- -
J 13 Compute the new point zJ : = zJ + a p and the minus gradient at that point:

gi : = gi - a s i
-
J - I T I 9 - (A J) !J - c J / p
-

14. If q J = 0 . go to step 2

1 5 . If a = a (l) continue with the conjugate gradient step, i.e

J 2 a = 119 I I i h

P?= qJ + a p J

and go to step 9

16. Go to step 8
-

Note that the condition g J = 0 is in practice replaced by l l q J I 1 5 rk lp The value of
k

E may be quite large in the first few iterations; it then decreases as the number of itera-
tions increases.

4.2 A d a p t a t i o n of t h e mul t ip l ie r m e t h o d
k Let the violation of i-th constraint in a point z be defined in the following way:

and llvkll denotes the norm of violated constraints. The multiplier method will be
presented in algorithmic form.

1. Compute an initial vector of multipliers on the basis of the particular option chosen
(i.e., either = 0 or corresponding to the constraints violated a t starting point

2)

2. Find zk+' which minimizes the augmented Lagrangian penalty function (see Section
k 3.3.) with accuracy E . It is assumed that
k k ck : = min (c k , I I v J I E))

k k where the sequence E 40. In addition, cmi > E > E,, where em,, E , is the
assumed minimum and maximum accuracy, respectively.

k 3. If g J < E and the last step has been a multiplier update go to step 6 (where

i! the norm of the gradient of the augmented Lagrangian penalty function).

M. Makowski, J . Sosnowski - 95 - HYBRID 9.01

4. If I I ~ T J < ~ ~ and the last iteration has been a multiplier update set
pk . . - - min (p k p, , p,) (where p,is the assumed maximum value of the penalty

parameter and p, is assumed to be constant)
k 5. If pk = p, then set rk : = max (r r,,r,) where r, and r, are assumed parame-

ters.

If pk = p, and rk = r, go to step 6. Otherwise go to step 2

6. Compute new multipliers

(0 otherwise

7. ~f ~\y~+l-- yk 11 > ~d then set p k + l = min (P k P,,P,), set
rk+'=r r,, k : = k + 1 and go to step 2

8. Check the feasibility of the current point. If it is feasible, Jlvkl I< F E A S , minimize
the augmented Lagrangian penalty function with the vector of multipliers fixed a t
ykS1 and with accuracy rk+', and then stop

k 9. If the point tested a t step 8 was infeasible and p < p, then set
pk+ l = min (pkp,,p,), set k : = k + 1 and go to step 2

10. If step 9 was omitted, check the feasibility of the problem by minimizing the square
Euclidian norm of the violated constraints. If the problem is infeasible, then stop.

11. Take the feasible solution found in step 10 as the current point, set k : = k + 1,
k update rk = max (r r,,r,) and go to step 2.

The list of parameters which are referred to in the User Guide to HYBRID and their
relative symbols used above is as follows (index k is omitted):

RO - p, ROST - p, , ROMX - p, , EPS - C, EPSS - c,, EPSM - c,, EPSD - ~ d .

4.3. Solution technique for DLP
We will not repeat reasoning given in the first part of sec. 2.3. Instead, let us point

out basic differences between the algorithms for static LP and DLP:

1. Minimization is reduced to a subspace of decision variables. Gradient of Lagrangian
penalty function is computed for variables that belong to a subspace of decision vari-
ables. This (together with arguments already presented in sec. 3.3.) shows advan-
tages due to the use of dynamic structure of DLP problem in comparison with
presentation of such a problem as a large LP.

2. The structure of matrices B1 ,....., BT and Fo ,..., FT has no impact for the algorithm
nor affects the technique of storage of data, because super-sparse technique is applied
(cf sec.l.4.). It should be also pointed out that the method of transforming a mul-
ticriteria problem to a parametric LP one introduces constraints (cf sec.2.4.3.) that -
for the proposed (cf sec.2.4.2.) types of criteria - do not fit to the staircase structure
of CDLP (cf (171). Therefore, any technique that would exploit the staircase struc-
ture of DLP would also imply a reduction of a number of criteria types. The alterna-
tive is then to treat a problem as a large LP static one or to apply a technique that
does not exploit the classical DLP structure.

M . Makowski, J . Sosnowski - 96 - HYBRID 3.01

3. State equations are solved (for given decision variables u) recursively and are
fulfilled in any stage of computations. Therefore any single constraints for state vari-
ables have to be treated as general constraints and included into the matrix. Gra-
dient need not to be computed for those variables, but state equation is solved twice
(for state variables and variations).

4. A conjugate trajectory \E is computed from conjugate equation and has an interpre-
tation of dual variables for state equations. No other variables associated with those
rows (defined in sec. 3.3, i.e. Lagrange multipliers, shifted constraints g) are com-
puted for state equations rows.

5. The general structure of the algorithm for DLP is similar to that presented in sec
3.4. To sum up basic differences one may observe that

we consider a problem that is equivalent to a static LP but reduced to the sub-
space of decision variables and is solved in the way similar to that described in
sec. 3.3. and 3.4.

state equations are solved for control variables and for variations

a conjugate trajectory \k is computed.

4.4. Algorithm for minimization of augmented Lagrangian for DLP

Now we may present the algorithm for minimization of the augmented Lagrangian
function for DLP in a more formal way. In each iteration of multiplier method, the fol-
lowing optimization problem is solved: minimize the augmented Lagrangian penalty func-
tion

subject to

with a given initial condition zo and

where z is a vector of slack variables, which - as discussed in sec. 3.3. - are not used in the
algorithm. The algorithm consists of the following steps:

1. For given y and p choose a point u such that e 5 u 5 f
2. Solve the state equation

with given initial condition zo

M . Makowski, J . Sosnowski - 97 - HYBRID 9.01

3. Compute shifted constraints for constraints (2.10.)
T

g = - y / p - C F t z t - DU + d
t=O

and determine sets I , f

I = { i : g , > r ,) u { i : gi < 0)

while i i s the complement of I .
4. Redefine g as follows :

gi - ri if g, > r,
g , : = otherwise

5. Find the conjugate trajectory by solving backwards the conjugate equations

with boundary condition

I T 1
@ T = (F ~) 9 - U T / P

6. Compute the minus gradient reduced to subspace of decision variables

I T I
1

9 = -% + (D) 9 + C B ? * t

7. Determine sets J and J
J = { j : U , = e, and q . < ~) u { j : u = 1, and q,>0)

3 - 3

while J is the complement of J

8. If q . = 0 for all j E then u is a minimum point of the augmented Lagrangian
3

penalty function - -
9. Set pJ = qJ

10. Solve s tate equation in variations

with boundary condition a. = 0

11. Compute

M. Makowski, J . Sosnowski - 98 - HYBRID 3.01

Note that a (1) is the conjugate gradient step length in direction p 7
12. Find the step length that would violate the nearest non-violated constraint, i.e.,

" (2) = min {g, /s ,) , K = {i: i E 7 and si > 0)
iE K

a(3) =mi, ((9 , - r i) /s i) , K = { i : i ~ and si < 0)
i E K

13. Find the step length that would enable a variable to reach a bound, i.e.,

a (4) = min { (e j - u,) / p j), K = { j : j E 1 and p, < 0)
J E K

a (5) = min { (!,- u,) / p ,) , K = { j: j E and p, > 0)
jE K

14. Determine step length a = min (a (!))
i=1, ..., 5

If a = min(a (2) ,a (3)) add the index for which this condition holds to set I and

remove that index from set f . If a = min(a (4) ,a (5)) add the index for which
this condition holds to set J and remove that index from set 7.

15. Compute :
- -

.J. . = u J +aPJ

I 16. For the new g solve the conjugate equation (as in step 5)

17. Compute the minus gradient :
T

-
18. If qJ = 0 , then go to 2

19. If a = a (l) continue with the conjugate gradient step, i.e.

J 2 P = 119 I I l h
- -

p J = qJ + p P J

and go to step 10

20. Go to step 9 -
Note that the condition qJ = 0. is in practice replaced by (qJ 11 5 ck The value of c k

may be quite large in the first few iterations; it then decreases as the number of iterations
increases.

4.5. Regularization

It is possible that a linear programming problem may have nonunique optimal solu-
tions. Although this is theoretically rare, in practice many problems actually have a large
set of widely varying basic solutions for which the objective values differ very little [7]. In

M . Makowski, J . Sosnowski - 99 - HYBRID 9.01

some cases, the simplex algorithm will stop when a basic solution is recognized as optimal
for a given set of tolerances. For problems with a nonunique optimum, the first optimal
solution found is accepted, so that one may not even be aware of the non-uniqueness of
the solution reported as optimal.

Thus we are faced with the problem of choosing an optimal (or, in most cases, to be
more accurate, a suboptimal) solution that possesses certain additional properties
required by the user. This problem may be overcome by applying an approach called reg-
ularization. Regularization (Tikhonov's type) is a means of finding the optimal solution
with either minimum Euclidian norm or minimum distance from a given reference point.
The second of these options has not yet been implemented; the first may be activated by a
REGZERO statement in the specification file (see the User Guide to HYBRID).

The minimum norm solution is obtained by carrying out a sequence of minimizations
of regularized augmented Lagrangians rather than one minimization of an "ordinary" aug-
mented Lagrangian 1161. Thus minimization of L (-, yk) in problem (PO) is replaced by

. k t 1 = argmin L(z,Yk) + 11 I12/(2t)k)

where

q0 , q, and q m are given parameters.

The list of parameters which are referred to in the User Manual to HYBRID and
their relative symbols used above is as follows :

RETA - qo, RSETA - q,, RMETA - q m

4.6. Scaling

It is generally agreed that the choice of an appropriate scaling of a problem being
solved can be a critical issue for numerical stability. There are obviously two approaches
to deal with that problem. First, suggested by Tomlin ([15]), assume that an experienced
model builder, who uses sensible units may avoid unnecessarily large or small matrix ele-
ments. This is true, but requires a lot of time consuming preparations, which are reliable
source of frustrating bugs. Therefore, we have followed the second approach, suggested by
Curtis and Reid ([14]) for solving the scaling problem. This approach is nowadays widely
accepted (e.g. the new version of MINOS has also scaling option, which has removed
many problems typical for older versions of MINOS).

Our approach is discussed in details in [4], therefore only short description follows.
For the sake of simplicity we consider a problem of scaling on an example of a problem in
a form

where A € R m x n

According to Curtis and Reid (1972) matrix A is considered as well-scaled if

M . Makowski, J . Sosnowski - 100 - HYBRID 9.01

for some acceptable v . J , are sets of indices of columns with non-zero elements in i-th
row.

Therefore, instead of solving a badly conditioned problem a of type (3.6.), one can
solve an equivalent problem in form

Here R = d iag(r l ,...., r,) and C = d iag(c l ,...., c,) are two diagonal matrices with posi-
tive components. In other words, an equivalent problem is formed by multiplying i-th row
by r, and j-th column by c j .

The problem of scaling boils down to finding coefficients r , and c j such that

It is easy to observe that the above stated problem has no unique solution (although
the optimally scaled matrix may be unique) . Therefore we minimize the following perfor-
mance index:

where rhs and bnd are non-zero elements of RHS and bounds, respectively, sets of indices
K and L contain indices of rows with non-zero rhs and columns with non-zero bounds,
respectively.

For the numerical reasons the base of logarithms is 2 and obtained coefficients are
rounded to nearest integer number.

For this formulation of the scaling problem, it was possible to design a specialized
algorithm based on conjugate gradient method. Since an excessive accuracy is not
required, the scaling algorithm is very efficient (usually it takes less then 10 iterations
regardless of dimension of a problem). Therefore the scaling option (which is the default)
should not be suppressed except if special requirements apply. The values of performance
indices (3.7.) and (3.8.) are displayed both before and (if active) after scaling.

Usually there is no need to change default parameters. Should a change of parame-
ters be desired, it may be done by entering respective values in specification file (SBETA
stands for p and SETA stands for 7) . Two stopping criteria are used, which may be con-
trolled by parameters SEPS and SEP1. Let vk be a value of the performance index (3.8.).
The scaling routine is ended, if vk /vk - '> SEPS or if the norm of gradient is less then
SEP1. In addition the number of scaling iterations in constrained by ITSCAL (cf the User
Guide to HYBRID).

Scaling coefficients are displayed as additional column in MPS-type output of
results. This has only informative purpose, since all results are rescaled internally.

M. Makowski, J . Sosnowski - 101 - HYBRID 9.01

5. TESTING EXAMPLES
HYBRID has been tested on number of examples. For the sake of illustration of the

package capabilities 3 known examples have been selected: two dynamic and one static.

5.1. Econometric growth model (Manne)

This model is a linear multicriteria version of Manne's model described in [26].

The variables are the following:

t time period, t = 1,2 ,..., T
ct consumption

It investment,

Kt capital in time period t .

max KT

min max J c t - ~ t l
t = 1 , 2 ,...,

The state equation:

Kt=KtP l+ I t , t=1,2 ,..., T

with KO given.

Linear constraints for t = 1,2, ..., T

Bounds:

Parameters:

where a=(Co+ Io) /Ko .
In the table 1 the test examples which refers to the modified Manne problem are

denoted by MannT, where T corresponds to a number of periods.

5.2. Flood control problem.

The problem is a model (cf [25]) of the water system which consists of three general
purpose reservoirs supplying water to the main river reach. The goal of the system
dispatcher is t o operate the reservoirs in such a way that the flood peak on the main river
do not coincide. It is assumed that inflow forecast for each reservoir is known.

The model consists of water balance equations for selected points and for each time
period. The capacities of reservoirs are also constraint. Various types of criteria are

M . Makowski, J . Sosnowski HYBRID 9.01

examined:

FOL - corresponds to following given trajectories of water flow in selected points,

DER - corresponds to minimization water flow changes (in consecutive time periods) in
selected points,

MAX - corresponds to minimization of maximal (over time) flow in selected points.

In the table 1 the test examples which refers to the multicriteria flood control prob-
lems are denoted by FloodT, where T corresponds to a number of periods.

5.3. Full dense LP prob lem.

This problem is a modification of the Mangasarian example [5] and has been gen-
erated for verification of the package for fully dense LP problems. Computations are per-
formed for one criterion and elements of matrix are equal to 1.0 with exception of diago-
nal elements for which values of 10.0 are selected.

In the table 1 the test examples which refers to the modified Mangasarian example
are denoted by MangT, where T corresponds to a dimension of LP matrix.

5.4. Discussion of tes t results.

Testing problems have been solved on a PC compatible with IBM/AT with 80287
coprocessor. The algorithm was implemented with double precision arithmetic (the
machine precision about 2.22e-16). The default values of all parameters (this includes ini-
tial multipliers equal to zero) were assumed in all runs.

The results of some tests are summarized in the following table.

Problem Number Rows Cols Dens. Time Mult. Outer Total
of crit. [%I (min.) iter. iter. steps

Manne05 3 29 2 7 12 0.4 2 13 24
MannelO 3 54 5 2 7 0.6 2 23 2 8
ManneZO 2 103 102 3 3.0 2 4 1 7 2
Manne30 2 153 152 2 5.0 2 64 112
Manne40 2 203 202 2 9.5 2 84 154
Flood03 6 5 5 5 5 6 5.0 10 87 230
Flood05 3 7 7 79 4 4.5 2 36 172
Mang20 1 20 20 100 2.0 2 4 49
Mang30 1 30 30 100 5.0 2 4 76

Numbers of rows and columns correspond to a single criterion LP problem, which were
obtained by transformation of relevant multicriteria problems. The numbers of outer
iterations and of total steps correspond to execution of step 2 and step 3 of the algorithm
(cf sec. 4.1.).

Due to super sparse matrix technique applied for storing data, rather long computa-
tion time is required for fully dense matrix problems. For dynamic sparse problems better
performance of the algorithm was observed. One should also note that the Flood problem
is badly conditioned and is reported by many LP packages as infeasible.

M. Makowski, J. Sosnowski - 103 - HYBRID 9.01

6. CONCLUSIONS
First version of HYBRID was made operational in 1982. This version is documented

in [13]. Then we had improved and extended the package for dynamic linear program-
ming problems (DLP) and for multicriteria problems (both static and dynamic). The
later version in documented in [27].

HYBRID 3.01 is still a pilot-type of software that requires a lot of testing. It is true
that for some problems HYBRID 3.01 performs worse than the commercial packages
FMPS and MINOS but for some other problems HYBRID performs better, especially if a
problem is defined as a dynamic one. If HYBRID is used not only for one run but for
scenario analysis (solving the problem with change of multicriteria parameters, matrix
elements, RHS etc.) its performance is much better. The reason being so is not only due
to the fact that MPS file is processed only in a first run but mainly because in consecutive
runs (which uses communication region) only update of affected coefficients is made (the
problem is generated only for the first run) and because a solution is usually obtained
much faster then for the first run (HYBRID - contrary to simplex approach - uses the
same solution technique for any possible modification of a problem being solved).

HYBRID provides very useful diagnostics for any LP problem and therefore is also
useful for a problem verification. It could be used for that purpose as "stand alone" pack-
age, and - also after possible modification of a problem in interactive way - one may out-
put MPS-format file to be used by other packages. The same approach may be used for
transformation of multicriteria problem to equivalent single-criteria LP.

The further development of HYBRID will proceed in following directions:

1. Modification of the way in which the user communicates with the package. The
modification will exploit capabilities of PC compatible with IBM/XT and will remark-
ably ease the use of the package.

2. Extensions of capabilities of HYBRID by introduction of new options for definition and
handling of multicriteria problem (new types and more flexible definition of criteria,
introduction of both aspiration and reservation levels, data base for previous runs etc).

3. Further improvement of the algorithm and its computer code (automatic evaluation of
some parameters, experiments with possible modification of the algorithm) that will
result in faster execution.

We hope that , despite the reservations outlined above, HYBRID 3.01. will eventu-
ally be a useful tool with many practical applications. We would be grateful for any criti-
cisms and comments that would help us to improve the package.

M. Makowski, J . Sosnowski HYBRID 9.01

7. REFERENCES
1. M. Kallio, A. Lewandowski and W. Orchard-Hays. An implementation of the refer-

ence point approach for multiobjective optimization. WP-80-35. International Insti-
tu te for Applied Systems Analysis, Laxenburg, Austria, 1980.

2. M. Makowski and J . Sosnowski. A decision support system for planning and control-
ling agricultural production with a decentralized management structure. In: Plural
Rationality and Interactive Decision Processes. Eds. M. Grauer, M. Thompson, A.P.
Wierzbicki. Springer - Verlag, 1985.

3. A.P. Wierzbicki. A methodological guide to multiobjective decision making. WP-
79-122. International Institute for Applied Systems Analysis, Laxenburg, Austria,
1979.

4. M. Makowski and J . Sosnowski. Implementation of an algorithm for scaling
matrices and other programs useful in linear programming. CP-81-37. International
Institute for Applied Systems Analysis, Laxenburg, Austria, 1981.

5. O.L. Mangasarian. Iterative solution of linear programs. SIAM Journal for Numeri-
cal Analysis, 18(4): 606-614, 1981.

6. B.T. Polyak and N.V. Tretiyakov. An iterative method for linear programming and
its economic interpretation. Economic and Mathematical Methods, 8: 740-751, 1972
(in Russian).

7. J.S. Sosnowski. Linear programming via augmented Lagrangian and conjugate gra-
dient methods. In S. Walukiewicz and A.P. Wierzbicki (Eds.), Methods of
Mathematical Programming, Proceedings of a 1977 Conference in Zakopane. Polish
Scientific Publishers, Warsaw, 1981.

8. D.P. Bertsekas. Multiplier methods: a survey. Automatica, 12: 133-145, 1976.

9. B.A. Murtagh and M.A. Sanders. MINOS - A large-scale nonlinear programming
system (for problems with linear constraints). User guide. Technical Report, Sys-
tems Optimization Laboratory, Stanford University, 1977.

10. B.T. Polyak. The conjugate gradient method in extremal problems. Computational
Mathematics and Mathematical Physics, 9: 94-112, 1969.

11. D.P. O'Leary. A generalized conjugate gradient algorithm for solving a class of qua-
dratic problems. Linear Algebra and its Applications, 34: 371-399, 1980.

12. M.R. Hestenes. Conjugate Gradient Methods in Optimization. Springer Verlag, Ber-
lin, 1980.

13 M.Makowski, J . Sosnowski Hybrid: A mathematical programming package , IIASA,
1984, CP-84-9.

14 A.R. Curtis, J .K. Reid On the automatic scaling of matrices for Gaussian elimina-
tion , Journal of Mathematics and its applications , 1972, no 10, pp.118-124.

15 J.A.Tomlin, On scaling linear programming problems , Mathematical Programming
Study 4. North Holland Publishing Company, 1972, Amsterdam

16 J .S. Sosnowski, Dynamic optimization of multisectorial linear production model.
Systems Research Institute, Warsaw, Ph.D. Thesis, (in Polish), 1978.

17 A. Propoi, Problems of Dynamic Linear Programming, IIASA, RM-76-78

18 R. Fourer, Solving staircase linear programs by the simplex method, 1,2. Mathemat-
ical Programming 23 (1982) 274-314, 25(1983) 3.01-292

19 J.K.Ho, A.S. Hanne, Nested decomposition for dynamic models. Mathematical Pro-
gramming 6 (1974) 121-140

M . Makowski, J . Sosnowski - 105 - HYBRID 9.01

20 A. Lewandowski and Grauer M., The reference point optimization approach -
methods of efficient implementation. CP-12-S12, IIASA Collaborative Proceedings
Series: Multiobjective and Stochastic Optimization Proceedings of an IIASA Task
Force Meeting

21 A.Wierzbicki ,A mathematical basis for satisficing decision making, WP-80-90,
IIASA, 1980).

22 R.Flecher, Practical methods of optimization, vol 11, Constrained optimization,
Wiley, New York, 1981

23 A. Wierzbicki, On the use of penalty functions in multi- objective optimization, Insti-
tute of Automatics, Technical University of Warsaw, 1978.

24 B.A. Murtagh, Advanced Linear Programming: Computation and Practice, Mc
Graw-Hill, New York, 1982.

25 Kreglewski, T., Lewandowski, A. and Rogowski, T . (1984) Dynamic Extension of
the DIDAS system and its Application in Flood Control. In: Plural Rationality
and Interactive Decision Processes. Eds. M. Grauer, M. Thompson, A.P. Wierzbicki.
Springer - Verlag, 1985.

26 Murtagh B.A. and Sanders M.A., A projected Lagrangian algorithm and its imple-
mentation for sparse nonlinear constraints, Mathematical Programming Study 16
(1982), 84-117

27 Makowski M., Sosnowski J., HYBRID 2.1: A mathematical programming package
for multicriteria dynamic problems. In: A.Lewandowski, A. Wierzbicki eds., Theory
Software and Testing Examples for Decision Support Systems, IIASA, Laxenburg,
September 1985.

T . Rogowski et al. IA C- DIDA S- L

IAC-DIDAS-L
A Dynamic Interactive Decision Analysis and Su port S stem
for Multicriteria Analysis of Linear and ~ ~ n a m i c E l n e a r bodels

on Professional Microcomputers

Tadeusz Rogowski, Jerzy Sobczyk, Andrzej P. Wierzbicki

Institute of Automatic Control, Warsaw University of Technology

ABSTRACT

This paper presents introductory documentation and a theoretical manual
for two, professional microcomputer based, versions of decision analysis
and support systems of DIDAS family. These versions have been developed
in 1986, in the Institute of Automatic Control, Warsaw University of
Technology, under a contracted study agreement with the Systems and
Decision Sciences Program of the International Institute for Applied Sys-
tems Analysis, and differ from previous DIDAS versions in several aspects.
Both are implemented on professional microcomputers compatible with
IBM-PC-XT (with a hard disk, Hercules or color graphics card and, prefer-
ably, a co-processor) and both support graphical representation of results
in interactive analysis. However, the first version: IAC-DIDAS-L1, uses a
linear programming solver written in FORTRAN, which results in rela-
tively fast execution of optimization runs during interactive analysis but
requires the preparation of the substantive model being analysed in the
system, in the MPS-format. The second version: IAC-DIDAS-L2, is writ-
ten in PASCAL and supports also an interactive definition and edition of
the substantive model by the user, in a user-friendly format of a
spreadsheet. Both versions are designed to work with substantive models
of linear programming and dynamic linear programming type, that is, to
perform and t o graphically represent the results of interactive multiobjec-
tive analysis of such models.

A. INTRODUCTORY DOCUMENTATION

A l . EXECUTIVE SUMMARY
In many situations of complex decisions involving economic, environmental and

technological decisions as well as in the cases of complex engineering design, the decision
maker needs help of an analyst, or a team of analysts, to learn about possible decision
options and their predicted results. The team of analysts frequently summarizes its
knowledge in the form of a substantive model of the decision problem that can be formal-
ized mathematically and computerized.

While such a model can never be perfect and cannot encompass all aspects of the
problem, it is often a great help t o the decision maker in the process of learning about
novel aspects of the decision situation and of gaining expertise in handling problems of a
given class. Even if the final decisions are typically made judgmentally - that is, are based
on holistic, deliberative assessments of all available information without performing a cal-
culative analysis of this information, see S.Dreyfus (1985) - the interaction of a decision

T. Rogowski et al. IA C- DIDA S- L

maker with the team of analysts and the substantive models prepared by them can be of
great value.

In organizing such interaction, many techniques of optimization, multicriteria deci-
sion analysis and other tools of mathematical programming can be used. To be of value
for a holistically thinking decision maker, however, all such techniques must be used as
supporting tools of interactive analysis rather than as means for proposing unique optimal
decisions and thus replacing the decision maker. The decision analysis and support sys-
tems of DIDAS family - that is, Dynamic Interactive Decision Analysis and Support sys-

- -

tems, see e.g. Lewandowski et al. (1984) - are especially designed to support interactive
work with a substantive model while using multicriteria optimization tools, but they
stress the learning aspects of such work, such as the right of a decision maker to change
his priorities and preferences when learning new facts. DIDAS systems can be used either
by analysts who want to analyse their substantive models, or by teams of analysts and
decision makers, or even by decision makers working alone with a previously defined sub-
stantive model; in any case, we shall speak further about the user of the system.

There are several classes of substantive models that require special technical means
of support. The IAC-DIDAS-L1 and -L2 versions are designed to support models of linear
programming type; specifically, multiobjective linear programming models, often with
dynamic structure. If a model has a multiobjective dynamic structure, the objectives
(called also criteria, outcomes, results, etc.) of decisions form trajectories, which might be
interpreted as graphs of the dependence of an objective on time or another variable of
similar type; these trajectories are evaluated by the user as a whole, complex objective.
The decisions can also have the form of trajectories.

Models of multiobjective linear programming type specify, firstly, the bounds on
admissible decision variables, in the form of linear equations or inequalities called con-
straints (including,for models of dynamic type, also special constraints called state equa-
tions of the model) and, secondly, the attainable decision outcomes, in the form of linear
equations for outcome variables among which the user can select his objectives. Actually,
the distinction between constraints and outcome variables is not necessarily sharp (if the
value of a constraint can be changed, it becomes an outcome variable) and the user might
select his objectives also among constraint variables.

There are many examples of decision problems that can be analysed by means of a
substantive model of multiobjective linear programming type; for example, DIDAS-type
systems with multiobjective, dynamic linear programming models have been used in plan-
ning energy policies (see Strubegger, 1985, Messner, 1985), agricultural policies (see
Makowski and Sosnowski, 1983) as well as in analysing various environmental or techno-
logical problems (see Kaden, 1985, Gorecki et al., 1983). As demonstrative or tutorial
examples, IAC-DIDAS-Ll and -L2 use a multiobjective linear programming model for a
problem of diet composition (see Appendix), where the decision variables correspond to
various dishes and the constraints or outcomes correspond to the amount of vitamins,
minerals, the cost and subjectively defined taste and stimulus of the diet; another example
might be a dynamic multiobjective linear programming model for flood control with
several tributaries of a river and several reservoirs, where the decisions are time sequences
- trajectories - of outflows of reservoirs and the outcomes are trajectories of flows in vari-
ous points on the river. The user can also define substantive models of multiobjective
(possibly dynamic) linear programming type for his own problems and analyse them with
the help of IAC-DIDAS-L1 or -L2.

A typical procedure of working with a DIDAS-type system consists of several phases.

T . Rogowski et al. - 108 - IA C- DIDA S- L

In the first phase, a user - typically, an analyst - defines the substantive model and
edits it on the computer. In earlier versions of DIDAS-type systems (which were mostly
implemented on bigger mainframe computers) this phase has not been explicitly sup-
ported in the system and the user had to separately prepare (define and edit) his model in
the MPS format. This is a typical format for single-objective linear programming prob-
lems and can be also used for multiobjective problems; however, working with MPS for-
mat requires some knowledge of linear programming and thus limits the use of such
DIDAS systems to rather experienced analysts. On the other hand, there are many exist-
ing linear programming models in the MPS format that could be analysed multiobjec-
tively with the help of a DIDAS system. Therefore the version IAC-DIDAS-L1 has been
designed to work with substantive models in the MPS format while the user-friendliness
of professional microcomputers compatible with IBM-PC-XT is exploited only in the
graphical representation of results of multiobjective analysis.

The second version: IAC-DIDAS-L2, exploits the user-friendliness of such microcom-
puters also by supporting the definition and edition of a substantive model in an easy for-
mat of a spreadsheet, where the decision variables (and, possibly, some model parameters)
are represented by the columns, the constraints and outcome variables - by the rows of
the spreadsheet, and the coefficients of all linear functions defining the model are entered
in the corresponding cells of the spreadsheet. Therefore, the user can define, review and
edit his model easily; when analysing his model in further phases of work with IAC-
DIDAS-L2, he can also return to the model definition phase and modify his model if
necessary. The user of IAC-DIDAS-L2 can also have several substantive models recorded
in a special model directory, use old models from this directory to speed up the definition
of a new model, etc., while the system supports automatically the recording of all new or
modified models in the directory. The easiness of model definition and edition has, how-
ever, its price: models defined in the spreadsheet format should not be too large and the
number of their variables (decision variables, constraints and outcome variables, while
counting separately variables for each time instant in dynamic models) should not be too
large (not greater than a hundred).

In the second phase of work with DIDAS-type systems, the user - here typically an
analyst working together with the decision maker - specifies a multiobjective analysis
problem related to his substantive model and participates in an initial analysis of this
problem. There might be many multiobjective analysis problems related to the same sub-
stantive model: the specification of a multiobjective problem consists in designating out-
come and constraint variables in the model that become objectives (or objective trajec-
tories in a dynamic case) and defining whether an objective (or objective trajectory)
should be minimized or maximized, or kept close to a given level. For a given definition of
the multiobjective analysis problem, the decision and outcomes in the model are subdi-
vided into two categories: those that are efficient with respect to the multiobjective prob-
lem (that is, such that no objective can be improved without deteriorating some other
objective) and those that are inefficient. It is assumed that the user is interested only in
efficient decisions and outcomes (this assumption is reasonable provided that the user has
listed all objectives of his concern; if he has not, or if some objectives of his concern are
not represented in the model he can still modify the sense of efficiency by adding new
objectives, or by requiring some objectives to be kept close to given levels, or by returning
to the model definition phase and modifying the model).

One of the main functions of a DIDAS-type system is to compute efficient decisions
and outcomes - following interactively various instructions of the user - and to present
them for analysis. This is done by solving a special parametric linear programming prob-
lem resulting from the specification of the multiobjective analysis problem; for this

T. Rogowski et al. IAC-DIDAS-L

purpose, IAC-DIDAS-L contains a specialized linear programming algorithm called solver.

Usually, however, the definition of a multiobjective problem admits many efficient
decisions and outcomes; therefore the user should first learn about bounds on eficient out-
comes. This is the main function of IAC-DIDAS-L in the initial analysis phase. The user
can request the system t o optimize any objective separately; however, there are also two
special commands in the system, related to this function. The first, called "utopia", results
in subsequent computations of the best possible outcomes for all objectives treated
separately (such outcomes are practically never attainable jointly, hence the name "uto-
pia" for the point in outcome space composed of such outcomes; in dynamic cases, only
approximate joint bounds for entire trajectories are computed). The second, called
"nadir", results in an estimation of the worst possible among the efficient outcomes
(defining precisely the worst possible efficient outcome is a very difficult computational
task; in some simple cases, the "utopia" computations give enough information to deter-
mine the worst possible among the efficient outcomes, but for more general cases this
information is not reliable and a more reliable way of estimating the worst possible
efficient outcome is implemented in IAC-DIDAS-L).

The "utopia" and "nadir" computations give important information to the user
about reasonable ranges of decision outcomes; in order to give him also information about
a reasonable compromise efficient solution, a neutral eficient solution can be also com-
puted in the initial analysis phase following a special command. The neutral solution is an
efficient solution situated "in the middle" of the range of the efficient outcomes, while the
precise meaning of being "in the middle" is defined by the distances between the utopia
and the nadir point. After analysing the utopia point, the nadir point and a neutral solu-
tion (which all can be represented graphically for the user), the initial analysis is com-
pleted and the user has already learned much about the ranges of the attainable efficient
objectives and the possible trade-offs between these objectives. Each change of the
definition of the substantive model or of the multiobjective analysis problem, however,
necessitates actually a repetition of the initial analysis phase; on the other hand, the user
can omit this repetition if he judges tha t the changes in the model or in multiobjective
analysis definition have been small.

The third phase of work with DIDAS-type systems consists in interactive scanning
of efficient outcomes and decisions, guided by the user through specifying aspiration levels
for each objective (or aspiration trajectories , in a dynamic case; called also reference
points or trajectories). The user has already reasonable knowledge about the range of pos-
sible outcomes and thus he can specify the aspiration levels that he would like to attain.
IAC-DIDAS-L utilizes the aspiration levels as a parameter in a special achievement func-
tion, coded in the system, uses its solver to compute the solution of a linear programming
problem, equivalent to maximizing this achievement function, and responds to the user
with an attainable efficient solution and outcomes (or outcome trajectories) that strictly
correspond t o the user-specified aspirations.

If the aspirations are "too high" (better than attainable), then the response of the
system is a solution with attainable, efficient outcomes that are uniformly as close to the
aspirations as possible. If the aspirations are "too low" (if they correspond t o attainable
but inefficient outcomes tha t can be improved), then the response of the system is a solu-
tion with outcomes tha t are uniformly better than the aspirations. The precise meaning of
the uniform approximation or improvement depends on scaling units for each objective
tha t can be either specified by the user or defined automatically in the system as the
differences between the utopia point and the current aspiration point. This second,
automatic definition of scaling units has many advantages t o the user who is not only

T. Rogowski et al. - 110- IA C- DIDA S- L

relieved of specifying scaling units but also has a better control of the selection of efficient
outcomes by changing aspiration levels in such a case.

After scanning several representative efficient solutions and outcomes controlled by
changing aspirations, the user usually learns enough to select either an actual decision,
subjectively, (which needs not to correspond to the decisions proposed in the system, since
even the best substantive model might differ from real decision situation) or an efficient
decision and outcome proposed in the system as a basis for actual decisions.

Rarely, the user might be still uncertain about what decision to choose; for such a
case, several additional options can be included in a system of DIDAS type. Such options
include two more sophisticated scanning options: multidimensional scanning, resulting
from perturbing current aspiration levels along each coordinate of objective space, direc-
tional scanning, resulting from perturbing current aspiration levels along a direction
specified by the user (see Korhonen, 1985). Another option is forced convergence, that is,
such changes of aspiration levels along subsequent directions specified by the user tha t the
corresponding efficient decisions and outcomes converge to a final point that might
represent the best solution for the preferences of the user. However, not all these addi-
tional options are implemented in IAC-DIDAS-L, since the experience of working with
DIDAS-type systems shows that these options are rarely used.

A2. SHORT PROGRAM DESCRIPTION
The IAC-DIDAS-L1 and -L2 systems (Institute of Automatic Control, Dynamic

Interactive Decision Analysis and Support, Linear versions 1 and 2) are decision support
systems designed to help in the analysis of decision situations where a mathematical
model of substantive aspects of the situation can be formulated in the form of a multiob-
jective linear programming problem, possibly of dynamic structure.

The IAC-DIDAS-Ll and -L2 systems are recorded on two separate diskettes that
should be installed on an IBM-PC-XT or a compatible computer with a hard disk, Her-
cules or a color graphic card and, preferably, a coprocessor. Both diskettes contain com-
piled codes, partly in FORTRAN and partly in PASCAL for IAC-DIDAS-L1, and entirely
in PASCAL for IAC-DIDAS-L2. After installing them in the users directory, they can be
activated (by the command didasl or didas2 Cr) and used in a program system. Both sys-
tems support the following general functions:

1) The definition and edition of a substantive model of the decision situation, in a
linear programming form. IAC-DIDAS-L1 uses the MPS format of linear program-
ming for this purpose, while IAC-DIDAS-L2 supports model definition and edition in
a user-friendly format of a spreadsheet.

2) The specification of a multiobjective decision analysis problem related t o the sub-
stantive model. This is performed by several commands from the main menu of
IAC-DIDAS-L1, and by specific features of spreadsheet edition in IAC-DIDAS-L2.

3) The initial multiobjective analysis of the problem, resulting in estimating bounds on
efficient outcomes of decisions and in learning about some extreme and some neutral
decisions. In both IAC-DIDAS-L1 and -L2, these functions are supported by some
specific commands from the main menu.

4) The interactive analysis of the problem with the stress on learning by the user of
possible efficient decisions and outcomes, organized through systems' response t o
user-specified aspiration levels or reference points for objective outcomes. In both
IAC-DIDAS-L1 and -L2, the system responds with efficient solutions and objective
outcomes obtained through the maximization of an achievement function that is

T . Rogowski et al. - 111 - IA C- DIDA S- L

parameterized by the user-specified reference points. The maximization is performed
through a linear programming algorithm called solver, written in FORTRAN for
IAC-DIDAS-Ll and in PASCAL for IAC-DIDAS-L2. In both systems, the interac-
tive analysis is supported by specific commands from the main menu, including com-
mands that might help in convergence to the most preferred solution; however, the
main function of both systems is helping the user to learn about novel aspects of the
decision situation, not necessarily forcing him to converge to one, most preferred
solution.

The main menu of commands in IAC-DIDAS-L1 is the following:

1)Problem setting phase

? Cr - displays help.

MAX I MIN I GUI I FLO (REM objectivename Cr - includes new objectives (from
the list of names of outcome and decision variables of the model), changes status (to max-
imized, minimized, guided - that is, corresponding to an equality constraint, or floating -
that is, displayed only for information purposes) or removes an objective from the
definition of the multiobjective analysis problem.

UPP I LOW I FIX objectivename value Cr - sets bounds for objective values (UPP
for upper bounds, LOW for lower bounds, FIX for equality constraints of GUI type; all
objectives except of GUI and FLO types must have specified bounds in this phase;
defaults are zero and rhs or bounds - as specified in the model).

SCA objectivename value Cr - sets user-specified scaling units for an objective (all
objectives except of GUI and FLO types must have specified scaling units in this phase;
default is 1).

RAS binary (0 or 1) Cr - sets off or on automatic utopia- reference scaling (after
computing utopia point, see further commands, the user-supplied scaling can be replaced
by a more convenient type of scaling).

EPS value Cr - sets the value of parameter O<eps<l in the achievement function.

XRH value Cr - sets the value of parameter p > l in the achievement function.

EPS 1 XRH Cr - displays the value of parameter eps or rho.

2) Initial analysis phase

FOR objectivename Cr - results in the calculation and paphical display of an
extreme solution, that is, the optimal solution for a given, single objective.

UTO Cr - calculates and displays graphically utopia and approximate nadir points
(that is, upper and lower bounds for efficient decision outcomes).

NAD Cr - improves and displays graphically the approximation of nadir point.

NEU Cr - calculates and displays graphically a neutral solution using scaling
coefficients based on utopia-nadir differences.

GRA Cr - graphic displays.

REU Cr - changes scale of graphical displays to utopia-nadir relative.

REB Cr - changes scale of graphical displays to relative to bounds. 3) Interactive
analysis phase

RFP I REF objectivename value (%) Cr - sets reference point for an objective (if the
option % is used, this point is given in % of current graphical display scale).

T. Rogowski et al. - 112 - IA C- D I D A S - L

GO Cr - calculates and displays graphically an efficient solution related to the last
specified reference point.

DIS BOU 1 UTO I SOL I Cr - displays numerically bounds, or utopia and nadir
points, or the last solution.

SCN value Cr - starts the SCAN procedure with the step d = 'value'.

ACC objname Cr - accepts the solution obtained during the SCAN process, when the
reference point component corresponding to 'objname' was perturbed, as a new reference
point.

PRI Cr - writes the last results on the file RESULTS.

PSC Cr - writes the results of the last scan on the file RESULTS.

BAS Cr - makes possible manipulating with the data base for solution (up to 10
items). After invoking this command the following menu appears at the screen:

(1) save (2) load (3) remove (4) list (5) quit.
The user ought to select the option number:

- option (1) save - a t this point the program asks:
save as ?:

and the user gives a name to the last solution to be saved in the data base,

- option (2) load - at this point the user gives the names of the data and the solution
to be retrieved from the data base,

- option (3) remove - removes a name from the data base,

- option (4) list - lists the names saved in the data base,

- option (5) quit - returns to the main menu.

STOP Cr - ends work with the system.

The main menu of IAC-DIDAS-L2 performs also all the above functions, with the
distinction that most of the functions of phase 1) and 2) are specific commands of
spreadsheet edition: the decision variables are defined as columns of the spreadsheet, the
outcome variables are defined as rows, model coefficients are entered in the corresponding
cells, there are special rows and columns for scaling units, lower and upper bounds, for
defining objective outcomes and their type, for reference points, utopia and nadir points,
for solutions corresponding to the reference points. The data for tutorial example, con-
tained in the Appendix, is illustrated by several screen outprints that are related to vari-
ous functions of model edition in IAC-DIDAS-L2. The functions of other phases are exe-
cuted by macrocommands using various controlling keys; the user can get various help
displays that suggest in an easy fashion the commands useful in a current phase of work
with the system.

IAC-DIDAS-L1 and -L2 systems have been developed in the Institute of Automatic
Control, Warsaw University of Technology, Warsaw, Poland, in a contracted study
agreement "Theory, Software and Testing Examples for Decision Support Systems" with
the Systems and Decision Sciences Program of the International Institute for Applied Sys-
tems Analysis, Laxenburg, Austria, which has the copyright for these systems.

B. THEORETICAL MANUAL
The standard form of a multiobjective linear programming problem is defined as fol-

lows:

mazimize (q = Cx); X = {XE Rn: Ax= b ,x>O) (1)

T . Rogowski et al. - 113 - IA C- DIDAS-L

where zcRn, ~ E R P , A is a m x n matrix, C is a p x n matrix and the maximization of
the vector q of p objectives is understood in the Pareto sense: f , $ are solutions of (1) iff
$=Cf, ? E X and there are no such z,q, with q=Cz, z E X that q>$, q#q. Such solu-
tions f and g^ of (1) are called an efficient decision i and the corresponding efficient out-
come G, respectively. If, in the above definition, it were only required that there would be
no z and q, with q= Cz, z E X , such that q>$, then the solutions f , i would be called
weakly e f i c i en t . Equivalently, if the set of all attainable outcomes is denoted by

Q={QERP: q=Cz , EX) (2) -
and so called positive cones D= RP+ , D=RT \{o) and 6 = i n t ~ p are introdu-ced (thus,

;t
9 2 6 can be written as g - $ ~ D , g > $, g # i as q - + ~ ~ and q>q as q - i E d then the
sets of efficient outcomes Q and of weakly efficient outcomes Q W can be written as:

The set of weakly efficient outcomes is larger and contains the set of efficient out-
comes; in many practical applications, however, the set of weakly efficient outcomes is
decisively too large. For multiobjective linear programming problems, the efficient out-
comes are always properly e f i c i en t , that is, they have bounded tradeoff coe f ic ien ts that
indicate how much an objective outcome should be deteriorated in order to improve
another objective outcome by a unit.

The abstract problem of multiobjective l inear programming consists in determining
the entire sets Q or Q W , or a t least all vertices or basic solutions of the linear program-
ming problem that corresponds to efficient decisions and outcomes.

The practical problem of multiobjective decision support, using linear programming
models, is different and consists in computing and displaying for the decision maker (or,
generally, for the user of the decision support system) some selected efficient decisions and
outcomes. This selection of efficient decisions and outcomes should be easily controlled by
the user and should result in any efficient outcome in the set Q he might wish to attain, in
particular, also in efficient outcomes that are not necessarily basic solutions of the original
linear programming problem; moreover, weakly efficient outcomes are not of practical
interest for the user.

Before turning to some theoretical problems resulting from these practical require-
ments, observe first that the standard formulation of multiobjective linear programming
is not the most convenient for the user. Although many other formulations can be rewrit-
ten to the standard form by introducing proxy variables, such reformulations should not
bother the user and should be automatically performed in the decision support system.
Therefore, we present here another basic formulation of the multiobjective linear pro-
gramming problem, more convenient for typical applications.

A substant ive model of multiobjective linear programming type consists of the
specification of vectors of n decision variables zcRn and of m outcome variables ycRrn ,
together with linear model equations defining the relations between the decision variables
and the outcome variables and with model bounds defining the lower and upper bounds for
all decision and outcome variables:

where A C is a m x n matrix of coefficients. Among the outcome variables, some might be
chosen as corresponding to equality constraints; let us denote these variables by

T . Rogowski et al. - 114- IA C-DIDAS-L

y c ~ ~ m ' ~ ~ m and the constraining value for them - by bc and let us write the additional
constraints in the form:

where A is the corresponding submatrix of A . The outcome variables corresponding to
equality constraints will be called guided outcomes here. Some other outcome variables
can be also chosen as optimized objectives or object ive outcomes. Denote the vector of p
objective outcomes by g € R P c R m (some of the objective variables might be originally
not represented as outcomes of the model, but we can always add them by modifying this
model) to write the corresponding objective equations in the form:

where C is another submatrix of A . Thus, the set of attainable objective outcomes is
again Q= CX, but the set of admissible decisions X is defined by:

Moreover, the objective outcomes are not necessarily minimized; some of them might
be minimized, some maximized, some stabilized or kept close to given aspi rat ion levels
(that is, minimized if their value is above aspiration level and maximized if their value is
below aspiration level). All these possibilities can be summarized by introducing a
different definition of the positive cone D:

where the first p ' objectives are to be maximized, the next, from p'+l to p", are to be
minimized, and the last, from p"+l to p , are to be stabilized. Actually, the user needs
only to define what t o do with subsequent objectives; the concept of the positive cone D
is used here only in order to define comprehensively what are efficient outcomes for the
multiobjective problem. Given some aspiration levels for stabilized objectives and the
requirement that these objectives should be minimized above and maximized below
aspiration levels, the set of efficient outcomes can be defined only relative to the aspira-
tion levels.

However, since the user can define aspiration levels arbitrarily, of interest here is the
union of such relative sets of efficient outcomes. Let D=D\ (0); then the outcomes that
might be efficient for arbitrary aspiration levels for stabilized objectives can be defined, as
before, by the relation (3) . The weakly efficient outcomes are of no practical interest in
this case, since the cone D , typically, has empty interior which implies that weakly
efficient outcomes coincide with all attainable outcomes.

The stabilized outcomes in the above definition of efficiency are, in a sense, similar
to the guided outcomes; however, there is an important distinction between these two
concepts. Equality constraints must be satisfied; if not, then there are no admissible solu-
tions for the model. Stabilized objective outcomes should be kept close to aspiration lev-
els, but they can differ from those levels if, through this difference, other objectives can be
improved. The user of a decision support system should keep this distinction in mind and
can modify the definition of the multiobjective analysis problem by taking, for example,
some outcomes out of the guided outcome category and putting them into the stabilized
objective category.

By adding a number of proxy variables and changing the interpretation of matrix A ,
the substantive model formulation (5), (6), (7), (8) together with its positive cone (9) and
the related concept of efficiency could be equivalently rewritten to the standard form of

T. Rogowski et al. - 115 - I A C-DIDAS-L

multiobjective linear programming (1); this, however, does not concern the user. More
important is the way of user-controlled selection of an efficient decision and outcome from
the set (3). For stabilized objective outcomes, the user can change the related aspiration
levels in order to influence this selection; it is assumed here that he will use, for all objec-
tive outcomes, the corresponding aspiration levels in order to influence the selection of
efficient decisions. The aspiration levels are denoted here ij, or, as a vector, i j and called
also, equivalently, reference points.

A special way of parametric scalarization of the multiobjective analysis problem is
utilized for the purpose of influencing the selection of efficient outcomes by changing refer-
ence points. This parametric scalarization is obtained through maximizing the following
order-approzimating achievement junction (see Wierzbicki 1983, 1986):

where the parameter 6 should be positive, even if very small; if this parameter would be
equal to zero, then the above function would not be order-approximating any more, but
order-representing, and its maximal points could correspond to weakly efficient outcomes.
The parameter p should be p z l ; the interpretation of both these parameters is given
later.

The functions z,(q,,ij,) are defined as follows:

where

The coefficients si,sti and sf' are scaling units for all objectives, either defined by

the user (in which case sti=sf', the user does not need to define two scaling coefficients for
a stabilized objective outcome) or determined automatically in the system (see further
comments).

The achievement function s(q,i j) is maximized with q= Cz over ZEX; its maximi-
zation in the system is converted automatically to an equivalent linear programming
problem, different than the original one, and having more basic solutions that depend on
the parameter ij. If the coefficient c>O, then the achievement function has the following
properties (see Wierzbicki, 1986):

a) For an arbitrary aspiration level or reference point ij, not necessarily restricted to be
attainable or not attainable, each maximal point 3 of the achievement function
s(q,ij) with q = C z over ZEX is a D, -efficient solution,that is, a properly efficient
solution with tradeoff coefficients bounded approximately by 6 and 116.

b) For any properly efficient outcome q* with trade-off coefficients bounded by 6 and
116, there exist such reference points i j that the maximum of the achievement func-
tion s(q,i j) is attained at the properly efficient outcome q*. In particular, if the user
(either by chance or as a result of a learning process) specifies a reference point i j
that in itself is such properly efficient outcome, i j=t , then the maximum of the

T. Rogowski et al. IA C-DIDA S-L

therefore, it is called the utopia point tuto
However, this way of computing the 'upper' bound for efficient outcomes is not prac-

tical for problems of dynamic structure (see further comments); thus, IAC-DIDAS-Ll and
-L2 use a different way of estimating the utopia point. This way consists in subsequent
maximizations of the achievement function s (q, q) with suitably selected reference points.
If an objective should be maximized and its maximal value must be estimated, then the
corresponding component of the reference point should be very high, while the com-
ponents of this point for all other maximized objectives should be very low (for minimized
objectives - very high; stabilized objectives must be considered as floating in this case that
is, should not enter the achievement function). If an objective should be minimized and its
minimal value must be estimated, then the corresponding component of the reference
point should be very low, while other components of this point are treated as in the previ-
ous case. If an objective should be stabilized and both its maximal and minimal values
must be estimated, then the achievement function should be maximized twice, first time
as if for a maximized objective and the second time as if for minimized one. Thus, the
entire number of optimization runs in utopia point computations is pU+2(p-p"). It can
be shown that , for problems with static structure (no trajectory objectives), this pro-
cedure gives a very good approximation of the utopia point tuto, whereas the precise
meaning of 'very high' reference should be interpreted as the upper bound for the objec-
tive plus, say, twice the distance between the lower and the upper bound, while the mean-
ing of 'very low' is the lower bound minus twice the distance between the upper and the
lower bound.

During all these computations, the lower bound for efficient outcomes can be also
estimated, just by recording the lowest efficient outcomes that occur in subsequent optim-
izations for maximized objectives and the highest efficient outcomes for minimized objec-
tives (there is no need to record them for stabilized objectives, where the entire attainable
range is estimated anyway). However, such a procedure results in the accurate, tight
'lower' bound for efficient outcomes - called nadir point in& - only if p"=2; for larger
numbers of maximized and minimized objectives, this procedure can give misleading
results, while an accurate computation of the nadir point becomes a very cumbersome
computational task.

Therefore, IAC-DIDAS-Ll and -L2 offer an option of improving the estimation of the
nadir point in such cases. This option consists in additional p " maximization runs for
achievement function s(q,@) with reference points i j that are very low, if the objective in
question should be maximized, very high for other maximized objectives, and very low for
other minimized objectives, while stabilized objectives should be considered as floating. If
the objective in question should be minimized, then the corresponding reference com-
ponent should be very high, while other reference components should be treated as in the
previous case. By recording the lowest efficient outcomes that occur for maximized objec-
tives in subsequent optimizations (and are lower than the previous estimation of nadir
component) and the highest efficient outcomes for minimized objectives (higher that the

-nad previous estimation of nadir component), a better estimation q of the nadir point is
obtained.

Once the approximate bounds iuto and id are computed and known to the user,
they can be utilized in various ways. One way consists in computing a neutral eficient
solution, with outcomes situated approximately 'in the middle' of the efficient set. For
this purpose, the reference point q is situated a t the utopia point tuto (only for maxim-
ized or minimized outcomes; for stabilized outcomes, the user-supplied reference com-
ponent i j , must be included here) and the scaling units are determined by:

T. Rogowski et al.

s.=~(j " tO 1 1 - 9 ; A nad 1, l < t < p - - (1 3 4

for maximized or minimized outcomes, and:

for stabilized outcomes, while the components of the utopia and the nadir points are
interpreted respective] as the maximal and the minimal value of such an objective; the
correction by 0.01 (i?'-i:d) ensures that the scaling coefficients remain positive, if the
user selects the reference components for stabilized outcomes in the range q,< iyd
(if he does not, the system automatically projects the reference component on this range).
By maximizing the achievement function s (q , q) with such data, the neutral efficient solu-
tion is obtained and can be utilized by the user as a starting point for further interactive
analysis of efficient solutions.

In further interactive analysis, an important consideration is that the user should be
able t o influence easily the selection of the efficient outcomes q̂ by changing the reference
point in the maximized achievement function s (q , q) . It can be shown (see Wierzbicki,
1986) that best suited for this purpose is the choice of scaling units determined by a
difference between the slightly displaced utopia point and the current reference point:

for maximized or minimized outcomes. For stabilized outcomes, the scaling units are
determined somewhat differently than in (13b):

It is assumed now that the user selects the reference components in the range
@ y d < q , < 4yt0 or iyt0<qi<i,Md (if he does not, the system automatically projects the
reference component on these ranges) for all objectives. Observe that , similarly as in the
case of the neutral solution, the scaling units are determined automatically once the uto-
pia, nadir and reference points are known; the user is not bothered by their definition.
The interpretation of the above way of setting scaling units is that the user attaches
implicitly more importance to reaching a reference component if he places i t close t o the
known utopia component; in such a case, the corresponding scaling unit becomes smaller
and the corresponding objective component is weighted stronger in the achievement func-
tion s (q , q) . Thus, this way of scaling, relative to utopia-reference diflerence, is taking
into account the implicit information, given by the user, specified by the relative position
of the reference point.

When the relative scaling is utilized, the user can easily obtain - by moving suitably
reference points - efficient outcomes that are either situated close t o the neut!al solution,

A

in the middle of efficient outcome set Q , or in some remote parts of the set Q, say, close
to various extreme solutions.

Typically, several experiments of computing such efficient outcomes give enough
information for the user t o select an actual decision - either some efficient decision sug-
gested by the system, or even a different one, since even the best substantive model

T . Rogowski et al. - 119- IA C-DIDA S-L

cannot encompass all aspects of a decision situation. However,there might be some cases
in which the user would like to receive further support - either in analysing the sensitivity
of a selected efficient outcome, or in converging t o some best preferred solution and out-
come.

For analysing the sensitivity of an efficient solution t o changes in the proportions of
outcomes, a mult idimensional scan of efficient solutions is implemented in IAC-DIDAS-L1
and -L2. This operation consists in selecting an efficient outcome, accepting it as a base
$as for reference points, and performing p" additional optimization runs with the refer-
ence points determined by:

-bas nuto -Md - -bas ipj, l < j < p ~
qj='?j +7(9 j - P j)i 9i=9i (15)

where 7 is a coefficient determined by the user, - l < r < l ; if the relative scaling is used - nad - uto and the reference components determined by (15) are outside the range q . , qj , they 3
are projected automatically on thid range. The reference components for stabilized out-
comes are not perturbed in this operation (if the user wishes to perturb them, he might
include them, say, in the maximized category). The efficient outcomes, resulting from the
maximization of the achievement function s(q,q) with such perturbed reference points,
are typically also perturbed, mostly along their subsequent components, although other
their components might also change.

For analysing the sensitivity of an efficient solution when moving along a direction
in the outcome space - and also as a help in converging t o a most preferred solution - a
directional scan of eficient outcomes is implemented in IAC-DIDAS-L1 and -L2. This
operation consists again in selecting an efficient outcome, accepting it as a base eas for
reference points, selecting another reference point q, and performing a user-specified
number K of additional optimizations with reference points determined by:

The efficient solutions t (k) , obtained through maximizing the achievement function
s(q,q(k)) with such reference points, constitute a cut through the efficient set Q when
moving approximately in the direction ~ - 8 ~ . If the user selects one of these efficient
solutions, accepts i t as a new $" and performs the next directional scans along some new
directions of improvement, he can converge eventually to his most preferred solution (see
Korhonen, 1985). Even if he does not wish the help in such convergence, the directional
scans can give him valuable information.

Another possible way of helping in convergence to the most preferred solution is
choosing reference points as in (16) but using a harmonically decreasing sequence of
coefficients (such as l / j , where j is the iteration number) instead of user-selected
coefficients k / K . This results in convergence even if the user makes stochastic errors in
determining next directions of improvement of reference points, or even if he is not sure
about his preferences, and learns about them during this analysis (see Michalevich, 1986).
Such a convergence, however, is rather slow and is thus not implemented in IAC-DIDAS-
L1 and -L2.

A separate problem is multiobjective decision analysis and support based on s u b
stantive models of dynamic structure. A useful standard of defining a substantive model
of multiobjective linear dynamic programming type is as follows.

The model is defined on T+l discrete time periods t , O < t < T (where t is a discrete
time variable counted in days, years or any other time units; models of dynamic structure
can also have other interpretations of the variable t , such numbers of subsequent

T. Rogowski et al. - 120 - IA C- DIDA S- L

operations, etc). The decision variable z, called in this case control trajectory, is an entire
sequence of decisions:

and a special type of outcome variables, called state variables, W (~) E R ~ ' , is also con-
sidered. The entire sequence of state variables, or state trajectory:

is actually one time period longer than z; the initial state w(0) must be specified as given
data, while the decision z(T) in the final period is assumed to influence the state
w (T+ 1) only, thereby of no interest for the interval (0, ..., T). This is because the funda-
mental equations of a substantive dynamic model have the form of state equations:

w (t+ l) = A(t)w(t)+B(t)z (t) ; t=O,l, ... T-1, w(0) - given (18a)

The model outcome equations have, then, the form:

and define the sequence of outcome variables, or outcome trajectory:

The decision, state and outcome variables can all have their corresponding lower and
upper bounds (each understood as an appropriate sequence of bounds):

The matrices A (t) , B (t) , C(t) and D (t) , of appropriate dimensions, can dependent
on or can be independent of time t ; in the latter case, the model is called time invariant
(actually, in a fully time-invariant model, the bounds should also be independent of time
t , that is, they should be constant for all time periods). This distinction is important, in
multiobjective analysis of such models only in the sense of model edition: time-invariant
models can be defined easier by automatic, repetitive edition of model equations and
bounds for subsequent time periods.

Some of the outcomes might be chosen to be equality constrained, or guided along a
given trajectory:

The optimized (maximized, minimized or stabilized) objective outcomes of such a
model can be actually selected among both state variables and outcome variables (or even
decision variables) of this model; in any case, they form an entire objective trajectory:

Various positive cones could be defined to specify the sense of efficiency of such
objective trajectory; however, it is assumed here that the sense of efficiency cannot change
along the trajectory, that is, a component qi(t) that will be maximized in one period t
must be also maximized in other time periods, etc. (however, not necessarily in all time
periods: if the user wishes to maximize,minimize or stabilize some outcome only in one or
several time periods, he can always change suitably the definition of objective outcomes).
Thus, assume that the first components q,(t), for l< i<p ' , are to be maximized, next, for
p f+ l< i<p" , are to be minimized, and the last components, for pU+1< i<p , are to be
stabilized. The achievement function s(q,q) in such a case takes the form:

T. Rogowski et al. - 121 - IA C- DIDA 5'- L

T

min min z,(t), p(T+l)p c fi zi(t)/t (
T P

0 ~ t l TI<,<P t=Oi=l T + ~) P ,=,,=I C C z,(t) (21)

where the functions z, (t) = z,[qi(t) ,q,(t)] are defined by:

where

The user does not need to define time-varying scaling units s i (t) nor two different
scaling units si(t),s:(t) for a stabilized objective: the time-dependence of scaling units
and separate definitions of s{(t),sj'(t) are needed only in the case of automatic, relative
scaling.

The estimation of utopia and nadir points in the space of objective trajectories
would create, in the dynamic case, major computational difficulties (p (T+ 1) subsequent
optimization runs) if exact estimates were needed; moreover, even if the utopia point in
itself is not attainable, it can be better interpreted if each of its components - in this case,
each objective component trajectory - is attainable for the model. These considerations
indicate that the way of estimating utopia point by p (or by prr+2(p-p"), when stabil-
ized objectives are included) subsequent maximizations of the achievement function (21)
with suitably 'very high' or 'very low' components of reference trajectories:

q={@(O),q(l),.....,q(T))ER ~ (~ + l) , ~ (t) € RP (24)

is much more adequate for the dynamic case than an exact computation of the utopia
point. Denote the results of such maximizations with subsequent reference trajectories
q(') by tj('),i=l, ...,p, (we do not include here stabilized outcomes for the simplicity of
denotations); then the components of an approximate utopia trajectory can. be determined
as :

whereas the components of an approximate nadir trajectory (in the case of maximized tra-
jectories, with obvious modifications in the minimized case) should be determined as:

-nad
q, (t) a = rnin tj!j)(t), t=O,l,.,,, p

l < _ j l p
(25b)

Unfortunately, the components of such nadir approximation cannot be interpreted as
attainable trajectories for the model (since the minimization in (25b) can result in
different j for various t) ; however, this is less important than in the utopia trajectory
case. A more precise approximation of nadir point can be obtained, similarly as in the
static case, by additional p (or only p", if stabilized objectives are included in the model)
maximizations of achievement function (21) with yet other reference trajectories
4i) . q , ~ = p + 1, ...,, 2p, and by extending the minimization in (25b) to 1 < j s 2 p .

Once the approximations of utopia and nadir trajectories are determined, a neutral
solution as well as the automatic relative scaling can be defined similarly as in the static

T. Rogowski et al. - 122 - IA C- DIDA S-L

case. Other aspects of interactive multiobjective analysis of dynamic models are similar to
the static case; naturally, the graphical representation of results of analysis is in some
cases more straightforward (for single optimization runs) or, in other cases, more involved
(for repetitive runs, as in utopia, nadir and scanning computations) than in the static
case.

REFERENCES
Dreyfus, S. (1984): Beyond rationality. In M.Grauer, M.Thompson,

A.P.Wierzbicki(eds), Plural Rationality and Interactive Decision Processes, Proceed-
ings Sopron 1984. Springer Verlag, Berlin Heidelberg New York Tokyo (Lecture
Notes in Economic and Mathematical Systems 248).

Kaden, S. (1985) : Decision support system for long-term water management in open-pit
lignite mining areas. In G.Fandel, M.Grauer, A.Kurzhanski and A.P.Wierzbicki
(eds), Large Scale Modelling and Interactive Decision Analysis, Proceedings
Eisenach 1985. Springer Verlag, Berlin Heidelberg New York Tokyo (Lecture Notes
in Economic and Mathematical Systems 273).

Korhonen, P . (1985): Solving discrete multiple criteria decision problems by using visual
interaction. In G .Fandel, M.Grauer, A.Kurzhanski and A.P. Wierzbicki(eds) , Large
Scale Modelling and Interactive Decision Analysis, Proceedings Eisenach 1985.
Springer Verlag, Berlin Heidelberg New York Tokyo (Lecture Notes in Economic
and Mathematical Systems 273).

Lewandowski, A., M.Grauer, A.P.Wierzbicki (1983): DIDAS - theory, implementation
and experiences. In M.Grauer, A.P.Wierzbicki (eds), Interactive Decision Analysis,
Proceedings Laxenburg 1983. Springer Verlag, Berlin Heidelberg New York Tokyo
(Lecture Notes in Economic and Mathematical Systems 229).

Makowski, M. and J.Sosnowski (1984): A decision support system for planning and con-
trolling agricultural production with a decentralized management structure. In
M.Grauer, M.Thompson, A.P.Wierzbicki (eds), Plural Rationality and Interactive
Decision Processes, Proceedings Sopron 1984. Springer Verlag, Berlin Heidelberg
New York Tokyo (Lecture Notes in Economic and Mathematical Systems 248).

Messner, S. (1985): Natural gas trade in Europe and interactive decision analysis. In
G.Fande1, M.Grauer, A.Kurzhanski and A.P.Wierzbicki (eds), Large Scale Modelling
and Interactive Decision Analysis, Proceedings Eisenach 1985.Springer Verlag, Ber-
lin Heidelberg New York Tokyo (Lecture Notes in Economic and Mathematical Sys-
tems 273).

Michalevich, M. (1986): Stochastic approaches to interactive multicriteria optimization
problems. IIASA WP-86-10. International Institute for Applied Systems Analysis,
Laxenburg, Austria. Wierzbicki, A.P. (1983): A mathematical basis for satisficing
decision making. Mathematical Modelling 3, 391-405.

Wierzbicki, A.P. (1986): On the completeness and constructiveness of parametric charac-
terizations to vector optimization problems. OR Spektrum 8, 73-87.

T. Rogowski et al. IA C- D I D A S- L

APPENDIX

A shortened spreadsheet format of the tutorial model of
multiobjective diet selection.

Dish Lo/Up Rolls Cereals Butter Cheese Fruitfre Milk Coffee
Unit 50 g 50 g 10 g 5 0 g 150g 250 g 1 cup

Lo.bound 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Up.bound 5 2 5 3 2 3 3
Cost 0/100 5 4 5 9 14 6 18
Taste 61100 2 2 2 2 2 1 2
Stimulus 4/60 3 2 4 3 0.5 5 10
Calorie 300/1500 124 179 75 98 79 137 0.0
Proteins 4 3 0.1 12 0.5 7 0.0
Carbohyd. 26 36 0.0 1 11 10 0.0
Fats 1 2 8 - 5 0.5 7 0.0
Calcium l00/800 8 10 2 235 9 295 0.0
Magnesium 12 23 0.2 3.5 5 30 0.0
Phosphor. 42 103 - 1 .G 187 13 213 0.0
Iron 1 1 0.0 0.2 0.4 0.25 0.0
Vit.A 200/1GOO 0.0 0.0 270 172 160 277 0.0
Vit.B 0.12 0.14 0.0 0.23 0.06 0.73 0.0
Vit.C 0.0 0.0 0.0 0.0 30 2.5 0.0
Vit.PP 0.4 1 .O 0.01 0.05 0.23 0.25 0.0

The following example is spreadsheet format of IAC-DIDAS-L2 (a screen print, oth-
er parts of the data accessible through scrolling).

Names Rolls Cereals Butter Cheese FrultFre
Model editing Units 50 g 50 g 10 g 50 g 150 g

va 1 ue
Bounds upper 5. 00E+00 2. 00E+00 5. 00E+00 3. 00E+00 2. 00E+00

1 ower

cost
Taste
Stlmulu
Cal lor1
Proteln
Carbohy
Fats
Calclum
Magnesl
Phospho
Iron
Vlt. A
Vit. B

I Zl
I -"- ' -- - r r - A I ' 1. 00E+02 5. 00E+00 4. OOE+00 5. 00E+00 9. 00E+00 1. 4OE+Ol

artun 6. 00E+00 1. 00E+02 3. 00E+00 2. 00E+00 2. 00E+00 2. 00E+00 2. 00E+00
artun 4. 00E+00 6. 00E+Ol 3. 00E+00 1. 00E+00 4. 00E+00 3. 00E+00 5. 00E-01
Kcal 3. 00E+02 1. 50E+03 1. 24E+02 1. 79E+02 7. 50E+Ol 9. 80E+Ol 7. 90E+Ol

4. 00E+00 3. 00E+00 1. 00E-01 1. 20E+Ol 5. 00E-01
2. 60E+Ol 3. 60E+Ol l.OOE+OO 1. lOE+Ol
1. 00E+00 2. 00E+00 8. 00E+00 5. 00E+00 5. 00E-01

1. 00E+02 8. 00E+02 8. 00E+00 1. 00E+Ol 2. 00E+00 2. 35E+02 9. 00E+00
1. 20E+Ol 2. 30E+Ol 2. 00E-01 3. 50E+00 5. 00E+00
4. 20E+Ol 1. 03E+02 1. 60E+00 1. 87E+02 1. 30E+Ol
1. 00E+00 1.00E+00 2.OOE-01 4.00E-01

2. 00E+02 1. 60E+03 2. 70E+02 1. 72E+02 1. 60E+02
1. 20E-01 1. 40E-01 2. 30E-01 6. 00E-02

Press Fl for help

T. Rogowski et al. - 124 -

Editing help during model editing in IAC-DIDAS-L2

IA C- DIDA S- L

Press Fl forhelp < INSERT)

Help
F 1 - Help
F2 - Qult edltlng - dlscard changes
Return - Exlt edltlng - save changes
BacKspace - Delete character left
De 1 - Delete character on cursor
Ins - Insert mode on / off
Arrows - Move cursor
Home - Move to begln of llne
End - Move to end of line
ESC - Exit help

Further editing help in IAC-DIDAS-L2

real s Butter Cheese FrultFre
g 10 g 50 g 150 g

00E+00 5.00E+00 3.00E+00 2.00E+00

00E+00 5. 00E+00 9. 00E+00 1. 40E+Ol
00E+00 2.00E+00 2.00E+00 2.00E+00
00E+00 4.00E+00 3.00E+00 5.00E-01
79E+02 7. 50E+Ol 9. 8OE+Ol 7. 90E+Ol
00E+00 1. 00E-01 1. 20E+Ol 5. 00E-01

Carbohy 2. 60E+Ol 3. 60E+Ol l.OOE+OO 1. lOE+Ol
Fats l.OOE+OO 2.00E+00 00E-01

Help
F 1 - Help
F2 - Edit cell
Alt/Del - Delete row
A1 t/Ins - Insert row
Ctrl/Del - Delete column
Ctrl/Ins - Insert column
Arrows - Move cursor
CTRL/Arrows - Move cursor to header
F9 - Return to maln menu
FlO - Start interaction
ES c - Exit help

eals Butter Cheese FrultFre
8 10 g 50 g 150 g

OE+OO 5.00E+00 3.00E+00 2.00E+00

OE+OO 5. 00E+00 9. 00E+00 1. 40E+Ol
OE+OO 2.00E+00 2.00E+00 2.00E+00
OE+OO 4.00E+00 3.00E+00 5.00E-01
9E+02 7. 50E+Ol 9. 80E+Ol 7. 90E+Ol
OE+OO 1. 00E-01 1. 20E+Ol 5. 00E-01
OE+Ol 1.00E+00 1. lOE+Ol

00E+00 Calcium 1. 00E+02 8. 00E+02 8. 00E+00 1. 00E+Ol

Fats 1. 00E+00 2.00E+00 8. 00E+00 5.00E+00 5.00E-01
Calcium 1. 00E+02 8. 00E+02 8. 00E+00 1. 00E+Ol 2. 00E+00 2. 35E+02 9. 00E+00
Magnesl 1. 2OE+Ol 2. 30E+Ol 2. 00E-01 3. 50E+00 5. 00E+00
Phospho 4. 20E+Ol 1. 03E+02 1. 60E+00 1. 87E+02 1. 30E+Ol
Iron 1. 00E+00 1. 00E+00 2.00E-01 4.00E-01
Vit. A 2. 00E+02 1. 60E+03 2. 70E+02 1. 72E+02 1. 60E+02
Vlt. B 1. 2OE-01 1. 40E-01 2. JOE-01 6. 00E-02

Press Fl for help

Magnesl 1. 20E+Ol 2. 30E+Ol 00E+00
Phospho 4. 20E+Ol 1. 03E+02 1. 6OE+OO 1. 87E+02 1 . 30E+Ol
Iron ~ . O O E + O O i.ooE+oO 2.00E-01 4.00E-01
Vit. A 2. 00E+02 1. 60E+03 2. 70E+02 1. 72E+02 1. 60E+02
Vlt. B 1. 20E-01 1. 40E-01 2. 3OE-01 6. OOE-02

2.

W . Ogryczak et al. A solver for

A Solver for the Transshipment Problem with Facility Location

Wlodzimierz Ogryczak, Krzysztof Studzinski, Krystian Zorychta

Institute of Informatics, Warsaw University.

ABSTRACT

This paper describes the initial results of research, development and imple-
mentation of the Dynamic Interactive Network Analysis System (DINAS)
which will make opportunity for solving various multiobjective transship
ment problems with facility location on IBM PC/XT microcomputers. The
main result of this stage is the development and implementation of the
TRANSLOC solver which provides the DINAS with solutions to single-
objective problems. It is based on the branch and bound scheme with a
pioneering implementation of the simplex special ordered network (SON)
algorithm with implicit representation of the VUB & SUB constraints. The
paper describes in details backgrounds of techniques used in the
TRANSLOC solver. A real example of the transshipment problem with
facility location is also discussed and an outline of the designed procedure
for handling multiple objectives in the DINAS is given.

1. Introduction.

The distribution - location type problems belong to the class of most significant
problems directly leading to real life applications of mathematical programming methods.
Steadily rising costs and inflation as well as legal and political considerations, competi-
tion, fuel scarcity and many other factors have led, in recent years, many organizations to
examine more closely their present and planned distribution patterns or facility locations.
For instance, the impact of the energy crisis in the 70-th caused real impetus for re-
evaluation of existing and often outmoded distribution patterns and methods.

Suppose we have a number of facilities and a number of customers or customer
zones. Finding the distribution pattern is a fairly straightforward mathematical program-
ming problem, e.g. transportation problem. When we add the possibility of removing or
adding a number of facilities with their associated fixed costs, we have a more complex
facility location problem which is in general an integer programming problem. Many real
world problems in industry, business, government and nonprofit organizations include a
variety of conflicting goals and objectives as functions of their distribution patterns and
facility locations. Adding these functions as the criteria of optimization we expand our
problem into a multicriteria transportation and facility location problem. However, real
life situations create even more complex problems. Therefore the problem considered in
the paper will be precisely described and formulated once more in the next sections.

Due to the multiple objective formulation and to the integrity of location variables,
the problem is complicated and computationally complex. Hence the method designed for
solving the problem should be stable and fast in order to produce a correct result or its
acceptable approximation in a reasonable time.

W . Ogryczak et al . - 126 - A solver for

This paper describes the initial results of research, development and implementation
of the Dynamic Interactive Network Analysis System (DINAS) which is being developed
with the purpose of solving various multiobjective transshipment problems with facility
location on IBM PC/XT microcomputers. The main result of this stage is the develop
ment and implementation of the TRANSLOC solver which provides the DINAS with
solutions to single-objective problems. It is based on the branch and bound scheme with a
pioneering implementation of the simplex special ordered network (SON) algorithm with
implicit representation of the VUB & SUB constraints. The paper describes in details
backgrounds of techniques used in the TRANSLOC solver. A real example of the trans-
shipment problem with facility location is also discussed and an outline of the designed
procedure for handling multiple objectives in the DINAS is given.

2. An example

As an illustration of the transshipment-location type problem mentioned in the pre-
vious section, the problem of location of depots in a sugar-beet distribution system is con-
sidered. The problem was studied by Jasinska & Wojtych in [7]. They were dealing with a
real-life p;oblem concerning a sugar enterprise in Lower Silesia, in Poland.

There are 1588 villages in the considered region. Each of them is treated as a farm
that produces the sugar-beet. Every farm is characterized by its total supply in the
sugar-beet harvesting period. The sugar-beet is supplied to sugar-mills directly or through
some depots. There are 12 sugar-mills in the region. Each sugar-mill is characterized by
two amounts: the total storing capacity and the total production capacity in one produc-
tion season.

A sugar production season in Poland lasts about three months. The total amounts of
the sugar-beet must be shipped between the farms and the sugar-mills in this period.
There are three types of shipping: between the farms and depots, between the depots and
sugar mills, and directly between the farms and the sugar-mills. Each of the types is
characterized by a unit cost of the shipping.

Climatic conditions and poor storage facilities may cause losses of sugar-beet volume
or sugar content in the sugar beet. To avoid the losses, the deliveries from farms should
be carried out within the harvesting season (the beginning phase of the sugar production
season). However, the sugar-mills stores have limited capacities and cannot take all the
amount of the sugar-beet in the short time. Therefore, a part of the sugar-beet supply has
to be delivered to depots and stored there temporarily. But the technological and
economic analysis indicates that the density of the existing network of small depots is
insufficient in the case of an increased supply. Hence, some existing depots should be
modernized to increase their throughputs and some new depots should be built.

The sugar industry decision maker chose 49 possible depot locations in the con-
sidered region. Each location is characterized by the lower bound (20 000 tons) and the
upper bound (55 000 tons) of throughput. Every potential depot is considered as two
separate depots: the basic one with the throughput within the interval [20 000, 34 OOC)]
and the additional one with the throughput belonging to [O, 20 0001. The additional depot
can be opened a t the same site if the basic depot reaching its upper throughput limit is
opened there.

Thus in the given site:

W . Ogryczak et al. A solver for

- no depot need to be located;
- the basic depot may be located;
- both the basic depot and the additional one may be located provided the basic depot

reaches the upper bound of its throughput.

Each depot location is evaluated by the operating and the investment costs. The
investment cost is defined as the annual fixed charge of the basic or additional depot.

The problem is to determine the number, location and sizes of the depots to be
selected from the candidate set and to find the corresponding sugar-beet flows from farms
to sugar-mills directly or through depots so as to minimize the total transportation and
depot investment and operating cost (provided the total amount of sugar-beet is delivered
from farms to sugar-mills).

As reported in the quoted paper [7], the problem could not be solved in a reasonable
time due to its large size. Fortunately, the size can be reduced by an aggregation of farms
into supply zones. The farms located in the neighborhood of the same depot or sugar-mill
or situated along the same route were aggregated. In consequence, instead of 1588 farms
128 zones were generated and a reduced problem was solved using the MPSX and MIP
systems.

The problem described above represents a class of transshipment problem with facil-
ity location. It is a single-objective optimization problem. However, the single-objective
optimization is insufficient in real-life circumstances and additional objectives should be
taken into consideration. For instance, the total amount of the sugar-beet flow through
depots should be minimized. This criteria seems to be very important because of the
direct flows from farms to sugar-mills are technologically most efficient. As another objec-
tive, minimization of the total amount of the sugar-beet delivered by rail or maximization
of the sugar production volume can be considered. The objectives need not be, in general,
comparable; therefore our problem should be considered as a multicriteria optimization
problem. The multicriteria optimization approach to the transshipment-location type
problem will be developed more precisely in next sections.

3. T h e general ized n e t w o r k m o d e l

In the previous section, we have introduced a class of transshipment problems with
facility location. In this section, we define the mathematical model of such problems more
precisely.

A network model of the problem consist of nodes that are connected by a set of
direct flow arcs. The set of nodes is partitioned into two subsets: the set of fixed nodes
and the set of potential nodes. The fixed nodes represent "fixed points" of the transporta-
tion network, i.e., points which cannot be changed. Each fixed node is characterized by
two quantities: supply and demand. The potential nodes are introduced to represent pos-
sible locations of new points in the network. Some groups of the potential nodes represent
different versions of the same facility to be located (e.g., different sizes of a warehouse).
For this reason, potential nodes are organized in the so-called selections, i.e., sets of nodes
with the multiple choice requirement. Each selection is defined by the list of included
potential nodes as well as by a lower and upper number of nodes which have to be
selected (located). Each potential node is characterized by a capacity which bounds maxi-
mal flow through the node. The capacities are also given for all arcs but not for the fixed
nodes.

Several linear objective functions are considered in the problem. The objective func-
tions are introduced into the model by given coefficients associated with several arcs and

W . Ogryczak et al. - 128 - A solver for

potential nodes. They will be called cost coefficients independently of their real character
in the objective functions. The cost coefficients for potential nodes are, however, under-
stood in different way than for arcs. The cost coefficient connected to an arc is treated as
the unit cost of the flow along the arc whereas the cost coefficient connected to a potential
node is considered as the fixed cost associated with using (locating) of the node rather
than as the unit cost.

We assume two restrictions on the network structure in our model:

(1) there are no arcs that directly connect two potential nodes;

(2) each potential node belongs to one or two selections.

Both the restriction are not very strong. The first one does not imply any loss of
generality since every two of potential nodes can be separated by an introduction of an
artificial fixed node if necessary. The second requirement, in general, restricts the class of
problems. However, each potential node in practical models usually belongs to exactly one
selection or sometimes to two selections in more complex problems.

For simplification of the model and the solution procedure, we transform the poten-
tial nodes into artificial arcs. The transformation is performed by duplication of all poten-
tial nodes. After the duplication all the nodes can be considered as fixed and each poten-
tial node is replaced by an artificial arc which leads from the node to its copy. Due to the
transformation we get a network with fixed structure since all the nodes are fixed. Poten-
tiality of artificial arcs does not imply any complication because each arc in the network
represents a potential flow. Moreover, all the bounds on flows (i.e., capacities) are con-
nected to arcs after this transformation. Additional nonstandard discrete constraints on
the flow are generated only by the multiple choice requirements associated with the selec-
tions. Cost coefficients are connected only to arcs, but the coefficients connected to
artificial arcs represent fixed costs.

A mathematical statement of this transformed problem takes the form of the follow-
ing generalized network model:

minimize C f + C fEyij p=1,2 ,..., nobj (3.1)
(ilj)EA\Aa (;!j)€Aa

subject to

C 'ij- C Z- = b, i=1,2, ..., nnode
3'

(;,;)€A (j,;)EA

gk < C yij < hk, k=1,2 ,..., nsel
(1rj)ESk

where

nobj number of objective functions,

nnode number of nodes (including copies of potential nodes),

nsel number of selections,

W. Ogryczak et al. - 129- A solver for

A set of arcs (including artificial arcs),

' a set of artificial arcs,

rP, cost coefficient of the p-th objective associated with the arc (i j) ,

t, i supply-demand balance a t the node i (supply is denoted as a positive quantity
and demand as negative),

C . .
'I

capacity of the arc (i j)

gk,hk lower and upper number of (artificial) arcs to be selected in the k-th selection,

sk set of (artificial) arcs that belong to the k-th selection,

2..
'I

decision variable that represents flow along the arc (i j) ,

Y i j decision variable equal 1 for selected arc and 0 otherwise.

The generalized network model of this form includes typical network constraints
(3.2) with simple upper bounds (3.3) as well as a special discrete structure (3.5)-(3.6) con-
nected to the network structure by variable upper bounds (3.4). While solving the model
we have to take advantages of all these structures.

Taking into consideration an artificial arc, we notice that its capacity limits not only
the flow along this arc but also many other flows. Let (t o , jo) be an artificial arc. Then
(t o , j ,) is the only arc which emanates from the node 2 , and only arc which reaches the
node j ,. Due to this fact we can introduce additional bounds on flow along each arc which
reaches the node i , or emanates from the node j,. In such a way we get additional ine-
qualities:

'ti 5 c; jYi j and 32 < - c y 81 '3 (t , j) € A a , (t , i) ~ A , (j , t) ~ ~ (3.7)

which makes the constraints of our model tighter and improves effectiveness of the solu-
tion process.

4. Interactive procedure for handling multiple objectives

There are many different concepts for handling multiple objectives in mathematical
programming. We decided to use the so-called reference point approach. The reference
point approach introduced by Wierzbicki (see [16]) was developed in many papers (see
[9]) and was used as a basis for construction of the software package DIDAS (Dynamic
Interactive Decision Analysis and Support system). The DIDAS package developed a t
IIASA proved to be useful in analyzing conflicts and assisting in decision making situa-
tions (see 141, [5]) .

The reference point approach is a generalization of the well-known goal program-
ming method (see (61) and of the method of displaced ideals (see [18]). The basic concept
of this approach is as follows:

(1) the decision-maker (DM) forms his requirements in terms of aspiration levels, i.e., he
specifies acceptable values for given objectives;

(2) the DM works with the computer in an interactive way so that he can change his
aspiration levels during the sessions of the analysis.

In our system, we extend the DIDAS approach. The extension depends on additional
use of reservation levels which allow the DM to specify necessary value for given objec-
tives (see 1171).

Consider the multi-objective program associated with the generalized network
model:

W. Ogryczak et al. A solver for

minimize q

subject to

where

q represents the vector,

F is the linear vector-function defined by (3.1),

Q denotes the feasible set of the generalized network model, i.e., the set defined by con-
ditions (3.2)-(3.7).

The reference point technique works in two stages. In the first stage the DM is pro-
vided with some initial information which gives him an overview of the problem. The ini-
tial information is generated by minimization of all the objectives separately. More pre-
cisely, a sequence of single objective programs is solved defined as follows:

P
nobj .

min{fp(z,y) + -- C f (2 , ~) : (z , y) ~ Q) , p=1,2 ,..., nobj
no61 ,=I

where fP denotes the p-th objective function and p is an arbitrarily small number

The so-called decision-support matrix (or pay-off matrix) D= (q .) p = 1, ..., no6 j ;
P3

j=l, ..., nobj which yields information on the range of numerical values of each objective
is then constructed. The p-th row of the matrix D corresponds to the vector (zP,yP)
which solves the p-th program (4.1). Each quantity q . represents a value of the j-th

P3
objective a t this solution (e . qp.= f3(zp y)). The vector with elements qpp, i.e., the ' P
diagonal of D, defines the utopia (ideal) point. This point, denoted further by qu, is usu-
ally not attainable but it is presented to the DM as a lower limit to the numerical values
of the objectives.

When analysing a column j of the matrix D, we notice that the minimal value in the
n n .

column is qpp=q P. Let q ' be the maximal value, i.e.,

qnj= max
l<p<n=obj q ~ j

The point qn is called the nadir point and may be presented to the DM as an upper
guideline to the values of the objectives. Thus, for each objective fP a reasonable but not
necessarily tight upper bound qn and a lower bound qU are known after the first stage of
the analysis.

In the second stage, an interactive selection of efficient solutions is performed. The
DM controls the selection by two (vector-) parameters: his aspiration level qa and his
reservation level qr, where

The support system searches for the satisfying solution while using an achievement scalar-
izing function as a criterion in single-objective optimization. Namely, the support system
computes the optimal solution to the following problem:

nobj
minimize max pp(q,qa,qr) +

1 <_p 5 no83
n04i C P~(P,P",P')

subject to

W . Ogryczak et al. A solver for

where p is an arbitrarily small number and p is a function which measures the deviation
P

of results from the DM'S expectations with respect to the p-th objective, depending on
given aspiration level qa and reservation level q r .

The computed solution is an efficient (Pareto-optimal) solution to the original mul-
tiobjective model. It is presented to the DM as a current solution. The DM is asked
whether he finds this solution satisfactory or not. If the DM does not accept the current
solution he has to enter new aspiration and/or reservation levels for some objectives.
Depending on this new information supplied by the DM, a new efficient solution is com-
puted and resented as a current solution. The process is repeated as long as necessary.

The function pp(q,qa,qr) is a strictly monotone function of the objective vector q
with value p =O if q=qa and pp=l if q=q r . In our system, we intend to use a piece-

P
wise linear function pp defined as follows:

where pp and yp (p=1,2, ..., nobj) are given positive parameters. In particular, the
parameters pp and yP may be defined (similarly as in [17]) according to the formulae

Dp=(9;-9;)/(9;-9;)*D

7p=(9;-9;)/(9;-9;)*7

with two arbitrarily given positive parameters f l and 7 .

If the parameters pp and 7 p satisfy inequalities Dp< 1 and yp> 1 , then the achieve-
ment functions p are convex. Minimization of the function p is then equivalent to

P P
minimization of a variable pp defined as follows:

To provide for a special treatment of the equalities (4.3) in the single objective
solver, we perform substitutions:

ppf =d: and qpvp=d;

Finally, we form the problem (4.2) in terms of linear programming as the following
program:

P
nobj

min z+- pp
nobj p=l

subject to

W. Ogryczak et al. A solver for

pp<z , p=1,2 ,..., n o b j

pp=vP+d~-d : , p=1,2 ,..., nob j

1 + 1 -
v --dp +-dp =(qp-q;)/(qL-q;), p=1,2, ..., nob j

P P Y P
O < v p I l , p=1,2 ,..., nob j

d:>0, dPp>O, p=1,2 ,..., nob j

q = F (z , y)

(~ , Y) E Q

5. General concept of the TRANSLOC solver

The TRANSLOC solver has been prepared to provide the multiobjective analysis
procedure with solutions to single-objective problems. According to the interactive pro-
cedure described in Section 4 the TRANSLOC solver has to be able to solve two kinds of
single-objective problems: the first one associated with calculation of the decision support
matrix (problems (4.1)) and the second one associated with minimization of the scalariz-
ing achievement function (problems (4.2)). Both kinds of the problems have, however, the
same main constraints which represent the feasible set of the generalized network model.
Moreover, the other constraints of both kinds of problems can be expressed in very similar
ways. So, we can formulate a general single-objective problem for the TRANSLOC solver
as follows:

max s (5.1)

subject to

C z i j - C zji = b; 1=1,2, ..., nnode
(i,j)EA (j , i) ~ A

w k + C y . . = h k 13 k=1,2, ..., nsel
(i,j)€Sk

pP - vp + d: - d; = 0 p=1,2, ..., nob j (5.4)

= lip p=1,2, ..., n o b j
nob I

0 < 2. . < c . .
11 - 13 (i , j) A (5.8)

0 I wk 5 hk - gk k=1,2, ..., nsel (5-9)

2. . $3 < - c . . y - . , t j 1) z tt . < - c . . t j y i j) z - j t < - c . . y , . t j t j (i , j) ~ A , , (t , i) ~ A , (j , t) ~ A (5.10)

P p 5 2 p=1,2, ..., nob j (5.11)

y . . = 0 or 1
0 (: , ~) E A ~ (5.12)

W . Ogryczak et al. - 133 - A solver for

and depending on the kind of optimization:

d + = O , d p - = O P p=1,2, ..., nobj (5.13)

for the utopia point calculation or

d , f > O , dp-20, O < % < l p=1,2 ,..., nobj

for the achievement scalarizing function optimization, respectively, where: ap = 1 and
- " 0

6 = 0 during utopia point calculation, a =
P P

and 6 =
P

' " during the

9; - 9; 9; - 9;
minimization of the achievement scalarizing function, whereas all the other quantities are
the same as in Sections 3 and 4.

The above single-objective problem is a typical mixed integer linear program, i.e., it
is a typical linear program with integrity conditions for some variables (namely y . .) .

' I
Mixed integer linear programs are usually solved by branch and bound approach with
utilization of the simplex method. The TRANSLOC solver also uses this approach. For-
tunately, only very small group of decision variables is required to be integer in our
model. Therefore, we can use a simple branch and bound scheme in the solver. Back-
ground of this scheme is described in Section 6.

Even for a small transshipment problem with facility location the corresponding
linear program (5.1) - (5.11) has rather large size. For this reason it, cannot be solved
directly with the standard simplex algorithm. In order to solve the program on IBM
PC/XT microcomputers, it is necessary to take advantages of its special structure.

Note that the main group of equality constraints (5.2) represents typical network
relations. Similarly, the equalities (5.3) and (5.4) include only variables with unit
coefficients. All the rows (5.2) - (5.4) can be handled in the simplex method as the so-
called special ordered network (SON) structure. Basic rules of the SON technique used in
the TRANSLOC solver are developed in Section 7.

The inequalities (5.8) - (5.9) and (5.13) or (5.14) are standard simple upper bounds
(SUB) which are usually processed out of the linear programming matrix. Similarly, ine-
qualities (5.10) and (5.11) can be considered as the so-called variable upper bounds
(VUB) and processed out of the matrix due to a special technique. Basic rules of the tech-
nique for SUB & VUB processing are developed in Section 8.

Thus, only a small number of inequalities (5.5) - (5.7) has to be considered as typical
rows of linear program. While taking advantage of this fact, the TRANSLOC solver can
process transshipment problems of quite large dimensions. As a proper size of problems
for IBM PC/XT microcomputers we regard:
- a few objective functions,
- about one hundred of fixed nodes,
- a few hundreds of arcs,
- several potential nodes (artificial arcs) organized in a few selections.

Initial experiences with the TRANSLOC solver show that such problems can be
solved on IBM PC/XT microcomputers in reasonable time.

6. The branch and bound scheme

