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Foreword 

Every smooth solution of a Harnilton-Jacobi-Bellman equation in optimal control (if 

it does exist) can be used for testing the optimality trajectories of a control system and to 

construct an optimal feedback. Since, in general, such a smooth solution does not exist, 

one has to deal with less regular solutions, for example with viscosity solutions. In this 

paper the author describes a subclass of viscosity solutions which on one hand can be 

used for the construction of optimal feedback and on the other provides a sufficient condi- 

tion for optimality. 

Alexander B. Kurzhanski 

Chairman 

System and Decision Sciences Program 



Abstract  

In this paper we study the existence of optimal trajectories associated with a gen- 

eralized solution to  Hamilton-Jacobi-Bellman equation arising in optimal control. 

In general, we cannot expect such solutions to be differentiable. But, in a way anal* 

gous to  the use of distributions in PDE, we replace the usual derivatives with 'contingent 

epiderivativesn and the Hamilton-Jacobi equation by two' 'contingent Hamilton-Jacobi 

inequalitiesn. 

We show that the value function of an optimal control problem verifies these 'con- 

tingent inequalitiesn. 

Our approach allows the following three results: 

(a) The upper semicontinuous solutions to contingent inequalities are monotone 

along the trajectories of the dynamical system. 

(b) With every continuous solution V of the contingent inequalities, we can associ- 

ate an optimal trajectory along which V is constant. 

(c) For such solutions, we can construct optimal trajectories through the 

corresponding optimal feedback. 

They are also uviscosity solutionsn of a Hamilton-Jacobi equation. Finally we prove 

a relationship between superdifferentials of solutions introduced in Crandall-Evans-Lions 

[lo] and the Pontrjagin principle and discuss the link of viscosity solutions with Clarke's 

approach to the Hamilton-Jacobi equation. 
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Introduction 

Consider the problem 

minimize g(z (1)) 

over the solutions to the control system 

where g is a function taking values in the extended real line RU{+w).  We recall that a 

problem with terminal constraints, z ( l ) ~ C ,  can be rewritten in the above form by setting 

g(z) = +a whenever z$C. 

The dynamic programming approach associates with the above problem the %slue 

function" defined by: for all ( t  , t )~ [O , l ]  x R n  

V(t,c) = inf {g(z(l)): zis a solution of (2) on [t,l.], z(t) = c) 
(see [A], [51,[221). 

In the case when the value function is differentiable, it satisfies the Hamilton-Jacobi 

equation 

a a - V(t,z)+ inf - V(t,z) f(t,z,u) = 0 
a t  UEU a z  

a a where - V , - V denote the derivatives of V with respect to t and z respectively. 
a t  az 



Although the value function fails to be continuously differentiable even when the 

data are smooth, the equations (4), (5) still have an important feature: if V is a cl- 
solution of the equation (4) satisfying the boundary condition (5), the "verification tech- 

nique" amounts to recognize an optimal trajectory-control pair (zt,ut) of system (2), (3) 

by checking that for almost all t ~ [ 0 , 1 ]  

In general the nonlinear boundary problem (4), (5) does not have a global continu- 

ously differentiable solution even if f and g are smooth. 

In this paper we show that the value function V is a solution of a boundary problem 

involving "contingent inequalities". 

The contingent derivative D+p(zo) of a function p : R m + R U { f  m) is defined a t  

every point z0 where p(zo) is finite by: for all u€Rm 

~ + p ( z ~ ) u  = lim in/ [p(zo+hu')-~(zo)l/h 
h+O+ 

We prove that the value function verifies on [0,1[x R n  the following contingent ine- 

qualities: 

and the boundary condition 

When V is differentiable a t  (t,z), the inequalities (7), (8) reduce to equation (4). We 

shall observe that the value function is smaller than any function continuous on its 

domain, satisfying relations (7) - (9). 

Inequalities (7) and (8) have two different tasks to perform: 

(a) Every upper semicontinuous solution V of the inequality (7) is nondecreasing 

along the trajectories of dynarnical system (2). 

(b) For control systems with convex right-hand side, to every continuous solution V 

of inequality (8) corresponds a trajectory z of (2), (3) such that V is nonincreasing 

along z. 



This means that in the case when the sets f (t,z, U) are convex, to every continuous 

solution V of (7)-(9) corresponds at least one optimal trajectory z of problem (1)-(3) such 

that V is constant along z .  When the value function is locally Lipschitzian then it verifies 

the equation 

instead of inequality (8). Obviously the solutions to (10) have the property (b) men- 

tioned above. 

On the other hand any locally Lipschitzian solution to the boundary problem 

provides a test for optimality analogous to (6). Namely if V is a locally Lipschitzian solu- 

tion to the boundary problem (11) then any trajectory-control pair (z*,u*) of (2), (3) veri- 

fying for almost all t€[O,l[ 

inf D+ v( t ,z) ( l ,  f(t,z,u)) 5 0, ( t , z )~ [O, l [ x  Rn 
uE U 

s u g  D+(- V)(t,z)(l,f(t,z,u)) 5 0, (t,z)EIO,l[x Rn 
uE 

V(l,z) = g(z) 

is optimal for problem (1)-(3). This implies in particular that every solution defined on 

time interval [0,1] of the closed loop control system 

' 

where W(t,z) = {uEU:D+ V(t,z)(l,f(t,z,u)) = 0) is optimal for problem (1)-(3). 

We also check that every solution V of boundary problem (7)-(9) is a viscosity solu- 

tion in the sense of Crandall-Evans-Lions [9], [lo] of the Hamilton-Jacobi-Bellman equa- 

tion: 

where the Hamiltonian H is defined by 

The converse statement is not generally true. 



It is not known yet, a t  least to our knowledge, whether we can recover optimal tra- 

jectories or optimal feedbacks from viscosity solutions to the Harnilton-Jacobi-Bellman 

equation of an optimal control problem. It is still possible whenever a viscosity solution 

is the value function, or, more generally whenever a viscosity solution verifies in addition 

inequalities (8), (9). 

The locally Lipschitzian value function satisfies also an extension of Hamilton- Jaco- 

bi equation introduced in Offin [21.] (see Clarke [8], Clarke-Vinter [6]). 

min {p+rnin <q, f(t ,z,u)>) = 0 
( P , ( ? ) E ~  V ( t , z )  uE u 

where 6'V denotes the generalized gradient of V. Any Lipschitzian solution of (16) is ' non- 

decreasing along trajectories of dynamical system (2). This allows to prove a sufficient 

condition for optimality for a given trajectory (see Clarke-Vinter [6]). However it does 

not mean that with every solution of (16), (9) we can relate an optimal trajectory of prob- 

lem (1)-(3) as the relation (6) does. 

A locally Lipschitzian value function verifies not only equation (16) but also equa- 

t ion 

max p = max H(t,z,-q) 
x,a v ( t , z )  q ~ x , a  v ( t , z )  

where n t  and n z  denote the corresponding projections. 

The outline of the paper is as follows. In Section 1 we state the basic hypotheses 

and prove some preliminary results. In Section 2 we show that the value function verifies 

contingent inequalities (7)-(10) and that continuous solutions of (7)-(9) are viscosity solu- 

tions of (14). Section 3 is devoted to  properties of solutions of contingent inequalities and 

Section 4 to the optimal feedback. In Section 5 we prove some other relations verified by 

the value function and provide a short proof of (16). Finally in the last section we study 

the relationship between the superdifferentials introduced in [lo] and the adjoint vector of 

the Pontrjagin maximum principle. 

1. Basic assumptions and preliminary results 

In this paper we consider a dynamical system described by a differential inclusion. 

Let F be a set-valued map from [O, l ]  x Rn to Rn. We associate with it the 

differential inclusion 



A function ZE ~ ' i ' ( t , T )  , TLt  (the Sobolev space) is called a trajectory of the 

differential inclusion (1.1) if for almost all s ~ [ t , T ] ,  z ' ( s ) ~ ~ ( s , z ( s ) ) .  The set of all trajec- 

tories of (1.1.) defined on the time interval [t,T] and starting at (, (z(t) = () is denoted by 

S[t,q(E)- 

Let B be the closed unit ball in Rn .  Throughout the whole paper we assume that 

for all (t,z)€[O,l]x R n  

(HI) F(t,z) is a nonempty compact set, 

that for all z € R n  

(H2) F(-,z) is continuous on [0,1] 

and 

(H3) F is locally Lipschitzian in z, in the sense that for every (to,zO)€[O,l] x R n  there ex- 

ists a neighborhood N in [0,1] x R n  and a constant L such that for all ( t ,z ) , ( t ,y )~N 

Example. Consider the closed loop control system 

where f:[O,l] x R n x  Rm+ R n  is a continuous function and U: R n = R  is a continuous 

control map with nonempty compact images. Admissible controls are measurable func- 

tions on [0,1.] satisfying (1.4). 

For all ( t , z ) ~ R x  R n  set 

Clearly every trajectory of (1.3), (1.4) is a trajectory of the differential inclusion 

(1.1) with F defined as in (1.5). Conversely, with every trajectory ~ E S [ ~ , ~ ]  of differential 

inclusion (1.1) we can associate a measurable selection u ( t ) ~  U(z(t)) such that (1.3) holds 

true almost everywhere in [0,1]. This follows from Lusin's theorem exactly by the same 

arguments as in [ I ,  p. 911 (see also [8, pp. 111-1121). 

Hence we can rewrite the dynamical system (1.3), (1.4) in the differential inclusion 

formulation (1.1) with F defined by (1.5). 

The set-valued map F satisfies hypothesis (HI) and (H2). If moreover U is locally 

Lipschitzian and f is locally Lipschitzian in (z,u), so is F.  



For all ~ E R ,  T z t  and &Rn set 

This is the so-called reachable set of (1.1) from ( t  ,€) at time T .  

When F is sufficiently regular the set co F( t ,€ )  is the infinitesimal generator of the 

semigroup R ( - , t ) €  (see Frankowska [15]).  

The following theorem provides a more precise result concerning reachable sets. 

Theorem 1.1. Assume that the assumptions (H I ) - (H3)  are verified. Then for every 

( to ,€O)~ [O, l  [ x  Rn and all ( t  ,€) near (to,co) and small h>O 

where 

Remark. Equality (1.7) means that 

Proof. Let p>O be such that F(t,.) is L-Lipschitzian on [ to-p,to+p]x(~o+pB), where L 

denotes the Lipschitz constant of F with respect to z. Since F is continuous and has com- 

pact images there exists M? 1  such that for all I t-tol l p ,  € E ( ~ + ~ B  we have F ( t , € ) c  MB. 

Define 

and observe that for all T E t ,  1 1  ( -&- , I1 9 1 2  and Z E S [ ~ , ~ ] ( € )  verifying z ( [ t ,  T ] ) c& ,+~B,  
T  

1 1  z(T)-cO(I 5 1 1  Z ( T ) - € ~ )  +p/211II z ' ( s )  1 1  ds+p /25M(T- t )+~ /2 .  Hence for all h€[O,p/2M] 
t  

and ( t , c ) ~ N  the set Sl t , t+h l (€ )#~  and for every z ~ S [ ~ , ~ + ~ ] ( t )  and s€[t , t+h] 

Since F is uniformly continuous on the compact set { ( t , € ) :  1 t-to 1 Lp,  1 1  €-So 1 1  S p )  for 

every E>O there exists 5>0 such that 



F( t+h ,z )cF( t , ( )+cB for all ( t , t ) ~ N ,  h ~ [ 0 , 6 ]  and z.E(+6B 

Using (1.8) and the mean value theorem [ I  , p. 211 we obtain that for all 

O<h<min{s /M~p/2M) ,  ( t , E ) ~ N  and z ~ S [ t , t + h ] ( ( )  

This implies that 

for all ( t , t ) ~ N  and sufficiently small h>O. Since c>O is arbitrary and F is continuous at  

( to , to)  we proved that for all ( t , ( )  near ( to , to)  and small h>O 

To prove the opposite inclusion observe that by the relaxation theorem [ I ,  p. 1241 reach- 

able sets of (1.1) are dense in the reachable sets of the convexified inclusion. Thus we 

may assume that F has convex images. For all ( t , t ) ~ N  and u ~ F ( t , ( )  let ut,((s) denote 

the projection of u on F(t+s, ( ) .  Since F is continuous on N { u ~ , ( ) ( ~ , o E N  is a family of 

equicontinuous functions on [O,p/2]. Hence for all c>O there exists 6>0 such that for all 

s€[0,6],  11 ~ ~ , ~ ( s ) - u ~ , ~ ( O )  11 56. Therefore for all ( t , t ) ~ N ,  u ~ F ( t , ( )  and h€[0,6] 

On the other hand for all s E [O,p/2M], 

By [ I ,  p. 1201 there exist bl>O,M1>O which depend only on L and M such that for all 

h~[0,611 

Hence, by (1.9), for all 01hImin{6 ,61 ,p /2M) ,  ( t , t ) ~ N  and u ~ F ( t , t )  



Since M1 does not depend on c and 6,b1 do not depend on (t,()cN and ucF(t,() we finally 

obtain that for all (t,() near (to,co) and small h>O 

Thus 

2. Contingent inequalities for value function 

Consider the problem 

minimize { g ( z ( 1 ) ) : z ~ S [ ~ , ~ ~ ( z ~ ) }  (2.1) 

where g is a function from R n  to the extended real line RU{+oo) and Slo has the 

same meaning as in Section 1. 

The value function associated to this problem is defined by: for all t ~ [ 0 , 1 ]  , ( c R n  

If Slt,l l(<) = @ then we set V(t,€) = +m. 

The following properties of V are an immediate consequence of the definition of a 

value function (compare [4], [5], [20]): 

V(1,z) = g(z) for all z c R n  (2.3) 

VZES[~,,I  the function [t , l ]  3 s-+ V(s,z(s)) is nondecreasing (2.4) 

Moreover if z ~ S ~ ~ , ~ ~ ( z ~ )  solves the problem (2.1) then 

Conversely we have 

Proposition 2.1. If a function V: [O, l ]  x Rn-+ R U  {Am) and a trajectory zES10 (zO) 

satisfy (2.3)-(2.5) then z is an optimal solution of the problem (2.1). 

The proof follows from the classical arguments of [5, p.891, [12, p.821 and [22, p.871. 

Definition 2.2 (contingent derivative). Let X be a subset of R m ,  p:X-+ R U { f  oo) be a 

given function and zocX be such that p(zo)#f  oo. The contingent derivative of p at z0 

is the function D+p(zo):Rm-+RU{f oo) defined by: for all u c R m  



D+p(zo)u = lim inf [p(zo+hu')-p(zo)]/h 
(u',h)+Cu,~+) 

zO+hc EX 

The epigraph of D+p(zo)  is equal to the contingent cone to the epigraph of p at  

(zo,p(z0)). If for all UE R m, D+p(zo)  u > - oo then D+p(zo)  is positively homogeneous 

and lower semicontinuous (see [2, Chapter 71). 

Recall that the domain of definition of V is given by 

dom V := {( t  ,z) : V(t ,z) ffoo) 

and let Vd denote the restriction of V to the set dom V. 

Theorem 2.3. The value function V satisfies the following inequalities: 

inf D+ Vd(t , z ) ( l ,u )  < 0 
u E coF(t,z) (2.6) 

su D+(- V)( t ,z)( l ,u)<O, ( t , z ) ~  Dom V, t < l  
u e c o  fit..) 

If moreover for some t ~ [ O , l [ ,  V(t,.) is locally Lipschitz at  z then 

min D+ V( t ,z ) ( l ,u)  = 0 
u e c o  F(t,z) 

Proof. Fix ( t , z ) ~  Dom V, t < l .  Then for all small h>O, 

V(t,z) = inf {V( t+h ,w) :w~R( t+h , t )z ) .  Hence for some ~ ~ ~ ~ ( t + h , t ) z  

lim [ V(t+h,wh)- V(t,z)]/h = 0 
' h+O+ 

(2.9) 

By Theorem 1.1 for all h>O, wh = z+huh where lim dis t (uh,F( t ,z ) )  = 0. Let hi+O+ 
h+O+ 

and ui = uhi be such that lim ui = a ~ F ( t , z ) .  From (2.9) we obtain 
1+00 

lim [Vd(t+hi,z+hiui)- Vd(t,z)]/hi = o 
i+m 

Hence D+Vd(t ,z)( l ,C)<O and (2.6) follows. To prove (2.7) observe that for all 

w ~ R ( t + h , t ) z  , V(t,z)< V(t+h,w). Fix CEco F( t ,z ) .  By Theorem 1.1 there exist uh+C 

such that for all h>O, z+huh€R(t+h,t)z.  Hence 

D+(- V)( t ,z)( l ,C) < lim sup[- V(t+h,z+huh)+ V(t,z)]/h < 0. Since C is arbitrary we 
h+O+ 

proved (2.7). Let ( t , z ) ~ [ O , : l [ x R ~  be such that V(t,-) is locally Lipschitzian at  z. Then, 

by [2, ~ . 4 1 8 ] ,  D +  V(t ,z)  is lower semicontinuous. Since co F( t , z )  is compact there exists 

CECO F ( t , z )  such that D+ V(t ,z)( l ,C) = inf D+V(t ,z ) ( l ,u) .  By Theorem 1.1 for 
u ~ c o  F(t,z) 



some uh+ t, z+huh€ R ( t+h, t )z .  Thus V(t+h,z+huh)- V(t ,z) 2 0  and by the local 

Lipschitzianity of V, D+ V(t ,z) (1  ,Q) LO. Hence (2.6) implies (2.8). n 

Inequalities (2.6), (2.7) can be considered as an extension of Hamilton-Jacobi equa- 

tion because of the following 

Corollary 2.4. If a function V satisfying (2.6) and (2.7) is differentiable at  ( t ,z)  then 

a a 
- V(t ,z)+ inf - V(t ,z)u = 0 
a t  

(2.11) 
u~F(t ,z)  a2 

Proof. Fix ( t ,z)  as above. Then for all u ~ F ( t , z ) ,  

and 

Moreover 

a a inf - V(t,z)u = inf - V(t,z)u 
UECO F(t,z) u€F(t,z) 

Thus (2.1 1) is a consequence of (2.6), (2.7). 

Define the Hamiltonian H by: for all ( t , z )€ [O, l ] xRn and q € R n  

H(t ,z,q) = sup{<q ,e> :e~F( t , z ) )  (2.12) 

Our next aim is to show that for any open set nc[O,l] x R n  every solution of the 

problem 

inf D+ V( t ,z) ( l ,u) lO,  ( t , z ) ~ n  
uEco F(t,z) 

u e  zuF(t14 D+(- V)( t ,z ) ( l ,u) lO,  ( t , z ) ~ n  

is the viscosity solution of Hamilton-Jacobi equation 

(see Crandall-Lions (91, and Crandall-Evans-Lions [ lo]). Some related results can be 

found in [20]. We recall first 



Definition 2.5 (super- and subdifferentials). Let nc R be an open set, p be a function 

from Sl to R and zo€f2. 

The superdiflerential of p at  z0 is the set 

The subdiflerential of p at zo is the set 

The super and subdifferentials are closed, possibly empty, convex sets. 

Definition 2.6 (viscosity solution). A function V:R+R is called a viscosity solution of 

the equation (2.14) if for every ( t , z ) ~ R  we have 

a) for all p = (pO, ...,pn)&+ V(t,z) 

(viscosity subsolution). 

b) for all p = (pO ,..., p n ) d -  V(t,z) 

-~o+H(t,z,-(~l,...,~n))10 - 

(viscosity supersolution). 

Lemma 2.7. Let f2 be an open set and p:n+R.  Then 

a-p(zo) = {p:vr€Rrn, D + P ( z ~ ) ~ > < P , T > )  

a+p(z0) = { p : v r ~ R ~ ,  D+(-~)(zo)r><-p, r>)  

Proof. Fix p€a-p(zo) and r€Rm.  Let h i 0 + r i r  be such that 

D+p(zo) r = l im [p(zo+ hiri) -p(zo)] / hi. Then 
1--)ca 

D+p(zO)r-<p,r> = l im [p(zo+hiri)-p(zo)-<p,hiri>]/hi 
l+ca 

(by definition of the subdifferential). Thus for all r ,  D+p(zo)r 2 <p,r>.  



To prove the equality in (2.15) consider p satisfying: 

Vr€Rrn, D + p ( ~ , ) t > < ~ , r >  

Let zi+zO be such that 

lim inf [p(z)-p(zO)- <p,z-zO>]/(I z-zO)) 
=+% 

Taking a subsequence we may assume that (2;-zo)/((zi-z0 ) I  converges to some t .  Then 

and therefore p ~ d - p ( z ~ ) .  This ends the proof of (2.15). To prove (2.16) observe that 

d+p(zo) = - a-(-p)(zo) and therefore (2.16) is a consequence of (2.15). 

Theorem 2.8. If a function V:R+R verifies relations (2.13),then V is a viscosity solu- 

tion to Hamilton-Jacobi equation (2.14). 

Proof. By (2.15), (2.13) for all (p,q)Ed-V(t ,z)cRxRn 

p-H(t,z,-q)= inf (p+<q,u>)< inf D+V(t,z)( l ,u) lO 
uEco F ( t , z )  uEco F ( t , z )  

Thus for all ( p , q ) ~ d -  V(t,z) 

-p+H(t,z,-q)>O 

On the other hand by (2.16), (2.13) for all ( ~ , q ) ~ d +  V(t,z) 

The very definition of viscosity solution ends the proof. 

3. Solutions of contingent inequalities and optimal trajectories 

Recall that the value function is nondecreasing along the trajectories of differential 

inclusion (1.1). We show next that every upper semicontinuous solution of inequality 

(2.7) enjoy the above property. 

Theorem 3.1. Let V:[O,l] x R " 4  R U{f oo) be an upper semicontinuous function satis- 

fying the inequality 



"Ec:yt,z) 
D+(- V)(t,z)(l,u)<O, (t,z) E Dom V, t < 1 

If F is locally Lipschitzian in both variables then for every trajectory Z E  S I ~ , ~ ]  satisfying 

(s,z(s)) E Dom V, the function s+ V(s,z(s)) is nondecreasing on [t ,1] . 

Proof. Consider the closed set K = epi(- V). By [2,~.418] epi D+(- V)(s,z) is equal to 

the contingent cone TK(s,z,- V(s,z), and by (3.1) for all 

(s,z) Edom V,s E [0,1.[, q > - V(s,z) 

Fix a trajectory Z E  SIt,l l, t E [O,l], such that ( s , z ( s ) ) ~ D o m  V and consider the function 

g:[t, l]+R+ defined by 

Observe that g(t) = 0. 

Step 1. We claim that g = 0 on [t, l]. Indeed assume for a while that for some 

T ~ [ t , l ] ,  g(T)>O. For all sE[t, l ] ,  let a(s)EK be such that 

By continuity of g there exist t i t o < t l < T  such that g(to) = 0, g>0 on ]to,tl] and for all 

s~ l t0 , t l l  

~ ( s )  = ( ~ , r , q )  for some ~ ~ [ 0 , 1 . [ ,  (1 r-z(s) 1 1  51 , q 2 - V(F,~)  . (3.4) 

To end the proof of Step 1 we verify that g = 0 on [to,tl]. Indeed g being a Lipschitzian 

function, by Gronwall's inequality, it is enough to show that for a constant L > 0 

Let L be the Lipschitz constant of F on the set { (s ,z(s)+B) :s~[ t , l ] ) .  By the Ra- 

demacher theorem g is differentiable almost everywhere. Let sE[tO,tl] be a point where 

the derivatives gr(s) and zr(s) E F(s,z(s)) do exist. Since z(s+h) = z(s)+hzr(s)+O(h), 

applying the inequality of [l,p.202] we obtain that gr(s)<dist ((l,zr(s),O), TK(T(s))). 

Thus, by (3.4), (3.2) for some E[O, l [ ,  r ~ z ( s ) +  B 

g'(s) 6 dist ((l,z'(s),o), (l,F(&l),O)) 5 ~ ( 1 1  F-8 [ I 2 +  IIz(s)-r) 1 1 ~ ) " ~  5 L d s )  

and (3.5) follows. 



Step 2. By Step 1, distK(s,z(s),-V(t,z(t)))=O on [ t , l ]  and thus for all 

sE[t,l], - V(s,z(s)) 5 - V(t ,z(t)). Hence for every tLs< 1, V(s,z(s) 2 V(t,z(t)). Since 

t€[O,l] is arbitrary the proof is complete. 

Recall that the value function is constant along optimal trajectories. 

We provide next sufficient conditions for the solution V to inequalities (2.6), (2.7) to 

be constant along a t  least one trajectory. 

From now until the end of the section we assume that for some a > 0 and all 

t E [O,l], z E R n  

Theorem 3.2. Let P:[O, l ]ZRn be a set valued map with nonempty images and closed 

graph. Assume that for all z€P(t),  t€[O,1.], F(t,z) is convex. Let V:graphP+R be a 

continuous function satisfying the inequality: 

for all t ~ [0 ,1 [ ,  z ~ P ( t )  there 3 u ~ ~ ( t , z )  such that D+ ~ ( t , z ) ( l , u ) 5 0  . (3.7) 

Then for all (t,()Egraph P there exists Z E S ~ ~ , ~ ~ ( ( )  such that the function s+ V(s,z(s)) is 

nonincreasing on [t ,1] . 

Corollary 3.3. Let V: [O,l] x R " + R be a continuous function satisfying inequalities 

inf D+ Vd(t,z)(l,u)50, ( t ,z )~[O, l [x  R n  
UE co F(t,z) 

and assume that F has convex images and is locally Lipschitzian. Then for every 

(t,()€[O,l] x R n  there exists zESIt 11(0 such that V(s,z(s)) = const on [t , l ] .  

Proof. By (3.7) for every (t,z)Egraph P, t < l  there exists vEl x F(t,z) such that 

D+V(t,z)v<O. By the poof of [I, pp. 2962981 for every (t,yO)EgraphP, t < l ,  there exists 

T>O and a trajectory y:[O, T [+Rn of the differential inclusion 

such that the function s--+ V(t+s,y(s)) is nonincreasing on [0, T[. Set z(t+s) = y(s). 

Then z ~ S ~ ~ , ~ ~ ( y ~ )  and since F satisfies (3.6) the derivative z' is essentially bounded and 

therefore z can be extended on the time interval [t,T]. Moreover by the continuity of V, 

for all s ~ [ t ,  TI, V( T,z( T))< V(s,z(s)) and thus V(t,z(t)) is nonincreasing on [t ,  TI. Since 

( t , yo )~ [O , l [ xRn  is arbitrary for every ( t , ( ) ~ [ O , l [ x R ~  there exist t<...<ti<ti+l. . < l  

and z ~ E S ~ ~ , ~ ~ ~ ( ( ) ,  Z,+I E Slti,ti+,l(zi(ti)) such that t+ V(t,zi(t)) is nonincreasing on 



By (3.6) we may assume that t i - r l .  Setting z ( t ) = z ; ( t )  for 

t ~ [ t ~ - ~ , t ~ ] ,  z(1) = lim zi(ti) we end the proof. 
1'00 

From Section 2 we know that the value function verifies inequalities (3.1), (3.7) with 

graph P = Dom V and the boundary condition 

Actually we have 

Theorem 3.4. Assume that the domain of definition of the value function V is closed 

and equal to { ( t , P ( t ) ) : t ~ [ O , l ] ) ,  where P(t)#@ for all t ,  and F has convex images on graph 

P. If a continuous function W:graph P - r R  satisfies (3.6), (3.8) then V< W.  

Proof. Fix a continuous solution W of (3.6), (3.8) and let (t,t)€graph P. By Theorem 

3.2 there exists ~ E S ~ ~ , ~ ~  (0 such that s-r W(s ,z (s ) )  is nonincreasing on [ t , l ] .  Thus 

and the result follows. 

Theorems 3.1, 3.2 and results of Section 2 imply 

Corollary 3.5. Let V:[O,l] x Rn -r R be as in Corollary 3.3 and assume that F is locally 

Lipschitzian and has convex images. Then there exists an optimal solution z to problem 

(2.1) such that V( t , z ( t ) )  = const on [0,1]. 

4. Opt imal  feedback 

Observe that if V and z are as in Theorem 3.2 then for all s€ [ t , l [  and small 

h>O, V(s+h,z(s+h)) i  V(s ,z (s ) ) .  Thus D+ ~ ( s , z ( s ) ) ( l , z ' ( s ) ) < ~  whenever the derivative 

z'(s) do exist. For all ( s , z ) ~ R  x Rn set 

and consider the differential inclusion 

Hence z is a trajectory of (4.1). Corollary 3.5 implies then 



Theorem 4.1. Let V:[0,1] x R n  -+ R be a continuous solution to the boundary problem 

inf D+ V(t,z)(l,u) i 0, (t,z)) E (O,l[x Rn 
u ~ c o  F ( t , z )  

V(1,z) = g(z) on R n  

and assume that F is locally Lipschitzian,satisfies (3.6), and has convex images. Then 

there exists a trajectory zE w1l1(0,1) of the differential inclusion (4.1) which is an optimal 

trajectory of problem (2.1). 

Observe that the set-valued map G has compact images. If we assume more regular- 

ity on V or G then every solution of (4.1) is an optimal trajectory of the problem (2.1). 

Theorem 4.2. Let V:[O,l]x Rn+R be a locally Lipschitzian solution of the boundary 

problem (4.2) and assume that F is locally Lipschitzian. Then every trajectory of the in- 

clusion (4.1) defined on the time interval [0,1] is optimal. 

Proof. Let z be a trajectory of (4.1). The function cp(t) = V(t,z(t)) is locally Lipschitzi- 

an. By the Rademacher theorem it is differentiable almost everywhere. 

Let t be so that z'(t) do exist and hi-+0+ such that 

Thus cpT(t) = D+ ~( t ,z ( t ) ) ( l , z ' ( t ) )  5 0 and cp is nonincreasing. By Theorem 3.1 cp is also 

nondecreasing. Thus cp = const.. Proposition 2.1 ends the proof. 

Another sufficient condition for the trajectories of (4.1) to be optimal requires more 

regularity of G and less of V. 

Theorem 4.3. Let V:[0,1] x Rn-tR be a continuous solution of boundary problem (4.2) 

and assume that G has compact convex images and is locally Lipschitzian. Then every 

~ ~ 9 ~ ( 0 , 1 ) - t r a j e c t o r ~  of the inclusion (4.1) is an optimal trajectory for the problem (2.1). 

Proof. By definition of G for all t ~ [0 ,1 [ ,  ZE Rn 

Thus, by Theorem 3.1, for every trajectory z of the inclusion (4.1) the function 

s-+- V(s,z(s)) is nondecreasing and by Theorem 3.1 the function 8-t V(s,z(s)) is nonde- 

creasing. Thus V(s,z(s)) = const and by Proposition 2.1, z is an optimal solution of the 

problem (2.1). 



5. Other relations satisfied by a locally Lipschitzian value function 

Using Theorem 1.1 one can easily check that whenever the value function is locally 

Lipschitzian in z then it also verifies the relations 

and for all ( t  ,z)~[O,l. [ x  Rn 

inf lim sup[V(t+h,z+hu)- 
u ~ c o  F(t,z) h+O+ 

It also verifies two relations involving epiderivative introduced by Clarke (81: 

Definition 5.1. Let p:Rm+R be a locally Lipschitzian function. The epiderivative 

pO(z): R~ + R is defined by: for all UE Rm. 

The generalized gradient ap(z) is given by 

Observe that PO(Z)?D+P(~) and therefore a - ~ ( z ) c a ~ ( z ) ,  

a + ( - ~ ) ( . ) c - a ~ ( z ) = a ( - ~ ) ( z ) .  

For all ( t , z )€ ]~ , l  [ x  R n  set 

nta V(t,z) = {p:3q such that ( p , q ) ~ a  V(t,z)) 

n$V(t,z) = {q:3p such that (p,q)~aV(t ,z))  

i.e. nta V(t,z) and nza V(t,z) are projections of a V(t,z) on t and z spaces respectively. 

Theorem 5.2 Assume that the value function is locally Lipschitzian on ]0,1[x Rn.  Then 

and 

max p = max H(t ,z,- q) 
s,aV(t ,z)  q~r,aV(t,z) 

Moreover for all ( ~ , q ) ) ~ d  V(t,z) satisfying 



max H(t,z,-q) = H(t,z,-F) 
qEr,av(tlz) 

we have p = max p 
zta V(t9z) 

Corollary 5.3. If V is a locally Lipschitzian solution of (5.1) then V is a viscosity super- 

solution of the equation 

and a viscosity subsolution of the equation 

Remark. The extension of the Hamilton-Jacobi equation to the form (5.1) was first in- 

troduced in Offin [21] (see Clarke-Vinter 161, Clarke [8]). 

Brooj. By (3.2) for all (t,z)€]O,l[x Rn(l,F(t,z),O) b elongs to the contingent cone to  

epi(- V) at (t,z,- V(t,z)). Thus, by 12, p. 4091 and continuity of F for all 

( t ,z)€]O,l[xRn, (l,F(t,z),O) belong to the tangent cone of Clarke to  epi(-V) at  

(t727- V(t7z)). 

This implies that for all u ~ F ( t , z ) ,  (- ~ ) ~ ( t , z ) ( l , u ) < ~  (see 12, p. 4211). Using the 

equality a V(t,z) = -a(- V)(t,z) we finally obtain 

Since a V(t,z) and co F(t ,z)  are compact from (5.3) follows that 

min (p+ min <q,u>)>O 
(p,q)~aV(t,z) u~F(t ,z)  

To prove the equality in (5.4) we have to  verify that for some 

G c o  F(t ,z) ,  (- ~ ) O ( t , z ) ( l , ~ ) > 0 .  By Theorem 1.1 there exist wh€R(t+h,t)z such that 

dist(wh,F(t,z))--+0 when h+O+ and 1 1  V(t,z)- V(t+h,whll = O(h). 

Let wi = whi, hi-+()+ be a subsequence such that (wi-z)/hi converge to some 

i i ~ c o  F(t,z). Then O= lim [V(t,z)- V(t+hi,wi)]/hi<(- ~)O( t ,z) ( l ,a) .  Therefore we have 
1+00 

an equality in (5.4) and (5.1) follows. To prove (5.2) fix u€F(t,z). By Theorem 1.1 for 

all ( t ' , ~ ' )  near (t,z) and small h>O 

Thus (- ~ ) O ( t ~ z ) ( O ~ ~ ) i  VO(t72)(17°). 



Since u E F( t , z )  is arbitrary we proved that 

To prove the opposite inequality fix (t,,zi)-+(t,z) and hj-+O+ such that 

p ( t , z ) ( l , o )  = l im [V(t,+h,,zi)- V(ti,zi)]/h, 
t+m 

(5.5) 

Let wi~R(t ,+hi , t i )z i  be such that 1) V(ti,zi)- V(ti+h,,w,) 11 = O(hi). By Theorem 1.1 

there exist uiEco F ( t , z )  such that )(wi-2;-hiuill = O(hi). Taking if needed a subsequence 

we may assume that lim u, = i i ~ F ( t , z ) .  Then, by (5.5), 
i+m 

p ( t , z ) ( l  ,o) = l im [ V(ti+hi,zi)- V(t,+h,,z,+h,u,)]/h, 
s+m 

< (- ~ ) ~ ( t , z ) ( o , i i ) <  max (- v)O(t,z)(o,u) 
uEco F ( t , z )  

Since (- v)O(t,z) is a convex continuous function the maximum is attained at  an extremal 

of co F( t ,z ) .  Thus 

P ( t , z ) ( l , o )  = max (- v)O(t,z)(o,u) 
u€F( t , z )  

Using again that V(t ,z) = -a( -  V)(t,z) we derive from (5.6) that 

max p = max max <-q,u> 
r,a V ( t , z )  q€r ,BV( t ,z )uEF( t ,z )  

Hence (5.2). To prove the last statement fix ( ~ , q ) ) ~ a V ( t , z )  such that 

min rnin < q , u > =  rnin <q,u>. Then, by (5.2), p<H(t ,z,-q) and the result 
qEr,a V ( t , z ) u € F ( t , z )  u € F ( t , z )  

follows from (5.1). 

6. Superdifferentials of the value function - Pontrjagin's principle 

In this section we relate the adjoint solution of the Pontrjagin maximum principle to 

the superdifferential of the value function. 

Our basic tools are the results of [13], [16]. 

Let f: Rnx Rm-+Rn be a locally Lipschitzian differentiable function and 

U : R n - +  Rm be a locally Lipschitzian set-valued map with compact images. Consider the 

problem 



minimize g(z(1)) (6.1) 

over the solutions of the closed loop control system 

where g is a differentiable function and K is a given set of initial states. We recall that 

the contingent cone to K at  ZEK is given by 

K-z 
TK(z) = {v:lim inf dist (v,-) = 0) 

h+O+ h 

Let V be the value unction associated to the problem, i.e. 

V(t,() = inf{g(z( l ) ) :z~ wlyl(t,l) is a solution of (5.2), z(t)=() 

By the Theorem of Appendix, V is a locally Lipschitzian function. 

Theorem 6.1. Assume that a trajectory control pair (z,u*) solves the above problem 

and that there exist linear operators B(S)EL(R~,R~),SE[O,:U satisfying 

i) for all ZER ", s-+ B(s)z is measurable 

ii) for some k~ Lm(O,l) and almost all s,  11 B(s) 11  5 k(s) 

, iii) for almost all s and all ~ E R "  

U(z(s)+hu)-u t ( s )  
lim dist(B(s)z, 

h 
) = O  

h+O+ 

Then there exists a function q~ ~ ~ ~ ~ ( 0 , l )  satisfying 

<q(t),zS(t)> = max < q(t), f(z(t),u)> a.e. in [0,1] 
U E  U ( z ( t ) )  

(6.5) 

q(0) E TK(z(0))- = { ~ : V U E  TK(0), <p,u> 20)  (6.6) 

-q(l)=g'(z(l)) (6.7) 

- q(t) E a; V(t,z(t)) for all t ~ [0 ,1 ]  (6.8) 

where a: V denote the superdifferential of V with respect to z. Moreover for all t 

such that the derivative z'(t) exists 



Remark. The last statement of the above theorem and Theorem 2.8 imply that for al- 

most all t€[O,l ]  there exist (a,P)€a+ V ( t , z ( t ) )  such that 

Remark. Assumptions i) - iii) are in   articular verified when there exists a selection 

p ( t , z ) ~ U ( z ) ,  t€[0,1],  z € R n  measurable in t such that for all t ,  p ( t , z ( t ) )  = u t ( t )  and 

~ ( t , - )  is differentiable a t  z ( t ) .  Then we can take for B ( t )  the matrix * ( t , z ( t ) )  (compare a z 

Leitmann [18]) .  

Proof. For all z € R n ,  set 

By the example of Section 1 we can replace the dynarnical system (5.2) by the differential 

inclusion Z 'E  F (2 ) .  

From [13] follows the existence of a function qE wl'"(O,l) verifying (6.4)-(6.7). 

Consider the linear equation 

and let W E  wlyl(O,l) be a trajectory of (6.9). By [ I S ]  there exist trajectories zhE w l j l ( t , l )  

of (6.2) satisfying lim (zh-z) /h=w (in wly l ( t , l ) ) .  ~ h u s ,  by (6.7), (6.4), for all 
h+O+ 

w ( t ) € R n  

< q ( t ) ,  w ( t )>  = - g S ( z ( l ) )  w(1)  < lim inf [ V ( t , z ( t ) ) -  V ( t , z ( t )+hw( t ) ) ] / h  
h+O+ 

and (6.8) follows from (2.16). Let t€[0,1] be such that the derivative z ' ( t )  does exist. 

Then for all trajectory W E  wlll(O,l) of (6.9) and ~ E R  

= lirn su [ ~ ( t + a h , z ( t ) + h ( a z ' ( t ) + w ( t ) ) ) -  ~ ( t , z ( t ) ) ] / h  
h+f+ 



Hence, using (6.5) we obtain that for all ( a , u ) c R x R n  

Hence (H(z(t), q(t)), -q(t)) E a+ V(t,z(t)). The proof is complete. U. 

Appendix. Regularity of the value function 

Theorem 1. Assume that F satisfies (Hi)-(H3) and (3.6). 

i) If g is lower-semicontinuous and if F has convex images then V is also lower 

semicon tinuous. 

Assume next that g is bounded from below. 

ii) If the domain of definition of g is closed and F has convex images then V has a 

closed domain of definition 

iii) If the domain of definition of g is open and g is uniformly continuous on it then 

V has an open domain of definition and is continuous on it 

iv) If g is Lipschitzian on its open domain of definition then V is locally Lipschitzi- 

an on its open domain of definition. 

Proof. Let (t,,(,)€DomV be a sequence converging to some (t,() and z , E S ~ ~ ~ , ~ ~ ( ( , )  satisfy 

Let to=inft,. By [I, p. 1201 we can extend every trajectory on the time interval [to,l] 

and by [ I ,  p. 1041 there exists a subsequence zit converging uniformly to a trajectory 

z~S[t,,,l](S) Thus 

~ ( t  ,() sg(z ( l ) )  Slim inf g(z,,(l)) = lim inf V(t,,Si) 
k+m i+m 

and we proved i). If g is bounded from below then V is also bounded from below. The 

last inequality implies also ii). To prove iii) fix (t,()€Dom V. By [I, p. 1201 for every 

e>O there exists 6>0 such that Il(tS,(')-(t,()ll<6 implies that the Hausdorff distance 

dH(R(l-t,t)(,R(l-tC,t')(')<e. Fix any p>O and let e>O be so that IIy-yl 11 <e implies 

that 11 g(y)-g(yl) 11 <p. Let 6>0 be as above. If 11 (t',(')-(t,() 11 <6 then -for every 

Z E S ~ ~ , ~ ~ ( ( ) ,  there exists yES,t,,,~l((') such that g(y(l))Sg(z(l))+p and for all yESIt,,,,I(<) 

there exists ZES[~ satisfying g(z(l))<g(y(l))+p. This implies iii). To prove iv) we 

show first that V is locally Lipschitzian in (. From [I, p. 1201 we know that the map 

(t,()-+Slt,ll(() is locally Lipschitzian in ( with the constant independent of t. Since g is 



Lipschitzian on dom g we obtain that V is locally Lipschitzian in . Fix 

( t o , ( o ) ~ [ ~ , l ]  x Rn and let N be a neighborhood of (to,c0) where V is Lipschitzian in ( with 

a constant MI. Then for all t 5 t l ,  ( t ,(),(t l ,Cl)~N satisfying R( t l - t , t ) (~N  and for every 

~ ~ S l t , i l ( E )  

t 1 

Since z(tl)=(+jz'(s)ds and z' is bounded by a constant M we have 
t 

11 z(t1)-(, 11 5 11 (-cl 11 +M(tl-t). Since inf 11 V(t,()- V(tl,z(tl)) (1 = 0 the proof is 
zESI~, I ] (O 

complete. n. 
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