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Some of the most exciting current work in the environmental sciences involves 
unprecedentedly close interplay among field observations, realistic but complex 
simulation models, and simplified but analytically tractable versions of a f e w  basic 
equations. IIASA1s Environment Program is developing such parallel and comple- 
mentary approaches in i ts analysis of the impact of environmental change on the 
world's forest systems. In this paper, Antonovsky, Kuznetsov and Clark provide an 
elegant global analysis of the kinds of complex behavior latent in even the simplest 
models of multiple-aged forests, their  predators, and their  abiotic environment. 
Subsequent papers will apply these analytical results in the investigation of case 
studies and more detailed simulation models. 
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ABSTRACT 

This paper is  devoted to the  investigation of the simplest mathematical models 
of non-even-age forests  affected by insect pests. Two extremely simple situations 
are aonsidered: 1) the  pest feeds only on young trees; 2) the  pest feeds only on old 
trees. I t  i s  shown tha t  an  invasion of a s m a l l  number of pests into a steady-state 
forest  ecosystem aould resul t  in intensive oscillations of i ts  age  structure.  Possi- 
ble implications of environmental changes on fo res t .  ecosystems are also con- 
sidered. 



Software is available to allow interactive exploration of the models described 
in this paper. The software consists of plotting routines and models of the systems 
described here. I t  can be  run on an  IBM-PC/AT with the Enhanced Graphics 
Display Adapter and 256K graphics memory. 

For fu r ther  information o r  copies of the  software, contact the  Environment 
Program, International Institute f o r  Applied Systems Analysis, A-2361 Laxenburg, 
Austria. 
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THE I N ~ C E  OF PES~S ON mmsr AGE mmm DYNAYIICS: 
THE WTHEMATICAL MODEIS 

M.Ya Antonovsw, Yu.A. Kuznetsov, and W. Clark 

Introduction 

The influence of insect pests on the age structure dynamics of forest systems 

has not been extensively studied in mathematical ecology. 

Several papers (Antonovsky and Konukhin. 1983; Konukhin, 1980) have been 

devoted to modelling the age struoture dynamics of a forest not affected by pests. 

Dynamical properties of insect-forest systems under the assumption of age and 

species homogeneity can be derived from the theoretical works on predator-prey 

system dynamics (May, 1981; Bazykin, 1985). In the present paper w e  attempt to 

combine these two approaches to investigate the simplest models of non-even-age 

forests affected by insect pests. 

The model from Antonovsky and Konukhin (1983) seems to be the simplest 

model of age structure dynamics of a one-species system. I t  describes the time evo- 

lution of only two age classes ("young" and "old1' trees). The model has the follow- 

ing form: 

where t and y are densities of "young1' and "old" trees, p is  fertility of the 

species, h and f are death and aging rates. The function y(y ) represents a depen- 

dence of "young1' trees mortality on the density of "old" trees. Following Antonov- 

sky and Konukhin (1983) w e  suppose that there exists s o m e  optimal value of "old1' 

trees density under which the development of "young1' trees goes on most success- 



fully. In th is case i t  is possible to chose y (y )  = a ( y  - b12 + c (Figure 1). Let 

s = j  + C .  

Model (A.0) serves as t he  basis f o r  our  analysis. Let us therefore recall i t s  

propert ies. By scaling variables ( z  , y  ), parameters ( a  ,b ,c , p , j , h  , s  ) and the  time, 

system (A.0) can be  transformed into "dimensionless" form: 

I 2 = py - ( y  - 1)22 - S2 

= z  - h y ,  

where w e  have preserved the  old notations. 

The parametric por t ra i t  of system (0.1) on the  (p,h)-plane f o r  a fixed s value 

is  shown in Figure 2, where the relevant phase por t ra i ts  are also presented. 

Thus, if parameters (p ,h )  belong to region 2, system (0.1) approaches a sta- 

t ionary state with constant age  classes densities (equilibrium E2)  from al l  initial 

conditions. In region 1 between lines Dl and D2 the  system demonstrates a low den- 

sity threshold: a sufficient decrease of each age class leads to degeneration of 

the  system (equilibrium Eo). The boundary of initial densities that  resul t  in the  de- 

gradation is  formed by separat r ices of saddle El. Finally, in region 0 the  station- 

ary existence of the  system becomes impossible. 

Let us now introduce an insect pest into model (A.0). The two extremely simple 

situations seem to be  possible: 

1 )  the pests feed only on the  "young" trees (undergrowth); 

2) the  pests feed only on the  "old" (adult) trees. 

Assume that  in t he  absence of food the  pest density exponentially declines and 

that  forest-insect interactions can be  described by bil inear t e rn  as in the case of 

predator-prey system models (e.g ., May, 1981; Bazykin, 1985). 

Thus, f o r  the  case where the  pest feeds on undergrowth w e  obtain the  follow- 

ing equations: 



I .  2 = py -y(y)z -12 -Azz 

=fz -hy 

Z = -ez +bzz, 

while for the  case where the pest feeds on adult trees 

1: z = P Y  -7(v)z -12 

i =fz -hy  -Ayz (A.2) 

Z = -&Z + h z .  

Here z i s  insect density, e i s  mortality rate of insect, and terms with zz and yz 

represent  the  insect-forest interaction. 

The goal of this paper  is  the  comparative analysis of mode ls  (A.O), (A.1) and 

(A.2). In the  final p a r t  of the  paper  w e  consider biological implications of the  ob- 

tained resul ts and outline possible directions f o r  elaborating the model. The main 

tools f o r  ou r  investigation are the  bifurcation theory of dynmical  systems and the  

numerical methods of th is theory. 

1. M t .  of the investigation of model (kl) 

By a l inear change of variables, parameters and time the  system (A.1) can be  

transformed into the form: 

I 2 = #  - (y  -I)% -sz -22 

i = z  -hy  (1.1) 
z = -EZ + bzz , 

where the  previous notations are preserved f o r  new variables and parameters 

which have the  same sense as in system (0.1). 

In the f i r s t  octant 

system (1.1) can have from one to four equilibria. The origin Eo = (0,0,0) is always 

an equilibrium point. On the invariant plane z = 0 at which the  system coincides 

with system (0.1) t he re  may exist e i ther  one o r  two equilibria with nonzero coordi- 



nates. As in system (0.1), the t w o  equilibria El = ( z l , y l , O )  and E 2  = ( Z ~ , Y ~ ~ O )  

where 

appear in system (1.1) on the line: 

On the line 

equilibrium El coalesces with equilibrium Eo and disappears f r o m  R:. Besides the 

equilibria E, , j =0,1,2, system (1.1) could have an additional equilibrium 

c c p - s h  
E3 = ( -  - 

b ' b h '  h 

This equilibrium appears in B: to the right of the line: 

passing through the plane z =O and coalescing on this plane with ei ther equilibrium 

El or E2. Line S is tangent to line Dl at point 

and lies under it. Line S is divided by point M into t w o  parts: S1 and S 2 .  Equilibri- 

um E3 collides on S l  with El  and on S2 with E2. 

The parametric portrai t  of system (1.1) is shown in Figure 3, while the 

corresponding phase portrai ts are presented in Figure 4. In addition to the 

described bifurcations of the equilibria, autooscillations can "emerge" and "van- 

ish" in system (1.1). These events take place on lines R and P on the parameter 

plane, while the autooscillations exist in regions 5 and 6. 



Equilibrium E g  loses i ts stability on line R due to the transition of two com- 

plex conjugated eigenvalues from the left to the r ight half-plane of the complex 

plane. This stability change results in the appearance of a stable limit cycle in sys- 

tem (1.1) (Andronov-Hopf bifurcation). 

There i s  also a line corresponding to destruation of the limit cyales: line P on 

the (p,h)-plane. On line P a separat r ix  cycle formed by outgoing separat r ices of 

saddles E l  and E2  does exist (Figure 5). While moving to the separat r ix  line the  

period of the  cycle inareases to infinity and at the cr i t ical  parameter value i t  

coalesces with the  separat r ix  cycle and disappears. 

The point M plays a key role in the  parametric plane. This point i s  a common 

point f o r  all bifurcation lines: S1 ,S2 ,D lP2 ,R  and P. I t  corresponds to the  ex- 

istence of an  equilibrium with two zero eigenvalues in the phase space of the sys- 

tem.  This fact  allows us to predict  the existence of lines R and P. 

For parameter values close to the point M there  is a two-dimensional stable- 

center  manifold in t he  phase space of system (1.1) on which all essential bifurca- 

tions take place. The center  manifold intersects with invariant plane z =O along a 

curve. Thus w e  have a dynamical system on the two-dimensional manifold with the 

structural ly unstable equilibrium with two zero eigenvalues and the invariant 

curve. This bifurcation has been treated in general form by Gavrilov (1978) in con- 

nection with another problem. I t  w a s  shown that  the only lines originating in point 

M are the mentioned bifurcation lines. 

The locations of the  R and P lines were found numerically on an  IBM-PC/XT 

compatible aomputer with the  help of standard programs f o r  computation of curves 

developed in Research Computing Center of the  USSR Academy of Sciences by Bala- 

baev and Lunevskaya (1978). Corresponding numeriaal procedures are described 

in the  Appendix. W e  have also used an  interactive program fo r  the integration of 

ordinary differential equations - PHASER (Kocak, 1986). On Figures 6, 7, and 8 the 



changes in system behavior are visible. 

2. Besulta of the investigation of model (k2) 

Model (A.2) can be transformed by scaling into the following form: 

I: 2 = py - ( y  - 112z - sz 
y = z  -hy  - y z  (2 .1)  
2 = -LZ + b z *  

where the meaning of variables and parameters is the same as in system (1.1) .  

System (2 .1)  can have from one to four equilibrium points in the f i rst  octant 

BQ : E,, = (0 ,0 ,0) ,  El  = ( z l , y l , O ) ,  E 2  = ( z 2 , y 2 , 0 )  and E 3  = ( z 3 , p 3 , z 3 ) .  Equilibria 

El and E 2  on the invariant plane z = 0 have the same coordinates as in system 

(1.1) ;  they also bifurcate the same manner on lines Dl and D2. AS in system (1 .1)  

there is an  equilibrium point of system (2.1)  in RQ : 

~b L 2 - h I . 
= 1 ( -  + s b 2  b * ( E  -$ + s b 2  

This equilibrium appears in R: below the line 

S = [ ( ~ . h )  : pb -h = O  . 
( E  - b12 + s b 2  1 

But equilibrium E 3  does not lose its stability. Autooscillations in system (2 .1)  

are therefore not possible. That is why the parametric portraits of system (2 .1)  

look Hke Figure 9. Numbers of the regions in Figure 9 correspond to Figure 4. 

3. Dimcussion of the resalt. 

The basic model (0 .1)  with t w o  age classes describes ei ther a forest approach- 

ing an equilibrium state with a constant rat io of "young" and "old" trees 

( z = hy ), o r  the complete degradation of the ecosystem (and presumably, re- 

placement by the other species). 



Models (1.1) and (2.1) have regions on the parameter plane (0,l and 2) in 

which their  behavior is completely analogous to the behavior of system (0.1). In 

these regions the system either degenerates or tends to the stationary state with 

zero pest density. In this case the pest is "poorly adapted" to the tree species and 

oan not survive in the ecosystem. 

In systems (1.1) and (2.1) there are also regions (4 and 3) where the station- 

a ry  forest state with zero pest density exists, but is not stable to s m a l l  pest "inva- 

sions". After a small invasion of pests, the ecosystem approaches a new stationary 

state with nonzero pest density. The pest survives in the forest ecosystem. 

The main qualitative difference in the behavior of models (1.1) and (2.1) is in 

the existence of density oscillations in the f i rst  system but not in the second one. 

This means that a small invasion of pests adapted to feeding upon young trees in a 

t w ~ g e  olass system could cause periodical oscillations in the forest age structure 

and repeated outbreaks in the number of pests (i.e., z,y , z  / y and z become 

periodic functions of time). It  should be mentioned that the existence of such oscil- 

lations is usual fo r  simple, even-aged predator-prey systems. 

In our case, however, the "prey" is divided into interacting age classes and 

the "predator" feeds only on one of them. It is important that the pest invasions in- 

duce the oscillations in rat io  z / y of the age classes densities. It  should be men- 

tioned also that in the case of model (2.1) the pest invasion oan include damping os- 

cillations in the age structure. 

When w e  move on the parameter plane towards separatrix cycle line P ,  the 

amplitude of the oscillations increases and thei r  period tends to infinity. The os- 

cillations develop a strong relaxation character  with intervals of s low and rapid 

variable change. For example, in the dynamios of the pest density z ( t  ) there ap- 

pear periodic long intervals of almost zero density followed by rapid density out- 

breaks. Line P is a boundary of oscillation existence and a border above which a 



small invasion of pests leads to complete degradation of the system. In regions 7 

and 8 a small addition of insects to a forest system, which was in equilibrium 

without pests, results in a pest outbreak and then tree and pest death. 

It can be seen that the introduction of pests feeding only upon the "young" 

trees dramatically reduces the region of stable ecosystem existence. The ex- 

istence becomes impossible in regions 7 and & 

W e  have considered the main dynamical regimes possible in models (1.1) and 

(2.1). Before proceeding, however, let us disauss a very important topic of time 

scufes of the processes under investigation. It is we l l  known that insect pest 

dynamics reflect a much more rapid proaess than the response in tree density. It  

seems that this difference in the time scales should be modeled by introduction of a 

sma l l  parameter p<U into the equations fo r  pest density in systems (1.1) and (2.1): 

2 +b. But it  can be shown that the parametric portrai ts of the systems are 

robust to this modification. The relative positions of lines D1,D2 and S as w e l l  as 

the coordinates of the key point M depend on rat io E /  b  which is invariant under 

substitutions E+B/  p, b +b / IL. The topology of the phase portrai ts is not affected 

by introduction of a s m a l l  parameter p, but in the variable dynamics there appear 

intervals of slow and rapid motions. Recall that in model (1.1) the similar relaxa- 

tion character  of oscillations w a s  demonstrated near line P of separatrix cycle 

without additional sma l l  parameter IL. So w e  could say that w e  have an "implicit 

small parameter" in system (1.1). 

To demonstrate the potential f o r  extensions of this approach, let us now con- 

sider the qualitative implications of imposing on model (1.1) an effect of atmos-  

pheric changes on the forest ecosystems. A s  i t  w a s  suggested in Antonovsky and 

Korzukhin (1983), an increase in the amount of SO2 or other pollutants in the atmo-  

sphere could lead to a dearease of the growth rate p and an increase of the mor- 

tality rate A .  Thus, an increase of pollution could result in a slow dri f t  along some 



curve on the (p,h)-plane (Figure 10). 

Suppose that parametric condition has been moved f r o m  position 1 to position 

2 on the plane but remains within the region where a stable equilibrium existence 

without pests is possible. But if the system is exposed to invasions of the pest i t  de- 

grades on line P. Therefore, slow atmospheric changes could induce vulnerability 

of the forest to pests, and forest death unexpected from the point of view of the 

forest's internal properties. 

4. Snarnrrry 

I t  is obvious that both models (A.l) and (A.2) are extremely schematic. 

Nevertheless, they s e e m  to be among the simplest models allowing the complete 

qualitative analysis of a system in which the predator differentially attacks vari- 

ous age classes of the prey. 

The main qualitative implications from the present paper can be formulated in 

the following, to s a m e  extent metaphorical, form: 

1. The pest feeding the young trees destabilizes the forest ecosystem more than 

a pest feeding upon old trees. Based upon this implication, w e  could t r y  to ex- 

plain the  well-known fact that in real ecosystems pests more frequently feed 

upon old trees than on young trees. I t  seems possible that systems in which 

the pest feeds on young trees may be less stable and more vulnerable to 

external impacts than systems with the pest feeding on old trees. Perhaps 

this has led to the elimination of such systems by evolution. 

2. An invasion of a sma l l  number of pests into an existing stationary forest 

eaosystem could result in intensive oscillations of its age structure. 

3. The oscillations could be ei ther damping o r  periodia. 



4. Slow changes of environmental parameters are able to induce a vulnerability 

of the forest to previously unimportant pests. 

L e t  us now outline possible directions for  extending the model. It seems natur- 

al to take into account the following factors: 

1) more than t w o  age classes for  the specified trees; 

2) coexistence of more than one tree species affected by the pest; 

3) introduction of more than one pest species having various interspecies rela- 

tions; 

4) the role of variables like foliage area which a r e  important fo r  the description 

of defoliation effeot of the pest; 

5) feedback relations between vegetation, landscape and microclimate. 

Finally, w e  express our belief that oareful analysis of simple nonlinear 

ecosystem models with the help of modern analytical and computer methods will 

lead to a better understanding of real  ecosystem dynamics and to better assess- 

ment of possible environmental impacts. 



Appendix: Numerical procedures for the bifurcation linemR and P 

1. Andronov-Hopf bifurcation line R . 
On the  (p,h)-plane the re  is  a bifurcation line R along which system (1.1) has 

an  equilibrium with a pai r  of purely imaginary eigenvalues All, = *i o (A, < 0). I t  

is  convenient to calculate the  curve R f o r  fixed o ther  parameter values as a pro- 

jection on (p,h)-plane of a curve r in t he  d i rect  product of t he  parameter plane 

by phase space R: (Bazykin et al.. 1985). The curve r in the 5-dimensional space 

with coordinates (p ,h , z , y  , z )  i s  determined by the following system of algebraic 

equations: 

py - ( y  - 1122 - sz z z  = 0 
z -hy = O  
-ez + bzz = 0 
Q ( ~ ~ h , z , y , z )  = 0, 

i 

where G is a corresponding Hurwtiz determinant of the  linearization matrix 

Each point on curve I' implies that  at parameter values (p, h ) a point ( z  , y , z ) i s  an 

equilibrium point of system (1.1) (the f i rs t  t h ree  equations of (8) are satisfied) with 

eigenvalues Al12 = f i  o (the last equation of (8) is satisfied). 

One point on the  curve r i s  known. It  corresponds to  point M on the  parameter 

plane at which system (1.1) has the  equilibrium ( f . l . ~ )  with XI = A2 = 0 (9.g.. 
b 

*i o = 0). Thus, the  point 

t e e  (p ' ,h ' ,z ' ,y ' ,z ' )  = ( - - -,1,0 ) 
b ' b ' b  

lies on curve r and can be  used as a beginning point f o r  computations. The point- 

by-point computation of the  curve was done by Newton's method with t he  help of a 

standard EQRTRAN-program CURVE (Balabaev and Lunevskaya, 1978). 



2. Separatrix cycle line P . 

Bifurcation line P on the parameter plane w a s  also aomputed with the help of 

program CURVE as a aurve where a "split" function F fo r  the separatrix mnneat- 

ing saddles E2,1 vanishes: 

F@,h)  = 0. 

For fixed parameter values this function can be defined following Kuznetsov 

(1983). Let w2+ be the outgoing separatrix of saddle E2 (the one-dimensional 

unstable manifold of equilibrium E2 in R?). Consider a plane z = 6 , where 6 is a 

small positive number; note the second intersection of w2+ with this plane (Figure 

11). Let the point of intersection be X .  The two-dimensional stable manifold of sad- 

dle El interseats with plane z = 6 along a curve. The distance between this curve 

and point X ,  measured in the direction of a tangent vector to the unstable manifold 

of E l ,  could be taken as the value of F f o r  given parameter values. This funation is 

we l l  defined near i ts zero value and its vanishing implies the existence of a separa- 

t r ix  cycle formed by the saddle El12 separatrices. 

For numerical computations separatrix W; w a s  approximated near saddle E2 

by its eigenvector corresponding to X 1  > 0. The global par t  of W$ w a s  defined by 

the Runge-Kutta numerical method. Point X w a s  calculated by a linear interpola- 

tion. The stable two-dimensional manifold of El w a s  approximated near saddle El 

by a tangent plane, and an affine coordinate of X in the eigenbasis of El w a s  taken 

for  the value of split function F. 

The initial point on the separatrix has zo  = 0.005. The plane z = 6 was defined 

by 6 = 0.1 and the integration accuracy w a s  lo-' per  step. The initial point on P 

w a s  found through computer experiments. A family of the separatr ix cycles 

corresponding to points on curve P is  shown in Figure 12. 

Figure 13 presents an actual parametria portrait of sysbn (1.1) fo r  

s = b  = l , t  =2.  
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Figure 1. The dependence d "young" tree mortality on the density of "old" trees. 

Figure 2. The parametric portrait of system (0.1) and relevant phase portraits. 



Figure 3. The parametric portrait of system (1.1). 



Figure 4.  The phase portraits of system (1.1). 



Figure 5. The separatrix cycle in system (1.1). 
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Figure 6. The behavior of system (1.1): s = b = 1, E = 2, p = 6,  h = 2 (region 
3). The Y-axis extends vertically upward from the paper. 



Figure 7. The behavior of system (1.1): s = b = 1, c = 2, p = 6 ,  h = 3 (region 
8) - 

Figure 8. The behavior of system (1.1): s = b = 1, E = 2, p = 6,  h = 3.5 (region 
7)  - 



Figure 9. The parametric portraits of system (2.1). 

Figure 10. The probable parameter drift under SOZ increase. 



Figure 11 . The separatrix split function. 
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Figure 12. The separatrix cycles in system (1.1). 



B I F U R C R T I O N  CURVESs S = B = l  E = 2  

Figure 13. A computed parametric portrait of system (1.1). 


