
Adaptive Nonmonotonic Methods 
With Averaging of Subgradients

Chepurnoj, N.D.

IIASA Working Paper

WP-87-062

July 1987 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33894461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chepurnoj, N.D. (1987) Adaptive Nonmonotonic Methods With Averaging of Subgradients. IIASA Working Paper. WP-87-

062 Copyright © 1987 by the author(s). http://pure.iiasa.ac.at/2990/ 

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


ADAPTIW NONMONOTONIC METHODS 
WITH AVERAGING OF SUBGRADIENTS 

N.D. Chepurnoj 

July 1987 
WP-87-62 

Working Papers are interim repo r t s  on work of the International 
Institute f o r  Applied Systems Analysis and have received only limited 
review. Views or opinions expressed herein do not necessari ly 
represent  those of the  Institute or of i t s  National Member 
Organizations. 

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 
A-2361 Laxenburg, Austria 



FOREWORD 

The numerical methods of the nondifferentiable optimization are used f o r  solv- 
ing decision analysis problems in economic, engineering, environment and agricul- 
ture.  This paper  is devoted t o  the adaptive nonmonotonic methods with averaging 
of the subgradients. The unified approach is suggested f o r  construction of new 
deterministic subgradient methods, the i r  stochastic finite-difference analogs and a 
posteriori  estimates of accuracy of solution. 
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ADAPTIVE NO~ONOTONIC MlCI'HODS 
WITH AVERAGING OF SUBGRADEXTI'S 

N.D. Chepurnoj 

1. OVEBYIEW OF RESULTS IN NONMONOTONIC SUBGEWDIENT METHODS 

Among the existing numerical methods of solution of nondffferentiable optimi- 

zation problems, the nonmonotonic subgradient methods hold an important position. 

The pioneering work by N.Z. Shor  [26] gave impetus t o  the i r  explosive pro- 

gress. In 1962, he suggested an i terative process of minimization of convex 

piecewise-linear function named afterwards the generalized gradient descent 

(GGD): 

where gS E af ' (xS ) i s  a set of subgradients of a function f ' ( x )  at a point xS  ; rs r 0 

i s  a s tep  size. 

For the differentiable functions this method agrees very closely with the 

well-known subgradient method. The fundamental difference between them is that 

the motion direction (- g ) in (1.1) is, a s  a rule, not a descent direction. 

A t  the f i rs t  attempts to substantiate theoretically the convergence of pro- 

cedures of the type (1.1) the researchers  immediately faced two difficulties. For 

one thing, the objective function lacked the property of differentiability. For 

another, method (1.1) w a s  not monotonic. These combined features rendered im- 

practical the  use of known gradient procedure convergence theorems. 

New theoretical approaches therefore became a must. 

One more "misfortune" came on the neck of the others: numerical computa- 

tions demonstrated that  GGD has a low convergence rate.  

Initially great  hopes were pinned on the step-size selection strategy as a way 

towards overcoming the crisis. 



By the ear ly 1970s difficulties caused by the formal substantiation of conver- 

gence of nonmontonic subgradient procedures had been mastered and different ap- 

proaches to the step-size regulation had been offered [6, 7, 8 ,  19,  20, 261. However 

the computations continued t o  prove the poor convergence of GGD in pract ice.  

I t  can be said that  the  f i r s t  stage in GGD evolution w a s  over  in 1976. 

Thereupon the  numerical methods of nondifferentiable optimization developed 

in th ree  directions, i.e., methods with space dilation, monotone, and adaptive non- 

monotonic methods w e r e  explored. 

Let us dwell on each of these approaches. 

In an  ef for t  t o  enhance the GGD efficiency, N.Z. Shor elaborated methods 

where the operation of space dilation in the direction of a subgradient and a 

difference between t w o  successive subgradients w a s  employed. Literally the  next 

f e w  years  w e r e  prolific f o r  papers [27, 28, 291 investigating into the space dilation 

operation in nondifferentiable function minimization problems. A high rate of con- 

vergence of the suggested methods w a s  corroborated theoretically. 

Computational pract ice at tested convincingly to the advantageousness of ap- 

plication of the algorithms with space dilation, especially the r-algorithm [29], as 

alternative t o  GGD, providing dimensions of the space do not exceed 200 t o  300. 

However, if dimensions are ample, f i rst ,  a considerable amount of computations is 

spent on the space dilation matrix transformation, second, some ex t ra  capacity of 

computer memory is required. 

The monotonic methods became another essential direction. 

Even though the f i r s t  papers on the monotonic methods appeared back in 1968 

(V.F. Dem'janov [30]), the i r  progress reached its peak in the ear ly  70's. Two 

classes of these algorithms should be distinguished here:  the &-steepest descent 

15, 301 and the &-subgradient algorithms [31-341. W e  shall  not examine them in de- 

tail but note, tha t  the monotonic methods offered higher r a t e  of convergence a s  

against GGD. Just as with the  methods using the space dilation, vast dimensions of 

problems to be solved sti l l  remained Achilles' heel f o r  the monotonic algorithms. 

Thus, the  nonmonotonic subgradient methods have come into part icular impor- 

tance in the solution of large-scale nondifferentiable optimization problems. 

The nonmonotonic procedures have another important object of application, 

a p a r t  from the large-scale problems, i.e., the problems in which the  subgradient 

cannot be precisely defined at a point. The latter encompass problems of identifi- 

cation, learning, and pattern recognition [I, 211. The minimized function i s  t he re  a 



mathematical expectation whose distribution law is unknown. E r r o r s  in subgradient 

calculation may s t e m  from computation errors and many o ther  rea l  processes. 

Ju.M. Ermol'ev and Z.V. Nekrylova [9] w e r e  the f i r s t  to investigate the like 

procedures. Stochastic programming problems have increasingly drawn the atten- 

tion to the nonmonotonic subgradient methods. 

However, as pointed out ear l ier .  GGD, widely used, resistant to e r r o r s  in 

subgradient computations, saving memory capacity, st i l l  had a poor rate of conver- 

gence. Of g rea t  importance therefore w a s  the construction of nonmonotonic 

methods such that,  on the one hand, retain all advantages of GGD and, on the other,  

possess a high rate of convergence. 

I t  has been this requirement that  has le t  to elaboration of the adaptive non- 

monotonic procedures. 

An analysis revealed that  the Markov nature of GGD is the chief cause of i ts  

slow convergence. I t  is quite obvious that the use of the  m o s t  intimate knowledge of 

progress of the computations is indispensable to  selection of the direction and re- 

gulation of the stepsize. 

Several ideas provided the basis f o r  the development of adaptive nonmonoton- 

ic  methods. 

The major concept of all techniques fo r  selecting the direction and regulating 

the step-size w a s  the use of information about the fulfillment of necessary condi- 

tions to have the extremal-value function. 

I ts implementation are the methods with averaging of the subgradients. 

In the most general case by the operation of averaging is meant a procedure 

of "taking" the convex hull of an  a rb i t ra ry  finite number of vectors. 

The operation of averaging in the numerical methods w a s  f i rs t  applied by Ja.2. 

Cypkin [ Z Z ]  and Ju.M. Ermol'ev [ll]. 

The paper by A.M. Gupal and L.G. Bazhenov [3] also dealing with the use of 

operation of averaging of stochastic estimates of the generalized gradients ap- 

peared in 1972. 

However all the above papers considered the program regulation of the step- 

size, i.e., a sequence [ r ,  ] independent of computations w a s  selected such that  



The next natural  stage in the evolution of this concept w a s  the construction of 

adaptive step-size regulation using the operation of averaging of preceding 

subgradients. 

In 1974, E.A. Nurminskij and L.A. Zhelikovskij [I81 suggested a successive 

programadapt ive regulation of the step-size f o r  the quasigradient method of 

minimization of weakly convex function. 

The crux of this relation consists in the following. 

Let an i terat ive sequence be constructed according to the rule 

where gS E a j ( z s )  is  a quasi-gradient of the function j ( z )  at the point zS,  r o  is  a 

constant step-size. 

Assume that  there  exist  z E En and numerical parameters t > 0, 6 > 0 such 

that f o r  any s = 0,  1, 2, ... llzS - G 1 1  5 6. Let us suppose also that  a convex combi- 

S 
nation of subgradients t g i  i f  L O  exists such that  IlesolI S t, 

S 
eSD E conv tg i  j i  :0 . 

Then the point z i s  sufficiently close to the set X' = argmin j ( z )  according to the 

necessary extremum conditions. In the given case the step-size has to be reduced 

and the procedure repeated with the new step-size value r l  start ing at the ob- 

tained point zSD. The numerical realization of the described algorithm requires a 

specific ru le for  constructing vectors eS'. In [10] the vector eS' is constructed by 

S 
the rule os' = Pro j  O/conv g k  k ' s ,  that  is, all quasi-gradients are included 

into the convex hull start ing from the m o s t  recent  instant of the step-size change. 

Numerical computations bore out the expediency of making allowances for  such re- 

gulation. However a grave disadvantage w a s  inherent in it: the g rea t  laboriousness 

of i teration. Considering that  the approach as a whole holds promise, averaging 

schemes had to be developed fo r  the efficient use when selecting the direction and 

regulating the step-size. 

This paper  treats such averaging schemes. They serve  as a foundation f o r  new 

nonmonotonic subgradient methods, f o r  the description of stochastic finite- 

difference analogs, a posteriori  estimates of solution accuracy. Pr io r  to discuss- 

ing results, let us make some general  assumptions. Presume that the minimization 

problem is being solved on the  ent i re  space of the function j ( z ) :  



where En is  an n-dimensional Euclidean space. The function j'(z) will be every- 

where thought of as being the  convex eigenfunction j'(z), dom j' =En,  the sets 

[z : /(z) 5 c j being bounded fo r  any bounded constant C. The set of solutions of 

the problem (*) will be believed to be the s e t  

2. SUBGRADIENT KETHODS WITFi PROGRAM-ADAPTIVE STEP-SIZE 

ImGULATION 

The concept of adaptive successive step-size regulation has already been set 

forth. In 1231 a way of determining the instant of the  step-size variation w a s  sug- 

gested. Central to i t  was the simplest scheme of averaging of the preceding subgra- 

dients. This method is easy to implement and effects a saving in computer memory 

capacity. Compared t o  the program regulation, the adaptive regulation improves 

convergence of the subgradient methods. 

Description of Algorithm 1 

Let z0 be an  a rb i t ra ry  initial point, b > 0 be a constant, itk j ,  [ rk  j be number 

sequences such that  ck > 0, tk -4 0, rk > 0, rk -+ 0. Put s = 0, j = 0, k = 0, 

L O  = E aj'(zO). 

Step 1. Construct 

Step 2. If j'(zS +') >j'(zO) + b, then select  zS E Iz :j'(z) zSj'(zO)j and go 

to Step 5. 

Step 3. Define 

S tep4.  1f lies +41 > c k ,  then s = s + 1 and go t o s t e p  1. 

Step 5. Set  k = k + 1, j = s + 1, s = s + 1 and go t o  Step 1. 



THEOREM 1.1 Assume tha t  t he  problem ( 8 )  is solved b y  a lgor i thm 2. Then a l l  

Limit p o i n t s  of t h e  sequence [ zS 1 belong to x*. 

PROOF Denote the instants of step-size variations by sm. Let us prove that  the 

step-size rk var ies an infinite number of times. Suppose i t  is  not so, i.e., the step- 

size does not vary start ing from an  instant s, and is equal r , .  Then the points zS 

fo r  s 5 s, belong t o  the set 

and are related by 

Considering that  the  step-size does not vary,  llesll > E ,  > 0 fo r  s r s, .  In passing 

to  the limit by s -4 in the inequality 

we obtain a contradiction in the boundedness of the set 

The fur ther  proof of Theorem 1.1 amounts to checking the  general  conditions 

of algorithm convergence derived by E.A. Nurminskij [17]. 

NURMINSKIJ THEOREM Let t he  sequence lzS 1 a n d  the  set of so lu t i ons  X* 

be s u c h  t h a t  the fo l lowing cond i t i ons  a r e  sa t is f ied :  

Dl. For any sequence [zsk 1 such that  

D2 There exists the closed bounded set S such that  

D3 For any subsequence [z nk 1 such tha t  



t he re  exists co > 0 such tha t  f o r  all 0 < E S ro and any k 

inf m :  [IIzm -znkII > rj = m k  < =  I. 
m"'k 

D4 The continuous function W(z) exists such t ha t  f o r  an  a rb i t r a r y  subsequence 

[z  nk j such tha t  

and f o r  the  subsequence [zmkj corresponding to i t  by condition D3 f o r  an arb i -  

t r a r y  0 < E S r0 

D5. The function W(z) of condition D4 assumes no more than countable number of 

values on the  set x*. 

Then a l l  limiting points of t he  sequence [ zS 1 belong to x*. 

Select t he  function f ( z )  as the  function W(z). Conditions Dl, D5 are satisf ied 

in view of t he  algorithm s t r uc tu re  and the ea r l i e r  assumptions. 

The rest of the  conditions will be verif ied by t he  following scheme. W e  will 

p rove t ha t  conditions D3, D4 hold t he  points being t he  inner  points of t h e  set 

s = [z  : f (z  ) 3 f (z  O )  1 .  I t  is therewith obvious tha t  

max W ( z  ) < inf W ( z  ) 
t ES 

Then t he  sequence [ zS  1 fal ls outside t h e  set S only finite number of times. Conse- 

quently, condition D2 is satisf ied and th is automatically entai ls the  validity of D3 

and D4. 

So, let t he  subsequence [znpj exists such t ha t  znp --, z  ' x*. Assume at th is  

s tage of the proof t ha t  z  ' E int S. W e  will prove t ha t  t h e r e  exists ro > 0 such tha t  

f o r  all 0 < E 3 r0 at a n  a r b i t r a r y  p: 

Now suppose condition (2.1) i s  not sat isf ied, tha t  is,  f o r  any r > 0 t h e r e  ex is ts  n p  

such t ha t  l1zs - zn41 3 r f o r  all s > np. 



W e  have 

for  sufficiently large np and s  > n,,. By the supposition 0 Z Bf ( x ' ) .  By virtue of 

the closedness, convexity and upper semi-continuity of the many-valued mapping 

a f ( x )  there  exists E > 0 such that 0 = conv Gqc(z  '), where conv 1.1 is  a convex 

hull and G4r(x ' )  is  a set 

I t  is  easily seen tha t  E > 0 can be always selected in such a way tha t  

UIe(x  ') C int S, where ( z  ) = x  : z - x  1 5 4 . Let 6 = min 11; 11, 
f E conv G 4,(x '). Obviously 6 > 0. As ek - 0, there  exists an integer L(6) such 

that f o r  k 2 K ( 6 )  we have S r ) / Z .  Put np 2 K(6 ) .  Then i t  is  readily seen tha t  

fo r  s  2 np the step-size r k  can vary no m o r e  than once within the set UIc (z ' ) .  Ex- 

* 
amine the  sequence IsS 1 separately on the  intervals np 5 s  < s p  , where 

s; = min sm : sm a n p ' .  

When np S s  < sp  the points zS are related as follows 

where the index L is  reconstructed with respect  to s p  . Let us consider the  sca lar  

products 

where z np = grip, 



Since z s  E conv Gq,(z ' ) ,  s 2 np, i t  is  possible t o  prove tha t  

N1 N 1 + l  
( z  , g  ) 2 y ,  y = 1 / 2 l 9 ~ .  

Thus, 

We next  consider t he  scalar products 

ds = (zN1+l  - z s ,  g s )  = r 1 ( s  -Nl  - l ) ( z s - l ,  g s )  , 

where s 2 N1 + 1. 

Ne N e + l  
The index N2 exists such t ha t  ( z  , g ) 2 y and dNe + l h  r l (N2  - 
Then in a similar way we can prove the existence of indices Nt ( t  2 3 )  such t ha t  

I t  is  easy t o  prove tha t  Nt + - Nt S N  < =, t = 1, 2,. . . . Let Nt be  the  maximal of 

indices Nt tha t  does not exceed s; . Then 

Since s p  - Nt0 5 N,  then with p --r = t he  last  term on the  right-hand side of 

the  inequality 

approaches zero.  W e  finally obtain 

where E; -+ 0 with p' --r w. 

I t  i s  not diff icult t o  notice t ha t  the  reasoning which underl ies the  derivat ion 

I 
of inequality (2.2) may be also repeated without changes f o r  the  interval  s L sp t o  

ge t  

f ( z r n )  - f ( z n p )  s - 71  - s;) y + c; 

Adding (2.2) t o  (2.3) we obtain 



In passing t o  the  limit by m  --, = in inequality (2 .4)  we are led t o  a contradict ion 

with respec t  t o  t he  boundedness of continuous function on the  closed bounded set 

U q t ( x d ) .  Consequently, condition (2.1)  i s  proved. 

Let 

n 
m p  = inf m  : l / xm - x P I \  > r . 

m >np  

By s t r uc tu re  xmp F u, (xnp) ,  but f o r  sufficiently la rge p 

All the  reasoning involved in derivat ion of inequality (2.4)  remains valid f o r  t he  in- 

s tan t  mp,  t ha t  is, 

we have 

In passing to the  limit by p --, -we g e t  

- 
lim w(xmp) < lim w(anp)  . 

P - -  P - -  

The f u r t he r  proof of th is theorem follows from the  Nurminskij theorem. 

To fix more precisely the  instant when the i terat ion process ge ts  into the  

neighborhood of the  solution we can employ the following modification of algorithm 

1 provided the  computer capaci ty allows. 



Let z 0  be an a rb i t ra ry  initial point, d > 0 be a constant, [ E ~  1 ,  Irk 1 be number 

sequences such that  ck > 0, ck 4 0,  rk > 0 ,  rk 4 0 ;  k l ,  k2, . . . , k, be integer 

positive bounded constants. 

Put s = 0, j = 0,  k = 0,  e0 = g o  E B f ( z O ) .  

Step 1 Construct 

Step 2 If f ( z S f l ) > f ( z O ) + d ,  then ~ ~ + ~ ~ [ z : f ( z ) ~ f ( z ~ ) ]  and go t o  

Step 5. 

Step 3 Define 

"0s +1 = s + l  
e,S + 1 gs  +l 

s - j  + 2  s - j + 2  

Each of the notations Pi(-,  ., -) designates an  a rb i t ra ry  convex combination of a 

finite number of the indicated preceding subgradients. 

Find 

- min IIe; +l I I  . 
LLs + l -  o s p s m  

S t e p 4  If ps+l  > E ~ ,  t h e n s  = s  + l a n d g o t o S t e p l .  

S t e p 5  Set  k = k  + 1 ,  j = s  +1, s = s  + 1 ,  eS = g S  andgoLoStep1.  

THEOREM 2.1 mppose that the problem (*) is solved by the modiJ%ed algo- 

r i thm I. Then all l imit points of the sequence iz 1 belong to x*. 



3. METHODS WITH AVERAGING OF SUBGRADIENTS AND PROGRAM-ADAPTIVE 

SUCCESSIVE STEP-SIZE REGULATION 

Success ive Step- Size Regulat ion 

A s  noted in a number of works [Z, 3, 12, 161 i t  is  expedient to  average subgra- 

dients calculated at the previous iterations s o  that  the subgradient methods will be 

more regular. For instance, when the "ravineu-type functions are minimized, the 

averaged direction points the way along the bottom of the "ravine". 

I t  will be demonstrated in Section 5 that  the operation of averaging enables 

the improvement of a posteriori  estimates of the solution accuracy along with the 

upgrading of regulari ty of the described methods. 

Methods with averaging of subgradients and consecutive programadapt ive re- 

gulation of the step-size are set for th in this section. 

Results obtained he re  stem from [24]. 

Description of Algorithm 2. 

Let z0 be an  a rb i t ra ry  initial approximation; 3 > o be a constant; Irk 1, irk j 

be number sequences such tha t  

P u t s  = 0, j = 0 ,  k = 0 ,  

Step 1 Construct 

Step 2 If f ( z S  +I)  > f ( z O )  + 8, then go to Step 7. 

Step 3 Define vS according to  the schemes a )  o r  b). 

Step4  ~ o n s t r u c t e ~ + ~ = e ~  + ( s  - j  + ~ ) - l ( v ~ + ~ - e ~ ) .  

S t e p 5  1f \ leS+41 > el:, t h e n s  = s  + l a n d g o t o S t e p l .  

S t e p 6  Set  k = k  + 1 ,  j = s  + 1 ,  s = s  + 1 ,  eS = v S  a n d g o t o S t e p 1 .  

S t e p 7  ~ e t z ~ + ~ E i z : f ( z ) ~ f ( z ~ ) ] , s = s + l ,  j = s , k = k + l a n d g o t o  

Step 1. 



In construction of the direction v S  the following schemes of subgradient 

averaging a r e  dealt with. 

a )  The "moving" average. Let K + 1 be an integer. Then 

where gi E a f ( z i  ), hi, + 0. 

b) The "weighted" average. Let M + 1 be an integer. Then 

v S = g S + h S ( v S - l - g S ) ,  where O S h s S 1  fo r  s f 0  (mod M), 

0 S As S 6 <1 fo r  s = O  (modM). 

THEOREM 3.1 Assume that the probLem (*) is solved by aLgorithm 2. Then a L L  

l imi t  po in t s  of the  sequence [zS j belong to the set  x*. 

4. STOCHASTIC FINITE-DIPFEENCE ANALOGS TO ADAPTIVE NONBEONOTONIC 

METHODS WITH AVERAGING OF SUBGBADIENTS 

I t  should be emphasized that  the practical value of the  subgradient-type 

methods essentially depends upon the existence of the i r  finite-difference analogs. 

Of g rea t  importance the finite-difference methods a r e  primarily in situations when 

subgradient computation programs a r e  unavailable. This generally occurs in the 

solution of large-scale problems. Construction of the finite-difference methods in 

the nonsmooth optimization originated two approaches: the nondeterministic and 

the stochastic ones. Each of them has i ts  own advantages and disadvantages. The 

stochastic approach is favored here. 

One of the advantages of the introduced averaging operation i s  the  fact  that 

the construction of stochastic analogs t o  subgradient methods presents no special 

problems. 

The offered methods a r e  close t o  those with smoothing [4] which, in their  turn,  

a r e  closest to the  schemes of stochastic quasi-gradient methods [IZ]. Research 

into the  stochastic quasi-gradient methods with successive step-size regulation i s  

quite a new and underdeveloped field. Ju. M. Ermol'jev spurred f i rs t  the investiga- 

tions in this direction. His and Ju. M. Kaniovskij results [13] a r e  undoubtedly of 



theoretical interest. However implementation of methods described in [14] creates 

complications as there  is no rule to regulate variations in the step-size. 

Let us f i rs t  dwell on functions f ( x ,  i )  of the form 

where ai > 0. 

Propert ies of the functions f ( x ,  i )  have been studied by A.M. Gupal [4] 

proceeding from the assumption that f ( z )  satisfies the Lipschitz local condition. 

THEOREM 4.1 ,!f f (z  ) is a convez eigqfbnct ion, dom f = E" , then  f (z  , i ) is 

also a convez eige@unction, dom f (z  , i ) = E n ,  for a n y  ai > 0. 

THEOREM 4.2 A sequence of j bnc t i ons  f ( z ,  i )  u n ~ r m l y  converges to f ( s )  

w i th  ai -+ 0 in a n y  bounded domain X. 

Now we shall go to  the description of stochastic finite-difference analogs to  

algorithms with successive program-adaptive regulation of the step-size and with 

averaging of the direction. 

Descript ion of Algorithm 3 Let so be an  arb i t ra ry  initial approximation, b > 0 

be a constant, [ti j, [ t i  j ,  [ai 1, Ipi j be number sequences. 

Put s = 0, i = 0, j = 0. 

Step 1 Compute 

1 " <s =- 'IS (f(si8 . - . , ~ t + Q i ,  . .  . , X n )  
2 a i  I: = 1 

- 
where S;, k = 1 ,  n are independent random values distributed uniformly on inter- 

vals [zi - a i ,  z; + a i l ,  ai > 0. 

S t e p 2  Construct e S  in compliance with the schemes a )  and b), where the 

subgradients a r e  replace by the i r  stochastic estimates. 

S t e p 3  F indsS+ '  =zS - t i e S .  

S tep4  I f f ( z S + ' ) > f ( z 0 ) + b , t h e n g o t o S t e p 9 .  



S t e p 5  ~ e f i n e z ~ "  = z S  + ( s  - j  +l)- '(es - z S )  

Step 6 If s - j < p i ,  then s = s + 1 and go to  Step 1 .  

S t e p 7  ~ f I l z ~ + ~ I I > t ~ ,  t h e n s  = s  + l a n d g o t o S t e p l .  

S t e p 8  P u t i  = i + l , j  = s + l , s = s + l a n d g o t o S t e p l .  

S t e p 9  ~ e t z ~ + ~ €  I z : f ( z ) S f ( z 0 ) ] ,  j = s  + 1 ,  i = i  + 1 , s  = s  + l a n d g o  

t o  Step 1. 

THEOREM 4.3 Let the  problem (*) be solved by a lgor i thm 3 a n d  the number se- 

quences 

satisfy the following conditions 

Then almost fo r  all o the sequence f ( z S  (o)) converges and al l  Limit points of the 

sequence [zS (a )  j belong t o  the set of solutions x*. Theorem 4.3 is proved in detail 

in [25]. 

5. A POSTERIORI ESTIMATES OF ACCURACY OF SOLUTION TO ADAPTIYE 

SUBGRADIENT METHODS AND THEIR STOCHASTIC 

FINITE-DIFFERENCE ANALOGS 

In numeric solution of extremum problems of nondifferentiable optimization 

strong emphasis is placed on the check of obtained solution accuracy. Given the 

solution accuracy estimates, f i rs t ,  a very efficient ru le of algorithm stopping can 

be formulated, second, the obtained estimates can form the basis f o r  justified con- 

clusions with respect  t o  the strategy of selection of algorithm parameters. 



Using r a t h e r  simple procedure a posteriori  estimates of solution accuracy for 

the introduced adaptive algorithms are constructed here.  The estimates provide a 

means fo r  str ict ly evaluating efficiency of the averaging operation use. 

Thus, assume that  the convex function minimization problem 

is being solved. 

Suppose the set X* contains only one point x *. 

To solve the problem (0) consider algorithm 1. The spin-off from the proof of 

theorem 2.1 is the proof that  the sequence l x S j  falls outside the set 

lx : p ( x  ) 5 f ( xO)  + 61 a finite number of times only. Therefore, c 2 0 exists such 

that  f o r  s 2 ? 

Then the s tep  size will vary only if the condition l ies +'I1 5 rk  is satisfied, 

where 

Without loss of generality w e  will assume that  the f i r s t  instant of the change from 

the s tep  ro to  r l  occurred just because the condition 

is satisfied. 

From the convexity of the  function f ( x )  i t  is  inferred that  

Summation of inequalities (5.1), (5.2), . . . (5.3) yields 



Denote the expression ( so  + I)- ' C ; O ~  x i  - x O )  by A,,. 

W e  have obvious inequalities 

where with so  d s  d sl the points x S  are related by x S  + ' = x  - r ' g S .  For these 

values of s  it is  possible to derive that 

s o  + 1  
€ lx  : j ' ( x )  d min l f ( z  ), . . . , f ' ( x s ' ) ] ]  . 

Thus, f o r s k  + I d s  d ~ ~ + ~ w e  have 

where 

22;' E ix  : J ( x >  5 min [ p ( x  Sk+l)  , . . . , j ( x S k + l ) ] ]  , 



I t  is  easily proved that  Ak 4 0. 

THEOREM 5.1 Assume that t h e  problem (*) is solved b y  a lgo r i t hm 2. Then the  

i n e q u a l i t i e s  

hold f o r  such instants sk at which the step-size var ies because the condition 

lleskIl S ,rk is  satisfied. 

REMARK I t  follows from theorem 5.1 that  the s a m e  estimate occurs both f o r  the 

subsequence of "records" 11 2, { and fo r  Cesam subsequence (8" {. 

Let the problem (*) be solved by algorithm 2 where the  operation of averaging 

of proceeding subgradients i s  used. Denote instants of changes in the step-size by 

s i ,  i = 0 ,  1, 2, .... Suppose the f i rs t  instant of the change from r o  to r l  takes 

place because the inequality lleSolI S E O  holds. Examine the scheme of averaging by 

"moving" average. W e  have 

gS s p *  + ( g " ,  2 s  - Z e )  , 

s 
Designate the expression C X i ,  by j'. 

i = O  

Then 

Whence fo r  s s K w e  have 



For s > K w e  shal l  have 

Thus, 

From the  formula 

the  following recommendations can be of fered with respec t  t o  t he  select ion of 

parameters  Xi,, : 

(2) min 5 X i ,  s ( g i , x i  - x O )  , f: X i ,  s = I  
h , S * O i  = o  i = o  

The subgradient  averaging thereby allows improving a poster ior i  estimates of 

the  solution accuracy.  This may substantiate formally t ha t  i t  is of advantage to in- 

t roduce and study t h e  operat ion of subgradient averaging. 

For an a r b i t r a r y  instant of step-size variat ion s f  > K we can easi ly obtain t he  

estimate 

THEOREM 5.1 Let the problem ( a )  be solved by  algorithm 2 w i t h  the u s e  of 

averaging scheme a). Then for the ins tan ts  s f ,  for which 11 es'l 1 5 ci ,  inequal i ty  

(5.9) holds. The scheme of averaging b y  "weighted" average b) is  treated in a 



similar way. 

The a posteriori  estimates of the solution accuracy attained fo r  the adaptive 

subgradient methods can be extended to  the i r  stochastic finite-difference analogs 

with the minimum of alterations. The way of getting them is i l lustrated with algo- 

rithm 3 .  We will use notations introduced in Section 4.  When proving theorem 4.3 i t  

is possible t o  demonstrate that  the step-size r f  var ies an infinite number of times. 

A s  algorithm 3 converges with a probability of unity, then fo r  almost all o i t  is  pos- 

sible t o  indicate E(o) such that  with s 2 

Therefore, with s 2 E(o) the step-size r f  var ies because the condition 

holds, where sf 2 pi + j ,  zs' = zs' -' + (sf - j ) l (#s '  - z  ' )  sequences Itf ) 

and Ipf 1 comply with propert ies formulated in theorem 4.3, j is reconstructed by 

S f .  

Consider the event 

where st is the instant of step-size change that  precedes sf .  There exists the 

constant 0 < c < such tha t  with the probability g rea te r  than 1 - Cdi i t  is  possi- 

ble to  state that  

Then fo r  the instant si the inequality 

holds with the s a m e  probability. 



Theorem 5.3 is readily formulated and proved. Assume that  the problem (*) i s  

solved by algorithm 3. Then f o r  almost all w i t  is possible t o  isolate a subsequence 

of points jxs'(w)j f o r  which with the probability g rea te r  than 1 - C bi the inequal- 

it ies hold 

where f iY l  = min f (x , i - I ) ,  
2 €En 

x i Y l  E Argmin f (x , i - 1) . 
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