
Generalized Linear-Quadratic 
Problems of Deterministic and 
Stochastic Optimal Control in 
Discrete Time

Rockafellar, R.T. and Wets, R.J.-B.

IIASA Working Paper

WP-87-052

June 1987 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33894471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Rockafellar, R.T. and Wets, R.J.-B. (1987) Generalized Linear-Quadratic Problems of Deterministic and Stochastic Optimal 

Control in Discrete Time. IIASA Working Paper. WP-87-052 Copyright © 1987 by the author(s). http://pure.iiasa.ac.at/3000/ 

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


W O R K I N G  P A P E R  

GENERALIZED LINEAR-QUADRATIC PROBLEMS 
OF DETERMINISTIC AND STOCHASTIC 
OPTIMAL CONTROL IN DISCRETE TIME 

R. T. Rockafellar 
R. J.-B. Wets 

June 1987 
WP-87-052 

I n t e r n a t i o n a l  I n s t i t u t e  
for Applied Systems Analysis 



GENERALIZED IdNEAR-QUADRATIC P R O B W  Of 
D-C AND -C 0- 
CONTROL IN DISCRETE TmE 

R. T. Rockcq@Uar 
R.J-B. Wets 

June 1987 
WP-87-52 

Working Phpers are interim reports on work of the International 
Institute for Applied Systems Analysis and have received only limited 
review. Views or opinions expressed herein do not necessarily 
represent those of the Institute or of its National Member 
Organizations. 

INTFJ2NATIONAL INSTITUTE FOR APPLIED SYSTF.MS ANALYSIS 
A-2361 Laxenburg, Austria 



The study and control of dynamical systems is  an important par t  of the pro- 
gram of the Systems and Decision Sciences project a t  IIASA. In this repo r t  the au- 
thors are concerned with the propert ies of a class of l inear-quadratric dynamical 
systems that  are subject t o  random disturbances. Optimality conditions a r e  derived 
in a form that emphasizes the possibilities of decomposition, a major s tep in the 
development of solution procedures f o r  such classes of problems. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 



General ized Linear-Quadrat ic  Prob lems of Determinist ic  a n d  

Stochast ic  Op t ima l  Cont ro l  i n  Discrete T i m e  

R. T. Rockafellar " and R.J-B. Wets" 

Abstract. Two fundamental classes of problems in large-scale linear and quad- 
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1. Introduction 

The importance of linear and quadratic programming problems is well appreciated in 

finit e-dimensional optimization. Such problems serve as mat hemat ical models in their 

own right and as subproblems solved within the context of general numerical methods of 

nonlinear programming. In optimal control only a relatively small class of linear-quadratic 

problems has traditionally received much attention, however. A much more general class 

has recently been explored by Rockafellar [I] with the aim of opening up a wide domain for 

application of techniques of large-scale linear and quadratic programming, in particular the 

finite generation method of Roclcafellar and Wets 121, (31, (41 that has been implemented in 

stochastic programming 151. Central to this purpose is the development of flexible problem 

formulations for which there is a strong duality theory that represents optimal trajectories 

and controls in terms of saddlepoints of a "decomposable" Lagrangian. 

In the present paper a discret e-time version of the deterministic models in [I.] is investi- 

gated and corresponding results on optimality and duality are obtained. The formulations 

and results are then generalized to the stochastic case. The focus on discrete time is 

motivated by the computational possibilities already mentioned, so we do not hesitate to 

suppose also that the probability space for our stochastic version is discrete. 

Our emphasis is on setting up a general framework for large-scale finite-dimensional 

linear-quadratic programming problems that reflect the special structure of optimal con- 

trol. Besides being useful for numerical experimentation, such a framework may stimu- 

late new applications, for instance in areas like operations research and resource systems 

management, where inequality constraints occur that jointly involve states and controls. 

Although the task of clarifying the relationship between finite and infinite-dimensional 

formulations is an important one, it is not the object of our efforts here. 

In fact our discrete-time problems are more general than typical continnous-time prob- 

lems in one respect: the dimensionality of the state and control vectors can vary with time. 

This feature is important in multistage modeling, where the decision structure in one pe- 

riod need not be the same as in another. The flexibility it provides allows us to show that 

a much wider class of problems is covered by our format than might at first be imagined. 



2. General ized Linear- Quadra t i c  Programming.  

The control problems that will be formulated are based on a concept of generalized linear- 

quadratic programming explained fully in Rockafellar [I]. A problem fits this concept if it 

can be expressed in the form 

minimize f (u) = sup J (u ,  v) over a11 u E U, 
vEV 

where U and V are polyhedral convex sets in Rk and R', and J is a quadratic convex- 

concave function on U x V, namely 

where P  and Q  are symmetric and positive semidefinite (possibly &we do not exclude 

"linear" when we say "quadratic", as we try to underline by sometimes using the term 

"linear-quadratic"). The problem dual to (P) is then 

(Q) maximize g(v) = inf J (u ,  v) over all v E V. 
uEU 

Here f (u) could be oo and g(v) could be -oo. We regard u as a feasible solution to 

(P) only if u E U and f (u)  < oo; likewise, we regard v as a feasible solution to (Q)  only if 

v E V  and g(v) > -oo. 
The expression of problems (P) and (Q) is facilitated by the notation 

W,Q(r) = sup {r . v - $v . QV) for r E R', 
v E V  

pu,p(s) = sup {s . u - $ u s  PU) for s E PI'. 
uEU 

Thus p v , ~  is a function on R' determined by the specification of a polyhedral convex set 

V c R' and a symmetric positive semidefinite matrix Q E IRCX'. I t  is in general "piecewise 

linear-quadratic" in a sense made precise in 111, and it may take on the value oo. There 

are many special cases deserving of mention, but for these too one should consult to 111. 

Let it suffice to observe that when 0 E V,  one has &,Q(r) 2 0 for all r, &,Q(O) = 0. 

Then ~ V , Q  (r)  can be interpreted as an expression that "monitors deviations of r from 0". 

Similarly for pulp. 

In this notation our general problems can be written as 

(PI minimize p . u + ku .  Pu + p ~ , ~ ( q  - Du) over u E U, 



(Q) maximize q . v - i v  Qv - PU,P(D*v - p) over v E V 

(where the asterisk * signals the transpose matrix). In (P), therefore, one has the possi- 

bility of linear constraints represented by the condition u E U, and also an objective term 

which "monitors deviations of Du from qn. This may be a penalty term that is zero for 

some kinds of deviations but positive for others. For example, if V = R:, Q = 0, one has 

so that the p. term in (P) is a "sharp" representation of the constraint Du > q. If a t  the 

same time one has U = R:, P = 0, then similarly 

In this case (P) and (Q) reduce to a canonical pair of linear programming problems in 

duality. See (11 for discussion of the rich possibilities that such p terms provide more 

generally in mat hemat ical modeling. 

The basic facts about the relationship between (P) and (Q) can be derived from the 

standard theory of linear and quadratic programming, specifically the duality theorem of 

Cottle [6] and the existence theorem of Frank and Wolfe 171. 

Theorem 2.1 (Rockafellar and Wets 13, Theorem 21). If either (P) or (Q) has finite 

optimal value, or if both problems have feasible solutions, then both optimal values are 
finite m d  equal, and both problems have optimal solutions. In this case a pair (El V) is a 

saddlepoint of J ( u ,  u )  relative to u E U and v E V if and only if T i  is an optimal solution 
to (P) and V is an optimal solution to (Q) .  



5. Deterministic Control Model. 

We want now to  formulate problems in this vein that belong to  optimal control. The 

dynamical system we consider takes the form 

x, = A,Z,-~ + B,u, + b, for r = 1, .. . ,T, 
\ - - - I  

zo = BOuO + bo, where u, E U, for r = O , 1 , .  . . ,T. 

The vectors u, E ELk7 are controls, and the vectors z, E Rn7 are states (observe that 

dimensions can vary with r). We write u = (uO, u l ,  . . . , uT) and z = (20, 21, ..., zT). Thus 

x is uniquely determined by u, and the transformation u H z is a n e .  Note that uo serves 

as a supplementary parameter vector more than as a control vector in the usual dynarnical 

sense. 

The sets U, c Rk7 are assumed to be polyhedral convex (nonempty). The matrices 

AT, BT and vectors b, are of appropriate dimension: 

(By taking ko = 0, one could eliminate uo from (3.1) and have zo = bo.) 

Our deterministic control problem is: 

minimize subject to  (3.1) the expression j (u) = 

Here V, is a polyhedral convex set (nonempty) in R", and the matrices P, and Qr 

are symmetric and positive semidefinite. One has 

In this notation the elements AT and DT are defined only for r = 1, . . . , T, but BT, b,, P, , p,, 

are defined for r = O , 1 , .  . . , T and C,, c,, QT, q, for r = 1,. . . , T, T + 1. 

For the problem that will turn out to be dual to (Pdet), the dynamical system goes 

backward in time: 

gr = ASY,+~ + Cf v, + C, for r = 1,. . . , T, 
(3.2) 

UT+~ = c>+l V T + ~  + CT+I, where v, E V, for r = 1 , .  . . , T, T + 1. 



The vectors v, E R" are the dual controls, and the vectors t / ,  E Rnr-1 are the dual 

states. We write 

The dual problem then is 

maximize subject to (3.2) the expression g(v)  = 

In this formula t/ is the trajectory uniquely determined from v by (3.2). 

Proposition 3.1. Suppose z corresponds to u by (3.1), and t/ to v by (3.2). Then 

Proof. In view of the relations (3.1) the left side of (3.3) can be written as 

Likewise from (3.2) the right side becomes 

Thus the two sides are equal, as claimed. 

Proposition 3.2. Let U = Uo x . . x UT and V = Vl x . . . x V T + ~ ,  and for u E U and 

v E V define 



where [u,  v ]  denotes the common value of the expression in (3.3). 

Then U and V are polyhedral convex sets, and J is a quadratic convex-concave func- 

tion. 

Proof. This is immediate from our assumptions and the fact the expression [u, v]  is f f ine 

in u  and v  separately. 

Theorem 3.3. The deterministic optimal control problems ( P d e t )  and (Qdet) are the 

primal and dud pro blerns of generalized linear-quadratic programming associated with 

the U,  V ,  and J in Proposition 3.2. In particular, the assertions of  Theorem 2.1 are valid 

for ( P d e t )  and (Qdet).  

Proof. We need only show that the expressions f ( u )  and g(v)  in ( P d e t )  and (Qdet) arise 

according to the pattern in the general problems ( P )  and ( Q )  of $1. First using for [u ,  v ]  

in (3.4) the right hand expression in (3.3),  we write 

The maximization of this over all v  E V reduces to a separate maximization with respect 

to each of the components v, of v .  Since by definition 

and 

we conclude that s u p , ~ v  J (u ,  v )  is the f ( u )  in ( P d e t ) .  

Next using for [u,  v]  the left hand expression in (3.3),  we write 



The minimization of this over all u E U reduces similarly to a separate minimization with 

respect to each of the components u,. We know that 

1 
SUP {[Bf%rr+l+ Dfvr - PT] . UT - 5% - PTuT) = pu,, P,(B,'y,+l + D:v, - p,) 

UT EUr  

and 

We conclude that infuEu J(u, v) is the g(v) in (Qdet). 

The proof of Theorem 3.3 reveals an important simplifying feature of our minimax 

representation of (Pdet) and (Qdet). We state it as follows. 

Theorem 3.4. For the U, V, and J in Theorem 3.3 one has the following decomposability 

properties for separate minimization in u or maximization in v. Here P and iT are elements 

of  U and V, and Z and jj the corresponding trajectories. 

(a) fi E argmin J ( u ,  b) if and only i f  
UGU 

= argmax{l~:jj,+, + D:bT - p,] . u, - i u ,  + P,u,]) 
UT EUr 

for r = 1 , .  . . , T ,  and 

(b) 6 E argmax J(Z,  v) i f  and only i f  
vEV 

1 = argmax{[q, - C,Z,-1 - D,%] v, - ~ v ,  . QT v,) 
v r  EV7 

for r = 1 , .  . . , T ,  and 

Proof. The formulas in terms of "argmax" are justified by the calculations in the proof 

of Theorem 3.3. The question that remains is whether the "argmax" sets are truly the 

same as the indicated subgradient sets. This is answered by the observation that in the 

notation (2.2) one has &,Q = GjQ (convex conjugate), where 



Inasmuch as BV,g is a closed proper convex function, one also has &,g = P;,Q and 

by the basic rules of convex analysis [8, Theorem 12.21. When this is applied to the pairs 

V,, Q,, and U,, P,, in place of V, Q,  we reach our desired conclusion. 

The significance of the formulas in Theorem 3.4 lies in their potential use in iterative 

methods for solving (Pdet) and (Qdet) when the dimensions 

T T+1 

k = C k T  and L =  EL, 

of the vectors u = (uO, ~ 1 , .  . ., uT) and v = (vl,. . . , V T , V ~ + ~ )  are large. The dimensions 

may be expected to be large if T is large, as of course would happen in particular in taking 

(Pdet ) and (Qdet) to  be discrete-time approximations to continuous-time control problems 

such as the ones studied in [I]. In the presence of high dimensions, it may be impossible 

or inexpedient to solve (Pdat) and (Qdet) directly by reducing them to ordinary quadratic 

programming problems in duality and applying a typical finitely-terminating quadratic 

programming code (as would be possible in principle in a manner explained in Rockafellar 

and Wets [3,$2]). 

An alternative approach in that case is the exploration of methods that determine 

approximate solutions to (Pdet) and (Qdet) by calculating a sequence of approximate sad- 

dlepoints (P, ?') of J on U x V for v = 1,2, . . ., as suggested by the characterization of 

optimality in Theorem 3.4. In any such method the ability to  calculate 

(3.10) f (3) = max J(3, v) and G" E argrnax J ( P ,  v) 
v EV vEV 

as well as 

(3.11) g ( V )  = min J ( u ,  F) and 5" E argmin J ( u ,  F) 
uELr u € U  

is crucial in producing primal and dual bounds that tell how far P and V are from 

optimality and as input to possible schemes for updating ( P ,  T") to  (?+I, V+'). Theorem 

3.4 says that the calculations in (3.10) and (3.11) can feasibly be carried out in terms of 

solving a collection of low-dimensional quadratic programming subproblems indexed by r. 

Moreover these subproblems can even be solved in "closed form", i.e. without applying a 

quadratic programming code, if the functions ~ v , , Q ,  and p ~ , , p ,  have sufficiently simple 

expressions that allow the use of subgradient formulas directly. 



The subgradient formulas are readily usable, for example, in the completely decom- 

posable case where U, and V, are boxes (products of closed intervals, e.g. orthants) and 

P, and Q, are diagonal. Indeed, if P, and Q, are nonsingular the subgradients reduce to 

gradients given by very elementary expressions. 

Theorem 3.5. Consider s control pair ii, 7, and the corresponding trajectories Z and jj 

determined by (3.1) and (3.2). Define 

(3.12) p, =p,-Bfjj,+, for T = 0,1, ..., T, and& = qT-C,?ET-l for T = 1 ,..., T ,T+ l .  

Let m) and (p,) for r = 1,. . , , T denote the primal and dual problems of generalized 

linear-quadratic programming associated with 

on U, x V,, namely, 

(77 ) 1 minimize p, . u, + l u ,  . P,u, + P ~ , ~ ,  (q, - D ~ U , )  over UT E UT, 

(PT 
1 maximize q, . v, - ~ v ,  . Q,v, - pu,,p, (Djv, - fj,) over v, E V,, 

and consider &o the problems 

(70 minimize ij, . uo + $uo . Pouo over uo E Uo, 

Then a necessary and sufficient condition for ii and 5 to be optimal solutions to the 

control problems (Pdet ) and (Qdet), respectively, is that E, should be an optimal soh tion 

to the subproblem p,) for r = 0, I,. . . , T, and Tj, should be an optimal solution to the 

subproblem @,) for r = 1,. . . , T, T + 1. 

Proof. We know from Theorem 3.3 that a necessary and sufficient condition for the op- 

timality of ii and V in (Pdet) and (Qdet) is the saddlepoint relation 

II E argmin J ( u ,  V) and V E argmax J( i i ,  v). 
u €U v€V 



Furthermore, this reduces to having the argmax conditions in Theorem 3.4 hold for S = ti 
and 6 = V. These conditions in turn are equivalent to 

a, E argmin JT (u,, (T),) for r = 1, . . . , T, 
UT EUT 

4 E argrnin{p0. uo + kuo .Pouo), 
uo EUo 

and 
iJ, E argmax JT(ti,, v,) for r = 1,. .. ,T, 

vrws - 1 
V T + ~  E argmax {TT+~ . ~ T + I  - y v ~ + i  . QT+I V T + ~ ) .  

V T + I ~ T + ~  

The latter mean that 7io is optimal for (Po), i J ~ + l  is optimal for ( Q T + ~ ) ,  and (ti,, V,) is a 

saddlepoint of J,(u,, v,) relative to u, E U, and v, E V, for r = 1,. . . , T. This saddlepoint 

condition is equivalent by Theorem 2.1 to ti, and 5, being optimal solutions to the primal 

and dual subproblems (7,) and (z,). 
Optimality conditions of the kind in Theorem 3.5 were developed for continuous-time 

problems in Rockafellar (I]. They resemble conditions first detected in a special setting 

known as "continuous linear programming" by Grinold 191. 

Besides being of interest in the study of what optimality might mean in a particular 

application modeled directly in terms of (Pdet) and (Qdet), the conditions in Theorem 3.5, 

like those in Theorem 3.4, have import for computations. Having arrived at  a control pair 

(V,vV) and associated trajectories (?fV,T) in some iteration Y of a numerical method, 

one can construct a new pair (uV, ow) E U x V by taking u,V to be an optimal solution to 

(7;) for r = 0,1 , .  . . , T and vy an optimal solution to (x )  for r = 1,. . . , T, T + 1, where 

(z) and (z) are the subproblems corresponding to 72' and T in the sense of Theorem 

3.5. Then uV and wV generate new trajectories zV and gV that may be compared with 

zV and gV, and for so forth. This procedure, like the one described after Theorem 3.4, 

provides another tool that might be used constructively in the generation of a sequence of 

approximate saddlepoint s. 



4. Stochast ic  Cont ro l  Model.  

The probability space we work with in this paper is simply a finite set R, for reasons given 

in $1. The probability associated with an element w E R is a, 2 0; one has CYEn a, = 1. 

The vectors, matrices and sets introduced in the formulation of our deterministic problems 

persist notationally in the stochastic problems, but all are now treated as (potentially) 

random variables. Thus, for example, p, now denotes a mapping w I+ p,, E R~~ rather 

than necessarily just a single vector. Likewise P, .is a matrix-valued mapping w I+ P,,, 
and U, is a set-valued mapping w I+ U,,. In line with our earlier assumptions, we suppose 

that P,, and QuT are pooitive semidefinite (symmetric), and U,, and V,, are polghedtal 

convez (nonempty). The expectation of a random variable such at  p, is 

The information available to  the decision-making process at  time r is modeled by the 

specification of a (finite) field $, of subsets of R for r = 0, 1, . . . , T, T + 1. The fields 

$, may differ from the complete information fields 3,, and no particular relation between 

them is presupposed, although the case where 5,'s are increasing with $, contained in 3, 
is, for instance, an important one. More will be said about this after the statement of our 

primal and dual problems. We assume that 

but in general do not place this restriction on A,, B,, C,, b, or c,. Trivially the latter 

are measurable with respect to the underlying field 3 of complete information, comprised 

here of all the subsets of R. 

Because $, is a finite collection of subsets of R, the notion of $,-measurability has 

an especially simple representation for our purposes. Let A, denote the subcollection of 

$, consisting of all $,-atorno, i.e. nonempty $,-measurable sets that do not properly 

include any other nonempty $,-measurable set. Such atoms are mutually disjoint. A 

set is $,-measurable if and only if it is a union of $,-atoms. Thus there is a one-to-one 

correspondence between $,-measurable sets in R and sets of $,-atoms, i.e. subsets of A,. 
A function is $,-measurable if and only if it is constant relative to every $,-atom. Each 

$,-measurable function can in this way be identified uniquely with a function on A, rather 

than on R. We can indicate this notationally, when we wish to, by writing p,, for a E A, to 

denote the common value that p,, has for all w E a when p is $,-measurable. (Obviously 

R itself in this setting might be identified with the set of atoms of some finite field of 



information chosen within a larger, possibly ucontinuousn probability space by some kind 

of approximation. We don't go into this matter here.) 

Conditional expectation with respect to  5, is denoted by Eg7.  This can be viewed 

in the present setting as the linear transformation that takes a random variable such as 

BT and redefines it to  have a constant value on each $,-atom a E AT, that value being, of 

course, the 'weighted average" 

The stochastic dynamical systems for our primal and dual problems are taken again 

to  have the forms (3.1) and (3.2), but with all elements now interpreted as (potentially) 

random, and with the restriction that 

(4s2) u, is $, - measurable, 

(4.3) V, is 5, - measurable. 

The condition u, E U, in (3.1) is interpreted to mean that u,, E U,, for all w E R, and 

similarly for v, E V,. Our primal problem of stochastic control is 

minimize subject t o  (3.1.) and (4.2) the function f (u)  = 

The corresponding dual problem is 

maximize subject to  (3.2) and (4.3) the function g(v) = 

Here W,,Q, and pu,,p, are "random functionsn that depend $,-measurably on w E fl 

by virtue of (4.1). The random variables 



and $,-measurable too, of course, so the arguments to which p v , , ~ ,  and pu,,p, are applied 

are always $,-measurable. The p terms at  time T thus monitor "constraint expressions" 

based solely on the information available to the decision makes available at  time T. Note 

from the dynamics that [,, depends affinely on u , ~ , .  . . , u,,,-1, whereas qWT depends 

affinely on v,,,+l, . . . , VW,T+~.  
Although in the formulation of our stochastic control problem (PSt , )  the information 

fields $, are independent of the earlier controls (uo, . . . , u,,l), this does not mean that the 

observations to which we have access are independent of (uo,.  . . , u,-~) .  In fact, quite often 

the "rawn information available a t  time T, consists of a collection of vectors (to,. . . , z,-~) 
that represent either complete or partial observations of the past states of the system 

(zo, 21,. . . , z,-~). These observations may even be corrupted by measurement noise. The 

"classical" formulation of the stochastic control problem, as in [lo] for example, defines 

the current information field in terms of the field ST generated by these observations. To 

fix the ideas, suppose that the parameters of the objective are not stochastic, that the 

dynamics of the control problem are given by (3.1) and that the observation z, a t  time T 

is a function of the state of the system given by 

where the matrix HT is m, x n, and h, is a random m,-vector which, in order to stay in 

the present framework of discrete probability is assumed to have a discrete distribution. 

From (3.1) it follows that 

(with the convention that the empty product n;=,+, Ak is I), and thus 

Once the values of (uo , ul,  . . . , ur- 1) are fixed, the field ST generated by the random vari- 

ables (G, 2.1,. ;. , z , -~ )  can be derived from the field generated by the stochastic elements 

of 

(AI, ... , A ~ - I ,  Bo, - - .  ,Br - l ,  bo, ... ,br-lr ho,... ,hr- l ) .  

But also a converse of sorts does hold. When the matrices At and Bt are nonstochastic, or 

more generally, the values of AT and BT will be known at  time T,  then from the observations 



(to, . . . , z, -~)  and the controls (uo, . . . , u , - ~ )  it is possible to re-express the information 

in terms of a field J, defined on the support of the random vectors (bo, bl, . . . , b,-,) that 

does not depend on the control variables. Indeed, in this case with 

and 

we have the linear system 

F'rom these relations, it follows that every value taken on by the random variables (to,. . . , 
z,-~),  that depend on the controls (via the random vectors go,...,g,-I? 

determines a set of possible values for the random variables ho, . . . , h,-l, bo, . . . , br-l). 

The projection of these sets on the support of the random vectors (boy . . . , bs-1 ) engenders 

the atoms of 4,. 
What this shows is that our model does include a much richer class of stochastic 

control problems as might appear to be the case a t  first. The example (of a problem 

with noisy partial observations of the state) is by no means the only "extension". F'rom 

the preceding derivation it is clear that we can even allow for certain nonlinearities in 

the relation between state and observation, that the condition of full knowledge of the 

matrices A, and B, a t  time 7 can be relaxed in certain cases, and so on. We favor 

the formulation of the stochastic control problem in terms of the 4,-measurability of the 

controls, although it may sometimes seem simpler (and more appropriate) to express the 

dependence of the controls on the available information in terms of the field ST generated 

by the observations, because the resulting structure is directly ameanable to the use of 

linear-quadratic programming techniques. And from a computational viewpoint these go 

much beyond the capabilities of standard dynamic programming procedures, as will be 

clear from the results that follow. 

Before we return to the characterization of optimal controls and trajectories, let us 

also note that because we allow the dimensionality of the state and control vectors to vary 

over time, our model also includes the classical multistage recourse models. Suppose that 

the equations (3.1) have the special form 



where the identity matrices I and zero matrices 0 are of the appropriate dimensions. Then 

z0 = uo, z1 = (uO, ul)T, 2 2  = (uo, u l ,  ~ 2 ) ~ ~  etc. 

Thus z, is the "memoryn of all decisions up through time r. Assuming that 5, = 3, 
(complete information field), we get z,, like u, to be 17,-measurable. Then in (Psto) the 

term 

9, - ~ ~ ~ { c r z , - l }  - D,u, 

represents a general f f ine  expression in uo, ul ,  . . . , u, . When pv, ,Q, is of the type (2.4), 

we can rewrite (Psto) in terms of linear constraints and a quadratic objective involving 

only the control variables uo, u l ,  . . . , u ~ .  This problem, with its block angular structure, 

is in the usual format of the multistage stochastic program with recourse model, see [ll] 

or 1121, for example. 

Problem (Pst,) revolves around the choice of the random variable u = (uO, u1, . . . , uT), 

which can be regarded as a function from R to JRkO x . . x RkT and therefore as an element 

of the finite-dimensional vector space consisting of all such functions. The dimension of this 

space may be very large indeed just from the size of R and possibly T, even if ko, . . . , kT 

are themselves relatively small, as might generally be supposed. We must therefore think 

of (Psto) as inherently a "large-scale" problem for which approximate methods of solution 

will be more appropriate than "exactn ones. 

Nevertheless it is well to keep in mind that the representation of u as a function from 

R to  RkO x - x IRkT tends to exaggerate the dimensionality of (Psto). The constraint 

that u, be $,-measurable means, as already noted, that u, can be identified uniquely with 

a certain function from A, to  JRkr. The dimension of the space of all functions from A, to  

Rkr is a&, where 

a k  = (Ak l  (the number of atoms in gk). 

Thus the "true" dimensionality of (PBt0), in the sense of the number of real-valued decision 

variables, is 

By the same token, the "true " dimensionality of (Qst,), where the random variable v = 

(vl,. . . , v ~ ,  vT+l) must be optimized, is 



Proposition 4.1. Let 

U = {U = (UO,  u l , .  . . , U T ) ~  Ur is $,-measurable with u, E U,), 

V = {V = ( ~ 1 , .  . . , V T ,  vT+1 1 V, is $,-measurable with v, E V,), 

and define J (u ,  v) = E { J (u ,  v) ), where J (u ,  v) is the expression in Proposition 3.2 (re- 

garded now as a random variable depending on the choice of the random variables u and v). 

Then U and V are polyhedral convex sets (nonempty), and J is a quadratic convex-concave 

function. 

Proof. By definition U is a subset of the space of all functions from 12 t o  RkO x . . x RkT 

consisting of the functions u such that u,, E U,, for all w and r, and U,, is constant in 

w with respect to each $,-atom a E A,. These conditions can be represented by a finite 

system of linear equations and inequalities, because 12 is finite and U,, is by assumption 

a convex polyhedron for each w and r. (Alternatively U can be viewed as a direct product 

of polyhedral convex sets U,, indexed by cu E A, and r = O , 1 , .  . . , T, inasmuch as U, is 

$,-measurable.) Thus U is a convex polyhedron. Similarly V is a convex polyhedron. We 

have by definition 

where the J term for each w is quadratic convex-concave function and the coefficients a, 

are nonnegative therefore J is a quadratic convex-concave function. 

Theorem 4.2. The stochastic optimal control problems (PEto) and (&to) are the pr imd 

and dual problems of generalized linear-quadratic programming associated with the U , V 
and J in Proposition 4.1. In particular, the assertions of Theorem 2.1 are valid for (Psto) 

and ( P B t O ) .  

Proof. We must show that the supremum of J (u ,  v) over all v E V is the function f (u) in 

(PEto), and the infimum of J (u ,  v) over all u E U is g(u) in (PEto). Starting with J (u ,  v) in 

the form of (3.5) (which is obtained by using the right hand expression in (3.3) for [u, v]) 

and taking the expectation, we get by (4.1) that 



To maximize this over all v E V ,  we must maximize separately in each of the v,'s subject 

to  v, being a $,-measurable function with v, E V,. Denote the random variable q, - 
~ 9 7  {c,z,) - D,u, temporarily by r, for r = 1,.  . . , T and q ~ + l  - E ~ T + I  { C T + ~  zT) by 

r ~ + 1 .  Then each r, is $,-measurable and 

where V, is the set of all $,-measurable v, with v, E V,. Since $,-measurable functions 

can be indexed by cu E A, in place of w E R ,  as explained above, we can write 

1 1 
E{rr . V T  - yv, Qrvr) = C ~,[r,, - v,, - yv,, Q,,v,,], 

aEAs 

where n, is the probability of the atom a, i.e. 

The supremum of this expression over all v, E V, is 

Thus the supremum of J (u ,  v) over v E V is 

which from choice of the r,'s is the objective j (u )  in (Pst,). The argument that the infimum 

of J(u, v )  over u E U is g(v) in (Qst,) follows the same lines. 

Theorem 4.3. For the U ,  V ,  and J in Theorem 4.2 one has the following decomposability 

properties for separate minimization in u or maximization in v. The notation is used that 

- 
VT = - E" {C,Z,-I) - D,ii, for r = 1 , .  . . , T, 

- 
rT+l = qT+l - E'T+' {CT+l~T}7  

- 
8, = E" {g:~,+l) + D:T, - p, for r = 1 , .  . . , T, 
- 
80 = ~ $ 0  {~,'j i,) - PO, 



where ii and iT rare elements o f  U and V , and f and j j  are the corresponding trajectories. 

(a) ii E argmin J (u ,  v )  if and only if 
uEU 

1 
E a~u,,,~,, ( ~ a r )  = argmax{L, - u,, - 5uar Pa,uaT} 

uar EUas 

for r = 0 ,  I , .  . . , T and all cu E A,. 

(b) r'; E argmin J(u ,  v )  if and only if 
vEV - 1 var E a h r , ~ a r  (Far)  = argmm{Fa, va, - pvar . Qarvar) 

varEvar 

for r = 1 , .  .. , T , T  + 1 and all cu E A,. 

Proof. This combines the argument of Theorem 4.2 with the conjugacy facts noted in the 

proof of Theorem 3.4. 

Theorem 4.4. Consider $,-measurable ii, V, and the corresponding trajectories T and j j  

determined by (3.1) and (3.2). Define the $,-measurable random variables 

& = p , - ~ * ~ { ~ : j j , + , }  f o r r = 0 , 1 ,  ..., T ,  
- 
q , = q , - ~ * + { ~ , ~ , - ~ )  f o r r = l ,  ..., T , T + l .  

For each r = 1,  . . , , T and cw E A, let pa,) and @,,) denote the primal and dual problems 

of  generalized linear-quadratic programming associated with 

on War x Val, namely 

1 (aar) maximize qa, - var - pa, . Qa, va, - pu,,,~,, (D;Tvar~aT) Over Var  E Val, 

and consider also the problems 

(7~x0) minimize Fo0 u,o + kuao . PaouaO over uaO E UaO 

for cu E Ao, and 

(.Qa,T+l) 
1 maximize ija,T+l - U(Y,T+I - ~ Q , T + I  P Q , T + ~  over U,,T+I E U ~ , T + I  

for cu E AT+1. 

Then a necessary and sufficient condition for ii and ij to be optimal solutions to the 

control problems (Psto ) and ( Qsto ), respectively, is that Ear should be an optimal solution 

to the subproblem (Fa,) for every cw E A, and r = O , l , .  . . , T ,  and &, should be an 

optimal solution to the subproblem (aa,) for every cw E A, and r = I , .  . . , T ,  T + 1. 

Proof. The argument imita.tes the one for Theorem 3.5 but uses the relations in Theorem 

4.3. 
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