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Foreword 

This paper  is concerned with a bicr i ter ia minimum-cost circulation problem 

which ar ises in interactive multicriteria decision making. The author  presents a 

strongly polynomial algorithm fo r  this problem, which runs in 

0(mintnqog3n, n 4 ( n  log n + m)log5n 1) time, where n and m are the numbers of 

vert ices and edges in a graph respectively. I t  is  achieved by making use of the 

parametric characterization of optimal solutions and a strongly polynomial algo- 

rithm fo r  the single objective minimum-cost circulation problem. 

Alexander B. Kurzhanski 

Chairman 

System and Decision Sciences Program 



A n  mcient Algorithm for Bicriteria Minimawcoat 
Circulation Problem 

Naoki Katoh 

1. Introduction 

In recent  years,  many types of interactive optimization methods have been 

developed and used in pract ical  situations in o rde r  to support  multicriteria deci- 

sion makings (see the book by Sawaragi, Nakayama and Tanino [19] and Wierzbicki 

and Lewandowski [27] f o r  the survey of this topic). Given an  admissible decis ion 

set  (or a feasible decis ion set) X s Rn , and p objective functions, f 1 , f 2 ,  - - ,f' 
(all are assumed to be minimization f o r  convenience), the following problem formu- 

lations have been used in various situations of interactive multicriteria decision 

makings: 

minimize max [ a i l i  (z ) + pi 1 , 
+ EX i r i s p  

where ai and pi are positive and real constants respectively, which a r e  computed 

based on the information supplied by the decision maker and/or the decision sup- 

por t  s y s t e m .  

at and pi are typically determined in the  following manner by the reference 

point method, which is one of the well known methods used in interactive multicri- 

ter ia  decision support  systems (see 12'71 f o r  the survey of re ference point 

methods). This method requi res the decision maker to specify the aspirat ion level 

qi and the reservation level ri f o r  each objective f i .  The values of qi and ri are 

respectively interpreted as the desirable outcome fo r  i-th objective that  the deci- 

sion maker would like to attain, and the maximum allowable outcome f o r  i-th objec- 

tive. Then the degree of the achievement of a given z E X  f o r  a n  i-th objective is 

measured by 



The aggregated degree of the achievement fo r  z is  then measured by 

s = min pi (qf , r i  , f i ( z ) )  . 
lSi rp 

The method solves the  following problem: 

maximize s , 
z e X  

and provides i ts optimal solution 2' to the decision maker. If zs i s  not satisfacto- 

r y  f o r  the decision maker, he or she may respecify the aspirat ion and/or reserva- 

tion levels and the above process is repeated until a satisfactory solution is ob- 

tained. A t  each round of this i teration, w e  need to solve the problem (4). Letting 

ai = I/ ( r i  -qi) and pi = -ri / ( r i  -qi ), w e  have 

Therefore, the problem (4) is equivalent to problem (1). 

Some o ther  modifications and generalizations of this achievement function 

have been proposed by severa l  authors, i.e., Wierzbicki [22, 23, 24, 25, 261, 

Nakayama [16], Steuer  and Choo [20], (see also [27] f o r  general discussion about 

achievement functions). Many of those achievement functions have the form simi- 

l a r  to the one in (3). 

In view of this, i t  is of g rea t  significance to study the computational complexi- 

ty  required fo r  solving the problem (1). 

W e  concentrate on the  case where p = 2 and each single objective problem 

Pi , i  = 1,2  defined below 

Pi : minimize f i  ( z )  
zcy 

is a minimum cost circulation problem (SMCP). Both problems are assumed to have 

optimal solutions. W e  shall study problem (1) with such restr ict ions, which w e  call a 

b ic r i te r ia  minimum-cost circuLation problem (BMCP). Given a directed graph 

G = (V,E), where V and E denote the  sets of vert ices and edges respectively, a 

single objective minimum-cost circulation problem (SMCP) can be written as fol- 

lows. 

SUCP : minimize c (e ) z  (e ) 
e e  

subject  t o  



1 cz (6 )In = ( I L , v ) E E I  = tCz(e')Je' = ( v ,w )  EE j fo r  v E V  (7) 

Here a (e), b (6) and ~ ( e )  a r e  given integer numbers. a ( 6 )  = -= and b (e )  = +- 
are allowed. Let the objective functions jl and j2 fo r  Problem BMCP be 

and define 

where cl(e) and c2(e) a r e  integers and a1,a2 > 0. Problem BMCP is then descri- 

besub a s  follows. 

BMCP : minimize max [g  l ( z ) ,  g 2(z) j 

subject to the constraints of (7) and (8). 

Recently Tardos [21] discovered a strongly polynomial algorithm fo r  solving 

Problem SMCP, the existence of which w a s  an open problem since Edmonds and 

Karp [5] proposed a polynomial time algorithm fo r  it. An algorithm that  solves a 

problem whose input consists of n rea l  numbers is strongLy polynomial  if 

(a) i t  performs only elementary arithmetic operations (additions, subtrac- 

tions, comparisons, multiplications and divisions), 

(b) the number of operations required t o  solve the problem is polynomially 

bounded in n , and 

(c) when applied to rational data, the size of the numbers (i.e., the number of 

bits required to represent the numbers) that the algorithm generates is polynomi- 

ally bounded in n and the size of the input numbers. 

Based on Tardos' result,  Fujishige [7], Orlin [17], Galil and Tardos [9] pro- 

posed m o r e  effioient strongly polynomial algorithms. Among them, the one given by 

Galil and Tardos [9] is the fastest, which runs in 0(n2(m + n log n ) l o g n )  time, 

where n = M and m = BI. 
The major goal of this paper  is to propose a strongly polynomial algorithm fo r  

solving Problem BMCP, which runs in O(min tn %og3n, n '(n log n + m ) log5n 1) 

time. Notice that that  Problem BMCP can be  equivalently transformed to the fol- 



lowing form. 

BMCP' : minimize z 

sub jec t  to (7), (8) and 

Such reformulation has  been used in t h e  more genera l  set t ing in o r d e r  to solve 

problem (1) (see Chapter  7 of t h e  book [19]). This approach may not be  recom- 

mended in case t h e  set X has  a good s t ruc tu re ,  s ince t h e  new constra ints (12) ad- 

ded to t h e  original feasible decision set X may dest roy  t h e  good s t r uc tu re  of X .  In 

o u r  problem, we cannot guarantee any more t h e  to ta l  unimodularity of t h e  con- 

s t r a i n t  matrix associated with t h e  constra ints (7), (8) and (12) f o r  t he  above prob- 

lem BMCP', while t h e  const ra in t  matrix associated with t h e  constra ints (7) and (8) 

i s  known to b e  totally unimodular (see t he  books by Lawler [13] and Papadimitriou 

and Steiglitz [18]), which enables us to develop eff ic ient algorithms f o r  Problem 

SMCP. 

The algorithm proposed he re ,  on t he  o the r  hand, does not use t h e  above for- 

mulation, but takes  full advantage of t he  good s t r uc tu re  of t he  constra ints (7) and 

(8). I t  employs as a subrout ine t h e  strongly polynomial algorithm f o r  solving Prob- 

lem SMCP by Galil and Tardos [9], and finds an optimal solution of Problem BMCP in 

~ ( m i n  [ n  610g3n, n 4(m + n log n) log5n 1) time. The techniques we use are re la ted to 

Megiddo 114, 151. The problems t r ea ted  in 114, 151 a r e ,  however, d i f ferent  from 

ours.  Our resu l t  implies t ha t  t h e  basic ideas developed by 114, 151 can  be  utilized 

to solve a class of problems which have t h e  object ive function such as t h e  one in 

(1) with p = 2. 

Our problem i s  also re la ted  but  not  equivalent to t h e  minimum cost circulat ion 

problem with one additional l inear  constra int ,  which w a s  studied by Brucker 121. 

The algorithm proposed by [2] is, however, not st rongly polynomial. The tech- 

niques developed h e r e  can  be  di reot ly  used to improve t h e  running time of 

Brucker 's  algorithm to have a strongly polynomial algorithm whose running time i s  

t he  same as t h e  one f o r  BMCP. W e  also show tha t  t he  techniques developed h e r e  

can be  extended to t he  case where t he  object ive function i s  not t he  one as in (11) 
1 - 

but i s  such as (Cat pi ( z )  - pi P ) P ,  where p is  a positive integer.  



This paper  i s  organized as follows: Section 2 gives some basic results. Sec- 

tion 3 presents an outline of the algorithm f o r  solving Problem BMCP. Section 4 

gives the detailed description of the algorithm which runs in 

0 ( n 4 ( n  log n + m  )210g2n ) time. Section 5 improves the running time of the algo- 

rithm explained in Section 4 to ~ ( m i n  [n  ' log3n, n ' (m + n log n ) log5n I ) ,  based on 

the idea given by Megiddo [IS], which employa the idea of paral lel combinatorial 

algorithms to speed up the  running time fo r  many types of combinatorial optimiza- 

tion problems not including ou r  type of problem, though in fac t  w e  do not need any 

paral lel processor but simulate the  paral lel algorithm in a ser ia l  manner. Section 

6 discusses s o m e  extensions of our  approach to o the r  types of problems such as 

the minimum cost circulation problem with one additional l inear constraint. 

2. Baaic Concepts and Properties 

Let X s RE denote the  set of ~ ~ i m e n s i o n a l  vectors z satisfying (7) and (El), 

i.e., X is the  feasible decision se t ,  and le t  f ( z )  = ui(z), f 2 ( z ) )  : # + R2 denote 

the function that  maps z E X to the  objective plane R2. Define 

which is called the  JbasibLe set (or  admissible outcome set). Notice that  set Y is a 

convex polygon since X is  a convex polyhedron and both f l ( z )  and f z ( z )  are 

l inear. A vector y  = ( y 1 , y 2 )  E Y is called O c i s n t  if t he re  does not exist 

y' = ( y i  , y i  ) E Y such that  y i  6 yi: holds fo r  i = 1.2 and a t  least  one inequality 

holds str ict ly. A set of all efficient vectors is called the  m c i e n t  set ,  which w e  

denote Yo. A vector y  = ( y I , y 2 )  E Y is called weakly  e m c i m t  if t he re  does not 

exist y  ' = ( y i  , y i  ) E Y such that  y i  < y4 holds f o r  each i = 1.2. An z E X such 

that  f ( z )  is efficient i s  called an  O c i e n t  solut ion. The sets Y and Yo are illus- 

t ra ted in Figure 1 a s  the shaded area and the thick piecewise l inear ourve, respec- 

tively. 

The following auxil iary problem with nonnegative parameter h plays a cent ra l  

ro le  in ou r  algorithm. 



I. Illustration of  the  sets Y and Yo. 

P(A): v(A) --= minimize PI(=)  + Af2(z) 

sub jec t  to (7 )  and (8). 

I t  i s  well known (see [lo] f o r  example) tha t  the  function v(A) i s  piecewise 

l inear and concave in A, as i l lustrated in Figure 2, with a f ini te number of joint 

points A(1), A(2), - - ,A(N) with < A(*) <...< A(N). Here N denotes the  number of 

tota l  joint points, and le t  A(*) = 0 and A(N = - f o r  convenience. Define f o r  

each  A E [0 , -) 

X' (A) = lz E X b  i s  optimal to P(A) j . (15) 

The following lemma i s  well known in t h e  theory  of l inear parametr ic  programs (see 

Gal [8] f o r  t h e  survey of th is  topic). In what follows, f o r  t w o  r ea l  numbers a ,  b 

with a 5 6 ,  ( a ,  6 )  and [ a ,  6 1  stand f o r  t h e  open interval  lt(a < t < b ]  and t he  

closed interval  It (a 5 t 5 b ] respectively. 

Leaaaa 1. 

(i) For any A f (Ag A(k)), k = 1 ,..., N + 1, w e  have 

X' (A) c X' (A(k and z ' (A) c X' (A(k)) . 



Figure 2. nlustratlon of v (A). 

A ) , k  = 1 ,  ..., N + 1 ,  w e h a v e  (ii) Fo r  a n y  two d is t inct  A, A' E (A(* (*) 

X' (A) = X* (A') . 

(iii) For  a n y  A E (A(* -I), )) and a n y  A' E (A(k 1, +I)), k = 1 , .  . . ,N, 

x'(A(,)) = [F + (1 - p ) z 8 p  S p S 1 , z  E X e ( h ) a n d  z' EX'(A')] . 

Let  f o r  k = 1 ,  ..., N + 1 

X; = { z  E X b  E X' (A) f o r  all A E [A(k -1)' A(k)]] . (18) 

By Lemma 1. X; = X'(A) holds f o r  a l l  A E (A(* A(*)). The following lemma is 

known in  t h e  theo ry  of pa ramet r i c  l i nea r  programming. - 2. 

(i) F o r a n y  twoz.z8€& w i t h 1 5 k  5 N  + 1 ,  

hold. 



- 8 -  

(ii) For any z EX; and any z ' E X; with 2 S k S N + 1 ,  

l l ( z  < l l ( z  '1 and J z ( z  > I z ( z  '1 

hold. 

(i) For any A 2: 0 and any z E X' (A ) , j ( z )  is  weakly efficient. 

(ii) For any X > 0 and any z E X e  (A) , j (z )  is  efficient. 

(iii) For any z EX;, k =1,2  ,..., N + l , j ( z )  i s  a ver tex  of set Y. 

Proof. The proof of (i) is  given by Dinkelbach [4] and Bowman [I]. (ii) i s  proved 

as follows. If t h e r e  exists z ' E X such t ha t  ji (z  ') S ji (z ) ,  i = 1 3 ,  hold and one of 

inequalit ies i s  s t r i c t .  In any case,  by A > 0 ,  i t  implies 

contradict ing tha t  z i s  optimal to P(A). (iii) is  proved as follows. Since j ( z )  is  ef- 

f icient, j ( z )  i s  on t h e  boundary of set Y. If j ( z )  is  not a ver tex ,  i t  can  be  

represented by a convex combination of two vert ices.  That is,  t h e r e  exist  

z ' , z "  E X  and p with 0 < p < 1 such t ha t  

Since z i s  optimal to P(A) with A E (A(k A(k)), i t  follows t ha t  

s ince otherwise f l ( z ' )  + hfz(z') < f i ( z )  + hf2(z) or f l ( z  ") 

+ Ajz(z") < j l ( z )  + Ajz(z)  holds by (19), contradict ing the  optimality of z to 

P(A). Therefore,  both z' and z " are optimal to P(A) and by Lemma 2 (i) 

f l (z) = j1 (z  ') = j l ( z  ") and j z ( z )  = j Z ( z  ') = j Z ( z  ") follow. This contradicts tha t  

j ( z ) ,  j ( z  ') and j ( z4 ' )  are dist inct points in the  object ive plane. 

By Lemma 3 (iii) j ( z )  = V1(z) , jZ(z) )  maps a l l  z E to a unique eff ic ient 

ve r tex  in Y, and i t  i s  easy to see t ha t  such mapping from Xi, k = 1 ,  ..., N + 1 to t he  

set of eff ic ient ver t ices  i s  one to one. Therefore w e  use the  notation zk to 

r ep resen t  any z EX; in what follows. A s  k increases from 1 to N + 1, t he  

corresponding eff ic ient ve r tex  moves from top-left to bottom-right in t h e  object ive 

plane (see Figure 1). The edge connecting t w o  consecutive eff ic ient ver t ices  

corresponding to Xi and X; respect ively corresponds to all optimal solutions of 



P(A(k)). The following lemma gives a basis f o r  ou r  algorithm. 

Lemma 4. 

(1) If l(zl) > 2(z1), then z1 i s  optimal to Problem BMCP. 

(ii) If g1(zN+l) < g2(zN +l), then zN is  optimal to Problem BMCP. 

(iii) If neither (i) nor  (ii) holds, there  exists k* with 1 4 k * 4 N such that 

k*  +l g l ( zk *  4 92(zk* and g l (z  2 gz(z  k* +1) (20) 

hold. Letting p be the solution of the following l inear equation 

,Wl(Zk*) + (1 - ~ r ) g ~ ( z ~ * )  = ,W2(zk* +I) + (1 -p )g2(z  k*+l)  , (21) 

then 

is an  optimal solution of BMCP. 

Proof. (i) If z1 is  not optimal to BMCP, t he re  exists E X such that  j l(z^) < j l ( z l )  

and j2(z^) < j l ( z l )  hold. j l (z^) < j l ( z l )  implies tha t  z1 i s  not optimal to P(O), but 

z1 is  optimal to P(0)  by Lemma 1 (iii). This is a contradiction. (ii) i s  proved in a 

manner similar to (i). (iii) First note that  by Lemma 2 (ii) and by definition of 

gi ( z  ), there  exists k * such tha t  zk* and zk* satisfy (20). In addition, by Lemma 

2 (ii), the  l inear equation of (21) in p has a unique solution satisfying 0 4 p 4 1. 

z * defined by (22) is then optimal to X*  (A(k.)) by Lemma 1 (iii), and j ( z  * ) is  effi- 

cient by Lemma 3 (ii). I t  follows from (21) and (22) tha t  

holds. Since j ( z  * )  is  efficient, there  i s  no z € X such that  j l ( z )  < j l ( z e )  and 

j 2 ( z ) < j 2 ( z e )  hold. Thus there  is no  EX such that g 1 ( z ) < g l ( z m )  and 

g2(z )  < g2(z1)  by (10) and a l , a 2  > 0,  implying that  there  is no z E X  such that  

maxfgl(z). g2(z)1 < maxfg l (z  *I, 92(z *I{ holds. 

To il lustrate the  situations corresponding to Lemma 4(i), (ii) and (iii), i t  is  

useful to consider the set 

the set Z is  obtained from set Y by an  affine transformation and is similar to Y in 

shape. Set Z is  i l lustrated in Fig. 3 as the shaded area. The thick piecewise l inear 



curve in Fig. 3 corresponds to the  efficient set Yo. Figures 3 (a), (b) and (c) 

respectively i l lustrate the  set Z in which Lemma 4 (i), (ii) and (iii) hold. The 

straight line passing through the origin in Figs. 3(a) (c) separates the set Z into 

t w o  subsets; one in which g l ( z )  S g2(z )  holds and the o ther  in which g l (z )  2 g2(z)  

holds. If Lemma 4(i) holds, al l  (gl(zk), g2(zk)), k = 1, ... ,N + 1, l ie below the 

s t ra ight  line (see Fig. 3(a)) among which (gl(zl), g2(z1)) is  nearest  to the line and 

hence z1 is  optimal. The case of Lemma 4(ii) is  similarly i l lustrated in Fig. 3(b). If 

Lemma 4(iii) holds, the problem is  reduced to find k *  such that  (g1(zk*). 8 2 ( ~ k * ) )  

i s  above the s t ra ight  line and (gl(zk* 'I), g2(zk* 'I)) i s  below it. An optimal solu- 

tion z * i s  the one such that  (g l(z * ), g2(z I)) i s  the intersection point of the edge 

connecting (g1(zk*), g2(zk*))  and (gl(zk* +I), g2(zk* +I)) and the  s t ra ight  line (i.e., 

iYl(z*) = iY2(Z*)). 

figmre 3 (a). The case In whlah Lemma 4(I) holds 



Pigure 3 (b). The oase in whioh Lemma 4 (ii) holds. 

By Lemma 2 (i), the condition of Lemma 4 (i) (resp. (ii)) is tested simply by tak- 

ing any X with h < (resp. h > and obtaining an optimal solution z of 

P(X). If neither the condition of Lemma 4 (i) nor (ii) holds, w e  need to find k *  

satisfying (20). For this, w e  only have to know Once is obtained, 

zk*and I k*  a r e  obtained by solving P(h(k,)  - E) and P(X(k.) + E) respectively, 

where E is a sufficiently small positive number satisfying - A(,, < E and 

- < E. The following lemma is useful f o r  finding h with h < o r  

h > and fo r  estimating the above E. 

Lemma 5. Let 

and 



&nre 3 (c). The case in which Lemma 4 (iii) holds 

Figure 3. Illustration of set 2. 

Then 

and 

hold. 

Proof. (26) i s  proved by showing t ha t  f o r  any A E [O, -) and any z E X' (A) 

holds. After proving this, (26) follows by Lemma 9.2 in t he  paper  by Katoh and 

Ibaraki  [Ill. Note t ha t  P(A) f o r  a f ixed A i s  a l inear  program and t he  constra ints 

(7) and (8) of P(A) can be  wri t ten in the  form A s  = b by introducing 2m slack vari-  

ab les  f o r  2m inequalit ies of (a), where A is  ( n  + 2m)  x (3m) matr ix, z i s  a 3m- 

dimensional vector  and b i s  a ( n  +2m)-dimensional column vector  each of whose 

element i s  e i the r  0, a (e)  or b (e). I t  i s  well known in t he  theory  of l inear program 



t ha t  t h e r e  exists a n  optimal solution z of P(A) such t ha t  z is  a res t r ic t ion  of k to 

nonslack var iables where zU i s  a basic feasible solution of A s  = b.  zU i s  wri t ten by 

where B is  a ( n  + 2m) X ( n  + Zm) nonsingular square  submatrix of A ,B- l  i s  t he  

inverse matrix of B , B ' = ~ ~  i s  t h e  adjoint of B and det(B) is  t h e  determinant of B. I t  

is well known (see Chapter  4 of t he  book by Lawler [13] or Chapter 13 of t he  book 

by Papadimitriou and Steiglitz [le]) tha t  matrix A i s  to ta l l y  u n i m o d u l a r ,  i.e., 

eve ry  square  submatrix C of A has t he  determinant of e i t he r  0 ,+1  or -1. Hence 

det(B) i s  equal to e i t he r  +1 or -1. Each element of ~ ' = ~ f ,  is,  by definition, equal 

to a n  determinant of ( n  + 2m - 1 )  X ( n  + 2m - 1 )  submatr ix of A ,  which i s  also 

equal to e i the r  0 ,  +1, or -1 by t he  tota l  unimodularity of A .  Since each element of 

A is  also equal to e i t he r  0,  +1 or -1, k i s  an  in teger  vec to r  and t he  absolute value 

of each element of k is  at most ( n  + 2 m ) a  Therefore 

follows. This proves (26), s ince by Lemma 2(i) t h e  value f i  (z'), i = 1 ,2  i s  t he  same 

f o r  all z ' E z '(A) if A i s  not a joint point, and by Lemma 1 (iii) i t  i s  represented by 

t he  convex combination of f i  ( z k )  and f i  (z  * if A i s  a joint point A(k) .  

Now w e  shal l  p rove (27). For k which 1 S k S N -1, consider zk , zk and 

zk+', a11 of which can  be  assumed to be  in teger  vectors  as proved above. Since 

z , z ' E X* (A(k)) and z ',z " E X* hold by Lemma 1 (i), i t  holds t ha t  

and 

Thus, w e  have 

Then 



Since j l ( x )  and j 2 ( x )  take integer values if x is  an integer vector, and 

j l ( z k )  < j l ( z k  +') < j l ( z k  +') and j 2 ( x k )  > j 2 ( z k  +') > j 2 ( z k  +') hold by Lemma 2 

(ii), the numerator is not less than 1. Since 

holds by (26), 

follows. This proves - 4 I/ M' . 

By Lemma 5, i t  is  easy t o  test whether the condition of Lemma 4 (i) o r  (ii) 

holds. For this purpose, w e  have only t o  solve P(X) f o r  some X with 0 < X < 1 / M  

and fo r  some X > M. If the condition of Lemma 4 (iii) holds, we must find k* satisfy- 

ing (20), z k * ,  zk* +' and of (21) t o  compute z * by (22). One possible approach to  

do this is  t o  employ the binary search fo r  determining X E (X(k.-l), and 

A' E X(k.+l)) over  the interval u,i] where _X and 1 a r e  appropr iate 

numbers satisfying _X < 1 / M  and 1 > M respectively. By Lemma 5, such binary 

search may be terminated until the interval length is reduced to  less than 1 / ~ '  

(though the de ta ik  a r e  omitted). Therefore such method requires 

0(n2(m + n log n ) log  n . logM) time. This is polynomial in the input size because 

logM is polynomial in the input size by (25). However, i t  is  not strongly polynomial 

because of the term log M .  The following section alternatively presents a strongly 

polynomial algorithm f o r  finding with k *  satisfying (20). Once i t  is  obtained, 

zk* and zk*+' are computed by solving P(X(k.) - E) and P(X(k.) + E) respectively. 

Here E satisfies 0 < E < 1 / M 2 .  This is justified since (27) implies 

A(k* )  - E E -'), A(k*)) and A(,*) + E E A(k* +')I. 

3. The Outline o f  the Algorithm 

A s  discussed at the end of the previous section, i t  is easy to test  whether the 

condition of Lemma 4(i) o r  (ii) holds. Thus w e  assume in this section that the condi- 

tion of Lemma 4(iii) holds and w e  shall focus on how to compute with k satis- 

fying (20). 

The idea of the algorithm is similar t o  the one given by Megiddo 1141 which w a s  

developed fo r  solving fractional programs. The similar idea w a s  also used by Gus- 

field 1101 to determine the curve of the objective cost f o r  parametric combinatori- 

a1 problems. W e  apply the i r  ideas to  find The algorithm applies the algo- 



rithm of Galil and Tardos (the GT-algorithm) to solve P ( A ( , ( . ) )  without knowing the  

exac t  value of A(, ( . ) .  The computation path of the  GT-algorithm may contain condi- 

tional jump operations, each of which se lec ts  p r o p e r  computation path depending 

upon t he  outcome of comparing t w o  numbers. Notice tha t  the GT-algorithm con- 

tains ari thmetic operat ions of only additions, subtract ions, multiplications and 

divisions, and comparisons of t he  numbers generated from the  given problem data,  

and tha t  when applying t he  GT-algorithm to solve P ( A )  with A t rea ted  as  unknown 

parameter,  the  numbers generated in the  algorithm are al l  l inear functions of A or 

constants not containing A. Note tha t  comparisons are necessary at conditional 

jumps. If a comparison f o r  a conditional jump operat ion is made between t w o  l inear 

functions of A(, ( . )  , t he  condition can be  written in the form of 

f o r  an  appropr ia te  cr i t i ca l  constant i ,  which can be  determined by solving the  

l inear equation in A(, ( . )  aonstructed from the  compared t w o  l inear functions. Here 

L; i s  assumed to b e  positive s ince otherwise i < A( , ( . )  is c lear ly concluded. 

An important observation h e r e  is  that  condition ( 3 0 )  can  be  tested without 

knowing the value of A(,(. ) . For this, solve P(); - c ) . ~ ( i )  and P ( K  + c )  by the  GT- 

algorithm, where is  now a known constant, and c  i s  a positive constant satisfying 

E < 1 / 2 h f 2 .  Let z ,  z ' , z "  be t he  obtained solution of P ( X  - E ) . P ( ~ )  and P ( X  + c )  

respectively. Fi rst  w e  test whether is a joint point or not, based on the  following 

lemma. 

Lemma 6. Let z ,  z' and z" be those defined above. Then i is a joint point if and 

only if t he  following l inear equation in A has t he  unique solution A' equal to i. 

Proof. If i i s  a joint point, say A( , ( ) ,  i - c and i + c  l ie in the intervals 

(A(,(  A ( , ( ) )  and ( A ( , ( ) ,  A(,( respectively, by Lemma 5. Thus, from definition of 

a joint point, f l ( z )  + A f 2 ( z )  (resp. f l ( z " )  + W 2 ( z " ) )  defines the  value v ( A )  of 

( 1 4 )  f o r  A E [A(,(  A ( , ( ) ]  (resp. [ A ( , ( ) ,  A(,( Thus ( 3 1 )  has a unique solution 

A = A( , ( ) .  

A  ) f o r  some k with If i i s  not a joint point, l e t  i belong to 
(,() 

2 4 k 6 N + 1. The following five cases are possible. 

I 

Case 1. A(k < - c  and A + c  < A(, ( ) .  In this case f l ( z )  = f l ( z  ") and 



j 2 ( z )  = j 2 ( z " )  hold by Lemma 2 ,  and (31) has no unique solution. 

n 

Caae 2. A - r < A and i + r < AO). By r < 1/2Ai2 and Lemma 5. 
n 

A - E > A(k -2) holds and the  equation (31) has t he  unique solution A' = A(k 

which i s  not equal to i. 
A 

Caae 3. i - r > A(k and A + r > A(k). This case is  t r ea ted  in a manner similar 

to Case 2.  

A 

C a s e  4. i - r = A(k-l) and A + r < Ag). z1 sat is f ies 

s ince v ( A )  of (14) i s  concave. If j z ( z )  < j 2 ( z " ) ,  t he  equation of (31) has the  

unique solution A' = A(k # i. If j 2 ( z )  = j 2 ( z  "), (31) has no unique solution. 

n 

C a s e  5. i - r > A(k -1) and A + r = A(k). This case i s  analogous to Case 4. 
A 

Note tha t  t h e  case of i - r 4 A(k -1) and A + r n A(k) is  not possible because 

~ ~ ~ ( k )  - A ( k - l )  n I /  Ai2 by Lemma 5 and r < I /  2hf2 by assumption. 

After computing z ,  z' and z" defined above, the  algorithm proceeds as fol- 

lows. If one of z , z' and z " (say, z^) sat is f ies 

z^ i s  an optimal solution of BMCP since j ( Z )  is weakly eff ic ient by Lemma 3 (i) and 

hence t h e r e  is  no z E X such t ha t  j l ( z )  < j l (z^ )  and j 2 ( z )  < j2(z^) hold. So, as- 

sume in what follows t ha t  none of z ,  z ', z" sat is f ies (32). Depending upon whether 

i s  a joint point or not, consider t he  following two cases. 

C a w  1. f i  is  not a joint point. W e  then compare t h e  two values g l ( z ' )  and gz(z') .  

Two subcases are possible. 

Snbcaae 1k g l (z ' )  < g2(z ' ) .  Then A* > i is  concluded, and t he  algorithm 

chooses t he  computation path  corresponding to A* > i. 

Subcase 1B. g l ( z ' )  > gz(z  '). Then A* < f i  i s  concluded, and t he  algorithm 

chooses t h e  computation path  corresponding to A* < i. 

Caae 2. i i s  a joint point. Then we consider t h e  following t h r e e  subcases. 

Subcase 2k g l ( z " )  < gz(z") .  By Lemma 2 (ii), g l ( z )  < g z ( z )  follows. This im- 

plies A* > i + r and t he  algorithm chooses t he  computation path  corresponding to 



Subcase 2B. g l (z)  > g2(z). Similarly to Subcase 2A, g l (z  ") > g2(z ") follows. 

This implies A *  < i - r and the algorithm chooses the computation path 

corresponding to A *  < %. 

Subcase 2C. g l ( z )  < g2(z )  and g l (z  ") > g2(z"). 

Then is the desired joint point A ( k a )  by Lemma 4 (iii). By Lemma 5 and 

0 < r < 1/M2, z E and z" E follow. Therefore, by Lemma 4 (iii), an  op- 

timal solution z*  of BMCP is found by (21) and (22) a f t e r  letting zk* = z and 
=k* +l = ' C .  

With this observation the algorithm s ta r t s  with the initial interval (A,x), 

where _X and x are typically determined by _X = 1/ (M + I ) ,  x = M + 1 ,  and every 

time i t  performs the conditional jump operation, the cr i t ical  value i is computed, 

and P(X - E), ~ ( i )  and ~ ( f i  + E) are solved. Depending upon the cases explained 

above, the length of the interval may be reduced in such a way that  the  desired 

joint point A(ka)  exists in the reduced interval. I t  will be shown in the  next section 

that  Subcase 2C always occurs during the course of the algorithm, which proves 

the correctness of ou r  algorithm. Since the GT-algorithm requires 

0(n2(n log n + m) log n )  jump operations, and at each jump operation at m o s t  

th ree  minimum cost circulation problems, i.e., P(X - E), ~ ( i )  and P(X + r ) ,  are 

solved by calling the GT-algorithm, the ent i re  algorithm requires 

0 (n4(n  log n + m)210g2n) time in total. 

4. Dermiption and Analymia of the Algorithm 

The algorithm f o r  solving Problem BMCP is described as follows: 

Procedure SOLVEBMCP 

Input: A directed graph G = (V,E) with costs cl(e), c2(e), lower and upper compa- 

cit ies a (e) and b (6) f o r  each e E E ,  and the weights a l ,  a2,  and 82. 

Output: An optimal solution of Problem BMCP. 

Step 0: [Initialization]. Compute M by (23), (24), (25). Let 

A = l / ( M  + 1 ) , x  = M  + l a n d  r = 1 / ( 2 M 2  +I) .  - 

Step 1: [Test the conditions of Lemma 4 (i) and (ii)]. Compute optimal solutions z ' 

and z" of Problems P a )  and P(X) respectively by applying the GT-algorithm. If 



z' (resp. z ") satisf ies g l (z  ') > g2(z ') (resp. g l (z  ") < g2(z ")), output z ' (resp. 

z ") as a n  optimal solution of BMCP and halt. Otherwise go  to Step 2. 

Step 2: nest the condition of Lemma 4 (iff)]. 

(i) Follow the GT-algorithm applied to P(A(k8)) treating A(k8)  as unknown con- 

s tant  satisfying A < A(k.) < r. If the GT-algorithm halts, go to Step 3. Else at the 

next conditional jump bperation, do the  following. 

(if) Let the condition of the  jump operation given by 

where p l(A(k. )) and P ~ ( A ( ~ .  )) are l inear functions in A(k. ). Solve equation 

(iii) If equation (34) has no solution A satisfying _ X < A 8  <I, i.e., 

p1(A8) <p2(A8)  (or p1(A8) >pZ(A8))  holds f o r  all such A*, then choose the 

corresponding computation path at the cur ren t  conditional jump operation. Go to 

(viii). 

(iv) If equation (34) holds f o r  al l  A *  with _X < A' < 1, choose pl(A9) = p2(A8) 

as the proper  computation path, and go  to (viii). 

(v) If equation (34) has the unique solution i such that  < i < i, the condi- 

tions of (33) are transformed to 

Solve ~ ( f i  - E), ~ ( i )  and ~ ( i  + E) by applying the GT-algorithm, and le t  2.2' and 

z " be optimal solutions of these problems respectively. 

(vi) If one of z , z ' , z U  satisf ies (32). output i t  as an optimal solution of BMCP 

and halt. 

(vii) Test whether i i s  a joint point or not based on Lemma 6. 

(vii-a) If i i s  not a joint point, determine A(k.) > i or A(k.) < i according to 

Subcases 1A and 1B given p r io r  to the description of the algorithm, and choose the 
* 

proper  computation path corresponding t o  A(k8)  > A or A(k.) < i respectively. If 

) > i ,  l e t b  = i. Otherwise le t  1 = i. Go to (viii). 

(vii-b) If X is  a joint point, determine A(k.) > X + r ,  A(k.) < R - E or A(k.) = i 
according to Subcases 2A, 28  and 2C given p r io r  to the  description of the algo- 

rithm, respectively. If A(k8)  > i + L (resp. A(k.) < i - E). let  4 = + L (resp. 



- A A 

A = A - E), choose t he  p rope r  computation path according to A(k.) > A (resp. 

A,,.) < i )  and g o  to (viii). If A(ka )  = i ,  compute c satisfying (21) and then z* by 

(22) a f t e r  lett ing z k*  = z and zk* *' = z ". Halt. 

(viii) Return to t he  conditional jump operat ion of t he  GT-algorithm in S tep  2, 

from where i t  ex i ted to find t he  p r o p e r  computation path.  

Step 3: Halt. 

The co r rec tness  of t he  algorithm i s  almost c l e a r  by t he  discussion given in t h e  

previous section. What remains i s  to prove tha t  t h e  algorithm always ha l ts  e i the r  

in S tep  1 ,  S tep  2 (vi) or Step  2 (vii). Assume otherwise. Note t ha t  Algorithm SOL- 

VEBMCP always hal ts  because i t  follows t he  GT-algorithm. Assume t ha t  SOLVEBMCP 

hal ts in S tep  3 and consider t h e  interval  a ,  x) generated when i t  hal ts  in S tep  3. I t  

follows from the  discussion given in Section 3 t ha t  A < A(k.) < 1 holds. When Algo- 

rithm SOLVEBMCP halts, i t  has obtained a solution which i s  optimal to P(A) f o r  a l l  

A E a , i ) ,  s ince if t he  GT-algorithm i s  appl ied to solve P(A) f o r  any A E a,i), i t  

follows t he  same computation path i r respect ive  of choice of A from the  interval  

a ,X ) .  However, by Lemma Z(iii), an  optimal solution of P(A') with < A' < A(*.) is 

not optimal to P(A") with A(ka )  < A" < i. This i s  a contradiction. 

The running time of t he  algorithm can be  der ived in a manner similar to [14]. 

A t  each jump operat ion,  a l inear  equation (34) i s  solved and if i t  has  t h e  unique 

solution with _X < x < x, t h r e e  problems ~ ( f i  - E), ~ ( x ) ,  P(X + E) are solved. So 

Step  2 (v) requ i res  0 (n2 (n  log n + m )log n )  time. The o t h e r  p a r t  of S tep  2 i s  dom- 

inated by this. Since t he  tota l  number of jump operat ions in t he  GT-algorithm i s  

0 ( n 2 ( n l o g n  + m ) l o g n ) ,  S t e p  2 i s  repeated 0 (n2(n  l o g n  + m ) l o g n )  times. So, 

S tep  2 requ i res  0 ( n 4 ( n  l o g n  + m)210g2n) time in total.  Since S tep  0 requ i res  

constant time and S tep  1 requ i res  0 (n2(n  log n + m)log n )  time, Algorithm SOL- 

VEBMCP requ i res  0 (n4 (n  log n + m)210g2n) time in total.  

Theorem 1. Algorithm SOLVEBMCP cor rec t l y  computes a n  optimal solution of 

Problem BMCP in ~ ( n  4(n log n + m )210g2n ) time. 

The algorithm i s  in f ac t  st rongly polynomial, s ince the  running time depends 

only on t he  numbers of ver t ices  and edges in a graph,  and if t he  input da ta  are al l  

rat ional  numbers, t he  s ize of t he  numbers generated in t h e  algorithm i s  c lear ly  po- 

lynomial in n ,m and t he  s ize of t he  input numbers. 



This running time is improved to ~ ( m i n t n  %og3n, n 4(n log n + m)  log5n 1) in 

the following section by utilizing the idea of simulating the paral lel shor test  path 

algorithm in a ser ia l  manner. Such idea of simulating paral lel algorithms fo r  the 

purpose of the speed-up of algorithms w a s  originated by Megiddo 1151. The appli- 

cation of his idea to our  problem, however, seems to be new. 

5. Time Reduction 

In o rde r  to reduce the running time of Algorithm SOLVEBMCP, the following 

remarks are useful. 

Remark 1. In the GT-algorithm, the shor test  path algorithm is applied 0(n210g n )  

times as a subroutine. Since the best known shor test  path algorithm with a single 

source node, which is due to Fredman and Tarjan [6], requires O(n log n + m )  time, 

the GT-algorithm requires 0(n2(n log n + m )log n )  time in total. 

Remark 2. When the GT-algorithm is applied to solve P(A), comparisons with t w o  

numbers containing A are made only when the shor test  path algorithm is applied. 

W e  modify Algorithm SOLVEBMCP in such . a  way that instead of using 

O(n log n + m )  shor test  path algorithm, w e  employ a paral lel shor test  path algo- 

rithm such as Dekel, Nassimi and Sahni's [3] and ~ u 6 e r a ' s [ l 2 ]  in a ser ia l  manner 

when SOLVEBMCP follows the GT-algorithm in Step Z(i). W e  sti l l  use O(n log n + m )  

shor test  path algorithm in o the r  par ts  of SOLVEBMCP such as Step 1, Step 2 (v). 

The idea of the time reduction i s  based on Megiddo [15]. W e  shall explain how i t  i s  

attained. Let P denote the  number of processors and let ~p denote the number of 

s teps required on a P-processor machine. Dekel, Nassimi and Sahni's scheme re- 

quires P = 0(n3) and TP = 0(log2n) while ~ u g e r a ' s  scheme requires P = 0(n4)  and 

TP = O(1og n ). W e  simulate these algorithms serially. According to s o m e  fixed per- 

mutation, w e  visit one processor at a time and perform one s tep  in each cycle. A t  

each processor, when t w o  l inear functions pl(A), p 2(A) are compared, w e  execute 

Step 2 (ii). (iii) and (iv). If the  equationpl(A) =pp(A) has a unique solution with 

A < i < 1, such cr i t ical  value i is  s tored and w e  proceed to the next processor - 
without executing Step 2 (v), (vi) and (vii). After one s tep  of the multiprocessor, 

w e  have at mos t  P such cr i t ical  values. Let Xl,i2. - . - , i p  denote such cr i t ical  

values. W e  then compute 



or in the meantime w e  may find the desired joint point A(k.) among those cr i t ical  

values. As explained in 1151, this is done by performing a binary search  that  re- 

quires O(P) time fo r  median findings in subsets of the  set of cr i t ical  values, and 

O(1ogP) applications of the  GT-algorithm. W e  explain in m o r e  details how A' is  

computed (the case A" is  similarly treated). Each time the median fit is  found from 

among the  remaining cr i t ical  values, w e  execute Step 2 (v) , (vi) and (vii) with f i  re- 

placed by f i t .  In Step 2 (vii), i t  may happen that  f i t is  concluded as the desired 

joint point A(k.). Otherwise f i t  < Ag.) or f i t  > A(k.) is  concluded, and half of the 

remaining cr i t ical  points are discarded. Since the  remaining subset during binary 

search  is halved each time, the  time required to find al l  m e d i a n s  is  

a s  shown in 1151. Since we need O(Log P )  applications of the median finding in ord- 

er to find A', i t  requires 

0 (n2(n  log n + m) logn  -1ogP) 

time. Hence, each s tep  of the  multiprocessor requires 

time. After A' and A" are computed, w e  can choose the p roper  computation path at 

each processor. Since the above process is repeated rp times in total, each appli- 

cation of the paral lel shor test  path algorithm requires 

O((P + n 2(n log n + m ) log nlog P )  rp)  

time. Since the shor test  path problem is solved 0(n210g n )  times as mentioned in 

Remark 1 ,  the total running time is  

If Dekel, Nassimi and Sahni's scheme is  employed, this becomes 

while if ~ u g e r a ' s  scheme is  employed, i t  becomes 



Therefore, depending on how dense the graph is, w e  may choose the bet ter  one. We 

then have the following theorem. 

Theorem 2. The modified SOLVEBMCP solves Problem BMCP in 

O(min[n 4(n log n + m ) log5n, n %og3n 1) time. 

8. Extensions 

In this section, we shall show how our  approach is  generalized to other  types 

of problems which a r e  variants of Problem BMCP studied s o  fa r .  One of such prob- 

lems is the minimum-cost circulation problem with one additional l inear constraint 

studied by Brucker [2]. This is  described as follows. 

SMCPLC : minimize j l ( x )  

subject t o  the constraints of (7) and (8)and 

Here, jl and j2 are those defined in (9), and d is a given constant. The above 

problem is solved as follows. I t  is easy to  see that  there exists an optimal solution 

x *  of SMCPLC such that  j ( x ' )  is efficient. Define zk,  k = 1 ,  ..., N + 1, by 

as before. If j2(z1)  L d , x i  is optimal t o  SMCPLC. If j 2 ( z N  +I) > d , there  is no 

feasible solution to SMCPLC. So assume 

Let 

Ack,, = min l X ( k , I 1  L k L N,  j 2 ( z k  L d , (38) 

A(ka, = max l A ( k , l l  L k L N,  j2 (zk+ ' )  > d 1 . (39) 

Lenuua 7. Let p satisfy 

p f2 (zk  +I) + (1 - p)f2(z ka+l) = d 

Then 



i s  optimal to SMCPLC. 

Fig. 4 

Pmof. By (9). z ' sat is f ies j 2 ( z  ') = d ,  and j ( z  ' ) i s  eff ic ient s ince j ( z k  *I) and 

j ( z k a f l )  are adjacent  eff ic ient ver t ices  by (38), (39) and Lemma 3 (see Fig. 4). 

Thus, t h e r e  is  no z E X  such t h a t  j l ( z )  < j l ( z B )  and j 2 ( z )  4 j 2 ( z 8 )  hold. This 

proves t h e  lemma. 

f, (x)  

FQpre 4. Illustration of the  set Y used In Lemma 7. 

By t h e  lemma, all what w e  d o  i s  to compute A(k1) and A(k2). Once A ( k l )  and 

k ,  t1 
A(kz) are obtained, z ( resp.  z k2  ") are computed by solving + r )  ( resp.  

P(AO,) + c). where r sat is f ies 0 < r < l / ~ ~ .  W e  sha l l  explain only how A ( k l )  i s  

computed ( the case of A(ka) i s  similarly t rea ted) .  This is  done in a manner similar 

to t h e  way of finding A(k *) in Algorithm SOLVEBMCP given in Sect ion 4. Following 

t h e  GT-algorithm to solve P(A(k1)) without knowing t h e  e x a c t  value of A(kl), e v e r y  

time comparison i s  made at conditional jump operat ion,  w e  compute a cr i t i ca l  value 

i by solving t h e  l inear  equation in A ( k l )  formed by t h e  compared t w o  numbers con- 

taining A(kl) .  W e  f i r s t  test whether i i s  a joint point or not, using Lemma 6. If i i s  

a joint point (say A(k)), w e  solve P(X + r )  to obtain z k * l  and compute f2 (zk+ l ) .  
A 

According to whether j 2 ( z k  tl) 4 d or not. A 2 A(kl), or i < A ( k l )  i s  concluded 

respect ively,  and t h e  p r o p e r  computation path  i s  chosen. If i i s  not a joint point, 



w e  solve P ( X )  to obtain z^ E x'(X) and compute f2 (s ) .  According to whether 

f 2 ( i )  S d or not, i > A(k l )  or i < A(k l )  i s  concluded respect ively,  and t he  p rope r  

computation path i s  chosen. In any case,  by t he  discussion similar to t he  one in 

Sections 3 and 4, w e  finally obtain A(k,). W e  do  not  give t he  detai ls  of t h e  algo- 

rithm since i t  is  almost t he  s a m e  as SOLVEBMCP. In addition, w e  can  a lso apply t he  

idea of t he  time reduction given in Section 5 and hence t h e  following theorem 

holds. 

Theorem 3. Problem SMCPLC can  be  solved in 

O(min [ n  %og3n, n '(n log n + m) log 'n j) time , 

W e  now tu rn  o u r  at tent ion to ano ther  type of problem to which t he  idea similar 

to t he  one given in Sections 3 and 4 can  a lso b e  applied. Recal l  t ha t  Problem BMCP 

in (11) a r i ses  in interact ive mult icr i ter ia decision making. Consider t he  si tuat ion 

in which only aspirat ion level q = (ql,q2) is  specif ied by t he  decision maker and q 

i s  unattainable. In th is case,  t he  distance between f ( z )  and q can be  considered to 

r ep resen t  a measure of r e g r e t  result ing from unattainabil ity of f (z )  to q , instead 

of considering t h e  achievement function such as s in (3)(see Figure 5). The follow- 

ing weighted $-norm has been considered in the  l i t e ra tu re  to measure such dis- 

tance (see [19, 273). 

Here  p i s  a positive in teger  and ai are given constants. For  t he  ease of exposi- 

tion, we assume 

where zk are those defined in (36). The o the r  case such as q l  > f l ( z l )  or 

q 2  > f 2 (zN+ l )  are t rea ted  later. W e  t he re fo re  consider t he  following problem: 

BMCPZ : minimize d V ( z ) , q )  

sub jec t  to t he  constra ints (7) and (8). 

Since q $! Y is  assumed, i t  i s  c l ea r  by (43) t ha t  f ( z ' )  i s  eff ic ient f o r  any op- 

timal solution z * of BMCPZ. The eff ic ient set Yo i s  represented by a function of one 

parameter  y with f l ( z  l )  S y S f1(zN+l) as follows. 



Qpre 5. Illustration of point q and the set Y. 

By (43) and (45), the objective function d CJ(z),q) is then represented by 

if f ( z )  is  on the efficient edge between the vertices f ( z k )  and f ( z k  +I). Define, 

for yl with f l ( z k )  6 yl S f l (zk  +I), 

and define 



Since g ( y l )  is clearly convex and Problem BMCPZ is equivalent t o  minimizing 

g (yl),  Problem BMCPZ is reduced to  find y ; such that  

where ag ( y  denotes the subgradient of g (y  '). Let f o r  ( y  y 2) E Yo and h > 0 

From (46), (47) and (48), w e  have 

Lemma 8. 

(i) If 6(f1(z1), f2 (~ ' ) ,h ( l ) )  > 0, any z' is optimal t o  BMCPZ. 

(ii) If d(fl(zNt'). f2(zNt').h(N)) < 0, any zN is optimal t o  BMCPZ. 

(iii) If d 1 z k  f 2 z k '  Ack. -,)) S 0 and 6(fl(zk').f2(zk' 2 0 hold 

fo r  some k * with 2 S k * 5 N ,  any zk* is optimal t o  BMCPZ. 

(iv) If 6 ( f 1 ( ~ k * ) , f 2 ( ~ k * ) ,  S 0 and 6(f l(zk* "1, j,(~'*~'), A(,.)) 2 0 hold 

fo r  some k *  with 2 S k '  S N ,  

is optimal t o  BMCPZ, where p satisfies 

Proof. (i), (ii) and (iii) are obvious from (48) and (49). (iv) i s  proved as follows. 

Since g (y l )  is convex, there  exists (y l ,y2)  such that  (y l ,y2)  is on the edge con- 

necting v l ( z  k'), f2(zk*)) and (fl(z k' "),f2(z k* ")) and 0 E 8g (y  '). Since the 
k* ti point (y l ,y2)  on this edge is represented as (p#'(zk') + (1 - W l ( z  ), 

~ ~ ( z ~ * )  + (1 - p)f2(z ")) by using the parameter p with 0 S p 5 1 and 



ag y l ( z  ' )) = 0 holds by (50) and (53), z * of (52) i s  optimal to BMCPZ. 

Based on Lemma 8, w e  can construct an algorithm fo r  solving BMCPZ which is 

similar to the one presented in Sections 4 and 5. The conditions of Lemma 8 (i) and 

(ii) can be verified simply by solving P(A) f o r  A < A(l) and A > A(N) respectively. 

which is similar to Lemma 4 (i) and (ii). If none of the conditions of Lemma 8 (i) and 

(ii) holds, t he re  exists k *  satisfying the condition of Lemma 8 (iii) or (iv). To com- 

pute an  optimal solution z * f o r  this case, w e  compute 

Suppose that  these t w o  values are obtained. W e  then consider the following t w o  

cases. 

Casc 1. A' = A". Then the condition of Lemma 8 (iv) holds f o r  A(k,) = A'. zk' and 

zk' +' are obtained by solving P(A(k.) - r )  and P(A(k.) + r )  respectively. where r 

satisfies 0 < E < 1 / t W 2 .  An optimal solution za of BMCPZ is then computed by (52). 

The value of p in (52) is obtained by solving the following l inear equation in p 

which is equivalent to (53). 

(56) 

Case 2. A' < A". Then A' and A" are t w o  consecutive joint points. Otherwise 

the re  exists a joint point A(k .) with A' < A(k .) < A". Since the values of 

d ~ ~ ( z  k),j'2(zk). X O  )) and ~ v ~ ( z ~  +1),j'2(zk 'l), are respectively increasing 

in k by the convexity of g (y i t  follows from the  maximality and the minimality of 

A' and A" respectively that  

b(t ' l (zk'), j2(zk'),~(k *)) > 0 and b ~ ~ ( z ~ ' + ~ ) , j ' ~ ( z ~ ' + ~  ),A(, * ) )  < 0 

k '+ l  holds. This is, however, impossible by j l ( zk ' )  < j l(zk'+') and j2(zk ' )  > j 2 ( z  ). 

So l e t  A' = A(k, and A" = A(k,). By the maximality of A' and the minimality of 

A", w e  have 

dy l (~k ' ) , j2(zk*) .A(k .  < 0 and ~ V ~ ( Z "  ).f2(zk* 1. X(k.)) > 0 

This is equivalent to the condition of Lemma 8 (iii). Therefore by Lemma 8 (iii) an 

optimal solution of BMCPZ is  obtained by solving P(A) f o r  a X with 



A' < A < A". 

With this observation, what remains to  do is t o  compute A' and A" of (54) and 

(55) respectively. This is  done in a manner similar to the ways of computing A(k.) 

explained in Sections 3 and 4 and of computing A(k I )  and A(k8) of (38) and (39) ex- 

plained in this section. Therefore, the details are omitted here. 

Finally, w e  mention the case in which (43) does not hold. If 

q l  > j l ( x N t l ) , j ( x ' )  may not be efficient fo r  an optimal solution x '  of BMCPZ (see 

Figure 6). However, if we consider the following new parametric problem fo r  a 

nonnegative parameter A, 

P'(A): minimize - j l ( x )  + AJ2(x) , 
rcY 

Figure 6. Illustration of the case in which ql  > j l (xNt l )  holds. 

we can have the property relating P'(A) t o  BMCPZ which is similar t o  Lemma 8 

(though the details a r e  omitted here). The case of q2  > j2 (x1)  can be similarly 

treated. Thus we assume that  

hold. 



Let us consider the case q l  > f l (z l ) .  Since q l  f1(zN'l) i s  assumed by (57), 

t he re  exists an  efficient point V1(z^),f2(z^)) with fl(z^) = q (see Fig. 7). Since the  

object ive value d V ( z ) , q )  i s  l a rge r  than d V ( Z ) , q )  f o r  a l l  eff ic ient f ( z )  with 

f l ( z )  < q l ,  since if f ( z )  is efficient and f l ( z )  < ql ,  l l ( z )  - ql(  > lJl(z^) - ql( = 0 

and 1 2 ( z )  - q 2( > LJ2(z^) - q 2( hold (the last  inequality follows from J2(z) > f2 (g)  

and f2(z^) < q2). Thus, w e  can  eliminate al l  efficient f ( z )  with f l ( z )  < q and con- 

s ide r  z  ̂ as if i t  i s  zl. Therefore th is case can be reduced to q f l(zl) .  The case 

of q 2  > f2 (zN+l )  can be  reduced to the  case of q 2  f2(zNt1) in a similar manner. 

Finally, notice tha t  the  solution 2 considered above i s  computed by solving the  fol- 

lowing problem. 

minimize f2(z  ) 

subject  to (7), (8) and 

As discussed at the beginning of this section, th is  problem can be  solved in 

O(min In %og3n, n '(n log n + m ) log5n 1) time and i t s  optimal solution z ' always sa- 

t isf ies f l ( z  * )  = d .  A s  a resu l t ,  w e  have the following theorem. 

Theorem 4. Problem BMCP2 can be solved in 

~ ( m i n l n  %og3n, n 4 ( n  log n + m)log5n 1) time. 



Figure 7. Illustration of the case in whioh q l  4 ~ ~ ( z * ' ~ )  and q 2  S f2(z1) hold. 
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