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Foreword 

The branching p rocess  got i t s  start with a demographic question asked by 
Francis Galton, in answer t o  those who mourned tha t  t he  g r e a t  wr i te rs  and states- 
men of t he  past  have s o  f e w  descendants living today. Galton suspected t ha t  even 
in an  increasing population most people will have no descendants, or none beyond 
two or t h r e e  generat ions;  most of t he  increase of t he  r a c e  occurs  in relat ively few 
lines of descent. We can say of people in slowly growing populations t ha t  e i the r  
they will have thousands of descendants o r  they will have none; t he  chance tha t  
they will have just two generat ion a f t e r  generat ion i s  remote. 

In t he  ord inary  branching process i t  i s  taken t ha t  each individual has  a ce r -  
ta in probabi l i ty of generat ing another  individual in each  moment, and these proba- 
bil i t ies a r e  independent of one another .  The parent  has  t h e  same chance of bear -  
ing a child a f t e r  having born 5 previously as she  had at t he  outset .  

What Per Broberg has done in t he  pape r  that  follows is  t o  allow f o r  stat is t ical  
dependency between siblings. He covers  t he  case  where a pa ren t  t ha t  has had 
severa l  offspring i s  less l ikely t o  have one more. But i t  equally covers  t h e  case  
where having had a child shows tha t  the  person is  fer t i le ,  and hence t he  probabi l-  
ity of a f u r t h e r  child is ra ised a f t e r  t he  f i r s t  b i r th .  His resu l ts  cap tu re  t he  
asymptotic growth and f luctuations of such populations, t ha t  a r e  followed t o  the i r  
ultimate theoret ica l  condition of stabi l i ty.  

By making i t s  assumptions more real is t ic ,  P e r  Broberg has  increased t h e  
in teres t  of t he  branching p rocess  f o r  students of population. 

Nathan Keyfitz 
Leader,  Population Program 
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Sibling dependences in branching ~o~u la t ions  

0.Introduction. 

Both from the point of view of applications and from a more 

theoretical aspect it is of interest to model dependences between siblings 

in branching populations.Competition among siblings could give rise to 

negative correlation between the number of children that they beget.So 

called kin selection would have the same effect,see Horn (198l),whereas a 

stochastic family environment would entail positive 

correlations,(Broberg,1986). 

A modified Bellman-Harris process model allowing for the siblings' 

life-spans and number of children being correlated appears in Crump and 

Mode (1969).The authors prove L convergence of a normed process and 
2 

exhibit properties of its limit. The topic has not, however, attracted any 

attention in the probabilistic literature since then. 

The dependences treated here are such that the members of each 

sibling group of individuals, born into the population, reproduce and live 

according to a joint probability law depending on the sibling group size 

and the mother's birth pattern. These are inherited properties, but there 

is no other influence from ancestors. The idea of this paper is to embed 

such a process of sibling dependent individuals in an ordinary multi-type 

branching process, by regarding sibling groups as individuals, and to 

point at some conclusions that can be drawn concerning the growth, 

composition and extinction probability of the former. 

1. Splitting vopulations. 

1.1.Preliminaries. - - - - - - - - - - - - - - - - - -  

To begin with we shall suppose that sibling groups act according to 

laws that depend only on their different sizes and that reproductions are 



of splitting type. Presuppose the existence of an individual life sample 

space U ,  endowed with the o-algebra 'U. The information provided by 

lives u E U may differ, but a life always tells about the reproduction 

point process ~(u,.) ,  whose points of increase are the ages at child 

bearing. In this context we also define a stochastic sibling life span A :  

U -. R+. This quantity satisfies the equality 

9(u, (X(u))) - 9(u, [ O , = J ) ) ,  

i.e. X(u) is the age at splitting, if children are born. 

Furthermore, assume that for each sibling group size, k E N,  there 

is given a joint probability distribution P(k, . ) on (uk,buk) , the space 

of lives 
u1 ' . . . ,  \ pertaining to members of the sibling group. 

Typically the numbering of siblings is arbitrary, so that the 

marginals P(k,(ui E A)) are independent of i. In this case we write 

P(k, (ui E A)) - f(k, A), VA E bu, i 5 k. 

In some cases it is natural to assume a further homogeneity 

P(k, (ui E A)) - Q(A) 

for some Q,  i.e. all lives are identically distributed, with a common 

distribution not dependent on the group sizes. Such a population will be 

called homogeneous. Certainly the above does not rule out lives of 

siblings being correlated. 

For notational convenience we shall view P(k,.) as a measure on 

n - v uk equipped with the o-algebra d - o( v $) - the minimal 

o-algebra generated by sets S E bu: k E N, although P(k, . ) has its 

support on uk. 

The size of the sibling group will be interpreted as the type of the 

group. 

Next, introduce the natural projections ui(.), i E N,  by the 

requirement that u.(w) be the ith coordinate in w,i.e if w = (u1,u2,..) 
1 

then u2(w)- u2.Section 2 will elaborate on these matters. 

To avoid uninteresting notational complications we shall consider 



only populations initiated by one full group of siblings, or micro 

individuals. The sibling groups can now be regarded as pseudo individuals 

in an ordinary multi-type branching process, so that in the 

pseudopopulation an individual of some type (size) born at time 0 

initiates the population. 

Let the pseudoindividuals be enumerated in the conventional way, 

according to descent and family birth order, so that each group has its 

label 

Since the reproduction is splitting all individuals in a sibling group 

are born at the same time, which is taken to be the corresponding 

pseudoindividual's birth time. Set 

qi(w,t):= q(ui(w), [O,t]) = the number of reproductions of the 

ith micro by age t. 

In the new terminology a life w - (ul, . . . ,  u.) E n, yields a 
J 

reproduction point process on N x R+, determined by 

j 
((w, (k)x[O,t]) = I: l(k)(qi(w,t)) - the number of micros that 

i=l 

have begotten k children by time t since birth. Here k E N,  

t E R+, 1A is the indicator of set A. 

At a minimum a pseudoindividual biography w should tell us the life 

spans and reproductive histories of its constituent micros. Thus, a 

rudimentary life of a j-type pseudoindividual could look like the 

following: 

where the superindex refers to the siblings numbered from 1 to j,and 



1.1. The new ÿ ovulation process, - - - - 
The canonical pseudo population process (see Jagers & Nerman, 1984) 

I 
can now be constructed on N x Q , signifying the product of the space of 

possible types of the initial pseudoindividual and the space of all 

possible combinations of pseudoindividual lives. 

As pointed out the splitting character of the underlying process 

renders it possible to define natural birth times of the pseudo- 
I 

individuals, o corresponding to w x E I ,  in the conventional 
X x ' 

I 

recursive manner,Jagers and Nerman (1984) : o 0 and then 
0 

Let px be the type of x and j(i) 5 px be the number of the ith 

sibling giving birth at o - recall that siblings are numbered. Then we 
xij ' 

can write 

= the number of off-spring of sibling j(i). 

The actual construction of a canonical population process is 

postponed till next section, where it is made in a more general framework. 

If we assume boundedness of micro reproductions the conversion of the 

process into a multi-type branching process in the sense of Mode (1971), 

i.e. a finite type space process, is straightforward. On the other hand, 

without this assumption a theory allowing a countable type space would be 

necessary. In the following suite of illustrating examples is thus imposed 

the condition of boundedness. 

Example 1 Embedded generation counts. 

Consider a branching population with binary reproduction, and suppose 

that there are two possible types of pseudo individuals: singletons (1) 

and twins ( 2 ) ,  the micro individuals constituting the twins having 



dependent reproductions. If we let en count the number of micros in the 

nth generation, then with and c2 the number of singletons and 
n n 

twins, respectively 

Let reproductive distributions be given by, for singeltons, 

Pi = P(1, v1(4 - i), Po + P1 + P2 = 1,  

and for twins, 

i.e. the joint distribution for the twins does not take into account the 

order between the two micros. 

The matrix of expected reproduction is then 

Furthermore, we can solve all sorts of multitype problems, like 

calculating probabilities of extinction and means, cf Mode (1971). It 

follows that, e.g. the mean of I 1 initiated by a singelton is 
n 

1 
E1Knl = (1 0) (2) 

If the Perron-Frobenius root r of M exceeds 1 r > 1,  the 

asymptotically stable proportions are 

i 1 2 s - ui/(ul+ u2) = a.s. lim 5 /(c + c ),given non-extinction, 
i n n n 

n- 

where u = (ul, u2),is the left eigenvector of M corresponding to r.In 

our case 

and 

when this makes sense. 

Exam~le 2. Binary Fission. 

Assume the following for twins in the preceeding example 



I P(one twin begets 0 children, the other 2) - pl 

P(both twins beget 2 children) - p2 

P(no reproduction) = 1 - P1 - P2. 

Since there is only one type of micros,the corresponding embedded 

macro process is actually a one-type Galton-Watson process, for 

definitions see Jagers (1975). It can be examined by counting the number 

of twins in generation n ,  zn, instead of the count of micros rn [cf. 

Example 11, which equal 22,. 

The probability generating function of the twin process initiated by 

one twin couple is 

Let m = pl + 2p2, so that (2,) is sub- or supercritical or 

critical when m < 1, m > 1 or m = 1 respectively. Assume that twins 

are of the same type. Fix the expectation 1 < m I 2,  and observe that m 

determines the reproduction distribution of micros: the probability of 

splitting is m/2. What happens to the extinction probability when the 

dependence structure is varied? Certainly, there will be no extinction if 

p1 + p2 - 1 ,  i.e. p1 = 2-m and p - m-1. On the other hand, the 
2 

extinction probability is highest when p = m/2. The following 
2 

m-1 m calculations make that clear. Put p:- P2, P E (2 , 21 , and 

consequently p - m-2p. The generating function 
1 

is obviously increasing in p. The corresponding extinction probability 

q(p), being the smallest non-negative solution of rp (x) - x ,  therefore 
P 

2 
also increases in p and attains its maximal value 1 + ( 1 )  m for 

Independent individual reproduction is obtained when 

L 
p 2 - p  p1-2p(l-p) for p - 4 2 .  

This case has an intermediate extinction probability: the twin process can 



have both higher and lower probability of extinction. Furthermore, we note 

that the covariance of siblings, reproductions 

L 
Cov[ql(m), q2(m)I - 2(rp1) - m z 0 

if an only if 

This complies with the notion that positive covariance between siblings' 

reproductions should lead to a high extinction probability, due to large 

fluctuations in population size, as compared with the i.i.d. case. For 

more general comparisons of extinction probabilities cf Broberg (1986) U. 

Example 3. Convergence in L~ of Normed Generation Counts. 

First some notation (detailed account in op.cit.) just for this 

example 

' n 
- the number of individuals of generation n. 

fn(i) = the number of children of individual number i of the 

n:th generation. 

* ' n :- # ( i ;  5 (i) > 0 1 5  i 5 5, 1 - the number of mothers in 
n 

the nth generation. 

k 
k(n,i) :- inf ( k ;  C 1( fn(r) > 0 ] - i ) - the individual 

r-1 

number of the ith mother in the nth generation. 

qn(i,j) = the number of children born by the j:th sibling in the 

i:th sibling group of the n:th generation. 

Note cn - C fn-l(i> - X X 
i-1 i-1 j-1 

Moreover, set 

ei:- (fi(j), 1 5 j 5 C I ,  i-1 

B :- a(< o,..., n 

Assume 



Var [to] - u2 < m and 

c0v[vn(i,j), vn(i,k)lBn1 - c Vn, i and j rr k E N 

if these individuals are born. 

2 n In order to prove the L - convergence of the martingale cn/m 

calculate the variance of en using variance decomposition, independence 

between different sibling groups and the above: 

By induction 

2 2 2n-2 n-2) 
(m - m Var [en] = (mu2 + (u + m - m)c) 

m - 1  
n 2 

Hence the convergence of m in L . 

1.3. Countine micros by characteristics. - - 
Characteristics analogous to the ones in ordinary branching processes 

in the sense of Jagers (1975) may now be defined with respect to the 

pseudo process. By a random characteristic we shall understand any real 

valued process (*(a), a E R+) defined on N+ x n1 [op.cit.]. 

Throughout x is taken to vanish for negative arguments. 

For each x E I ,  the shift-like operator Sx maps (pol (W Y E  
Y' 

I)) to (px, (W y E I)), thereby rendering x an ancestor with 
XY ' 

Population size can be measured by 



where xX(a) is interpreted as the score of x at age a,  and zX as 
t 

the total score at time t . 

Below are some examples of characteristics exhibiting ways of 

measuring the population of microindividuals. 

a. The number of micros born up to t; 

use x(pO, (wx, x E 11, 
0 ,  a < o  

to calculate z X 
t' 

b. The number of living micros: 

Use x(a) - Z 1[0, Xi](a); the first argument suppressed. 
i-1 

c. The number of micros, that have begotten k (micro) children: 

Example 2 (cont.). Now let also the life spans of twins be dependent: 

L(tl' t2) = P(X1 5 tl, X2 5 t2). 

The marginal distribution is 

Denote by zt the number of micros alive at time t. 

For the expected number of individuals alive at time t, E[ztlz0- 21, 

dependences pose no problem, thanks to the linearity of expectations 

regarded as operators. We just use the characteristic xl(a) = l[O,X](a) 

and let zxl Z X' (t-0;) be a process starting from one individual, 
XEI 

and procede as for an ordinary one-type branching process according to the 

x ' marginal distribution of our twin process. Then E[z:~ zo= 21 = 2E[zt ] . 

Introducing p - p1/2 + p2, p(t) = E[p[O,t]] - 
CO 

*k 
= 2L(t)p and u(t) = Z p (t) (the renewal function), where * stands 

for convolution, we obtain 



and in particular 

Example 4. In order to hint at a possible extension of the above setting, 

we consider a binary splitting process where twins are dependent and the 

individuals can be of two kinds. Again, regard twins as 

pseudo-individuals, who will now be of three types: both twins of first or 

second kind, or one of each. From the joint probability laws P(k,.), k = 

1 ,  2, 3 (where k is now referring to type), we can obtain a reproductive 

matrix as in Mode (1971) M - p i ,  j) 1 and 

2. More general vovulations. 

2.1. The model. 

It is possible to remove the restriction that micros reproduce by 

splitting, and to permit the distances in time between sibling births and 

their mother's birth and even her entire biography to influence the 

reproduction of the sibling group. This can be done by the inclusion of 

the micro-mothers' entire lives in the types of sibling groups. The type 

of a pseudoindividual then becomes an element u E U ,  the individual life 

sample space, endowed with the u-algebra % .  In the sequel only the 

information provided by u through the reproduction point process q(u,.), 

will be included in the type for notational reasons, but the results 

easily 



extend to the more general formulation. For the sake of convenience choose 

I' = N(IR+) = pointprocesses on IR+ . However, the theory holds true for the 

more general formulation. 

Denote the ages at childbearing (the points in ( u . ) )  of a 

micro life u E U by 

7 (u) I 7 (u) I . . . 
1 2 E [O, a1 

- the convention being that rk(u) - a if ~ ( u ,  [0, a)) < k.These ages 

i i determine birth times in the usual way: o 0 and o :=o +r where r is 
0 xi x x' x 

the age of x at the birth of its ith child. 

Denote by 7(A) for,A c - R+,the number of points in A of the point 

process 7. 

Assume given a set of joint probability measures F(-y, . ) on 

u'(~+) .These describe the reproduction and dependence structure. 

We are now going to construct a branching population (u' 91I.P) with 
0' 0 

the required features. 

Choose some 6 B U and put Uo:- U u (6) .Define a measure on U; through 

P(-y,Ax(6,6,. . . ) )  :EF(~,A) for A E % 7 (R+) 

Set I':=d(lR+),n:-~~,% :- o(% u (6)),i.e. the smallest o-algebra 
0 0 

containing % u ( 6 ) , and d :==%.Denote by '8 the vague Bore1 algebra of sets 

in I',see Kallenberg (1983) p.12. 

Introduce the individual space I := I\(O). Make the construction 
1 

through the mapping 

1 
,where w :-(uxi, i=1,2, . . ) .This is a mapping from U to nl. 1t has the 

X 0 
- 1 

inverse q~ : Write p.(w )=u the ith coordinate of w ; put 
1 x xi' x 

- 1 
q~ (wx,x€I):=( pi(wx), xi E Ill-(ux, x E Ill. 

d1 is the smallest o-algebra which makes all coordinate projections 

wX((w y E I)) = wX measurable.Furthermore,the product o-algebra s4 
Y' 



ensures that the projections p :n - U has the same property. The 
i 0 

- 1 
inverse mapping rp consists of compositions of the above mappings and 

-1  I I1 
thus we may infer p d c qO , i.e. p is measurable 

I 
Then we need the natural coordinate projections u :uO1- U such 

X 0 

that 

Define the types p:  nl- I' through 

Given (P(-y1,.),-y'EI'),(px,x€1) and -y - po , the construction in Nerman 

(1984) then yields a unique branching population (I' x nl,% x d ,P ) , 
7 

called the macro or pseudo population process 

Then (u x E I ) obeys the law PT= 
1 for any point process -y 

x ' 

describing the start. In the homogeneous case let us add the outcome u 
0 

distributed according to the marginal distribution Q. Given u 
0 

~ " ~ 0 '  Lo'*)) is the law for (u x E 1 1 )  This defines a law 
x ' 

Remark. Alternatively we could have started with -y equal to Dirac measure 

in zero and then renumbered the coordinates u so that u was taken to be 
X 1 

uO, u regarded as u etc to obtain P as above. 
191 1 

From now on simply write U instead of U 
0 ' 

Let us make the convention that a sibling group is considered to be 

born at the time of its micro mother's birth. Observe that this is another 

convention than the one made for the splitting case.Define birthtimes for 

the macro process by 

a' := a otherwise. 
X 

The macro process has a reproduction point process 

The expectation of this quantity with respect to P is the expected 
7 



reproduction measure 

which in the homogeneous case, where individual lives have the marginal 

distribution Q, amounts to 

Remark. The general concept of homogeneity is defined in obvious 

parallell to the splitting case. 

In Taib (1987) the reader will find a rigorous proof of the fact that 

quite generally imbedding schemes yield new branching processes.By 

multi-type versions of the methods employed in that reference,one could 

prove the new process to possess the branching property, see e.g Athreya 

and Kaplan (1978),by showing independence of daughter processes 

conditioned on what has happened up to the first pseudo generation. 

First we consider non-individual characteristics X: U' - R Later + ' 
on it will be necessary to only permit individual characteristics, which 

are such that they only depend on the life of one individual, the one 

corresponding to their index. Using the shift-like mapping S : (u y E 
x Y' 

define x :- x o  Sx, x E I Then there is a multi-type characteristic x', 
X 1 ' 

which performs the same counting as zX- C ~ ( t - a  ) . To ease the notation 
xEI 

X 

1 

identify z X' and zx' (which obey the law P ) .  For the macro process let 
p0,t t 0 

T bethemapping from (w ~ E I )  to(w ~ € 1 ) .  
X Y' XY ' 

Lemma 1. Let the micro process start in some arbitrary fashion. Put 

u:=(u ,XEI and 
x 1 



Remark 

The definition of X' subsumes that x vanishes for negative age 

arguments. 

Proof. x ' zt0v(u) - Z X' (P~"P(U> ,T,ov(u), t-u;ov(u) 
xEI 

X - Z Z x((uxiy.~E1), t - (u)) = zt(u) , 
XEI i€N 

xi 

since if xi€ I is the ith sibling in group x E I then 

The new type space can be quite complex. In the homogeneous case 

however, when marginal distributions of micro lives are identical, obeying 

the law Q(.) on U ,  and independent of the micro mother's life, the 

situation becomes simpler. 

It is desirable that the process be Malthusian; the concept of 

Malthusianness for multitype processes presupposes the existence of an 

a E (R and an eigenfunction h: r + 0 ) so that Vy E I' 

(Sufficient conditions for Malthusianess in general type spaces are 

exhibited in Jagers (1983).) In the present homogeneous case we can 

however be explicit about the eigenfunction. Suppose that for a E (R+ 

A CO 
-at 

Use the conventional notation f (a)-l e f (dt) . 
0 

Now the process is Malthusian with a above as Malthusian parameter 

and the eigenfunction 

To see this note that 



- h(7) 
A 

(remember [ (a ) ]  = 1 as required. 

In theorems to come we restrict attention to the subset 

of types. Since 

For simplicity identify r  and r ' .  

Example 5. Some simple sufficient conditions assuming Malthusianess in 

the not necessarily homogeneous case follow below; for more general 

results see Jagers (1983). If the reproduction measure has the special 

such that 

then, the operator 

2 T : ~ ~ ( 1 )  -+ L (A) 
a 

is compact, Reed and Simon (1972) p.206. Restrict the operator to bounded 

functions and suppose the spectral radius to be 1 ;  in some cases one can 

show that the spectral radius r(a) is greater than one for a 2 a and 
0 

then show continuity in a .  

If, furthermore, a communication property is assumed: 



then, as in Jagers (1983), one may invoke Jentzsch's theorem to conclude 

the existence of a unique normalized strictly positive eigenfunction. 

2.2.First Moments. 

Suppose that each micro individual born into the population has a 

label x E I and denote its life by u and its birth time by o . Let 
X X 

x be a non-negative product-measurable process defined on U x [R, which 

vanishes for negative values of the second argument (the age-argument), 

and consider 

which measures the total score of all micros at time t. 

Taking the expectation of this quantity, interchanging the order of 

summation and integration and applying the standard conditioning 

arguments, shows that this mean is unaffected by changes in sibling 

dependence structure. Thus the classical single type formula is valid 

m m 
*k 

E[ E x(ux,, t-0 x ' )I - JE[X(~-V)] E p (dv), 
x €1 0 k-0 

where p(dt) - E[q(dt)],and the first argument in x has been dropped. 

In the rest of this section we will, unless anything else indicated, 

consider a homogeneous process, which is supercritical (a > 0). 

It is of interest to see to what extent asymptotic results from 

classical one-type theory carry over to this new setting, where 

dependences are allowed. Part of the answer for first moments lies in 



Theorem 1. Provided either (i) E[x] is continuous almost everywhere, 

m 
-av 

p(dt) = E[q(dt) ] is non-lattice, p - S ve p(dv) < m 

0 
m 

-aa. 
(a the Maltusian parameter) , and C sup e .E[x(a) ] < m 

k-0 kalk+l 

(ii) ~ ( d t )  has a non-trivial Lebesgue component, p < m and 

-at 
e E[x(t)] is bounded, Lebesgue integrable and tends to zero as t + a,  

then 

Remark. 

In case (ii) the convergence takes place even in total variation. 

Proof. For proofs: (i) Jagers (1975) and Cinlar (1975). (ii) Nummelin 

(1978). 

Later on we shall need the following Lemma,where it is assumed that the 

process starts with a general 7,not necessarily Dirac measure in zero. 

Lemma 2. In both the settings (i) and (ii) 

-at 
l i m e  E7[z:'] -;(~)E[X(~)I/OLB 
t- 

for X' as above and -y E I?. 

Proof. Write z X (i) for the micro process stemming from an 
t-7i(7) 

individual born at time 7 i ( -y)  :-inf (t ;-y [O ,  t]l i 1 , Jagers and Nerman 

(1984). Observe that by Lemma 1 and the definition of E 

since each term is bounded. Finally apply Theorem 1. 



Corollary 1. If e71tE[z:] + E[j(a)]/aB and t - E[zX] t is bounded on 

finite intervals, then 

-at 
sup e E7[z:1fi(7) < 
7,t  

Proof. From the convergence of the hypothesis 

-at 
sup e ~ [ z z ]  - c < a, 

and hence by (5) 

Since the pseudoindividuals of generation n stem from 

microindividuals in generation n-1, we have the following expected 

reproduction measure for the nth generation of a population starting 

off with an pseudo ancestor of type -y,which not necessarily equals l(0): 

p n  7 ,  dt x d r  ) - l*p *("I) (dt) x ~(d-y' ) , n 2 1, 

where 

p(dt) - E[q(dt)] as before. 

Collecting terms and taking into account the non-random start we obtain 

the expected population measures 

a3 

*o *n 
p as usual signifying unit mass at the origin. With v - C p this 

n-0 

reduces to 

2.3.Second moments. 
- 

We shall now explore the asymptotics of e 2at~ar  [z:' 1 ,  as in 
-Y 

the previous section. 

The starting point will be 



Lemma 3.3 in Nerman (1984). Suppose that m X' = E~[Z:'] is finite and 
'Y,t 

that X' is individual, i.e. only depending on the life indicated by its 

index. Then for 7 E r, t E R+ 

where 

Unlike the means, the variances will obviously be affected by changes in 

the dependence structure of the sibling lives. However, traditional 

conditions on the micro reproductions q and the micro characteristics x 

still yield variance convergences as in the case of independent 

reproductions: 

Theorem 2 

If characteristics are individual and 

-2av 
1. sup e Var[x(v)] - c l < a  

v 
-2av 2. l ime  Var[x(v)] - 0  

v- 

in either of the settings (i) or (ii) , 7 E r, and 

A 2 
4. E[q (a)] < a .  

Then for any 7 E l? 

2 -2  ̂
lim e-2atvar [z:' I - (~[j(a) ]/aS) (V 7(2a)/(1-;(2a)) I ,  
t- 'Y 

with 

and 



Remark. Note 

and 

So if, for instance, 

then we have 

And finally, invoking homogeneity: 

A 2 -2 A A 

v - C EL7 (a)] + (Var[-Y(a>I - c)E[r(2a)l 

Corollarv 2. Under the conditions of Theorem 2 

Proof of the Corollary.The process starts with one ancestor born at time 
A 

zero: -y has mass one at the origin and so -y(a) - 1. 

Proof of the theoremL A slight modification of the proof of Theorem 6.1 

in Nerman (1984) validates the statement. The technique is that of 

repeated dominated convergence. 

First note that for g2 as in (6) we can write 

-2as -2as 
e g2(r,s)5e 2(Var[x;(s)l 

2 ^2 
We shall show that the right member is dominated by 2(cl + c3)-y (a) for 

appropriate constants c and c3. 
1 

With K: - E[x(t)] Jensen's 

inequality yields 

2 
[eQS(x;(s) - Er[x6(s)l)1 - 



By t h i s  and condi t ion 1 t he  f i r s t  term on the  r i g h t  s ide  of ( 7 )  i s  

dominated by ( t  f o r  ~ ~ ( 7 ) )  
i 

m 

s-t i-1 

According t o  Condit ion 3 and Corol lary 1 there  e x i s t s  a constant  

Thus 

Using Jensen 's  i nequa l i t y  on 

we can dominate t h i s  by 

Our next claim i s  t h a t  ( j '  (a )  ) is  i n tegrab le  with respect  t o  

- 2 m  
e v (7 ,  dvxdy ' ) . But t h i s  fol lows from 



m 
-2at 

A 

recall that Se p(dt) - p(2a) < 1 and 
0 

Hence the Dominated Convergence Theorem may be applied: From 

Condition 2 and the Cauchy-Schwartz inequality 

m 
-2at 

t-w 0 r 
m 

-a(t-v>,x -av - lim Var [S Se 7' , t-v e t0(p0, dvxd7' ) I , 
t-w r ~ r  

which by Condition 3 equals 

in the notation 

m 

Integrating the right hand side with respect to v(-y, dvxdy') gives the 

limit: 

This ends the proof. 

Remark. Theorem 6.2 in Nerman (1984) could have been invoked to prove a 

similar theorem. Nerman's results follow from a study of the embedded 

Markov renewal sequence (M,T) generated by 



M is in our case recurrent with respect to Q (and indeed i.i.d.) with 
A 

stationary measure 7(a)Q(dy), as required. 

Furthermore, the integrals (written in our notation) 

and 

which should be finite, are certainly so under the conditions of the 

previous theorem. 

Then Nerman (1984) postulates the existence of a probability measure 

on R+ x r, a constant 0 5 c < 1, and a measurable f: r + [0,1] 

such that 

and such that the measure 

Sf (r)v~(.xdy) is spread out, i.e. some convolution power of it has a 
r 

nontrivial Lebesgue component. This condition poses some problems, since 

the measures here are not necessarily spread out 

The natural condition Pr(y; < a) = 1 V7  7 E, Vt, where y; = total 

number of macros born before t, is satisfied. 

However last but not least,a condition needed for the convergence of 

-at 
e v(r, [O,t] x r'), stemming from theorem. 5.2 of Nerman (1984), 

A 

namely inf 7(a) > 0, became dispensable here. 
7 

Example 6. Let us examine the extreme case of total reproductive 

similarity between siblings, i.e. they reproduce simultaneously. This 



means that 

Thus according to the preceding theorem 

for any x satisfying the conditions of the theorem (and /3 < m ) .  

If 7 places all mass at zero, then the above turns into 

which should be compared with the corresponding convergence in a 

population of independently reproducing individuals to the limit 

As in the preceding section only the homogeneous supercritical 

Malthusian case is dealt with. Following Nerman (1984) we define a process 

on the macro space by 

-a0 ' 
X w - Z  e h(px) , 

x~I(t) 

I(t) - (xj: a' I t c o f  < m), 
x x j 

the coming generation at time t. With 

X(n):= the number of the nth individual to appear, 

and 

Ot:- 9 - U( u Tn n (0' -C t)), 
; n-o X(n> - 

it follows that w is a martingale with respect to 9 (op.cit.). Hence 
t t 

A 

w can be expressed as 
t 



by means of the characteristic 

With the above X' and the notation from the previous section, we can 

write 

--av 
+~J'ea(tu)mx' e <O(pO, d v ~ d ~ ~ ) ]  

0 r 7' , t-v 

A 2 
see proof of preceding theorem. Again assume E[q (a)] < 00. Then 

The L2- convergence of w is now given by standard results for t 

martingales with bounded variance,cf eg Corollary 2.2 in Hall and Heyde 

Theorem 3; If ~ [ ~ ~ ( a )  ] < 00, there exists a w such that w 
t ' w* 

A 

and E [wa]= ~ ( a )  , Vr E r .  
-Y 

The Convergence of the Process in 
L2, 

Very much in the vein of Jagers and Nerman (1984) we can derive the 

following 

Theorem 4 ,  Suppose that the conditions of Theorem 1 are satisfied. Then 



Here w, as in the previous section, and z X' denotes z X' with a 
t 9 7 t 

pseudoancestor of type 7. 

h 

Proof. Defining K - E[x(a)]/aS, we arrive at 

2 
Theorem 2 shows E7[(wt- w,) ] -+ 0, t -+ a. Since E [eqtz: - Kwt] - 

7 

e-'xnx - j(a)K -+ 0, as t -+ , it is enough to prove that 
7, t  

lirn Var [e-atzx - Kwt] - 0. 
t- 7 t 

Denote the characteristic used in the proof of Theorem 2 by ;' (po ,wo, a) = 

*A -av 
eaa I IT' (a) e (O(pO, dvxd-y ' ) . Recall the relation 

r Q 
Var[vl- v21 - 2Var[rlll + 2Var[v21 - Var[vl+ v21,  

and the preceding two theorems to realize that 

-2at X limvar [zxe-t-K~t] - 2  l i m e  Var7[zt] 
t- 7 t t- - 
+ 2 lim e-2at~ar [KZ:] - lim e -2at 

X 

t- 7 t- 

X + K ~  = o,  Var [zt 
7 

N. B. zKx - KZ: and z x+x = ,x + ,x 
t t t 

Corollary 3. Under the conditions of Theorem 3 

Proof. Specialize to the case when puts mass one at the origin. 

Convergence in Probability and in LIL 

This section sets out to prove convergence in probability of the 



process under quite general conditions, namely those stated in Theorem 1. 

Adding one condition we also obtain convergence in . 
L1 

Before getting on to Theorems 4a and 4b we have to make a couple of 

things clear. 

Following Nerman (1984) define the truncated coming generation 

and the corresponding sum of reproductive values 

This quantity is useful as an underestimate of the martingale w The 
t' 

next result states that more precisely.With y'-the total number of macros 
t 

born up to time t: 

In the homogeneous case assume /3 < Q. Then if po- 

(wQ > 0) - (y; + Q) = (lim sup w > 0) 
t-'Q t,s 

a.s. , s 1 s(7) for some s(-y).Furthermore P ((y'- Q) u (w =O)) = 1. 
7 t t 

Proof. From the definitions 

(y; + Q) 2 {wQ > 0) > (lim sup w > 0). 
t-'Q t , S 

Put 

% - lim Sk 
Q 

k+Q 

From 

~ ( 7 ,  r x [o,tl) < vt 

clearly 

P7(ai(k) 
-> Q) - 1,  

whence 

p w > O U  -1 -  Q u (ax(k) 
7 

-1-> Q' ISn) 

tends to 

1{wm > 0) u ( y; -1- Q 1 

,as n- =,according to Levy's theorem,both unions being measurable Sm,see 



e.g. Chung (1974). 

The latter probability exceeds 

P ({lirn sup w > O)U{y; -/d Q) Isn). 
7 t + Q  t,s 

Since also 

( l imsupw >O)u(y;-/--a) 
t + Q  t,s 

is measurable sal,the same theorem gives that the last mentioned 

probability tends to 

l(1im sup w > O)u(y; -/+  as n -- 
t + m  t,s 

And this will be shown to equal one a.s.Introducing the truncated variable 

C 
w :-w A c,c>O,and invoking a version of Fatou's Lemma (1.6.8 (b) in 

t, s t,s 

Ash,1972) shows 

C C 
E [lim sup w 1 r E [lim sup w ] L lirn sup E [w 1. 

t- t,s t- t,s t'Q 7 t,s 

That the right hand side is bounded away from zero for c and s 

appropriately chosen becomes clear from consideration of the expected 

difference between w and w . Passing to the limit using Theorem 1 
t t,s 

and writing 

Q A --Qv 
~ ( a )  - 8 8 ' 7' (a)EO(pO, dvxd7'): 

I' a+s 
--Qt X ] - lirn e E7[zt] - 

t-w 

S 
A 

which does not exceed 7(a)/2 for s greater than some s Recall that 0 ' 

lirn E [wt] - 7(a). 
t- 7 

Thus 

E [lim sup w ] 17(a)/2, 
t+Co t,s 

implying that 

P (lim sup w > 0) > 0. 
7 t+Co t,s 



And from the recurrence with respect to Q, noted in the Remark following 

the proof of Theorem 2, the process will a.s. revisit the set 

P [lim sup w > 01 > 6(7) > 0) 
t,s 

(for some 6(7),7 the starting type) an infinite number of times on 

Hence a.s., with Tx: (P ,w ,y E 1) - (pxsw S Y  I), 
0 Y XY 

l imp ((l imsupw > O  )U(y;-/->~)ls~) 
n- 7 t + w  t,s 

1 lim sup P (lim sup w t,s O T~(n+l) > OPn) n + w  7 t - r w  

- lim sup P (lim sup w > 0) > 6(7) > 0. 
n -' "x(n+l) t -r t , s 

Consequently the indicator exceeds 6(7), in which case it must equal 

unity a.s. 

Much as in Jagers and Nerman (1984) Theorem 5.8, we can prove 

Theorem 4.a. Suppose that the characteristic x satisfies the conditions 

of Theorem 1. Then for any starting type YE I? 

-at X' 
A 

e ztov(u> E[x(a> lw,ov(u>/aS 

in probability, as t + Q. 

Proof. The object is to show that for any 6 > 0 and s large enough 

-a(t+2s)=x1 
A 

lim sup P (le 
7 t+2s 

- E[x(a)lw,/aSI > 6) < 6. 

t-'Q 

Again following Jagers and Nerman (1984) define a truncated charac- 

teristic: 

Let X' be defined through (2) with x replaced by 
C 

X c - c A X 1  [O,cI ' c > 0; 

recall the truncated coming generation 

I(t,s) = (xk, a' I t < a' 5 t+s) x xk 

and the corresponding sum of reproductive values 
A 



For s > c > 0 we write 

P 2 W  exp(-ol(t+2s))(z:~2-u1 (x) - C 
Z t+2 S-04 (x)), 

xi 
X x€I(t,s) 

; A 

P4(t) - )exp(-a(t+2s)) X m t+2 s-a ' 
~ € 1  (t, s) X 

and 
A A 

P7 - I:E[~~(a)lw~/aB - E[x(a)lw,/aBI 

Clearly 

For each i - 1 2 , ,  7 and any r > 0 it will be shown that s 

and c may be chosen large enough to make 

lim sup P (Pi(t) > r) < 6 .  

t'a 7 

This will either be done directly or via Markov's inequality, the 

inequality 

concluding the argument, Jagers and Nerman (1984). Here we shall only deal 

with p3(t) thoroughly. Briefly: p7 and pl(t) are taken care of by 

monotone convergence, p5(t) and p (t) by finiteness and asymptotic 2 

equality of w and w t p4(t) by Theorem 1. t,sS 

Now, let N(t,s) - #I(t,s). 

Before we can invoke the Strong Law of Large Numbers we need to know that 

N(ts) + - y + 1 a.s. 

This is however clear from 



The convergence of p (t) will follow from 
3 

lim sup P ( I  Z 
x f - m 

x1 
(Zt+2s-a t+2s-a )/N(t,s) l > 

t + m  x'~I(t,s) x x 

by an application of the Dominated Convergence Theorem and as a 

consequence of 

lim sup P ( I  Z x ' (x) - m 
;: 

t+2s-a )/N(t,s)l > 
t + m  x1€I(t,s) Px' X 

€ 3  ) ' 0  
Y ; 

a.s. on (y;+mI. 

Conditioned on 3 , I(t,s), N(t,s) and a' E I(t,s) are all known, 
Yt 

X 

x ' x ' while z c (x) - z C , ~ O  Sx, x E I(t,s), are independent. 
Px 3 u Po 

x ' The conditional distributions of z c (x), x E I(t,s), are 
px,t+2s-a' X 

stochastically dominated by c y2s, where 
Y2s 

are the number of micros 

x ' born up to time 2s. Furthermore E[z c x ' 13 1 - m c  and 
px,t+2s-0; 

Yt px,t+2s-a" X 

finally an invocation of Lemma 5.7 of op.cit., which is a Weak Law of 

Large Numbers, settles the matter. 

A modification of the proof of Theorem 5.3 in Jagers and Nermam (1984) 

yields 

Theorem 4.b. Under the condition 
h 

+ A  

(X log x) E[q(a)log (q(a))] < a ,  

the convergence in the previous theorem takes place in . L1 

Remark. 

As easy corollaries follow statements analogous to theorems 4.a and 4.b 

for the process zX starting from one ancestor. 
t 



Multi-twe Processes with Siblin~ Dependences. 

The above scheme can be extended to the case of a finite-type 

process.For the sake of illustration choose a type space with just two 

types.We can perform the same imbedding as before,the type of the 

pseudo-individual now being both the birth times and the types of the 

siblings:I'd(!R+x(l,2)).In order to prove the process to be Malthusian we 

need to exhibit an eigenfunction,ie h:r- !R and an a E R: 

First some notation.Let for i=1,2 

i 
-y :=the reproduction point process corresponding to births of 

individuals of type i borne by a mother with life 7. 

1 2  1 2 
Thus 7- (7 ,-y and r[O,tI- 7 [O,tI+r [Opt] 

Assume given probability measures Q(i,A),i=1,2,A E ?B(N(R+x(1,2)))= the 

vague Bore1 o-algebra,see Section 2.1 

Next put 

Now try out the function 

for some weights w(1) and w(2),such that w(l)+w(2)-1. 

Insert this candidate in (8) : 

Denoting 

and 

we can write the last member in obvious matrix notation (row vectors and T 



for transpose) as 

Suppose that the matrix p(t) is non-lattice,the matrix p(m) irreducible 

and furthermore that p is Malthusian,ie for some s=a (the Malthusian 
A 

parameter) p(s) has spectral radius one and for all i and j 

Put 

2 m -au j 
: X w*(i)v(j)~ u e pi(du) < Q, 

i,j=l 0 
* A 

where w and w denote the left and right eigenvectors of p(a) ,see 

Asmussen and Hering (1983) p. 398.By letting w be the left eigen vector we 

are done.(This amounts to putting 

As in the one-type case a renewal argument yields the convergence of 

normed expectations.Go back to the k-type case and note that the above 

reasoning obviously holds true for any finite number of types.Define 

the expectation taken for p -l(O)x(i) .If the e-at~i[x(t)] are directly 0 

Riemann integrable,then invoking (8.2) in Asmussen and Hering (1983),one 

may conclude 

Further results can be patterned after preceding Sections.For 

-00' instance,using the martingale X e x h(p ) and convergence of normed 
~ € 1  (t) 

X 

variances one may establish convergence in L .Exactly the same kind of 
2 

Dominated Convergene arguments apply given a new set of conditions 

analoguous to the old ones 

Generalizations to more general type spaces are feasible but will be 

attempted elsewhere 
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