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FOREWORD 

The described collection of subroutines developed for calculation of values of mul- 
tivariate normal, Dirichlet and gamma distribution functions and their gradient vectors is 
an unique tool that can be used e.g. to compute the Loss-of-Load Probability of electric 
networks and to  solve optimization problems with a reliability constraint. 
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CALCULATION OF THE MULTIVARIATE 
PROBABILITY DISTRIBUTION 

FUNCTION VALUES AND THEIR 
GRADIENT VECTORS 

Eotvos Lorbnd University, Budapest 

1. INTRODUCTION 

This paper describes a subroutine package on the calculation of some multivariate 

probability distribution function values and their gradient vectors. These calculations are 

very important in stochastic programming, reliability theory, statistics and practically all 

sciences that concern stochastic systems. The subroutine package has been developed in 

FORTRAN-77 language and makes the above described calculations possible in the case 

of the n o r m a l ,  g a m m a  and D i r i c  h 1 e t distributions. Here the normal and Dirichlet 

distributions are well known and the multivariate gamma distribution is a new one 

developed by A. Prdkopa and T. SzSntai (51. 

The main calculation procedure is based on the determination of all possible one- 

and two dimensional marginal probability distribution function values. By the aid of 

these we can give sharp lower and upper bounds on the multivariate probability distribu- 

tion function. In many cases these bounds are close enough and their mean value can be 

regarded as the exact value of the multivariate probability distribution function. In other 

cases we 'use a special Monte Carlo simulation procedure for a more accurate estimation of 

the distribution function. This is a variance reduction technique as described by T. 

Szbntai in [7] and [8]. 

The subroutine package has been developed in M S L  form. This means that the 

codes are supplied with such headings and comments as the usual IMSL subroutines are. 

In addition our subroutines use the standard M S L  subroutines whenever it is possible and 

they do not need any more user written supplementary code. So our package can be used 

on any computer supplied with the IMSL library. 



The main subroutines of the package are named MDMNOR, MDMGAM and 

MDMDIR. They provide the calculation of the multivariate normal, gamma and Dirichlet 

distribution function values. The further main subroutines named MGMNOR, 

MGMGAM and MGMDIR calculate the gradient vector of the corresponding multivariate 

probability distribution functions. For the calculation of the one- and two dimensional 

normal probability distribution function values we use the MDNOR resp. MDBNOR stan- 

dard IMSL subroutines. In the case of the gamma and Dirichlet distribution the IMSL li- 

brary has subroutines only for the one dimensional probability distribution function value 

calculations. These are named MDGAM and MDBETA. For the calculation of the two di- 

mensional probability distribution functions subroutines MDBGAM and MDBDIR have 

been developed. As the Monte Carlo simulation procedure requires the generation of the 

multivariate normal, gamma and Dirichlet distributed random vectors the package must 

contain subroutines for this purpose too. In the case of the normal distribution the stan- 

dard IMSL subroutine GGNSM can be used. In the case of the Dirichlet distribution the 

problem is trivial and a separate subroutine is not needed. However in the case of the 

multivariate gamma distribution we have to solve not only the problem of the random 

vector generation but also the problem of the fitting the multivariate gamma probability 

distribution to the empirical data that is to an empirical covariance matrix. This problem 

is solved by the new subroutine named GGGML. 

The next section of the paper contains a brief description of the algorithms used in 

the different subroutines. In the third section the usage of the individual subroutines is 

described in that form as they are contained in the headings of the codes. Finally in the 

fourth section we demonstrate the application of the subroutines by the solution of some 

test problems. 

2. THE MAIN ALGORITHMS USED IN THE SUBROUTINE PACKAGE 

The Monte Carlo simulation procedure for the calculation of the multivariate proba- 

bility distribution function values was published in [8] for the case of the multivariate 

gamma distribution. This algorithm has been improved significantly in [7]. In the follow- 

ing we describe this latest version of the algorithm. 

For any multivariate probability distribution function we have 



where zl, . . . , z, are the components of the random vector z and 

From the so called Bonferroni inequalities (see [6]) one easily can get the following 

lower and upper bounds 

where k* is the greatest integer smaller than or equal to  2S2/& + 1. 

As g1 and g2 can be expressed in terms of values of the one- and two dimensional 

marginal probability distribution functions these bounds easily can be calculated. The 

main idea of the algorithm is that three different estimates of the distribution function 

can be produced in the same Monte Carlo simulation procedure. The first one is the direct 

relative frequency corresponding to the probability P(z l  < .zl,..., z, < 2,). The second 

one is the relative frequency corresponding to the difference between the upper bound and 

the distribution function. The third one is the relative frequency corresponding to the 

difference between the distribution function and its lower bound. 

As the above mentioned differences are equal to 

and 

if u denotes the number of the inequalities zl < 21,. . ., zn < z, which does not fulfill, the 

random variables 



l o ,  

2 I.] + t. (- l ) j ' t ]  , 1 I k * ( k +  2 j;, 

have the required expected value. After some elementary calculations one get 

These formulas are more comfortable'for the simulation procedure and it is also evident 

that instead of vl and v2 one could simulate the k*(ki + l ) v l  and nu2 random variables. 

When simulating the random variables yo, k*(k* + l )vl  and nv2 their covariance 

matrix can be estimated, too. By the aid of these estimates a final and more efficient esti- 

mation can be constructed for the multivariate probability distribution function. 

In the following we give a step by step description of our algorithm. In this descrip 

tion and % have been eliminated and Fi(z,) resp. F,,(z,, zj) denote the one- resp. two 

dimensional marginal distribution functions. 



Algorithm for the calculation of the multivariate probability 
distribution function 

Step 1 Initialization 

Let No = 0 ,  N1 = 0 ,  N 2  = 0; e l l  = 0 ,  cz2  = 0,  c12 = 0; a = 0. 

Let further k be the largest integer smaller than or equal to  

Let 

n 2 
F;(z ; )  + - x F i j ( z , ,  z,) , 

l < i <  j < n  

If 1 P ,  - P I (  <0.0005 then let the estimation of the distribution function value equal to 

P = ( P I  + P u ) / 2  with variance zero and Stop. 

Step 2 Generation of a new random vector 

Let s = a + 1, if s > S then go to Step 6. Generate the random numbers z 1 8 ) ,  ..., z,('). 

Step 8 Initialization o j  the cycle for checking the inequalities 

Let k(') = 0 ,  i = 0 .  

Step 4 The cycle for testing the inequalities 

Let i = i + 1, if i > n then go to Step 5 .  If z,(') < .q then repeat Step 4 else let 

k(') = k(') + 1 and also repeat Step 4. 

Step 5 Update the jrequency values and the cross products 

If k(') = 0  then No = No + 1 

If k(') = 1 then = ( k 8 )  - k* ) (k ( ' )  - k* - I ) ,  

N 1  = N l  + i13),  

and go to Step 2 .  



and go to Step 2. ~ 1 1  = ~ 1 1  + i l d ) i [ s )  

If k(') 2 2 then i ls )  = (k(9) - k* ) (k (s )  - k* - 11, 

ii" = ( k ( 4  - l ) ( n  - k(d) ) ,  

N1  = N1 + i l S ) ,  

N2 = N ,  + i i s ) ,  

c l l  = ell + i l s ) i [ 8 ) ,  

c22 = cz2 + i i s ) i i s ) ,  

9 )  ' 9 )  
C 1 2  = C 1 2  - 4 4, and go to Step 2. 

Step 6 Calculation of the relative frequencies and their covariance matriz 

Let 

Step 7 Calculation of the final estimation 

Let 

Let the empirical variance of the final estimation equal to 

Stop. 



We remark that in the above described algorithm it can occur that one or more of 

the values of No,  N 1  and N z  remain zero at the beginning of Step 6. In order to avoid a 

final estimation with zero variance we make some additional investigations at  the begin- 

ning of Step 6. 

Addit ional  investigations a t  the beginning of Step 6. 

If No = 0  then let the final estimation equal to zero with the empirical variance 

If N 1  = 0  then let the final estimation equal to P, with the empirical variance 

If N 2  = 0  then let the final estimation equal to max ( P I ,  0)  with the empirical variance 

For the calculation of the gradient vector of the multivariate probability distribution 

functions we apply the formula 

where F(z l ,  . . . , zl- zl+ ] , .  . ., z, I zl) is the conditional probability distribution function of 

the random variables z l ,  . . . , zl- zl+ . . , zn according to the condition zl = zl and f(zl) 

is the marginal probability density function of the random variable z l .  The application of 

this formula was first proposed by A. PrCkopa in 141. In the case of the normal and Diri- 

chlet distribution the conditional probability distributions are also normal resp. Dirichlet 

distributions. The conditional probability distributions of the multivariate gamma distri- 

bution have been determined in the original paper by A. PrCkopa and T. Szintai [5]; So 

for the calculation of the gradient vector components we can use the same Monte Carlo 

simulation procedure that has been developed for the calculation of the multivariate pro- 

bability distribution function values. But in the case of the multivariate gamma distribu- 

tion the calculation of the one- a n d  two dimensional marginal probability distribution 



functions of the conditional probability distribution requires one and two dimensional nu- 

merical integration which could be a time consuming job. So in the case of the gamma 

distribution we use the crude Monte Carlo simulation procedure. The necessary random 

vector generation is based on the construction described in 151. 

For the calculation of the two dimensional gamma probability distribution function 

we gave a series expansion involving Laguerre polynomials (see [8]). The Laguerre poly- 

nomials can be calculated by well known recursive formulae. 

For the calculation of the two dimensional Dirichlet probability distribution function 

H. Exton gave a formula by the aid of the Lauricella functions (see (11). In our subroutine 

we use a direct series expansion which is numerically more stable. 

Here we remark that in [7] the following theorem concerning the Dirichlet distribu- 

tion has been proved. 

THEOREM 

( i )  If the sum of the two smallest argumentum values of the multivariate Dirichlet distri- 

bution function is greater than one then 

(ii) If the sum of the three smallest argumentum values of the multivariate Dirichlet distri- 

bution function i s  greater than one then 

This theorem gives a good chance to calculate the multivariate Dirichlet probability 

distribution function without any Monte Carlo simulation technique. The results of the 

above theorem are incorporated in our subroutine. 

In the case of the multivariate gamma distribution we apply a fast heuristic algo- 

rithm for the solution of t'he fitting problem. This algorithm was published in (71. If the 

heuristic algorithm fails then we use a dual type LP algorithm to find the best possible 

multivariate gamma distribution. In this algorithm we simply can get an initial dual 

feasible basis and its inverse. The application of the LP techniques for the solution of the 

fitting problem was described in (51. We remark that the GGGML subroutine can take as 

input a given 0-1 construction matrix as well. In this case the fitting procedure becomes 

unnecessary. 



3. DESCRIPTION OF THE SUBROUTINES 

In this section a list of the subroutines is given describing their purpose, usage, argu- 

ments and the list of the required IMSL subroutines. 

3.1. Subroutine MDMNOR 

Purpose 

Usage 

Arguments x 

r 

n 

nrnd 

dseed 

P ~ O  

P 

PUP 

pvar 

ier 

Reqd. IMSL routines 

- to calculate the multivariate normal probability distribu- 

tion function. 

- call mdmnor(x, r, n, nrnd, dseed, plo, p, pup, pvar, ier) 

- input. Argument vector. 

- input vector of length n(n + 1)/2. It contains the correla- 

tion matrix elements. r is a positive definite matrix stored 

in symmetric storage mode. 

- input. Size of vector x. 

- input. Number of trials. 

= 0, only the bounds will be calculated. 

- input. Seed of the random number generation. 

- output. Lower bound of distribution function. 

- output. Value of distribution function. 

- output. Upper bound of distribution function. 

- output. Variance of the estimated value. 

- output. Error parameter. 

- mdnor, mdbnor, ggnsm, ggnml, ggubs, mdnris, merfi, 

uertst, ugetio 



3.2. Subroutine MGMNOR 

Purpose 

Usage 

Arguments x 

r 

n 

nrnd 

dseed 

g 

gv ar 

ier 

Reqd. IMSL routines 

- t o  calculate the gradient vector of the multivariate normal 

probability distribution function. 

- call mgmnor(x, r, n, nrnd, dseed, g, gvar, ier) 

- input. Argument vector. 

- input vector of length n(n + 1)/2. It contains the correla- 

tion matrix elements. r is a positive definite matrix stored 

in symmetric storage mode. 

- input. Size of vector x, g and gvar. 

- input. Number of trials. 

= 0, only the bounds will be calculated. 

- input. Seed of the random number generation. 

- output. Gradient vector. 

- output. Variance of the gradient vector. 

- output. Error parameter. 

- mdnor, mdbnor, mdmnor, ggnsm, ggnml, ggubs, mdnris, 

merfi, uertst, ugetio 



Remarks If the user wishes to continue generating multivariate gamma deviate vectors 

distributed with the same sigma, then multiple calls may be made to gggml 

with iw nonzero on input. If iw is set to 0 on input the calculation of the mg 

transformation matrix will be carried out. 

3.4. Subroutine MDBGAM 

Purpose 

Usage 

Arguments x 

Y 

a 

P 

ier 

Reqd. IMSL routines 

- to  calculate the bivariate gamma probability distribution 

function. 

- call mdbgam (x, y, a,  b, c, p, ier) 

- input. Upper limit of integration for the first variable. 

- input. Upper limit of integration for the second variable. 

- input. Parameter of the bivariate gamma distribution ac- 

cording to the first component only. 

- input. Parameter of the bivariate gamma distribution ac- 

cording to  both of the components. 

- input. Parameter of the bivariate gamma distribution ac- 

cording to  the second component only. 

- output. Value of bivariate gamma distribution function. 

- output. Error parameter. 

- gamma, mdgam, uertst, ugetio. 



3.5. Subroutine MDMGAM 

Purpose 

Usage 

Arguments x 

sigma 

imat 

teta 

n 

nrnd 

dseed 

P ~ O  

P 

PUP 

pvar 

ier 

Reqd. IMSL routines 

- to calculate the multivariate gamma probability distribu- 

tion function. 

- call mdmgam(x, sigma, iw, imat, mg, teta, n, nrnd, dseed, 

plo, P, PUP, pvar, ier) 

- input. Argument vector. 

- input vector of length n(n + 1)/2. Sigma contains the 

variance-covariance values. Sigma is a positive definite ma- 

trix stored in symmetric storage mode. 

- input. Integer value. If it has zero value the mg transfor- 

mation matrix will be calculated from the covariance ma- 

trix. 

- input. Row dimension of matrices mg and rvec exactly as 

specified in the dimension statement in the calling pro- 

gram. 

- output/input n by n(n + 1)/2 matrix of 0 and 1 elements. 

On the first call it is an output matrix. After the first call 

it is an input matrix containing the transformation matrix 

required for the construction of the multivariate gamma 

random deviates. 

- output/input vector of length n(n + 1)/2. On the first call 

it is an output vector. After the first call it is an input vec- 

tor containing the parameter values of the standard gam- 

ma distributed components in the construction of the mul- 

tivariate gamma random deviates. 

- input. Size of vector x. 

- input. Number of trials. 

= 0, only the bounds will be calculated. 
- input. Seed of the random number generation. 

- output. Lower bound of distribution function. 

- output. Value of distribution function. 

- output. Upper bound of distribution function. 

- output. Variance of the estimated value. 

- output. Error parameter. 

- dlgama, mdbgam, gggml, ggamr, ggubs, uertst, ugetio 



3.6. Subrou t ine  MGMGAM 

Purpose 

Usage 

Arguments x 

sigma 

imat 

teta 

n 

nrnd 

dseed 

g 

gvar 

ier 

Reqd. IMSL routines 

- to calculate the gradient vector of the multivariate gamma 

probability distribution function. 

- call mgmgam(x, sigma, iw, imat, mg, teta, n, nrnd, dseed, 

g, gvar, ier) 

- input. Argument vector. 

- input vector of length n ( n  + 1)/2. Sigma contains the 

variance-covariance values. Sigma is a positive definite ma- 

trix stored in symmetric storage mode. 

- input. Integer value. If it has zero value the mg transfor- 

mation matrix will be calculated from the covariance ma- 

trix. 

- input. Row dimension of matrices mg and rvec exactly as 

specified in the dimension statement in the calling prc+ 

gram. 

- output/input n by n ( n  + 1)/2 matrix of 0 and 1 elements. 

On the first call it is an output matrix. After the first call 

it is an input matrix containing the transformation matrix 

required for the construction of the multivariate gamma 

random deviates. 

- output/input vector of length n ( n  + 1)/2. On the first call 

it is an output vector. After the first call it is an input vec- 

tor containing the parameter values of the standard gam- 

ma distributed components in the construction of the mul- 

tivariate gamma random deviates. 

- input. Size of vector x, g and gvar. 

- input. Number of trials. 

= 0, only the bounds will be calculated. 

- input. Seed of the random number generation. 

- output. Gradient vector. 

- output. Variance of the gradient vector. 

- output. Error parameter. 

- dlgama, mdbgam, mdmgam, gggml, ggamr, ggubs, uertst, 

ugetio. 



3.7. Subroutine MDBDIR 

Purpose 

Usage 

Arguments x 

Y 

a 

P 

ier 

Reqd. IMSL routines 

- to calculate the bivariate Dirichlet probability distribution 

function. 

- call mdbdir (x, y, a,  b, c, p, ier) 

- input. Upper limit of integration for the first variable. 
- input. Upper limit of integration for the second variable. 

- input. First parameter of the bivariate Dirichlet distribu- 

tion. 

- input. Second parameter of the bivariate Dirichlet distri- 

bution. 

- input. Third parameter of the bivariate Dirichlet distribu- 

tion. 

- output. Value of bivariate Dirichlet distribution function. 

- output. Error parameter. 

- dlgama, uertst, ugetio. 



3.8. Subroutine MDMDIR 

Purpose 

Usage 

Arguments x 

a 

b 

n 

nrnd 

dseed 

~ 1 0  

P 

PUP 

pvar 

ier 

Reqd. IMSL routines 

- to calculate the Dirichlet probability distribution function. 

- call mdmdir (x, a,  b, n, nrnd, dseed, plo, p, pup, pvar, ier) 

- input. Argument vector. 

- input. Parameter vector. 

- input. Parameter value. 

- input. Size of vector x and a. 

- input. Number of trials. 

= 0, only the bounds will be calculated. 

- input. Seed of the random number generation. 

- output. Lower bound of distribution function. 

- output. Value of distribution function. 

- output. Upper bound of distribution function. 

- output. Variance of the estimated value. 

- output. Error parameter. 

- mdbeta, mdbdir, dlgama, ggamr, ggbtr, ggubs, ggubfs, 

uertst ,ugetio. 



3.9. Subroutine MGMDIR 

Purpose 

Usage 

Arguments x 

a 

b 

n 

nrnd 

dseed 

g 

gvar 

ier 

Reqd. IMSL routines 

- to calculate the gradient vector of the Dirichlet probability 

distribution function. 

- call mgmdir(x, a, b, n, nrnd, dseed, g, gvar, ier) 

- input. Argument vector. 

- input. Parameter vector. 

- input. Parameter value. 

- input. Size of vector x and a. 

- input. Number of trials. 

= 0, only the bounds will be calculated. 

- input. Seed of the random number generation. 

- output. Gradient vector. 

- output. Variance of the gradient vector. 

- output. Error parameter. 

- mdbeta, mdbdir, mdmdir, dlgama, ggams, ggbtr, ggubs, 

ggubfs, uertst, ugetio. 

4. SOME TEST RESULTS 

This section contains some test results. These results have been produced by demo 

programs NORDEMO, GAMDEMO and DIRDEMO written in FORTRAN-77. They ask 

the input data from a user named data file and write the results to a user named output 

file. The codes and the data files are very similar so here only the program NORDEMO.F, 

the input data file N.DAT and the corresponding output data file N.RES are listed. 



c This is a demo program for the calculation of the multivariate 
c normal probability distribution function and its gradient vector 
C 

program NORDEMO 
characterM0 fi lnamrproblem 
integer njnrndjier 
real t i me(Z) 
real x (50 ) r r (Z45O) )p lo~p~pup)pvar  
real g(SO)rquar(50))qstd(50) 
double precision dseed 
write(*rJ(/a,\*(Do)') 'Enter name of input data file : ' 
read(*)*) f i lnam 
n i n=7 
open(ninrfile=+iInam) 
write(*jJ(ar\*(Do)') 'Enter name o+ output data file : ' 
read(*)*) filnam 
nout=B 
open(noutrf i le=+iInamrstatus=JnewJ) 
dseed=319ZS.OdO 

55 read(nin)*) problem 
read(ninr*) n 
if (n.eq.0) stop 
read(ninr*) (x(i))i=l)n) 
do 60 j=lr n 
kb=(j-l)*j/Ztl 
ke=kbtj-1 

60 read(ninr*) (r(k))k=kbrke) 
read(ninr*) nrnd 
dtim=dtirne(time) 
call mdmnor ( x , r rn )n rnd rdseedrp lo )p~pup)puar ) i e r )  
dtim=dtime(time) 
std=sqrt(pvar) 
write(noutrJ(///a)') problem 
write(nout~'(/a>') Results for the distribution function' 
~rite(nout)'(a)~) J ,-----,-,----,---,,----------------J 

write(noutrJ(/a)ilZ)') Error code - - )pier 
write(noutr'(apfl2.6)') ' Lower bound = ')pIo 
write(nout)'(a)fl2.6)') ' Estimated value = ' JP 
write(nout9 '(arfl2.6)') ' Variance - - ' rpvar 
write(noutrJ(a)+12.6)') ' Std. deviation = 'rstd 
write(nout~~(a)fl2.6)') ' Upper bound - - J )PUP 

write(nout~ '(a~fl2.6)') ' User time = ')time(l) 
write(noutrJ(a)+12.6)') ' System time = 'rtirne(2) 
write(nout)'(a1+12.6)') ' Total time = '~dtim 
write(nout)'(a)') J -,-----,,-,,---,,,,,,---,-,,-J 

dtim=dtime(time) 
call mgmnor ( x r r r n ~ n r n d ~ d s e e d ) g , q u a r r i e r )  
dtim=dtime(time) 



do 70 i = l ) n  
70 g s t d ( i ) = s q r t ( g v a r ( i ) )  

w r i t e ( n o u t ) ' ( / a ) ' )  ' Resu l ts  f o r  t he  g rad ien t  vec to r '  
w r i t e ( n o u t r J ( a ) ' )  J ,,,----,-,----,,----J 

w r i t e ( n o u t ) ' ( / a ) i l 2 ) ' )  E r r o r  code - - ' ~ i e r  
w r i t e ( n o u t ) ' ( a ) ' )  Gradient  vec tor  = 
w r i t e ( n o ~ t ~ ~ ( l x ~ S f l 2 . 6 ) ~ )  ( g ( i ) ~ i = l ~ n )  
w r i t e ( n o u t ~ ' ( a > ' )  Variances - - J 

~r i t e (nou t r~ ( l x r5 f12 .6 )~ )  ( g u a r ( i ) , i = l ) n )  
w r i t e ( n o u t ) ' ( a ) ' )  S td .  dev ia t i ons  = ' 
write(noutrJ(lx)5f12.6)') ( g s t d ( i ) ) i = l r n )  
~ r i t e ( n o u t ) ' ( a ) f l 2 . 6 ) ~ )  User t ime = ' ) t i m e ( l )  
~ r i t e ( n o u t ) ~ ( a r f l 2 . 6 ) ~ )  System t ime = ' ~ t i r n e ( 2 )  
w r i t e ( n o ~ t ) ' ( a ) f l 2 . 6 ) ~ )  ' Total  t ime = ' j d t i r n  
w r i t e ( n o u t j J ( a ) ' )  J -,--,,, ------ --- J 

go t o  55 
end 

The sample data f i l e  named N.DAT 

Prob l em-1 
3  
2.%029)3.934273~1.949334 
1 
0 .360 r l  
0 . 1 2 5 ~ 0 . 5 7 1 ~ 1  
10000 

Prob l em-2 
3 
2.662253,2.210704)6.5975 
1 .  
0.360) 1 
0.125rO.571)l  
10000 

No more problems 
0  

The corresponding ou tpu t  f i l e  named N.RES ........................ 

Prob l  em-1 

Resu l ts  f o r  t h e  d i s t r i b u t i o n  f u n c t i o n  

E r r o r  code - - 
- 0  

Lower bound - 0.972828 
Est imated value = 0.972849 
Var i ance - - 0.  
Std.  d e v i a t i o n  = 0. 
Upper bound - - 0.972870 
User t i  me - - 0. 050000 
System t i  me - - 0.016&7 
Tota l t i  me - - 0.066667 



Resul ts  f o r  t he  g rad ien t  vector  

E r r o r  code - - 0 
Gradient  vector  = 

0.004851 0.000058 0.059466 
Var i  ances - - 

0 .  0 .  0 .  
Std .  dev ia t i ons  = 

0. 0 .  0 .  
User t ime - - 0.033333 
System t ime - - 0.016667 
Tota l  t i  me - - 0.050000 

Prob l em-2 

Resu l ts  f o r  t h e  d i s t r i b u t i o n  f u n c t i o n  ........................ 

E r r o r  code - - 
Lower bound - - 
Est imated value = 
Var i  ance - - 
Std.  d e v i a t i o n  = 
Upper bound - - 
User t i  me - - 
System t ime - - 
Tota l t i  me - - 

Resu l ts  f o r  t he  g rad ien t  vector  

E r r o r  code - - 0 
Gradient  vec tor  = 

0.010496 0.033860 0.000000 
Var i ances - - 

0 .  0 .  0 .  
Std.  dev ia t i ons  = 

0 .  0 .  0 .  
User t i  me - - 0.050000 
System t ime  - - 0 .  
Tota l  t ime - - 0.050000 
.................... 



We remark that the above results correspond to the first two probability value pub- 

lished in Table 5 of [ I ] .  One can see that in these examples the lower and upper bounds 

were close enough so the simulation was unnecessary. We were now able to calculate all 

of the probabilities contained in Table 5 in the case of the multivariate gamma probabili- 

ty distribution. The results are the following 

Normal probability Gamma probability 
values values 

By the aid of the new subroutines for the calculation of the multivariate gamma probabil- 

ity distribution function and its gradient vector one can give the CALCON subroutine 

necessary to the nonlinear version of the MINOS system. So we were able to solve the 

problems of paper [ I ]  also in that case when the random variables have multivariate gam- 

ma probability distribution. The results according to Table 6 of [ I ]  are the following 

Z~ 1 22 23 24 Prob. lev. CPU time No. of 
major 

iterations 

Finally the three dimensional normal probability distribution function and its gra- 

dient vector have been calculated for different correlation matrices. Let us regard the 

correlation matrices 

and 



where pl = 0.98, p2 = 0.95, p3 = 0.90, p4 = 0.50, p5 = 0.10, p6 = 0.00, p, = 0.10, 

pg = 0.50, pg = 0.90, plo = 0.95, pl l  = 0.98. 

In the following tables of the distribution function estimations, their standard deviations 

and the gradient vector components are given for four different argumentum vectors. The 

gradient vectors have been normalized, i.e. they are given as unit vectors. 

TABLE 1 The three dimensional normal probability distribution function 
and its gradient unit vector for the arguments z l  = 3.5, z2 = 3.0, z3 = 4.0. 

No. of the Distribution Standard Gradient unit vector components 
correlation function deviation 

matrix 

TABLE 2 The three dimensional normal probability distribution function 
and its gradient unit vector for the arguments zl  = 1.5, z2 = 1.0, z3 = 2.0. 

No. of the Distribution Standard Gradient unit vector components 
correlation function deviation 

matrix 



TABLE 3 The three dimensional normal probability distribution function 
and its gradient unit vector for the arguments zl = 0.0, z2 = 0.0, 23 = 0.0. 

No. of the Distribution Standard Gradient unit vector components 
correlation function deviation 

matrix 

TABLE 4 The three dimensional normal probability distribution function 
and its gradient unit vector for the arguments zl = - 0.5, z2 = 0.0, 23 = 0.5. 

No. of the Distribution Standard Gradient unit vector components 
correlation function deviation 

matrix 
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